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THFE FINTTE RANGE OF STRONG INTERACTIONS AND

ANALYTICITY PROPERTIES IN MOMENTUM TRANSTER

By R.OMYES

Centre de Recherches Nucléaires - SIRASUOURG-CRONENBOURG

(Bas~-Rhin) ¥FRANCE

e investigate how the finite-range of strong interactions can
be stated in terms of an experivent. It is found that it is equivalent
to the fact that the probability of any process generated by strong
interactions should decrease exponentially as a function of the impact
parameter a. This inpact parameter is defined by a translation of the
initial wave-packet in a direction normal to their mean relative velo-
c¢ity in the center-of-mass system. Due to the spreading of wave-packets
with tire, it is necessary to consider wave-packets, the width of which

in configuration space increases like Va.

It is then shown that this property is eguivalent to the analy-
ticity of all absorptive parts due to different channels as functions
of the womwentu~ transfer inside an ellipse. Such analyticity properties
are also valid for the a=plitude of a two-body channel. The ellipse does

not shrink to the physical recgion when the energy tends to infinity.



1 - Introduction.

This paper is part of a series where we try to investigate
what properties of the S-matrix can be stated from considerations of
measurement theory. In a preceding paper, we have shown that the S-matrix
exists, at least below the threshold for three-particle productionﬁuln
the present paper we want to concentrate upon a most fundamental property

of strong interactions, namely their finite range character.

As long as one considers the Born approximation fo the scatte-
ring of a particle by a potential of finite range, there is a very siwple
way of stating this property of finite range as the result of a measure-~
ment. lLet us consider a wave-packet which decreases more rapidly than
any exponential in configuration space at tire O (for instance a gaussian
wave-packet), and let us translate it by a distance a (the impact para-
weter) in a direction normal to its mean velocity. The Born approxi~ation
to the probability of scattering decreases exponentially with a, more pre-
cisely like e—zfla if b is the range of the potential., It could then
be suggested that it is equivalent in non-relativistic theory to assume a
potential of finite range or to assume that the probability of scattering

decreases like an exponential with the impact parameter.

Unfortunately, this proposition is not tenable. In Section 2,
we show that the spreading of wave-packets is such that as long as one
considers a wave-packet of fixed size, the probability cannot decrease
exponentially. The situation in this respect is essentially the same for
a relativistic or a non-relativistic wave-packet. However, the analysis
of the spreading suggests that, by taking a wave-packet the width of which
in configuration-space increases like VE, the probability decreases ex-

ponentially. Furthermore, this is the only possible form of a wave-packet



which can allow such a strong decrease.

In Section 3, we transform the suggestion into a theorem for
the non-relativistic Schrddinger equation. In other words, we show that
there is a statement of measurement theory, which we call property P,
which is equivalent to the finiteness of the potential range. This proper-
ty is : the probability of any reaction decreases exponentially with the
impact parameter a defined by a translation of the wave-packet normally
to its mean velocity, if the width of the packet in configuration space
increases like Va. This statement corresponds to a gedanken experiment (or,
if necessary, an actual experiment) where one shoots bunches of particles

with an energy of increasing precision farther and farther from the target.

It is then natural to take property P as a starting hypothesis
in the relativistic case. This we do in Section 4 whereas we recall also
some refinements in the notion of the position of a particle which are

needed in the relativistic problem.

A few sections are “hen devoted to a very straightforward proof
of the fact that property P is strictly equivalent to the analyticity of
the absorptive parts as a function of momentum transfer inside an ellipse.

This ellipse does not shrink when the energy tends to infinity.

In the last section, a comparison is made of this result with
a recent paper by Martin where the same conclusions are obtained fror
quantun field theory. This leads to interesting consequences concerning
the respective roles of spectral conditions and causality in the analyticity
properties of the scattering amplitude. Tt is also pointed out that, as
a result of Martin's work and the present one, property P is satisfied by
axiomatic guantum field theory. In this framework, it appears as a very

strong property of the cluster type.



2 - Finite range and the spreading of wave-packets.

