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In this exposicion, I attempt to summarize the main resailts,
anit the most interesting methods, of an espproach to the study of specific
intaractlons in quantum field theory. This subject is largely historicaily
motivated, #¢ I begin with a few historical remarks. Wnen people first
hegan to study cuantym Field theory, they had in mind theories with speci-
fic intevactions (the electromagnetic field interacting with various
thiags), which ware to be treated ty esseatially the same methods are were
usad in non-velativistic quantum mechanics. This ﬁrocedure led, after some
very camglicated manipulations, to iznfinite series (the renormalized per-
turbation series) which were supposed to represent physical quantities, and
the first few terms ¢f the series geve remarkably good agreement with ex-
perimené in quantum electrodynamics. This agreement is probably thé best
justification for thinking that field theory has something to do witn nature.
Unfortunately, the sevies are very complicated, so that it is feasible to
compute only a very few terms; besides, not much is known about their con-
vergence, lenze, for strong-interaction physics, the series are not of
auch use, and, in the early 1950's, reseafch took a different direction -
the investigation.of the general properties that a satisfactory theory,
if. ic enists, should have. This led to such things as the Wightman axicus
snd the study of analyticity prcperties of scattering amplitudes. The
work T gw golrg tn descrile returns to the original direction of invest:i-
gatlon : One writes down specific interactions between fields and tries

to treat them in analogy with ordinary quantum mechanics. Tnatead of

nanipulating formally with power scrics ¢xpansions, however, one uses



Hilbert space methods. The central problem is to construct the Hamiltonian

as a self-adjoint operator on a Hilbert space. In the end, one hopes to
exrive at a theory which fits into one or another of the general theoreti-
cal Irame works for relativistic quantum mechanics which have been deve~
lopped in the past twenty years (Wightman fields, rings of local ubservables,
etc.) an thus to obtain a non-trivial model for these systems of axioms.
However that may come out, the subject has considerable interest in its

own right, both from a physical point of view because it is closely tied

to renormalized perturbation theory, and from a mathematical point of view
because it leads into an area of concrete operator theory with as much

structure as the theory of differesntiation operators,

With these remarks to serve as an introduction, I want next to

explain the formal procedure one would like to use to construct interacting

rh

ields with a specific interaction, and to show why the construction proce=~
dure doest't work. For purposes of illustration, we will consider a self-
interacting pvoson field; this theory is hot the most interesting one
paysically, ‘but it has the advantage of giving rise to the simplest
formulas, Although one is evidently most iunterested in a theory in four-di--
mensional space-time, theories tend'to become mqQre tractable as the nuaber
of space dimensions is reduced. {Divergent integrals become convergent.)
Hence, one frequently studies theories in 2 or 3 dimensioral space-time.

We will use Vv to denote the number of dimensions of space,



We start with a free scalar boson fileld at time zero :

ikex
- %
1 e ta(k) + a (-k}]

Bx) = — 7 die_
V2 emY V(i)

Here, x, k denote space variables only, since we are considering the
field at time zero. The creation and annihilation operators have the

non-relativistic normalization

[a(k), a (2)] = 6(k~t) ,

u(k) =1\ i + kz

L

and

s Mg the mass of the boson.

There is a corresponding free Hamiltonian :

f 3
H = A dk (k) a (k) a(k) ,

and we waant to consider a total Hamiltonian

m

it
]
+
<3

vV = A r dx : ¢ 4 : (x)

whare M is the '"coupling constant" and : : means Wick ordering.
(Wick oxrdering is the operation on formal expressions for operators in
terms of creation and annihilation‘Operators which puts all the annihi-
lation operators to the right of the creation operators; if there are
fermion operators present, the resulting expression is also multiplied by

(-1) to the number of interchanges of pairs of fermion creation and
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annjhilatinn oparators necessary to carry out this re-arrangement.)

Written out in terms of crearion ard snnihilation operators

dk, ... 4k : e e ¥ *.

! 4 S ..ok, 57a (k). ..a (k,
g AR 4

[u(k,)...u(ka);“‘
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Interacting fields are to be constructed by propagating the free fields at
time zero with the total Hamiltonian :

H i Ht -1 Hi
F(x,8) = e 1 ¢ix) e L3

£y

«ud the 'physiecal vacuum" Yo sbould be the lowest eigenstate of i .

The Wightran functions for the Interscting filelds sre then given by

H, Y
\"s . ad . $
by X L.oldeeo ¥ x -
( 0’ ¢ 1 L) a4 " n) ¥o> s
and from these Wighiman functicus eue #nould ce able to compute such physicsl

guastitias as scattering amplitudes, visuum poiarization, etc.

