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MIELNIK'S PROBABILITY SPACES 
AND 

CHARACTERIZATION OF INKER PRODUCT SPACES 

C. V. Stanojevic 

B. Mielnik pointed out the insufficiency of the 
classical approach, [l] , [2], and proposed a geometric 
approach to the foundation of general quantum mechanics^]. 
For that purpose he introduced an abstract space of states 
as a Setting for his geometric theory of quantum states* 

Let S be a non-empty set, and let p be a real-valued 
function defined on S x S such that 
(A) o<p(a,b) < 1 and a=b<^=f> p(a,b) = 1 
(B) p(a,b) = p(b,a) for all a, b, €L S. 
Two elements a and b in S are orthogonal if p(a,b) » 0* 
A subset R of S is an orthogonal system if any two distinct 
elements of R are orthogonal* From Zora's lemma it follows 
that there exists a maximal orthogonal system B which is 
called a basis in S. 

Let B be a basis and Fg be the class of all finite 
subsets F of B. Define p(a,F) =2Tp(a,b) for all a £ S. 

be? 
Then the following property of (S,p) is also postulated: 
(C) For each basis B and for each a £ S, 

sup p(a,F) = 1 
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Any pair (S,p) satisfying axiom (A), (B) and (C) 
is called a probability space. 

Let B-̂  and B2 be two bases in S, then, as shown 
in [3]» B^ and B2 have the same cardinal number* This 
cardinal number is called the dimension of (S,p). 

The existence of a representation of states by 
vectors in a Hilbert space imposes strong limitations on 
the geometric structure of the space of states* This 
space must be a Hilbert space over one of the three fields: 
real numbers, complex numbers or quaternions. An analogous 
situation arises in connection with Mielnik's theory. 
A particular probability space structure, imposed on a 
subset S of a normed linear space N, can turn N into an 
inner product space. For instance, in [ 4 ] we have the 
result: 

Let S be the unit sphere of a normed real linear 
space N and let p(a,b) = 11 a ^ b for a, b in S. Then N 
is an inner product space if and only if (S,p) is a 
probability space of dimension 2 . 

The theorem that follows generalizes the above result. 
Theorem Let S be the unit sphere of a normed real 

linear space N. If (S,p) is a probability space of dimension 
2, and 
(1.1) p(x,y)< 1/4-Hx+yll 2 , for all x, y S, then N is 
an inner product space. 

The above result motivates an effort to characterize 
inner product spaces in terms of probability spaces in the 
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sense of B. Mielnik. 
We shall give a necessary and sufficient condition 

for K to be an inner product space in terms of probability 
space structure imposed over the unit sphere S of N. 
2 . Lemmas. Let [ 0 , 2 ] be the domain and [o,l] the range of 
f, and let f be continuous and increasing, with f(0) = 0 

and f(2) = 1. The class of all such functions we denote 
by P. 

Let [o 5 2] be both the domain and the range of 
continuous and decreasing function g, and let g(0) = 2 , 

g(2) = 0. The class of these functions we denote by G. 
Lemma 2.1 Let f £ F . Then there exists a g £ G , such that 
(2.1) f + $ 0 g = 1 
where (f o g)(t) = f(g(t)). 
The converse problem of finding f£ P for given g£.G, from 
(2.1), is much more difficult. In the following lemma we 
shall solve that problem for a class of functions wide 
enough for our purpose. 
Lemma 2 .2 Let h be continuous and decreasing over [ 0 , 2 ] 

and let h(0) = 2 , h(2) = 0. If 

(2 .2) g(t) = h - 1 ( 2-lgfe 2-e 2- h ( t )-hl] ) 

then there exists f £ P such that 

(2.1) f(t) + f(g(t)) = 1 
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In the next lemma we give a characterization of 
inner product spaces. 
Lemma 2.3 Let H be a normed real linear space, and let 
S = H x l i 35 ThefcN is an inner product space if 
and only if 

(2.4) f( ilx+yll ) + f( llx-yll ) = 1 

for some f£ F and all x, y £ S. 

