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THE POSITIVITY CONDITION IN MOMENTUM SPACE

V., GLASER
CERN - Geneva

ABSTRACT

A formulation of the positivity condition within
the framework of the general field theory is given in mo-
mentum space. It is shown how the usual requirements of
locality and spectrum can be partially incorporated in
order to represent the "absorptive parts" of the Green's
functions by positive operators of the Hilbert-Schmidt
type operating on a suitably defined Hilbert space of
analytic functions introduced into mathematics by Bergman
and Bochner. The application of this method to the x
space positivity condition formulated by Wightman is not
discussed 1in this paper. As an illustration, two simple

examples are discussed in the last Section,



1

INTRODUCTION .

As it is well known, the study of a field theory either in the formu-

1)

of the set of functions

lation of Wightman or that of Haag-Araki 2) can be reduced to the study

«, A(xﬂ1) A(xﬂz) ‘e A(xﬂn)Q) y =1, 2, 3, aes (1.1)

where A(xi) is the field operator attached to the space-~time point X,y T

is any permutation of the indices, and ( is the vaccum state *) o All the
physical properties imposed on the system can be translated into functional
properties of the set of Wightman functions (1.1) « Thus, invariance under
space~time translations, spectral condition and local commutativity entail
analyticity of the functions in a certain "primitive" domain of the complexi-
fied variables X, - xj « The search for a representation that would embody
automatically these three properties constitutes the so-called "linear program'.
The "positivity condition" which has to be added to these linear properties,
expresses the fact that the set (1.1) is a positive functional on the algebra
of field operators, i.c., that these functions are matrix elements of operators
in a Hilbert space with positive metric. This conditicn, which interconnects
different Wightman functions, was first explicitly stated and investigated by

Wightman himself,
3)

however, stress on the S matrix as the fundamental physical quantity - the

In their approcach to field theory, Bogoliubov and his co-workers lay,

fields appear rather as a reponsc of particles to external perturbations :

@ - r?) a(x) = §(x) = s*'l 8;—§Z~3 s ' (1.2)

and the locality condition as a causal propagation of these perturbations :

»* . . ; . .
) Only the case of a single neutral scalar field will be discussed in this

papere.



1 ——-—§——— LI 1 8 A(X ) = R(X g o000y X ; X ) = O (1n3)
iosa (x,) i 8, (x.) © ! n=1 " '
in*1 in' n-1

unless X, = Xy €V s 1 =1, 2, sae, n = 1

where V+ denotes the futurce light-cone. The study of the vacuum expectation
values of "Wightman products" A(x1) coo A(xn) can be replaced by that of re-

tarded functions :
i 1 i
(Q ’ Rn(X)Q) = rn(x)’ Rn(X) = R(X1, snooy Xi_1, Xi+1, }.., Xn ; Xi) (1.4)

which have now analiticity properties in momentum space in view of the support
properties (1.3) in x space. The positivity condition is replaced by a
stronger one which is a generalization of the unitary condition S %S =1 and

4) and the assumption of

which includes also the L.S.Z. reduction formulae
the completeness of the asymptotic states. From the set of functions (1.4)
satisfying these conditions one also can reconstruct the field (1.2) having

5)

advantage of being more closely connected to the physically observalbe scatter-

all the resuired properties . This approach, although less general, has the

ing amplitudes,

The purpose of this article is to formulate the positivity condition in
the second framework and to study its connection with analyticity properties
of the off and on mads-—shell scattering amplitudes in momentum space, The incen-—
tive for this investigation were the papers by Martin 6) in which he showed
the interplay of analyticity and positivity leads to an enlargement of the do-
main of analyticity of the four-point scattering amplitude in the framework of
general field theory. As the reader will notice, the positivity condition in
momentum space takes a slightly different form than the corresponding one in
x space and resembles very much to the theory of Bergman 7) kernels for
Hilbert spaces of functions analytic in a given domain in GN 8) » The method
of Hilbert spaces of analytic functions developed here can be also applied to
the set of Wightman fumctions in x space, but that case will not be considered

in this paper.
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Next Section will very briefly remind the reader of some properties of
the generalized retarded functions and state the positivity condition. Section
3 will discuss the "continuation" of the positivity condition into the complex
domain in several different forms. It contains the main substance of this paper.
In the final Section we will try to illustrate the usefulness of the general
concepts by rederiving a very well-known positivity property of the absorptive

part of the scattering amplitude used repeatedly by Martin in 6 .

THE POSITIVITY CONDITION .

The retarded functions (1.4) have the following formal expression 5),9)

in terms of the fields A
%)

e @, - M) TGS - x,) eee (207)

I‘(Xz, 200y X o o

px) =@ -m

n

e(xO [¢)

a(n-1) " Xﬂn)(Q ,[..-[A(x1), A(xz)] eee A(xﬂn)] Q)

where []i - m? is the Klein-Gordon operator referring to the variables

X; =(x§ y ;2) , 08(t) 4is the usual step function and the square brackets in-
dicate commutators., It is still unknown whether starting from the Wightman
axioms, these formal expressions for n > 3 have a se se as tempered distribu-
tions satisfying the same algebraic relations, support properties, etc., as

3 . . . . *
they would do if the Wightman functions were gcnulne functions .

In the L.S.2, formalism they are assumed to do so. However, by replacing
in (1.1) the "sharp" fields A(x) by smeared out fields Af(x) = (& * £)(x) ,
£Fe€ & OR4) (infinitely differentiable functions having compact support) or
even by local observables attached to finite space-time regions as proposed by
Haag and Araki 12) , the just mentioned difficulty can be avoided, Moreover,

the reduction formulae can be then deduced in a rigorous way from the Wightman

%)

This problem is a gencralization of the problem of renormalization in per-

10)

turbation theory, and was studied ecspecially by Steinmann » The problem

for n =2 1is trivial, the case n = 3 was solved by Stora 1) e
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2) %)

ties remain unaltered by this "smearing out" since the support of (1.3) gets

or Haag-Araki axioms, as shown by Hepp e Also the analiticity proper-
only shifted by a finite amount., We will, therefore, place ourselves in what

follows indifferently in any of the shemes just described,

Although, as already mentioned, the set of rctarded functions (1.4)
[or the set of advanced functions obtaincd by substituting the step function
8 (t) = 8(-t) for 6(t) in the cxpression (2.1) ] is rich enough to recons-
truct the field operators themselves by making use alsoc of the uniterity re-
lations, it was recognized by Steinmann 14) that in order to exploit comple-
tely the linear properties of the n point function a more general set of
"retarded"” products had to be introduced. In the Bogoliubov formalism they can
be described as generated from the field A(x) by taking functional derivatives

with respect to the Ain and Aou fields in all possible combinations and

t

permutations [compare (1.3) ] « They can also be defined as a linear combi-
. *¥%