7n deriving the perturbation series for vacuum expectation values,
oxe vees the abova formal procedure and itrxeats V as a perturbatisa on B
Iv point of fact, however, V 1is nif only aof small i{n any reascnable seuse,
but is so lavge that it is not an operator ac all. To see how this comes

about, we rvewark as a rvle of thumd :hat a formal exprzssion



£ , "
jf(kl,...,kn) a (kj)oo. a (k) dk .. .dk ,

with a symmetric kernel £ , cannot define an operator on Fock space
unless f 1is square~integrable. This is true because Fock space is a
space of symmetric tensors over the one-particle space Lz(dk) , and

£ k) a (k). a ng wi

| EGegsenk ) a k;)... a (kn) dk;...dk  acts by tensoring with
f(kl,...,kn) and symmetrizing; it is very hard to see how this actioa

‘can give anything square-integrable unless f 1is square-integrable itself.
(Conversely, if £ is square-integrable, it is well-known that

f %, #*
J £(k kn) a (K1>-.. a (kn) dk;...dk_ gives a densely defined opera-

120

tor.)

Now the kernel expressing V in terms of a's and a*'s contains
a O-function and therefore cannot be square-integrable, It is worth xnowing
that this particular difficulty, unlike some others we shall see later, is
very persistenﬁ and cannot be eluded by operator-theoretic tricks. To see
this, observe that the &-function in the kernel is a reflection of the
fact that V 1is defined to be tramslation-invariant. Thus, a self-adjoint
operator on Fock space which is constructed by any reasonable interpretation
ol the formsl expression for Ho + V should commute with translations, and
s0 should the one-parameter group of unitary operators which it generates.
This one-parameter group should therefore map the subspace of translation
invariant vectors onto itself; since this subspace is one-dimenslonal and
is spanned by the no-particle state, the no-particle state must be an

eigenvector for Ho + V . But this contradicts the formal expression for



HO + V , which 1Is a sum of terms annihilating the no-particle state plus
a term carrying the no-particle state to a four-particle state.
Conclusion : It is impossible to give a reasonable definition for H, + v

as a self-adjoint‘operatot on Fock space.

Some changes must therefore be made in the formal expression
for V ., We can either :
a. Put the whole theory "in a box with periodic boundary conditions"
i.e., replace physical space my‘ by the torus v .
or

b, Put a space cut-off in V , i.e., write

\Y

A f dx h(x) :¢4: (x)

where h 1s non-negative and goes to zero at infinity,
Both methods have their merits; for definiteness, we will consider the
second.

Then

X Ik, .. .dk

1°°° "4

V= .
4 (2mV [u(kl).,.u(k4)]1/2

° CGehoe i) [a"Ck). a¥Ge)..

We have thus to ask whether the kernel :

N
Y,
h (k1+. . .+&4)

[p(kl). v ouiCk,)

]1/2

is square-integrable. Here we get a first glimpse of the advantages oi con-

sidering space~time of dimension 2 : The kernel is square-integrable if



o,
v =1 ({(provided h decreases reascnably rapidly at infinity) but not

e e s . ' -

in higher dimensicns. { u(k)Rﬁ!k! for larze [k| .) Thus, as it turns
out, V needs only a space cut-off to make sense in two-dimensiomal
space-time. In move dimensions, we have to do something about the contvi-

butions from iavge values of k , i.e., from high energies. What we w.ll

do is simply to remove them by introducing an "ultraviolet cut-off" ;

iet
dk,.,.dk ~ % . ¥
vig) = ——LGIZ () 1 4 1/2 h(k1+,,.+k4)[a (kl)“;ﬁ. (i, M
4 V2 i) aCie,) ]
k] s o

Then V(g) and Hi + V(o) are easily interpreted as densely defined sywmetzic
operators om Fock space, and we are inm a position to begin doing operatox

theory.

At this point a straightforward, i1f ambitious, leng-range progvén
suggests itself : Use H o+ V(g) to comnstruct irnteracting fields and :he
physical vacuum,.and hence construct the Wightman functicns far the iheouy
with cut-offs. Then study these Wightman functions as the cut-o0ffs are rve-

~

moved and, hopefully, prove that they have a limit. The choice o Wighim=aa

functions as the rvight quantities to study is motivated mostly by ihe fact that
theiy covstruction is in principle straightfoerward and that there is ur
evidence from perturbation theory that they don't have limits as the

cut-nfisz sre removed. The .study of the removal of the cut-0ffs in this

coizext has unfortunately not progressed very far, but there exist at loast



fairly cenplete invastfgations of the theories with cut~offs, contained

iu ke cheses of Jaffe and mys=zlf [1], [2] .