Corollary 2.1 Let h satisfy the condition of lemma 2.2, 
let N be a normed real linear space, and let S =-̂ x| |f x || = lj-. 

A necessary and sufficient condition for R to be an 
inner product space is that 

(2.5) e~h(lj x+y|| ) + e-h( |i x-y|j ) ~ 1 + e- 2 

for all x, y £ S. 

3. Probability spaces and inner product spaces. It remains 
to determine the extent of limitation that a very general 
probability space structure imposes upon a normed real linear 
space N. We shall show that a certain probability space 
structure imposed upon S =^x j /jxjj = 1^£N, makes N into 
an inner product space. 
Theorem 3*1 Let N be a normed real linear space, 
S -jjsc |(x)| = lj-and let p(x,y) = f(|(x+y|| ) , where f £ F , 
and f + f o g = 1 for some g£ G. 

Then H is an inner product space if and only if (S,p) 

is a probability space of dimension 2. 
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Corollary 3.1 Let h satisfy the conditions of lemma 2 .2 

and let N and S be as in theorem 3#1. 

Then N is an inner product space if and only if 

?-h( )| x+y ¡1 ) 
<S, 5 — ) 

ed - 1 

is a probability space of dimension 2* 

Corollary 3*2 Let the conditions of corollary 3*1 be 

satisfied. Then for 

h(t) = -lg[t 2 /4(l-e- 2) + e~ 2] 

we have the result proved in [ 4 ] . 

4 . Remarks 

4 . 1 In view of theorem 3*1 the condition ( 1 . 1 ) become 

( ^ • 1 ) p(x,y) < f( II x+yll ) 

4 .2 Lemma 2.3 is essentially a Lorch type of condition 

[ 5 ] , and it is related to M. M. Day's condition [*6j in 

the same way as the original Lorch condition is to that of 

P . Jordan and J von Neumann ["?J* 

The condition (2 .4) of lemma 2.3 is a direct 

generalization of the well known parallelogram law £ 7]> 

and it is more natural then that of Senechalle [ 8 ] . One 

can get the contion (2 .4) from Senechalle1s condition but 
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one has first to derive and solve the functional equation 

f + f o g * 1 

for given g G. As one may infer from lemma 2 .2 that 
solving for f is more difficult than the more direct 
technique of lemma 2.3« 

For h(t) = -lg [t 2/4(l~e~ 2) + e~ 2] , the condition 
.(2.5) reduces to that of Day. 
4 . 5 If in theorem 5*1 we omit the condition that f £ F , 
we still can get some restrictions about N* 

Let f be continuous at 0 and 2 , f(2) = 1, and let 
0 be the only point such that f(0) « 0 . We have the 
following result. 
Theorem 4.1 Let N be a normed real linear space, 
S = jjcj ||x|| « ljand let f be as above. If (S,f( |jx+y|| ) 
is a probability space of dimension 2 , then N is locally 
uniformly convex. 
4.4 It appears that if we impose limitations of the Piron 
kind or the Mielnik Kind, the space in which representation 
is taking place undergoes some restrictions, which range 
from locally uniformly convex (Theorem 4.1) to the 
existence of an inner product, (e.g., Theorem 3*1) 

It should be pointed out that this remark concerns 
only Mielnik's probability spaces of dimension 2. One can 
show that in the case of Fiielnik*s probability space of 
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dimension > 3* 0 X 1 ( 1 p(*>y) « f( ¡1 x+x || ), where f is as in 

theorem 4.1, it follows that N cannot be locally uniformly 

convex. 

4.5 Consider a linear topological space T and a suitably 

chosen subset S of T. One could try to find the conditions 

for p(x,y) such that if (S,p) is a probability space then 

T is a normed linear space. For some indications is this 

direction see the second Mielnik Paper j^9]* 

4.6 The inequality (4.1) indicates that p(x,y) might be 

related to the semi-inner product in the sense of G. Lumer 

£l0 j and J. R. Giles It would be of interest to know 

what the implications might be of the relations between 

the geometry of quantum states and characterizations of 

semi-inner product spaces. 
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