A non-relativistic gaussian wave-packet is given by

e R 1 ) ;-;0 (t) *
§ (X, t)= — exp ~ | (2.1)
[‘Tb(t} -‘ 3 2 b° (t)

- N . e d
where xo(t), the center of the wave-packet, is related to its position 2
-3

at time zero and to the mean momentum k by

R d — ~4
x, (t) =a+kt/ (2.2)
(m being the reduced mass). The spreading of the wave-packet with tire is

given by

b (t) = b3 + /e 12 (2.3)

In non-relativistic physics, an interaction is said to be of a
finite range when the potential vanishes at least exponentially with the
distance. The overlapping of the potential and the wave-packet (2.1)

r

DV(x) @ (x,t) @ x (2.4)
decreases exponentially with the impact parameter a, which is chosen nor-

mal to k, at any finite time t. However when t tends to infinity, the

value of (P(x,t) at the origin of space is given by

3 ! %
lim [b (t)ji q)(o,t) = eXp - { bz ka} (2.5)

t 2o

and therefore the finiteness of the range will not result in any simple



behavior of the scattering probability as a function of the impact para-

meter, due to the spreading of wave-packets.

Let us now consider a wave-packet which is farther and farther
from the origin, i.e. let a increase. Furthermore, let the width b vary
with a. According to Eq. (2.5), if we let b® increase linearly with a :

s

b2 =)\ a (2.6)

the overlapping integral (2.4) will decrease exponentially with a unifor-
mly for any value of t. Note that b® has to be linear in a, otherwise there
would not be an exponential decrease of (2.4), either at finite or infinite

time.

It is therefore suggested that the finite range character of the
interaction can be exhibited by using wave-packets the size of which in-
creases with the impact parameter as in Eq. (2.6). The criterion for fi-
nite range would be that the probability decreases exponentially with the
impact parameter. That this s-iggestion is correct will be proved in the

next section,

The essential properties of the wave-packets remain true for
relativistic particles. A gaussian wave-packet will then behave like

~(p-k)2b2/, ip.(X-3) -iwt
(x,t)= Ib “ e e d® p (2.7)

where ° = p® + m®. A straightforward computation of the asymptotic beha-~
vior shows that, when t tends to infinity

%
lim t Q)(o,t) A eXp - (

t » o

kzbz) X constant (2.8)
2
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just as in the non-relativistic case. It shows that, when k is large, the

effect of the spreading of wave-packetsis small and 2 can be taken small,

- Fast decrease of the probability for a finite range potential.

We shall now prove that if a potential is everywhere finite and

decreases exponentially, with the distance, i.e.
r -
Wir)| e *(c (3.1)

where C is a constant, then the probability for scattering decreases expo-
mentially with the impact parameter. This result will be obtained by using

a gaussian wave-packet, the width of which increases with the impact parame-
ter like Va. Our method will be a slight adaptation of a method first

given by Brenig and Haag for the case of a square-well potential(za.

Denoting as usual the scattering matrix by T, we shall start
from an inequality given by Brenig and Haag :
e
m@ugj Ve (e) 1 de (3.2)

e >3

In order to find a bound for the right-hand side of this inequality, we
shall split the potential into two parts which are essentially a square
well potential of radius P smaller than a and the tail of an exponential

potential :

V(ir) =V (r) +V, (r) (3.3)
v, (r) = for r<p (3.4)
V; (r) =0 for r>¢

v, (0} € U, (3.5)
Vo ()] Uy e MF (3.6)



Uo and U, are constants.