nation of multiplied by suitable step functions [ compare (1.1) ] ) . For

our purposes the following qualitative remarks will do,

Lgt us denote by R;(x) the generalized retarded product of n fieclds,
and by r;(x) thg corresponding vacuum expectation values. The functions
(distributions) r; depend only on the differences x; - X, of their argu-
ments and have supports in certain cones C; » Conscquently, their Fourier

transforms ';;(p) defined by

i _ -n ~i —ipx
rn(x) = (om) J 64(p1 + eeo + pn) ﬂn(p) e dp

* : ) . :
) As 1n Ruelle's 13) proof of the existcnce of the S matrix, onec has to
suppose here that the cnergy has a finite gap above the vacuum state and

that the asymptotic states arc complete in the underlying Hilbert space,

A detailed study of the diffcrent and somewhat involved properties of the

generalized retarded functions, which in wome way reflect the rather compli-

cated kinematics of the n body prcblem, was done also by Ruelle 15) ’
Araki 16) , Araki and Burgoyne 17 and Broes 18) o For a recommended review
19)

article, sec o



where

4 4
pPX = p1 x1 + 200 + pn xn g dp = d p1 oo d pn

are boundary valucs (in the sensc of.distributions) of functions ';i(k) ’

X =p+ iq analyti; in the tubes ?; ={x: Imk = q E(Ei} (Ei is the dual
cone of the conc C; ). This analyticity is an expression of the locality of the
theory. The spectral condition finds its expression in the coincidcence of all
the boundary values ';i(p) =’Fi(p) (n fixed !) in a certain region p € Ri

of the real momentum space R . depending on the masses of the particles
) p

. 4(n-1 . 3),20) .
described by the theory. From the edge of the wedge theorem ! , 1t follows
then that all the functions ’;;(p) arc different boundary values of onc and

the same function ';n(k) analytic in the cnvelope of holomorphy of the domain
g‘?n U [R;J , where [Ri} 1s a complex neighbourhcod of the region of coinci-
dence Ri » The S matrix glements involving un particles are restrictions

of a well chosen function ';;(p) to the mass shell manifold p? = m2

(3 =1, 2, eaey n) , m being thc mass of the particles involved *) « The
analyticity domain of the scattering amplitude is the intersection of the com-
plex mass shell manifold k? = m2 with the domain of holomorphy of the function
';n(k) (one has proved so far only the case n = 4 that this intersection is
non—empty). We mention also that for each (real) momentum p there is a func-
tion ’;i(p) which coincides in a neighbourhood of that point with the Fouricr
transform of the truncated vacuum expectation value of the time-ordered product
Tn » As a final rcmark, the generalized retarded functions satisfy some linecar

identities called the Steinmann relations. We shall mention them later when needed.

After these preliminarics, we are ready to formulate the positivity

condition. By denoting

i op i i \ 4 4
Rn(f) -‘I‘ Rn(x1, oney Xn> fn(x,!, ansy Xn, d X1 ees d Xl’l ’ (202)

where fi is a test function € 390R4n) , (i.e., infinitely differentiable and

of fast descrease at infinity), the positivity condition reads :

* . . . . . .
) The restriction of a distribution to a manifold makes in general no scnse,

It was proved by Hepp in the quoted article 12) that it does in this case,
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H.z Ri(f) Q"Z = = (o, Ri*(f) Ri(f) Q)= 0 (2.3)

i,n l,n. .,m
? ’lJ’

for every choice of the f; o We suppose here that the sumn extends only over
a finite number of terms. This condition was first written and studied by
Wightman 1) in the case of products of fields. To avoid notational complica-
tions we shall study it in the special case of one term instead of the sum.,
What we will have to say will extend in a straightforward way to the general

case (see end of Section 3) .

In this simplercase,(2.3) becomes (we drop the indices) :

I’K(x1, coey X2n) E(x1, vesy Xn) E(Xn+1’ voey x2n) dx, ees dx, =0
for all f ¢ 9;(R4n) (2.4)
with IX<X1, neey X2n) = {0, R*(x1, cosy xn) R(xn+1, cony x2n) )

By going to momentum space, we got

f64(k1 Fower T, Ik, wasy Ko JE(kyy o=k JE(K Ly seey Ky JdKo ees ak, (205)
where we have introduced the Fourier transforms as follows
—ik1x1—ooo~iannN '
£(x) = [ e S5 TE(K) Ay eee kg
~1ik_ X —see~-1ik, X
~ -2n ) 171 2n 2n
A(X) = (2ﬂ) Ur ék(k1+oon+k2n) .A(k1, enrnoy k2n) © .
dk1...dk2n
Let us now introduce the total energy and momentum co-ordinates ¢ , o' and
*
the relative momenta P, 1+ 4, of the two "clusters" R and R Dby the for-
mula 5 n \Y
kv = ~ = = Py (Vv =1, soeyn) , 0=-23 kv ’ with Z P, = 0
n 1 1
[] n v
= - = = ] =
k. = - +q, (v =1, ess, n) , © 2 Koo with ? q, =0

(2.6)
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Then (2.5) takes the following form :

J 8,(pia) (o, p) 9(0, a) apdg 20 (2.7)
g g a g
where A (P, @) = Al= = = Pyy eoey == =P 4 =+ Ay weey ~H Q)
n n n n
~,C g
QP(Uy P) =f("+P17 00y "+Pn)
n n

and dp = dp,' e dpn_1 y dg = dq1 see dqn_-,] .

Since the n vectors P, and the n vectors q, satisfy the two relations

(2.6) , we have (arbitrarily) chosen the first n-1 as linearly independent.

The spectral condition tells us that the function AU (tempered dis-
tribution more precisely) has its support in o € V+(M) where V+(M) =
{fo S, 20, 02 Z M?} , and M 1is the lowest mass of the intermediary
states that can be inserted betwecen R* and R in (2.4) . Since the Fourier
transform of (Q, R R*‘Q) expressed in the variables (2.6) has, as imme-
diately seen, its support in {o € 7_(M) = - V+(M)} ’ Ac(p , q) can also

be rcgarded as the Fourier transform of the commutator

*
alp, q) =%, [r, Rl Q) for G €V, (2.8) .