we cocnsider twd specific interaciions @
a. Rrneon seif-interzction {Jatfe). Let P(E) be a polynomial in one
variable which is aosn-negative ov. the real axis, and tcke (for-ally) :

r

. !', . ¢
Ve A dn P(@): {xi

ine analyciz voquicas both a box or space cut-off, and an ultra-violet
cut-off, e@ven in two-dimensional space-time where there are no ulctra-violet
Jivergencrs. 1n fact, the cut-off must he strong enough sn that V can be
. . .‘ 0 2 * [} 1
a¥oressed as a polynomial in finitely many a's and a 's . The probiem

5

caen veduces to studying the differential operator

'A'i" 1)

f 3 neco~-nezative pclynomial, in a large but finite number 07 variables,
2oz the petaod of attack is to use the theory of partial differential equa-
fa0s.,

T, “ukawa icteraction (Lanford). Fers, there are itwo fields ‘nteracting
with cach ether, a Dirac field ¢ and a scalar field ¢ . The interaction

28 zivea formally by @

a2 vead both a space cut-¢ff or box and an ultra-violet cut-cfl (In th 3



theory, there are ultra-violet divergences even in two-dimensional
space-time.) With these cut-offs, V becomes a small operator with respect
to Ho , and the investigation of the theory with cut-offs is based on

perturbation techniques.

Although attention has been directed primarily at these two
interactions, it is possible to combine the techniques used to give fairly
complete results for any cut-off interaction between fields provided that
1. The total Hamiltonian is formally semi~bounded

2. There are no zero-mass particles,

The problem splits into three parts :
a, The Hamiltonian, In both theories the Hagiltonian, defined on a natural
domain, is a semi-bounded essentially self-adjoint operator,’
b, Interacting fields. We want to define, for appropriate test-functions

£(x, t) ,

()f(x,t) ¢H(x,:) dx dt = qut ol HE [‘(dx £(x,t) @(x)] o1 Bt
j o

i Ht

For this definition to make sense, we have to be sure that e does

not disturb the domain of unbounded operators of the form

f ax g0 B

too much. In both theories, this problem has been controlled; any polynomial

in operators of the form jlf(x,t) ¢H(x,t) dx dt , £ continuous and rapidly
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decreasing at infinity, is densely defined.

¢. The vacuum, We want there to be an eigenvector of the total Hamiltonian
(the vacuum) with eigenvalue at the bottom of the spectrum of H . More-
over, we want the corresponding éigenvalue to have multiplicity one (unique-
ness of the vacuum), and we want the eigenvector to belong to the domain of
any polynomial in the smeared interacting fields, All these things are true
for the boson self-interaction theory; they become true for the Yukawa in-
teraction after a finite mass mnormalization, i.e. after a finite change

in the masses of the particles.

These results combine to permit the construction of vacuum
expectation values of the interacting fields as tempered numerical distri-

butions.

So much for the theory with cut-offs. I now turn to the more
interesting question of the existence of limits as the cut-offs are re-
moved. Here, ona adopts the pragmatic position of seeking the simplest
context to study any given limit. For the limit as the volume goes to
infinity, or as the space cut-off goes to a constant, Guenin [3] proposed
to study the time-evolution of bounded local observables. This inve.stigation
is simpler in aﬁ least two respects than the study of Wightman functions :

a. Because one deals with bounded observables, rather than with unbounded

smeared fields, domain difficulties are not present,
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b, The difficult problem of the existence of a vacuum state is completely

separated from other considerations.

The formal idea is the following : If A 18 a bounded operator
which is a function of the fields and their camonical conjugates at time
zero smeared with test functions having support in some fixed bounded

region CY’ and if

o= B +g’dx hG) B )

vhere QPI(x) , the interaction density, is a local quantity, i.e., a

function of the fields at the point x , then

i Hht -1 H.ht
e A e

is independent of h provided h 1is one on the set of all points from
which light signals can be sent into GV in time |t| . Hence, trivially,

iHt -1 t
lim . e h A e Hh

h~1
exists. If we let OL(C?) denote the von Neumann algebra of all opera-
tors A and ({ the norm closure of the union of the ks
then a one-parameter group of time-evolution automorphisms Te of 6%

may be defined by

i Ht -1 t
Tt(A) » lim e hoa e T

h=y1
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iHht A e-i Hht

The key point in all this is the fact that e

becomes independent of h as soon as h 18 equal to one on a large

enough set. This assertion may be supported by a formal perturbation

theory argument (see [3]), but more recently an essentially rigorous

argument has been given for boson self-interactions in two-dimensional

space-time. It is due to Segal [4] and goes as follows : Let

v, = f h(x) :P(@): (x) dx ,

where P 1s a non-negative polynomial. It is known that Ho and Vh

are self-adjoint operators and that their sum Ho + Vh = Hh is densely

defined. At this point, we come to the only place where the argument is

not complete : We have to assume that Hh is essentilally self-adjoint

for each h

*)

. Then the Trotter product formula (see [5] and the re-

ferences given there) gives :

1Rt 1Ht/n 1Vt/n n
e = gstrong limit (e e )
n —-———? -]
For any bounded operator A , we have therefore :
iRt L Ht 11 t/n iV t/n T ove/m -1t/ "
" Ae = lim (e e ) A(e e )

o

3#)

It has very recentlg?gﬁown by Glimm and Jaffe that this is true} and even
that H_ 1s self-adjoint. See [14] .