The contribution of V; to the integral in Eq.(3.2) is easily

majorized to give
( e -
j_ A CP (t) || dc { constant e W (3.7)

On the other hand, according Brenig and Haag, the contribution of V,
is majorized by

- |

y :
[P ]2 1| k2 ¢2\Z J

V. ® (el U } -—_-1 o4 >- 8

¢ < Lb (¢) T (t) (a 2 fl &9

In order to majorize the integral of |IV, g)(t)u upon t, we introduce the

1 2 2
£(t)= —t— [(aa + ——>k2t2 - d ¥ =P (3.9
262 (t) 3 2 o+ g

k2 t2

me

function

(3.10)

where 42 = a% +

2
k2 b
2
- 2
One has f(o) = La-p) and f(o) = KV so that, once more, we
2° 2

shall find an exponential bound only if b® is of the order of a, i.e.
b2 =) a (3.12)

or g2 =a () - 1 ) (3.13)
1 k2

According to Eq. (3.13) two cases have to be distinguished :



~ s, % - Y b
1st case : KP)?> 1. In this case £7 is positive and 7{¢} increases from

t=0to t=c so that f{o) iz a lower bound of f£{t)

2nd case : K532<¢ 1. In this case £° i3 negative snd f{.} has 2 minimum at

fedalix

-32 . .. cnn s . . . .
T = /p . This winimum will be outside the range of verdation of = if

v (3.14)
v ’ K2 3

-

and, once again,f{o} will be a lower bound of £(%)

Finally, for p satisfying {3.14} we have cbiainad 2 bound
H

The best bound will be cbtained whan both exponantiaiz have the same ar—
gument,; i.e. we shall have

PTgidCy exp (- up) 3.16)
]
2
with (& ~£) =23 upa {3.17}

It is clear that for } p small , P will differ very little from 3 S0 thnt

we shall have

Tl LG olu - ele {2.18)
with ¢ smail.
4 ~ The basic hypothesis.

We want to investigate the conditions undsr wiich the following

property holds :



Porperty P. When the impact parameter a tends to infinity together with
the width of the wave-packet in x-space :

B =1 a (4.1)

the probability of any physical process generated by strong interactions
decreases exponentially with the impact parameter.

We shall consider this property as a precise formulation of the
finite-range character of strong interactions.

A few comments about definitions and notations are in order.

In relativistic physics, the states of a free particle lie within
a Hilbert space. We shall, for simplicity, consider the particles to be
spinless. Then we can introduce eigenstates of the momentum together with

their scalar products :
Blp> = g lp> (4.2)
Gy = PUE-F) el Y 3)
We shall work with gaussian wave-packets

3, |
e e 1o

where - 2/ (4.5)
CLF) = EV“ AﬂJ exp —{(s“k)/@./\]

Such a wave-packet corresponds to a gaussian wave-~packet in configuration
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(4.12)

This last expression gives a precise meaning to the width b and the im-
pact parameter a mentioned in property P, In practice, we shall let A be
very large so that the expression (4.12) is in fact a delta function of
the total momentum P.

Let us now make a few remarks :

1) Our definition of the impact parameter coincides with the usual meaning
of that term only for large values. This cannot lead to any ambiguity since
we are precisely interested only into large values of this parameter.

2) We shall make property P more precise by assuming that the total probabi-
lity for two particles giving rise to a channel 4 behaves
for large values of a like

~2uya
Pd(a.) < consbant x € e (4.13)

3) Generally b could depend upon ), K and . We shall assume that it
does not depend upon Kk because in fact all values of the relative momen-
tum p are always present into Eq. (4.12), whatever the value of K be.
Furthermore, we shall assume that there exists an absolute lower bound

p independent of the channel a.

4) Property P can be expressed as a statement about measurements: If we
compare the results of experiments made by accelerators which are increa-
singly far from a target and increasingly precise in energy as in
Eq. (4.18), then the probability of any precess induced by strong inte-

ractions vanishes exponentially.

5) Accordlng to Eq. (4.9) and the fact that H(l) (imx) decreases like
e-mx, the preceding interpretation as a ggdanken experiment will only
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be meaningful if
pgn (4.14)

if we specify position by means of the Newton-Wigner operator.

§ = Probability and absorptive part.

In this section, we shall express the probability P (a) as an inte-
gral upon the contribution of a given channel 4 to the absorptlve part of
the scattering amplitude. For a two-body collision we shall use the conven-

tional notation Sy ty, u for the invariants.