*
The function (Q, R (x) R(x')Q) is only partially a retarded function : it has
support properties only separately in the variables x and x' but none in
x-x' . Thercfore Ao(p , 9) 1s the boundary valuc of a function analytic in
p and gq but not in o . More precisely if we consider Ac(p , q) as a
member of the family of functions

A =7, ' R} Q)

o n n

where i and j run independently over all the generalized retarded n point

products, it turns out, on the basis of the spectral condition and the edge
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of the wedge theorem, that the functions Aéj(p , q) are for fixed o (this
term will have to be specified later) different boundary values of one and
the same function [which, for simplicity we will again denote by Ag(p ’ q) ]
analytic in a domain {(p , q) € O % QG} . Here Q_ is the envelope of

holomorphy of the =n point function in which the region of coincidence

RC ={p: = p.)2 < M2 for all I1¢ (1, 2, eooyn)} has been replaced by

a eyt Io g\2

the "shiftegI region Rn(c) ={p: Z (pi + =)< M? , for all I € (1, 2,...,n)}.
i€l n

Note that QG X QG is a topological product of twice the same region. The

rcader will immediatly notice that for n =2, (Ac(p s q) reduces to the

well-known absorptive part of the four-point function studied first by Bogo-

3)

and then by Lehmann 21) , who found also its envelope of holomorphy Qj o The

liubov and co-workers in conncction with the proof of dispersion relations
. . . *
above statements are simple generalizations .

On the other hand, the algebra of the generalized rctarded functions
tells us that the commutator ({0, [R; R Ri 1Q) can be expressed as the dif-

ference of {in general different) pairs of fully retarded functions :

(0,7, ®11) =5 -r5 . (2.9)

Translated into momentum space this tells us, in view of (2.8) , that the
"absorptive part" AG is the difference of two different boundary values of the
full 2n point function ';2n(k) . This fact adds, in principle, new information
for thc function A ;3 it can in particular rcsult in an enlargement of the

domain Qc X Qc described above. Indeced, that is what happens in the casc of

6)

the four-point function as shown by Martin o

*
) As a matter of fact, a rigorous proof of these statements requircs some

gymnastics with distribution theory and analytic completion,
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The above remarks about the analyticity properties of A being needed
in the next Section, let us turn back to the inequality (2.7) o If we choosec
the test function there to be of the form o(o , p) = x(o) £(p) , with
X € S(R4) and f € S(R4) , that condition takes the form :

r

[ao (@)% [ a e, a) F(p) £(a) ap dg = 0 (2.10)

By a well-known theorem of Schwartz 22) , the posifivity of (2.10) implies
that Ac is a positive measure with respect to ¢ ., The term "o fixed" will
thereforc have to bc understood in the sense of a convolution with a positive
test function ‘X(c)lz having its support centered sufficiently closely to
the desired value, It can actually be shown that the regularization with res-
pect to only a timelike direction will suffice. Also the symbol Qc will

have to be understocd as

noon - N 0 . , .'_u)z supp !X‘Q .
° ol

In what follows we will simply suppress the integration over ¢ in (2.10) .

EXTENSION OF THE POSITIVITY CONDITION INTC THE COMPLEX DOMAIN.

The aim of this Section is te "extend" the condition

[ ale, q) 2(p) £(q) ap aqg = ©
(3.1)

for all £ < tf(mN) y N=4(n-1)

into the whole domain of analyticity of the function A(p , q) (0 being
fixed once and for all we shall drop it in the notation). As it was discussed
in the preceding paragraph , A 1is certainly analytic in a domain of the typc

X Q. We shall need also the following two simple properties of the domain
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*
0 : (a)Q is invariant under complex conjugation Q = Q , and (b)Q contains
.x_ * —
real points of analyticity. Here (  denote the set Q = {p : p € O} where
the bar indicates complex conjugation : if p = Re p + i Im p , then

- *)

Pp=Rep-1Imp o

The property (a) is certainly true for the primitive domain of the
n point function and therefore also for its envelope of holomorphy QG - The
property (b) follows from the fact that the region of coincidence Ri(c) is
non-empty : by the edge of the wedge theorem all its points are (real) points

of analyticity.
We are now ready to formulate the

THEOREM 1 .

If the function A(p , q) is analytic in a schlicht domain
*
Ox Q C @N X GN sucht that () contains a real open set R € RN

and if on R X RC Ry X Ry Alp , q) satisfies the positivity con-
dition (3.1) for every test function f£ € & (R), then it satisfies also

the three following conditions

8) - [ ale, q) 9(p) gla) @2 @ =0
WXW

for all g & L2(w) and all w <= O, W being any open set in

mN with compact closure such that closure w < Q, and 4 Xp ’

*) Our notation is somewhat inconsistent since the same letters p and ¢
stand for real variables as in (3.1) , where A(p , q) represents the
boundary value of an analytic function, and for complex variables varying
in QX Q, where they serve as arguments of the (unique !) analytic ex-
tension of the boundary value in question. This analytic extension is again
denoted by A(p , q) » It is hoped that this notational simplification will
not lead to confusion ; from the context it should be clear whether the

variables in question are to be considered as real or complex,
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resp. d A , denoting the Lebesgue measure in tN, [i.e.,
N = NN = %)
d Xp = (2i)"7 dp A dp , resp. 4 Kq = (21) dg A dq ] »
B) - There exists a sequence of functions fv(p) € 1&(@) ’
V=1, 2, 3, seay QB(Q) denoting the set of functions analytic

in O, such that

A, 9) = = £(p) 2 (q)

V=1
. . ) ) %)
the series being uniformly convergent in (O X o
C) - The quadratic form
a 'a'B v B _
CLp(a,a):Z ﬁ——-aa 3" Alp , p )
o, o! B! P

defined on all finite sequences of complex numbers {%y} is

positive definite for all p € Q .
All these three conditions are equivalent.

The formula C) needs some explanations. In it the notation of
Schwartz 22) for multi-indices was used : o = {a1, Uy ooy an}<2 Z§ denotes

a sequence of N nmnon-negative integers ;

x* *
) Note that A(p , q) being aralytic in Qx Q , A(p , q) 1is analytic in

p € Q and anti-analytic in q € Q .

)A series of functions is said to be uniformly convergent in an open set

U if it converges uniformly in every compact subset of U ,
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o ! =Ol1! ceso C{N! I B ' = ‘31 6o SI\T!
o o B8 B
1 > \u 3 3 \"1 3 \PN
25 = () T (2T, (T (D) :
OPy OPy P oPy 3Py

For later use, we note also

‘ ‘ o %1 N
o -—(Y.] + oo +Q/N 5 P = P1 se0 PN .

. + + .
In C) , the summation extends formally over all ZN X ZN but only a finite
number of the a, is supposed to be # 0 : a, = 0 for all J|a| >n for
some n . The factorials « ! B ! were introduced for later convenience. We

want to show that the condition C) involves only values of the function

A(p ’ q) on the "diagonal plane" q = p , which is a linear subspace of

®2N = &N X @N of real dimension 2N , Let us denote it by ®2N °'D2N can

be parametrized either by the rcal and imaginary on the vector p = x + iy ,
X = (p + 5)/? , ¥V = (p - ;)/@i , or formally by p and S » Given an ar-

. o~ - . . .
bitrary C function f on an open sct wC D , 1ts value 1n a point p

2N
can be denoted by f£(x , y) or formally by £f(p, p) ; its derivatives

az aE £ are by definition to be computed by using the formulae 3
P

i + 1

1
bpi 2 axi ayi Bpi 2 axi ayi

1y (- 3

The function £ will be said to be real analytic in @ 1if for every P, cw
it can be represented by its Taylor series

(b -2 ) (& - 3)P

£p, 7) = ” 2% 32 £(p , B,) (3.2)
o,B o ! ! p

absolutely converging in a sufficiently small polydisc

P=1{p: |(p- po)il <R, 1=, eee, N } .
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If we replace E by q in the scries (3.2), the series will continue to
¥*

converge absolutely for (p , q) € P X P defining there an analytic func-

tion f£(p , q) - the unique analytic contimuation of f£(p , 5) . In this

case the formal notation acquires a real meaning and proves cur assertion.