T

we now make two elementary remarks :
. iHOT -1 HOT
1f BE([((a, 3)) , then e ° Be € Jp(Ca-|rl,p+|Ti)) .

Pt

2. 1f B € (U(a, B)) , and if o' <a , B' > B , then

AAIA
e Be belongs to 0$((a', B')) and depends only on

the values of b on (a', B')

Applying each of these remarks n times, then taking the limit n =4 o ,
shows that, if A € Gé((d, b)) ,
1Hht -iHht
e Ae

depends only on the values of h on a neighborhood to {a - |tl, b+ [t]|]

and belongs to 6%((a, 8)) for any o <a - [t], 8>b + |t]

Besides the existence of the infinite-volume limit for cutomorphrazs,
tuere is a result, due to Jaffe and Powers {6], on the infinite-voiume limit
oi tne vacuum state. The idea is as follows : Let £, g be two smooth func-
tions of compact. support, For any cubical region A whose interior contains
the supports of £ and g , construct the cut-off’ ¢4 Hamiltonfan in che

box A with periodic boundary conditions; let (), be the corresponding

A

vacuum state, and let

{where 1t denotes the field canonically conjugate to @ ).
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If we take a sequence An of cubes which eventually contains any bounded
set, elementary compactness arguments show that there exists a subnet n,
such that

w(f, g) = lim W, (f, g)

a n
a

exists for all f, g . Then ®w defines a translation-invariant state

of the Weyl algebra for the infinite-volume fields @$ and T at time zero
and 1s a reasonable candidate for the physical vacuum state. What Jaffe

and Powers show is that w(f, g) 1is continuous in (£, g) on finite-di-
mensional subspaces and that therefore the state defiﬁed on the Weyl alge-
bra is regular , i.e., gives rise to a representation of the canonical
commutation relations. Although the proof in [6] applies only to the

¢4 interaction, the result may be extended to gimost any physically reasonable
interaction with ultraviolet cut-off. It could also be extended to boson
self-interactions in two-dimensional space-time without an ultraviolet
cut-off, if it could be shown for these thecories that, for all values of
the coupling constant, the vacuum energy in a box of volume V decreases

at most linearly with V as V goes to infinity.

I come now to the most substantial contribution which has been
made to the solution of the problem of the removal of cut-offs : Glimm's
work on the definition of the total Hamiltonian without ultraviolet cut-ocffs.

Glimm starts with a formal expression for the total Hamiltomian, containing
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infinite counterterms which are supposed to cancel the worst-behaved
parts of the intefaction. The spirit of the investigation is to make
these cancellations explicit and thus to construct (on an appropriate
concrete Hilbert space) a self-adjoint operator which can reasonably be
interpreted as the total Hamiltonian without ultraviolet cut-offs, A
space cut-off is always present in the interaction; moreover, problems
concerning interacting fields and the vacuum state are at present un-

touched.

Glimm has studied two specific interactions : The Yukawa inter-
action in two-dimensional space-time and the ¢4 interaction in three dimen-
sions. Although the same underlying formal ideas are used in the two cases,
the technical details are quite different. The Yukawa interaction is by
far the simpler, and I shall not discuss the methods of proof for the
¢4 interaction. However, to begin, I give a summary of the results that

have been obtgined for both interactions,

First, the Yukawa theory. The problem is to define,

6m2

R =H o+ fm) A COYG0: 800 ax + &2 | B0 0% axr e 1,
N|

ren

where 6m2 and ¢ are infinite; i.e., are given as divergent integrals.
2

(The term é% uth(X) :¢2:(x)dx is a mass renormalization counterterm, and

the constant ¢ 1s to be thought of as adjusting the energy of the ground
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state.) The procedure followed is first to introduce a cut-off ¢ in the

interaction and the counterterms; this gives a well-defined operator

ﬂren(c)

H +fh<x>-t+(x>! (00 6 Gax + B | 120962 ey axieta) £
o WG G xE By * 2 Yo’
where the quantities 6m2(0) and c(g) are finite numbers obtained by
2
putting a corresponding cut-off in the divergent integrals defining Om
and ¢ . Next, one constructs a family of unbounded operxators T(o) on

a dense domain P(T) , and a limiting operator T such that

lim T(o) Y =TY
0=y @

for all Y € ©(T) , and such that T 9(T) 1is dense in Fock space.