Let us consider a reaction initiated by two particles :

!

f)
0.4 + o, — 0~',_L+a—a_+'“+a~w (5-1)

where the set of final particles is in a chamnel «. The collision matrix
element Tig‘pl’ P23P'yeee P! ) relates the initial wave-packet \Pi(p1 s Pg)
and the final wave-packet in the channel u,ipa(p{ yeees P ) by

M [ {4}

B ) =y ddp, adl
VRGNS wi= ) D (B B Bl b (v pl-on ) Y (RLR) 2P 2P

We can compute the norm of lpd 5 i.e. the total probability for reaction

(5.8) as

<I\‘Vul\‘\l)a<‘> (5‘3)

Pa depends only upon the absorbtive part Aa(s,t)

T .
A e J( Lol (P))PL) P P *dk"F_z:"PwP AW (5.4)

) 3
x B (Blrpat - Hpn b -p,) Lo &pa
o jo

1 Pm.
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A

AL P ) PRI ‘
by 11( =J[.A°1 (\S, f"'? J O{QL l'iLQ‘ {i«; (gl ig\) \ﬁ’(gl PIJ f)/w}_ d.w (5.5)
where we have used the jacobian

3 .‘3 FETTYN e
d’Fn ULP:;_ = T ds Alh (5.6)

calling W = fg'and dl) a solid angle element in the center-ofmass system,
The intezration upcn P has been made by assuming that the wave-packet de-
pended upon P like in Egq. (4.12), In practice, we shall take for the ini-
tial wave-packet the gaussian form
o 2y . -
~(F-=i/A _ip.d

Ay
%(S;P}=€- €

7ol

We are now going to choose more convenient variable for the angu-
lar integrations in Eq, (5.5). To that end we define two coordinate systers
( Efo Y and (X ). ?E? system ( EZO) has its =z -axis along the direction
of the mean momentum K. We take the impact parameter a to be along its
x, -axls. The systen (3 ) is linked to the vectors p and p', the z-axis
being normal to the plane which contains p and.B', the x and y axes being
directed along the bissecting lines of the angle defined by—s and—E'. We
shall call (#,ﬁ,X ) the Euler angles of the rotation which brings (2:0)

£ IS 0 - - -
upon (2 )} and ¥ ihe scactering aagle between p and p!'.

By straightforward calculations, one gets :
(F*‘?')'&‘ ______9_gm[a coc ¥ cos 9/;;_ 'pk = .’i(ex‘ego)pk casg/Q_

. —t N A . (5‘3)
(F_P:). & = ipal‘cojdw.z‘éﬁind’—bmwd &J!)S;ng: 2(ea,ex°)(aa.5m9/z

d,\Q, d.tﬁll—; Sm(z fl’ne d, o d‘@ 4¥ 46
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In Eqs. (5.8) we have called for instance E; the unit vector along the

Z-aXis.

The expression (5.5) for the probability becomes finally

— Jx P
f — !’3-&'? J Y PRESN eg,‘_.} 'ka a4 Q/L
Ea{\ﬁ-/: , Auﬂx“‘?‘@).ﬁi - (5’10)
~
;C{i/ r
Sioa sinH L€y L » P
o (z,pa Sin 7y vty xeol ;'TJ;Z w A -CL-_};.;:J Ji/ C&C’cf(‘}’

6 - Laplace transform of the probability.

In this Section, we shall replace property P by analytic properties
of the Laplace transform of the probability Pa(a).

If we introduce the Laplace transform of P (a) :
e o1
T v
e O = fx () Aa (6.1)

Q

(3

property P is equivalent to the statement that Lg(? ) is an analytic func-

tion of ¥ inside the domain defined by
- 2 {Re (6.2)

When Re v > 0, we can replace p.(a) in Eq. (6.1) by its expression (5.10)

and invert the order of the integrations to get

0

i i T , o Lo, - .
LulPi= o Lalyps PP ™ aw

v

T (6.3)

L v
where N i - o 6.4)
Tov o= dwS A sab) Flop ) o) (

-4



and

r
F_CV) F’ )\.9}:

Y s e S “
© VR Rt R L, ) Apk “”5/:;_* k‘P*”i'a‘«‘?x,}Im i9/)._

A Gi(ml':‘: Al (6 5)