Before proceeding to the proof we wish to make still a few remarks,
It is evident that the representation B) displays positivity in the most
explicit way. From 1it, A) and B) follow immediatly. For example, in order to get
C), we have only to apply the differential operator P(ap) ﬁ(aq) to the series
C) and put q = p , where P 1is given by
a

P ) = & &L ¥ .
P a ! b

The function A(p 5 5) resembles very much to a Bergman kernel asso-
ciated with a suitably defined Hilbert space of functions analytic in a domain
*
Q 7),8)%) » The Bergman theory proceeds, roughly speaking, in the direction

A) = B) = C) , while our proof of Thecorem 1 will follow the direction

(3.1) = C) = 4) = B) .

Proof of C) o

In order to show C) , let us insert for £ in formula (3.1) the

gxXpression

@i B‘z 5.(p - p') , DP'ER (3.3)

or, to be more precise, let us take a sequence of functions fv € éD(R) con-
)
verging to the distribution (3.3) in the topology of & (R) . Since A{p , q)
[ee]
is C in R X R , the result will be the same. Here '5,\I is the N dimen-
B

sional Dirac function. As p' is any fixed point in R we obtain

* .
) Most of the author's knowledge about the Bergman-Bochner theory derives
23)

from a book by Meschkowski , especially from Chapters IV and XITI ,
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a aB B
ro =3t alp,a)/, L =0fa,a)z0 - (3.4)

@,8 ! B! E
for all p &R °
In this inequality all the a, = 0 for !a\ >n , some n , but we are allo-
wed to drop this condition: provided the resulting series converges absolutely.,
That is what we will do presently. Let p € R, and let D be a polydisc
D={z¢ Gy lzi\ <R, , i =1, sese, N} such that {p} + DS Q and let

z € D ., Then by introducing

into the series (3.4) we gct the inequality Qp+z(b , b) = 0 if we note
that the Taylor series of the function A(p + z , p + z) as well as all its
derivatives converge., Since any point p € (0 can be connected te a given
point Py € R by a finite chain of polydiscs, a firnite number of repetitions
of the above substitution will yield us the inequality Qp(a ; a) =0

which proves C) .

Partial proof of B) .

We will prove C) = B) for () = a polydisc P . Let P = {po} + D
P, € R , D a polydisc with 1its centre at the o;%gé? Zg;h that pCd= O
Let us introduce, following Bergman and Bochner A , the Hilbert space
%ép = JB(P) O L2(P) of functions analytic and square integrable in P

with the scalar product

(8,9 = 2(p) glp) da . (3.5)

r\

J

P
and norm 5l§'2 = (£, £)

- i I ’ °
The fundamental property of this space of functions is the fact that the value

of the function f at a point p € P is a continuous functional of f con-

sidered as an clement of gép :

le(p)l < Mp!}ﬂ[ with M =C d(p)'N/2 (3.6)
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where d(p) is the distance of the point p to the boundary of P , C a
numerical constant. From this, it follows immediately that the strong conver-
gence fn'* £ in 3%) implies the pointwise convergence fn(p) - f(p)
uniformly in every compact subset of P , Equation (3.6) is an casy conse-
quence of the Cauchy integral representation for analytic functions (Ref.

Chapter IV) o It is also immediate to verify that the powers

o o 1 o ~1 ~ o+
@a = (9 PO) wy = 7 yy , o & ZN
where
2 r 2
N _{) 12%]1< a A (z)

are normalization constants, form a complete orthonormal set in g@ o

Let us associate to the function A(p , E) the bounded linear ope-

rator A€ £ (gép) by the formula

(ae)(®) = [ alp, @) 2(a) ar, (3.7)
P

A is evidently bounded since A(p , q) is an analytic and hence bounded
function in the closure of P X P , It is also Hermitian and positive, This

can be seen by introducing into the formula

(e,a8)= [ £()alp, q) £(q)a A d A
PAP

for f the polynomial £ = I

. o -1 -\
‘a‘ﬁ %y(p - po) Ny and for A(p ’ q) its

n

Taylor series centered at P, One gets (£, Af) = QP (a, a) , where Q is
&}

the quadratic form (3.4) y, which was shown to be positive, Since polynomials
are dense in géé, it follows that (f , Af) = 0 for all £ € ?@p » This is
the inequality A) for w =P and fE€ d@(P) O L2(P) . Finally, A has a
finite trace, Indced, by computing the trace with the help ¢f the orthonormal

system {c using again the Taylor expansion for A(p , E one obtains
¢& 9

trA:f;-..(p,E)dhp<oo
P

23)

?
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All these properties imply that A is of the Hilbert-Schmidt type and

has therefore a purcly point spectrum. The set of all the eigenfunctions of A

Jﬂ A(P ’ 5) gv(CI) d 7\q = >\\) g\)(P) 7 V=1, 25 3 ees (3"8)
P

1s a completc get of orthonormal functions in gé . (£, Af) 2 0 entails

P
\, =0 . Since for fixed q A(p , q) = £ (p) is an element of 3&% , We
. . . . q
may expand f_ into a Pourier series with respect to the orthonormal set
[e0)

.4 . .=
{gv} : £ =2 a, 9, with a, = (gv 5 f_) = A, gv(q) because of (3.8) .

q 1 q
Now, according to (3.6), strong convergence entails uniform pointwise conver-

gence, and therefore the series

A(P ’ -CI) =

I
- M 8

y, 8,(2) 9,(a) -

v
. 1/2
with fv Kv g, (3.9)

£, (») F,(q)

- ™M g

i

convergesuniformly in p € P for each fixed q € P . It remains only to be
shown that the series (3.9) converges uniformly in P X P . It is useful
for later purposes to proceed as follows. By putting g = p in (3.9) we get

alp , ) =% e (p)1? (3.10)

- M 8

and, since this is a serics of positive continuous functions in P converging
to a continucus function in P , Dini's theorem tells us that the series con-

verges uniformly in P . The Cauchy inequality yields :

A, D% L2 [5,6) BN =2 e P2 | g () =86, B) ala, D)
v v ¥

(3.11)
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This shows that the series (3.9) automatically converges absolutely and,
as a little reflection shows, also uniformly in P X P since the two series

on the right-hand side of the inecquality do so .