The operator T 1is called a '"dressing transformation" ; its function is
to take analytically well-behaved vectors into vectors which have a chance
of being in the domain of the singular operator Hren . The first major

result is the following : There is a symmetric bilinear form Hren on

T ®(T) such that
lim (Hren(o) T(a)Y, T(0)3) = (Hren TY¥, Té)
0=y ® .

for all V¥, & € ©(T) . This is essentially the content of [7] .

The second step is to pass from the bilinear form to an operator.
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In [8), Glimm shows that, if an appropriate finite change is made in the

mass renormalization (i.e., if a fixed finite constant is added to sz(o)
for all ¢ ), then the bilinear form L is semi-bounded and closeabile
and therefore corresponds to a self-adjoint operator by Friedrichs extension
techniques. The finite change that must be made in the mass renormalization
is annoying, especially since it seems to go to infinity as the space cut-off
goes to one. Fortunately, in [9] it is shown that this finite change was not
really necessary; Hren is semi-bounded and closeable whatever finite change
has been made in the mass renormalization. (In the same reference it is shown

that, if P(€) 1is an even non-negative polynomial and 1f h 18 non-negative,

then in two-dimensionai space-time the total boson self-interaction Hamiltonian
Hy + J‘dx h(x) :P(@d): (x)

is a semi-bounded Operator on Fock space., This generalizes an earlier result

Nelson [10])

[
rh

So much for the Yukawa interaction. Ia [11], Glimm makes a similar
attack on the ¢4 interaction in three-dimensional space-time. Here again,

one wants to define :

2
H = H + Aj1dx :¢4: (x) h(x) + Su .f:¢2: (x) hz(x) dx + ¢ ﬁ.,
ren 0 2

where 6m2 and ¢ are infinite. Again, one defines a cut-off Hamiltonian

and a family T(o) of cut-off dressing transformations on a fixed

# L]

domain FXT) in Fock space. This time, because the theory is '"more divergen



- 18 -

than the Yukawa interaction in two dimensions, lim T(g)¥ does mnot
Tmde

exist in Feck space,

However, if §, ¥ belong to T(T) ,

14 (T(0)®, T(o)Y)
aan - 2
g>e |t g

existe ( Qo is the Fock vacuum). This limit can be used to cefine a new
Eilbert spece #ren » and a dressing transformation T mapping (TY to

& dense subset of #ren can be defined by

(T8, T¥)___ = lim (1(0)3, T(g)?)
1 ceym (o) & ||

o,

Tae main result is the existence of a symmetric operator H = ou T NT) c:ﬁ%en

such that

(Hren{c) T(0)§, T(O)Y)

(Hren T, TY)ren = 1lim >
L CRN

for all %, ¥ in T

The appearance of a new Hilbert space on which the renormalized
Hamiltonian acts i{s a phenomenon of considerable physical interest and
deserves further investigation, Glimm constructs the Hilbert space %Lren
in a fairly concrete, if extremely complicated, way. It would be useful to

have a simpler realization of it as a function space, to see whether the

creation and annihilation operators act on this function space {i.e., waather
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ik2 corresponding formal operations give densely defined operators

satisfying the canonical commutation relations in Weyl form) and,

if so; to study the properties of the representation of the canonical

ccumitation relations so obtained. It would also be useful to know
54 . -

to whit extent the space J o 18 uniquely determined by the fact

that Hren gives a densely defined operaztor on i%.

It is out of the question, in an exposition of resconnble
lensth, to give detailed proofs for an§¥%he main results. Inzicad,
i% seems more useful to try to give an idea of how the prcofs wori:
by illusiratirg the main formal and technical ideas used in the
construction of the Eamiltonian for the Yukawa interaction. To ntant,
we will lnok at an analytically transparent example to show how tha
uressing-transformatzén technique can be ﬁsed'to define an nperator

which, on first sight, looks too gingularto make any senmse. The

operator we want to define iz 3

.4

dx

>

on Lz(dx), whers MS meang the operator of multiplication by tha H
function.

To define this operator, we staxrt by "introduciny a cut-zfil",
issey Ty approximating the O6-funotion by a continmious pesitirre funsiion

Nl

I with irtegral ones. Let

X
h_,_,(x) = exp(wi f(t}uh)

-
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&

and let Tf = Mﬁf , the operator of multiplication by h

Then a simple caloulation gives ¢

£

. a : . d
[-1% +u] Tfath‘f'PTf[-l———'l"MfJ

dx dx
. d , a
= T [-1_...-M:E,+M]=,T[§-i-_],
£ dx £ £ dx

If we now let f —»8 in some reasonable sense, then the operators

Tf converge strongly to an operator which can call T5 s and we can

define
d a d
[-1-% + 1] P ¥ alim [-1% M0, Varf-1L]Y
dx 8 8 dx Tt 8 dx

f— 98

for VY infD(-i-(.l-) .
dx
Note that this procedure does not give a definition of M
by itself. Instead, commuting the "free Hamiltonian" - i-g—- past the
' dx

dressing transformation ’I‘6 gives gomething which cancels the singular

"interaction Hamiltonian® Mf .

We next turn to s more realistic examples The interaction
Hamiltonian for the Tukawa theory splits into a sum of eight terms :
A term which creates a fermion, an antifermion, and a boson § a term

which creates a fermion and an antifermion and annihilates a boson ¢

etoce
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Let Q1 be the pure-creation term
Q = d(dp ap' ak dy (p,p',k). a*(k) v*(p) br*(r)

(b® denotes a fermion creation operator, b!'* an antifermion creation

operator)s This expression is only formal, ie.e., does not define an
operator in any straight-forward way j the kernel ?{1 is not square-

integrable. We will show how to define

#
H°+Q1+Q1 +A+01,

vhere & is an {infinite) mass-renormalization counterterm and ¢ an
(infinii;e) constant. We first look just at Ho +‘Q1 s and we proceed

formally. Let

wd .
a4(p,p',k)

a* (k) v¥(p) b (p*)

PQ1 =fdp dp!' dk
. w(p) + wW(p')+n(k)

(w(p) = V2 + p°

'51 (pyp',k)
The kernel is quare~integrable, so r‘Q1 s unlike

w(p)+o(p')+n(k)

, W, ‘the fermion mass).

Q,1 itself, defines an operator on Fock gpace. Note, however, that

[Ho !PQ1] = Q1

Now
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r1
\ 0 Q1) € =z 0 Q1 {HO + Q1 +nz1 (n )‘ ['Oa[HO’PQ1]9000PQ1J}

.
ue"r‘in {HO+Q1"‘Q1} = @ Q1 HO

(We are making use of the fact that Q1 commutes withf1Q1 girce both
ere made up out of creation operators alone and each contains an even

rumber of fermion operatorss.)

Formally, then, we should be able to define
-0y _ o~ e
(HO 4+ Q1) e 1 o - 1 HO

wherever ihe right-hand side makes senses There remains rne prokier ~¥

-y
congtructing e Q4 $ furthermore, to justify the abrve def1ni’:ou,

we should check that

(5, + oy o M) P49

for all values of the ultraviolet cut-off o . The latter ident:ity

lﬂQ1(°) uﬁn he

foliows easily from the argument we just gave if e
defined by the power-series expansion for the exponéntial, i.e., if
there is a sufficiently large set of vectors Y such that

7 lo li(Pey(0)) ] <

n

Here, ve need a technical lemma ¢
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Lemmaes There exists a constant X such that, for any square-integrable

~ '
kernel T(p,p',k), the corresponding operator

R cfdp dp' dk T(p,p',k) a¥(k) v*(p) b'#(p')

satisfies :

IR ¥l = & . 20, -l +9y)

for all Y € ®(N), where N is the total particle number operators
From this lemma, and the fact that R increases the particle

number by 3, it follows easily that, for "?Ha small enough,

r Ly <o
n=1 .

for all Y in $% s the set of vectors with bounded total particle

number. Unfortunately,

J

need not be small. To get around this difficulty, we use a technical

a4(p,p',k)

dp dp' dk

w(p)+w(p*)+u(k)

device apparently first used by Nelson in [42] § we introduce a lower
cut-off on the momenta. If, instead of I'q, , we consider
FQ, -f"Q1(p) with p sufficiently large,‘we get an operator whose

kernel has L2 norm which is as small as we like. Thus, by making ¢
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large enough, we can guarantee that

z -l-i- ”(FQ1 -pQ1(p))n Y| <= for all ¥ in 30
n ni

and also that

e""(PQ1 - FQ1(P)){®° N @(Hg)}
is dense in Fock space. Then, formally,

(Ho + Q1) e"(r‘Q'1"'PQ1(P)) - e“(pQ1"‘r,Q1(p))(Ho + Q1(P)) R

The right-hand side is well-defined on ED(HO) ND, , so B +Q
may be rigorously defined on the dense domain

e'(PQr r1Q1(")){s>o n SD(HO)}
by this formulas. Similarly, for o> p ,

(H, + y(0)) o~(M2y(9) ~71Q1(P));1 o~(a4(0) -FQ1(P))(H° + ay(p))

80, letting
T(O’) = e“(PQ1(°—)"FQ1(P)) , Ta e"'(PQ1 - FQ1(p))
we get
lim  T(o)Y = TV (v € :so)
G-

and
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lim (E + 9,(0)) P(0)¥ = (B, + Q) T¥ (Y €EDNDEHE)) .