The uniform convergence of (309) evidently implies the inequality
A) for any w CC P and any f € Lg(w) o Thus, Theorem 1 is proved in the

special case Q=P .

The proof of Theorem 1 will be complete 1f we prove the fol lowing

. . . 2
theorem, which has an independent interest (compare Ref. 3), Chapter XII) .

THEOREM 2,

r Alp , E) is real analytic in @ and if some polydisc PO
(centered at P, C Q) the representation (3.10) is valid with

the f§ analytic in P , then all the functiors fv can be continued
analytically into all of  and the representation (3.10) remains
valid in () in the sensc of uniform convergence, The function

Alp , q) defined by the series

A(p , q) =2 £ (p) £ (q) (3.12)
v
*
coenverging uniformly and absolutely in O X 2 continues analytically
. - ) *
the function A(p , p) = A(p , q)‘q_5 into QX O .
Proof.
As already explained, A(p ’ E) real analytic in O means that
for any 12 € 0 there is a (non—empty) polydisc Pi centered at p. in

i
which the Taylor series of A(p , p)

Ap ,p) =% A, (p-p,) (p-p) (3.13)

o aB 1 i
syl

converges absolutely. Since by the Heinc-Borel lemma any peoint p € O can

be connected to P, € PO by a finite chain of polydiscs Pr such that

Pr = Pr—1

(3.10) can be "continued" from PO to P1 « Let R = (R1, enoy RN) be the

(r =1, voeym) and p € Pm , 1t is sufficient to show that

. | .
radius of P1 = {p 2Py - p1i| < Ri , 1 =1, °.o,N} « Let

)
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£,(p) =z £ (» - p )" (3.14)
4

the Taylor series of fﬁ s they converge all a polydisc P;<: Po np

centered at p1 » We have on the onc hand, the Cauchy incqualities

1

‘%;B‘ < M/RI+B for some M (3.15)

since (3.13) for i = 1 converges in P1 , and on the other the represen-

tation

1
Ag = fou £up ) (3.16)
' V

n s

1

which we get by inserting the series (3.14) into (3.10) by inverting summa-
tion signs. This we are allowed to do since Theorem 2 is valid in PO by
the remarks following formula (3.9) . Putting o =B , (3.15) and (3.16)
yield the incquality

(3.17)

1
and a fortiori ‘fva‘ < M%/ﬁy » This shows that the Taylor serics (3.14)

keeps on converging absolutely in all of P1 o W¢ have to show that the sc-

ries (3.10) behaves likewisc. For that purpose let us apply to the series

o A o a/? o a/é _—
2 £, 2 _i f£, & (Z/R)7 3 {(z/r) , Z=7p-p,

the Schwartz inequality. We gat

1
s
C

2 _ 2 2y §|°’ :
2, (o) = I le 172 \R! v

pox]
- .

Combining this with the incquality (3.17) , we obtain

e @l = ue EY ow i PPl E

o R 1=1 Ri

for all p & P1 .
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This proves the (3.10) part of the theorem. But the remaining part

follows immediatly from what has been said in the proof of formula (3.9) .

The Theorem 2 shows that the "sensitive®™ points of the analytic
function Ac(p ’ q) lie in the immcdiate neighbourhood of the "diagonal
planc" D2N = {(p . q) Tt p = a} o If by using any other information we succed
to enlarge the domain of analyticity of A in a neighbourhood, howcever "thin"
of the diagonal plane, this enlargement becomes automaticeally a topological
product. The following Theorem 3 will strengthen this conclusicn since in it
not even continuity of the function A(p , 5) will be required, This theorem
is inspired by the Bernstein theorem of classical analyses on the convergence
of the Taylor serics of a function having all its derivatives positive * °
But in spite of its apparent generality, the author believes that Theorem 2

could be more useful for practical applications,

THEOREM 3.

—_ 1
Let A(p, p) € & (Q) satisfy - in the sense of distributions - the

positivity condition C) :

a a B
R AR (3.1
O!yB al B! P P g

everywhere in @ for all finitc scequences %a « Then A(p , 5) is the
restriction te the "diagonal planc" p = E of a function A(p s q)

*
analytic in Qx Q .

Proof.
It is enough to show that A(p , 5) is real analytic in Q , for
then the methods of proof of Theorems 1 and 2 will evidently lead to the

statement of Theorem 3,

*)

The author would like to thank D « Bessis for drawing his attention to
the Bernstein theorem during the elaboration of this work. His thanks
are also due to Dr. H. Epstein, who suggested the distribution part of

Theorem 3.
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By noting that

82

b =4 —2
oP; OP;

1

are two-dimensional Laplacc operators, we get, as a consequence of (3.18)

the inequalities

A T Py -
Ay B, eea by 20 for all (n1, ceay nN) € Zy ,
a3 =1) (3.19)
and also
by AT Az O for n=0, 1, 2, oeo (3.20)

where A = A1 + A2 + e0o + AW’ is the Laplace operator with respect to all

the variables,

Equation (3.20) implics A € C (Q) . To sce this, we shall use a

classical argument 22),24)

o We first notice that the un being positive
distributions are measures., Thce sccond remark is that the elementary solution
. n . . 21n=—-2N-1 \ .
G (r) of the equation AF = § is in C QR } provided n > N
n ‘2 2N 2N

Here r2 = §p1l2 + oaeo * ‘pN o Therefore Gn*(i%un) is alsc in

C2n_2N—1OR2N) for any Y€ D (Q) . By choosing ¢ (p) = 1 in a sphere

Sa , we find that thc measure Fn = A - G*(ﬁfun) satisfies the egquation
AnFn =0 1in S , But any solution of the last equation is Cm(S) and there~
fore A€ CZn—2N—1<S)

conclude that A € Cm(ﬁ) 0

» n being arbitrary and S @z () also arbitrary we

Knowing this, we want to show that the Taylor series of A at any
given point P, € O converges absolutely in every polydisc contained in Q
Without loss of generality we shall take Py to be the origin and it will
be sufficient toc show that the cocfficients of the formal power series
o—P
o =0

s(p) = % PP 3 BE Ao, 0)= £ A 5 P D
@,8at 8t P P o

o

22),24)
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satisfy the Cauchy inequalities
< o+B .
la,gl < WK (3.21)

where R = (R1, voay RN) is the radius of any pelydiscs contained in Q .

i A
Let us put Pj = rj ¢ J (rj =0 , @j real) and let us study
the mean value of the function A over the angles
21 21 ip i
-N = ) 1 CPN
V’té(l”_], o0y I"N) = (\2“’) "ro d\‘i’"] 280 Jro dq)N A(I‘1 < ,,..,I‘N €] ) .

We shall consider cnly the case N = 1 in detail. With the help of the

Green's formula, we get @

T . N T N
alo(z)/ear = (2ne)™ N [ Zalr rar =TT art rr(em)!
0 or 0
. r! ; 1 r
. J A Alr' ¢ c'D)dcp = r f dr' r! oﬁs(r')
1
0 0
or by integrating :
rt e "
dor) = do(o) + [ arr [ aen Z ofp (xv) . (3.22)
G o) r!
Here we have introduced the notation
1 M o
db () = (2m)7 [ a%(r o) a0, a=0,1, 2, v, S =db
0
Equation (3.22) can be also written in the form
T
g
Hoy(7) = (0) + ] el 2, (1) @t

with
Glr , ') =" dnr/r' 20 o

By n fold iteraticn we obtain :
n r r
b (r) =% . g .
a%é(r) _aio,kg(o) %) ’a(r , r')dr! + £) Gn<r , ') d%%(r')dl' (3.23)

where qy is the « times iterated kerncl. One finds easily :
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Iorsw(r , r)at = (2/4)%/(e)?

and

Mo (0) = 2% a(0) = 44 3% 3% a0, 0) .
o P )

Now, since Gn is positive and by (3019) all the d&&(r) are also positive,

we obtain by dropping the last term in (3.23), the inequality

20

z A r
fafen

do_(v) =

for ali 0= r < R and all n , which, in turn, implies the Cauchy inequa-
lity
ol .“
L < 1 = Mo .
by M/R , M= ¢ O(R)

It is almost evident that this last formula is also valid in the
cagse N > 1 if we replace in it the index « by the corresponding

multi-index o = (a1, soog and R by R = (R1, caey RN) ; to see this,

%y

one has only to apply formula (3.23) to each of the variables Ly esey Ty

separately.

In order to got the full Cauchy inequality (3.21), we notice that

=i, ana |a_|%=
B

the positivity condition (3.18) implies 4
p y (3.18) implie byg = Bgy

A A .
oo BB

Thus the convergence of the formal power scries at ecach p € (O
is established. It remains only to be shown that these series converge *to the
function R(p s P) » But this is an immediate consequence of the classical

*)

Taylor formula with thce rest term. Therefore, Theorem 3 is proved °

*)

After the complefion of this work, Professor P. Lelong has Kindly infor-
med me at thce last Strasbourg meeting that in 1948, by using somewhat
different methods, he had proved the following theorcm : if a ¢®  function
satisfies the conditions (3.20) in a domain, then the function is real

25)

analytic there "
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The rest of this Section will be taken up with the generalization
to the case when functions with a different number of fields are involved
in the positivity condition. Our remarks will be only sketchy, since,
except for onc point, esscntially only notational questions will be at

stake.

*
Let us denote the Fourier transform of (&, Rn RmQ) by

A (os5p.,q)=%0Q, 2 2 Q) (3.24)

Herce again P, R 1) arc the internal momentum variablesg of the

4(n-

* _ .
"cluster™ R and g € 4R those of the cluster R . 0 1is the
n m 4( m

m—1)
total energy and momentum created by any of the clusters from the vacuwn

state. We will kecep it again fixed and hence drop it from our notation.

The discussion at the end of Section 2 shows that Anm is a
boundary valuc of a function analytic at lecast in the domain
Qn(c) X Qm(c) , where Qi(c) is the "o -shifted" domain of analyticity
of the 1 point function . Each of thesc domains contains rcal points and
is invariant under complex conjugation. The original positivity condition

reads

§: f Anm(pn ! qm) §n<pn) fm<qm> dpn dqm =0 <3°25)
1<n<N
1<msN

for all £ € SOR4(n_1)) , n=1, so0o, N [note that s(ao) = €, = the

set of complex numbers |,

In order to formulate the generalization of the condition &) , of
Theorem 1, let us introduce the (pre—) Hilbert space ﬁ&b , whose elements

arc N-tuples of analytic functions

= {2(p) s £y(p ) s0mey £y (0} with £ € Ble ) N L)

w a0
n ¢!
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and with the scalar product defined by :

=2

(£,9) =2 [ % () glp)anr (3.26)

n=1 « :
n

A4 C i e
4(n-1) ?ﬁw 1s simply a

finite direct sum of Bergman-Hilbert spaces and therefore itself a Hilbert

wherc d kpn is the Lebesgue measurc in @

spaces ?éb inherits the, for us, cssential property of a Bergman-Hilbert

¥
space : the value fn(pn) at the peiat (n , pr) of an f € Héﬂ is a
4
continuous linear fonctional of £ :
/
1/2

VI < (p )12
le (> )] = 1 (p ) fw le (p )17 an}

. < (p ) |2l (3.27a)

n

>—4(n—1 )/2 L C

i

with Mn<pn) = CV1 d(pn a nuwnerical constant [ compare

formula (3.6) ] .

To the N X N matrix of functions (Ann> , We associate now the
L

linear operator A on 5%& defined by

N
o / _
Z J A (P, qm 9 fm(qm) d ?\qm

(a2) () e

which is obviously bounded since wn<3: Qn o

What onc wants to prove is that (3,25) implies the generalized

condition
AY) (¢, AfF) = 0 for all e re .

As it was seen in the proof of Theorems 1 and 2 , it is actually sufficient
to prove this inequality for W o= Pn = any polydisc CC Qn centered at
some rceal point of analyticity pé € Rn (n =1, esoy N) » But that can

be easily donec by inscrting for the test functions in (3,25) linear combi-
nations of & functions as in formula (3.3) and then choosing, as in proof

of Theorem 1, powers as o complete orthonormal system of functions in jéP o
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Since

tr A= % | a (v, , En) d r (3.27b)
n=1 wn

N

is also obviously finite, the diagonalization of A yields a complete ortho-

normal system cof functions {@v} : A @v = KV P, Kv 20, v=12,3000 s

1
By introducing the functions fv = Xi % = (f1v(p1)90u07 va(pN)) the fun-

damental inequality (3.27a) again leads to the uniformly converging repre-

sentation

~1 38
t
N

o

h
Ho |
N

e
N

Anm(Pn ? qm) =
v=1

(n, m=1, eoe, N) ' (3.28)

Here the functions fnv(pn) are analytic in Pn(n = T, seoy N) °

By considering the diagonal term n =m it follows from Thecrem 2
that the functions fnv can be analytically continued to the whole of

Qn (n = Ty svo, N) , and the Schwartz inequality

lAnm(Pn 3 qm>!2

A

e () %‘mvmmm%g \fm<pn>'\2,§ 2 (2)]? -
=4 (p_, P, ) A (a ,q) (3.29)

tells us, again through Theorem 2, that the series automatically converges

uniformly in the whole of Q‘1 X Qm o
Therefore we have proved the following theorem

THEOREM 4.