C—3e ) o
Thus, Ho + Q4 has been constructed as a densely-defined operator
which. is . the 1limit, in a reasonable sense, of Ho + Q1(0§ as U goes
to infinity. Note that no renormalization counterterms have been

needed in this construction.

It remaing to deal with Qﬁ + mass renormalization. To
simplify the formulas, we will assume that we don't need the lower
momentum cut~off p « Because we have left out some terms in the
interaction, we can'% use the full mass renormalization counterterm,

but only the number-conserving part, is.es,

A(0) = const(o) .f i b 02 (k-'f') a*(k)a(t)

Cu(e)n(t)1'/2
klss

[€]<o
(The constant will be determined later and will go to infinity as o
does.)

What we have to do is to study @
A
(Q5(0) + 8(0) + c(o) 1) o Q4(0)

as o0 —>® , The technique used is to commute the operator on the

left throuzh the exponential and to write the result in Wick ‘order,
jeee, with the annihilation operators on the right. This gives a
polynomial of bounded degree in the creation and annihilation operators,

. _n : )
multiplied on the left by e Q1(°) « If the operator defined by
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the polynomial has a limit as o goes to infinity, so does

(@3(0) + 8(e) + () 1) &= ()

Thus, the problem reduces to studying the finite numher of kernels
defining the polynomial, i.e., to questions of computatione The
computations are forbiddingly complicated if approached in a straight-
forward way § fortunately, there is a formal device, due to Friedrichs
[13), which greatly simplifies the grouping of terms.

To see how this formal device works, we have to recall how
the oneration of Wick-ordering a product of two polynomials in
creation and annihilation operators goes. Let P, R be two such
polynomials § we will suppose R to be made up out of creation
operators only and P +o be Wick-ordered. To get P«R expressed as
a Wick-ordered polynomial, the annihilation operators in P must
te commuted througsh R , using the commutation relations. Fach time
an annihilation operator is commuted past a creation operator, one
obtains a new term with a O&-function in the corresponding variablese.

Such a term we will refer to as-a contraction. Each contracted term

mist itself be written in Wick order 3 this gives new terms with
more variables contracted. The net result is that P«R = R.P + the

sum of all possible contractions between P and R , Wick ordered.

The operator that we actually want to analyze is of the form @

-R_ g (=07

ﬁao n !
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For each n, we define the connected product P —<R® to be the

sum of all contractions between P and R" in which at least one
variable in each factor R is contracted. Note that P—«R" = 0 if
n 1is greater than the number of annihilation operators in P . The
formila of Friedrichs now says ¢

® n .
P. e"R = e"R[P + X (=1) t P—<R"]
' n=1 n ',

(Por a proof of this formula, see [7] , §3- 3.)

Thus we get ¢
-7

(0*(0) + A(0) + o(o)t) o~ 01(%) L ¢~MR4( (g u(c) + a(0) + o0}

H
e

Q{w-(a) ._AF‘Q1(G): -t A(0) _LPQ1(°-) . (*)

[3\ I g

: Q*(0) — (M, (0))2 s - ; b Q% (o)~ (Mg,(0))3 ¢}

-

When written out in detail, i.e., indicating the different ways the

contractions may be made, the expression in braces becomes even more

complicated. We will not discuss all the terms, but will look at a

few representative ones to show what itricks are used for handling them.
Before doing thig, it will be useful to make a few remaris

about the prodlem of finding dense domains for formal polynomials in

the creation and annihilation operators. We have already discussed

what heppens for pure creation opsrators : An expression like
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R = f;’(k.],con,kn) a,*(k1)-c- a*(kn) dl.c‘]...dkn

makes sense as an operator if and only if T is sguare-integrable.
loreover, if T is square~integrable, then the domain of R contains
@o and, for Y € 5% , R ¥ varies continuously with T . The latter
features pergist if some of the creation operators are replaced by
annihilation operators § as long as we have to do with a suyuare-
integrable kernel, everything is easily controlled. If there are
annihilation operators present, however, the condition that the kernel
be syuare - integrable can.be weakened. For example, if T is any

Lebesgue-measurable complex-valued function, then
;(k“'”’kn) a(k1) soe a,(kn) dk‘looodkn

is in a natural way a densely~defined operator. (It is easily defined
on those vectors VY which have bounded free energy and which are such

that ;(k1,...,kn) is essentially bounded on

{(k1,...,kn) : a(k1)... a(kn) ¥ £.0) .