Let a set of N X N continuous functions Anm(pn , qm) be defined
in Rn X Rm , where Rn is a (real) neighbourhood of a point P, = p! in

n
m4(n_1) ; let this set of functions satisfy condition (3.25) for all

£ € X <Rn) (n =1, voe, N) ; 1let all the functions A be amlytic

in a complex neighbourhood of the points P, = pg v 4, = p% ; let further
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the "diagonal functions Ann(p ’ En) be real-analytic in domains
a, € Cc4(n-1) M
the . . . . ontinued in

he functions Anm(pn s qm) can be analytically continued into Qn X Qm

containing the real point p, = pg (n =1, see, N) o Then
(n, m=1, .oe, N) » Furthermorc the matrix of functions A = (Anm) can
be "diagonalized" there, that is, there exists a sequence of functions

fnw € JZ(Qn) (v =1,2,3 o.0) , (n=1, oos, N) such that the repre-
sentation (3.28) is valid in Qn X Qm in thc sense of the uniform conver-

gence of the serics,

Generalizations and outlock,

The main tool for getting Theorems 1 to 4 was the introduction
of a suitably defined Hilbert space of analytic functions on which the
"absorptive amplitude" turned out to bc a positive operator of the Hilbert-
Schmidt type. The use of these Hilbert space technigues was essentially
local : the domains w in the definition of ?&b [sce (3.26) 1 were rela-
tively compact subdomains of the domains of hclomorphy Q . The measures

A werc also rather arbitrarily taken to be Lebesgue measures.

We can now ask the qucstion whether the initial positivity condition
(3.25) can be formulated in a form that would - at least partially - respect
analyticity (that is locality and the spectral condition) in a more explicit
way. The answer is obviously to be sought in a suitable choice of the Hilbert
space é@»(u) of analytic "test functions". Here u denctes the set of
measures which are to replace the Lebesgue measure in formula (3.26) « The
most natural choice seems to be w = (O = the set of c¢nvelopes of holomorphy

Q. , and
n

“n
du, = e T an , (n =1, 2, 3, aes) (3.30)
(compare HSrmander 26) , Ch. IV) , with ¢, some real, let us say continuous,

function in Qn such that

[ (e, s B,) b <o (3.31)
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Thanks to the (appropriately generalized) formula (3.27b) , the last
condition namely automatically ensurcs that the positive operator AN asso-
ciated to the N X N matrix (Amn) has a finite trace for any finite N ,
and hence that AN is the diagonalizable Hilbert-Schmidt type., For a given
field such a choice of measures 1s always possible : one only has to choose

the functions 9, of sufficiently rapild increase near the boundary cf Qn
(including points at infinity) (comparc HSrmander, loce. cit.) . One can then
obviously choose the P, also in such a way that the operator A°° is of
finite trace ; hence the representation (3.28) is valid for all n, m,
since the fundamental property (3.27a) of a Bergman-Hilbert space is - with

a slight modification - preserved also in this case, Thus we get the

THEOREM 4',

Let the set of "absorptive amplitudes" satisfy the positivity condi-
tion (3.25) . Then there exists a double sequence of functions fnv € d@(@n>
(v =1, 2, 3 00 3 n=1, 2, 3, ses) such that the representation (3.28)

is valid in Qn X Qm for all =n and m 1in the sense of uniform convergence.
i

What we would still like to achieve is to find systems of measures
Hn such that every positive operator A with finite trace acting on
2@0(9) gives rise to a system of A .'S with boundary values satisfying the
initial physical conditions(3.25) . For that purpose it is necessary and
sufficient that the Anm's so defined do not increasc faster tham an inverse
power of the distance to the boundary when approaching their physical boundary
values (compare, €0Jey Streater and Wightman ! , Thecrem 2, or Epstein 19)
~ appropriate modifications of the asymptotic behaviour at infinity are to be
made in the case of the Haag-Araki theory) « Now the worse possible behaviour
of an analytic function f € dé(@) N L2(Q , W) near a boundary point of 0
is determined - as secn by repeating the derivation of the formulas (3.6)
and (3.27) 1in this slightly more general case - (compare 23) , Ch, IV) - by
the local behaviour of the inverse "weight function" 7 » Thus e‘n should

essentially behave in (, as the upper bound of moduli \Fn‘ of the set &



- 28 -

of all the n point functions satisfying the conditions of the lincar prc-
gram with some fixed growth properties in their primitive domain of analyti-
city., In other words e, should be chosen as the (maybe somewhat smeared out)

plurisubharmenic function

= g = A (
o, (p,) Fn?;;p gn |F_(p )| = fu it (p ) .

Unfortunately, neither the envelopes of holomorphy On nor  the
functions Mh are explicitly known in all of Qn’ » The situation can be
remedied - at least partially - by replacing in the above considerations
the holomorphy envelopes Qn by the corresponding primitive domains Qi
(containing a finite complex neighbourhood of the real points of coincidence).
As to the Mn's , although known only in the initial tubes, they can also
be extended to Q; with the help of the edge of the wedge theorem using an

*)

appropriate trick .

These last sketchy observations require a mere detailed investigation
and will have tc be treated clsewhere, Let us only stress herc, as a final
remark, that the above methods can be applied - hopefully with more profit -

also to the set of Wightman functions in X space.

TWO EXAMPLES.

As an illustration of the expounded thecory let us consider first the

case when A is of the form

Alp , q) = alp - q) . (4.1)

1l
~~
O

-
e
~
>
S
s
N
«
N
p
l_l
n

The Wightamn two-point function in x gpace A(x - )

1)

such an example (we have tc set x = p , = q)

*)

To be contained in a forthcoming paper by Epstein and Glaser,
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The function Alp - E) = A(2i Im p) docs not depend on the real

p , hcnce the diagonal planc iD2N = RNJQ iiRN, actually reduces to

its imaginary subspace iIRN o If we put p ~ ¢ =2z = x + iy , the diffe-

rential form of the pesitivity condition becomes

- aoz+B
Z a, A £ aliy)=z 0 . (4.2)
«,8 ayoz+B

From Theorem 3 it then follows

COROLLARY 1.

If a distribution f(y) = A(iy) € 3?(3) , where B 1s an open
set in 'RN , satisfies condition (4.2) in B, then £ is the
restriction to the imaginary plane {x = 0} of a function A(x + iy)

y £ B } .

analytic in the tube Ty = {z = x + iy € € =

Let us call the sct B={z : Rez=0 , Imz€B }  the "generating

sct" of A . From Thecrem 2 , we then conclude :

CORCLLARY 2 .

~

Let B, © B, be two connected cpen sets C R, let Bi = {z € @N :

1 2 N

:Re z =0 , Imz€BJ and Ty -—:{ZCGIN:ImZEBi}.If

Alp - q) = A(z) satisfying the %ositivity condition in 7 [e.g.,

B
in the form (4.2) 1 is analytic in a ncighbourhood of the ;et 82 '

then it is also analytic in the tube ?B .
2

The integral form of the positivity condition can be cast into the

following form ;

j Alx = x' + 1y) £(x) £(x') dx dx' = 0

for all y € B and all £ € & (&zw) . (4.3)
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This has landed us in the very well-known theory of functions of po-
sitive type studied by Bochner 27) and Schwartz 22) and applied to field

theory by Wightman.,

Our second example will be an application te the two-body scattering
amplitude, But before discussing it we shall have to state the following

rather trivia

LEMMY 1
The pesitivity conditions 4) , B) and C) arc invariant under an
analytic substituticn of variables p=Tu , q=Tv ., Here T 1is
an analytic mapping frem w  inte Q , where w 1s a domain in
€, » and Q€& € the domain of definition of & (in general M # N) .
The proof is immediatly cbtainced by looking at the "diagonal' repre-
sentation of A . If we dencte A(Tu , Tv) = A(u , ;) and £U(Tu) = f)(u)
: v

one gets s

~

alu, v) =% -V(u) £ (v) .

b

<

From herc, the conditicons in the forms A) and C) with p , q replaced

by u , v immediately follow.

Note,
Being an inequality, the positivity condition is detcrmined only up

to a factor. Indeed, if we replace A by F(p) A(p,&) E(q) = A1(p ’ E) ’

&

where F  is any function analytic in O such that F ?’O , ncthing will
change., We also want to warn the reader that the set of functions fv which

diagonalizes A is by no means unigue.

We are now ready to study the abscrptive part of the scattering

amplitude of a process

A(k1 , m1) + B<k2 ) mg) - A(k3 ; m1) + B(k4 , m2)
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where the four-momenta and masses of the two scalar particles invelved are
indicated in brackets. In agreement with the notational conventions used

in (2.5) and (2.6) we have
Mg s X,y K,) = A (P, q)

d = = - - a = + e .
with o =k, +k, ky =k, and Xy, o/2tq , X34 (c/2 £ p)

The (complex) mass shell manifold is given by the equations

If we fix o in the form o = (/s , 6) with s 2 (m1 + m2)2 , then the

resulting manifold can be parametrized as follows
End ’ e d —
p=(,Rx) , a={a,Ry) , x"=y =1 (4.4)

where A and R are two real constants depending only on s and the masses,
and ; and '§ vaery indecpendently on the unit sphere. Since the particles
are supposed to be scalar , A 1s - at least on the mass shell - a Lorentz
invariant function and hence depends only on s and the scalar product

— -
X ¥ o Therefore, without loss of information, we may specialize (4.4) to

p=(A,Rcosu, Rsinu, 0) = Tu

g= (A, Rcos v, Rsinv, 0) = Tv (4.5)
and we gct‘

AU(Tu , Tv) = Flcos(u - v)) . (4.6)

T 1is evidently an analytic mapping, so Lemma 1 may be applied and therefore
also Corollaries 1 and 2 . Denoting by %%E u-v = 7?; + i‘ﬁ; the scattering
angle we can conclude that the "generating set" of A 1is a purely imaginary

~ qQ
interval I = { %?‘:‘U1 =0, Q}é € I} « The interval I has to contain the
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origin since the origin corresponds to physical points. I is also symmetrical
about the origin because A 1is an aven function of @}0 Therefore the tube
31 of corollaries 1 and 2 is the strip ?I = { if: mo < Im W<+ «} . The
image of this strip in the variable 2z = cos éy is the cllipse with foci

at z =x 1 and the major semi-axis a = ch ¢ introduced into physics by
Lehmann 21) , while the image of the set E i3 the real interval 1< z <a,
with a = cha « Thus we have proved the theorem discovered by Jin and

28)

Martin o

COROLLARY 2' ,

If the absorptive part cf the scattering amplitude of two scalar

particles is analytic for fixed s in a neighbouhcod of the real
QL

interval 1< z <a , wherc z =cos? , then it is analytic also

in the whole Lehmann ellipsce with the major semi-axis a .
This fact can be stated also in the differential form of Corollary 1

COROLLARY 1°' ,

|
If a distribution F(x) = Flch y) € & (- o <y <+ ) satisfies in

-a <y <+qg the set of incgqualities

© _n _
T “—7Fhy) T a a, =0 (4.7)
n o B
n=0 Ay o+p=n
for all a, € @1 such that a, = 0 for all o > some N, then F 1is the

estriction of a function F(z) analytic in the Lehmann ellipse

lz - 1‘ + \z + 1\ <2a=2cha ,

The inequalities (4.7) can be put, in principle, into a form involving
only derivatives an(x)/dxn . What we want to show is that (4.7) implies

the inequalities :
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n
GF(Z) 50 forall 152<a and n=0, 1, 2, v.. (4.8)
n
42z
: . 6)
used extensively by Martin °

Instead of manipulation the expression (4.7) directly we shall start
from the integral condition (4.3) applied to the variable Qr [which is a

*
consequence of (4.,7) !1 7 &

The image of the strip - o < Im Q})< « 1n the complex plane of the

. 1 . . .
variable £ = e , 7 = %(g + g 1) , 15 the corona eﬂy < ‘E\ < éy . Since

F 1is analytic there, it can be expanded into a convergent Laurent series

V) [~
F= 2 c £ =3 a 3(° +87) . (4.9)
v \v
V ==0 v=0

The last form follows from the symmetry of F under the substitution

g - §~1 » Let us apply to (4.9) the integral inequality (4.3) by substituting
] . 3
in it x = 7 x!' = i%1 s ¥V = &; =0 , f = eV and integrate from
0 to 2m . We get
a =20 for all v =0, 1, 2, sos o

W)

The last inequality implies (4.8) for n = 0 ., If we show that dE/dz can also
be represented by a series of the form (4.9) with the coefficients a& all
positive, the inequality (4.8) will follow by induction, But this is a conse-

quence of the identity

v -V v-1
_ija— (g\) + g_\)) = v ..g___..:_é_.._. =y o g\)_zpl (4.10)
az E - §—~1 =0

*)

The following proof is due to Epstein, The author would like to thank

Dr. Epstein for the permission to include it in this paper.
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The termwise differentiation of the series (4.9) and a rearrangement of terms
shows namely, by virtue of (4.10) , that the coefficients a' are positive

v

linear combinations of the coefficients aJ o
\

As the final comment, let us remark that the inequalities (4,8) are
weaker than the set of inequalities (4.7) . While (4.7) implies, according to
the general theory, analiticity in the whole Lehmann ellipse, the inequalities
(4.8) imply only analyticity in the disc ‘z - 1‘ < a with positive coefficients
of the corresponding power series expansion, The last assertion follows from

the Bernstein theorem (compare, Geg., 29))
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