N .
One can also easily make more precise statements ¢ IT .r(k1""’kn)

p(e_dndx,)

is square~integrable, then

R [ f;(l(1,one’l{n) a(k1)noo a(kn) dk1oood_kn
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is defined on any ¥ in W n EKHs) , and R Y varies continuously

i

with the kernel T in the obvious sensee. This remains true if some

or all of the annihilation operators a(k1)... a(kn¢2) are veplaced
by creation cperators. Finally, although we have discussed 0ni; boson
operators, the same remarks hold for fermion operators or for .mixed
expressionse.
Returning to the consideration of the expression in braces

in (%) , we apply first the remark just'mada to show that, if
Y €9 n9(E) ,

lim Q (o)

o~ ®
exists since the kernel ‘EZYS:ET:EF is square-integrable.

w(p)w(p*)

Second, we write out ¢ Q,*(0) —<« Q,(0) ¢t in terms of the various
1 1

ways the contractions can be made :

ve

: Q1*(0)-APQ1(¢) tm ot QuF(0)——{0,(0) 1 + 1 Q#(0) —a q(0)
190 v 0, i

+ 2 Q1*(0)‘“‘““FQ1(G§ s + 3 Q1*<°§ “sz; f1Q1(°§
s ’

(Hore —o— means the sum of all terms with exactly i fermion
33

s

contractions and j boson contractions.) The terms

H Q1*<0‘) "1_0_— r‘Q1(6) H and H QT).‘(O’) -—-60...1_ PQ1(ff) $ are al:l -riz-ht
! ’

for the same gsort of reasons as Q1*(c§ $ they have enouch fermion

annihilation. variables free ito take advantage of the fact that they
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are being applied to vectors in 5®(H§) + The term Q,"(0) —z>7 Mq,(o)
' : H

is just a number, which goes to infinity as ¢ does § we adjust

c(0) to cancel it.

The term Q¥(0) —o— T1Q(0) is more interesting 3 it has to be
0
’

cancelled by the infinite mass renormalization.

34(psp"5%)qy(pyp " s2)
1Q*(0) 3% May(0): = dp dp' dk @
o lolso |klso w(p) +0(p*) + n(x)

lplso [t]so

a*(k) a(¢) .

We now need an explicit formula for q, ¢

~ s .
31(p,p',k) = h(p+p '+k) (p,p')

u(k)1/2

where S(p,p') is real and bounded. Hence

1a4(e) =525 y()1 = f o 200 a(d)
’ lx|so 1/2 Vo
I4|<o p(k) = w0 )5 50

lpt|se

- " (S(p,p*)}°
dp dp' h{p+p'+k)h(~p-p'-L)
w(p)+n(p*) k)



(1) a(d : h(s#)R(-0-2)(S(azt , o=t))
i/2 1/2 wls+t) + wlot) + nlk
k|so n(1) 7 Cp(2) I §_2_.) ("é‘ n{
[t|=q

(We have changed variables from (p,p') to s = p+p' ;% = p-n°; IG cenote:z
the region of integration in the new variables.) For any fixed S,k,
the intesral over + diverges logarithmically as o—s . The above

expression is to be subtracted from :

A(0) =\jﬁ ak ab a”(¥)a(2) { const(oﬁdfds i(s+k)‘z(—s-4)}
lse w0 Vo) 2
1[50

If we take

[S(ty-t)]g

Const o) = _ at
Qw(t) + B

[tlsc

we get exact cancellation between these two expressions for - =0,
% = 0. It turns out that, with this choice for const(o) , the kernel
of

— 2 0*(0) —— [g.(0) + + 4(0)

H

converses in LT asz O goes to infinity,so

1im {~ ¢ QfF ——O-~PQ1<O‘) : + Ao)} Y
2’0 .

O—r ®

exists for every VY in Eo-
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it will be left to the reader to invegtigate the behavior
of the remaining terms in (%) « To conclude, we summarize Olimm's
treatment of the total Yukawa Hamiltonian. First, the interaction v
is split into a pair creation and annihilation part V} , and the
remainder 1[? vhich is made up of terms correspoﬁding-to the emission
and absorption of bosons by fermions. We have shown how to deal with:
half of Wf1 . The whole of WG can be handled by similar

techniques, using a more complicated dressing transformation and the

full mass renormalization counterterm. This gives t

Ho + xq + counterterms

as a symmetric operator (not just as a bilinear form) on the (dense)
range of the dressing transformation. The remainder 'V; of the
interaction, without counterterms, is then shown to define a bilinear

form on the range of the dressing transformation.
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