Althought F by itself is rather untractable, it needs only a lit-

p
¢ F . . .
tle algebra to compute = which, for our purposes, will be just as
[oa’
good. One has
1
o ~le
7=t 1 . \ ~ 7
> , - i S AV Py B W A o Gagty ein B
P_E :g {b)/\'y": Vo LJ%—-‘LFJ(K,A?-:J;-F&/\JH /L—fr_,;(_F“lﬂ{:?‘j (6.6)
(Z\? 2—:"j:}t.é:l::‘i;’i -
e (6.7)
or - , ; L s Do
B g A w AA st 5B B el 7
2y
where .
4 [ TaL Lo
A= “7‘}: CE /G4
cLos 1 P R P b o 4] A% N
B= ap  d+ipitk Al (RA+ L - IpT (R =2y . (6.8)
X . A

Lf e .1 ; VA l;‘\‘
ey T AL

T L

P P o R
= F GRS ~ApT LR p R A

2
]

It is clear from Eq. (6.1) that L, {(¥) is well-defined and ana-
lytic for Re ¥ > 0.In order tc extendv into the strip -2um < Rev e, we

shall need to consider the possible singularities of the integral in Eq.

(6.3).
The case where k A = 1 is particularly simple and gives
?‘F : [ "/: R ’JF*_I/E"
L e b= 3 g, (6.9)
oV ‘
where
T
A= lbp® e Lyrips okl (.610)
- S, it
” A A f]hl S i
y& = ?F"Lv’*\r*“"“"* (6.11)



- 15 -

In the present paper, we shall restrict our attention to this spe-
cial case. It will make our considerations much simpler. On the other hand,
if k is too small, the restriction to k A =1 will give too large values

of A . Accordingly, we shall also restrict our considerations to the case
where p and k are restricted by

P k> w (.6.12)

7 - Geometric considerations.

Before entering into the discussion of the relation between the
analyticity properties of I_ (V) and of A, (s ,x) as a function of
x = cos 8 , we need to make some geometric discussion of the strip JAY

and its image under some changes of variables.

Under the conditions where Eq. (6.0) holds, the integral (06.4) for
2
I, (v, p") reads

~, . - 7~
¢ Tu (v,ps 4 ‘ dx
= | fronmne uf AO( (4 ) X j A e ( 7 . 1 )
i Ve Vg ~-x
The singularity y of the square root is related to V more easily

through the expressions

R
Y= &+ (7.2)
- {v<‘ A L
L= 72ptf, (7.3)
/ AN
= :\ “ ® .//"4‘2- 1 4
S (7.4)

. 7 [ . . . .
When y varies inside the strip Ll), s, ¢ v aries inside a domain ‘Af

and y inside a domain Aﬁa . These domains depend upon p and F and



we are now going to discuss them.
To a line parallel to the imaginary axis :

= Yo + ll (7v5)

where , is fixed and 7 varies from -=0 to + -, corresponds in the ¢

plane a parabola T (. ) :

r ¥ N . £
5’_’». = k&i = O/Z_It) P ‘q
- T o e (7'0)
L= A lep T/
This parabola goes to infinity in the negative j} direction. Its axis is
; de .
along the real axis and its apex at 0= 5{p +r . All the para-
bolas corresponding to different values of ¥, are equal and translates.
When ¢ varies inside .}, , j varies inside ). which is bounded
by two equal parabolas i, and T{, with their apemes respectively at
- b - . A .
D=y and O =( ¢ - "/ )" . Let us note that, since the corres-
pondance between fand ¥ is not one-to-one, iy and ?!& would be in
two different Riemann sheets if §l~‘ﬁ% were negative. However, since ¢

is larger than 1 and p restricted by (6.12), this possibility will not arise.

The correspondance {7.2) between § and vy applies a circle
if | =r into an ellipse with its focii at y = + 1 and semi~axes.£(r1—r'i‘
Hr - r—l), if r > 1. To a given value of y correspond two values of ¢
which are inverse of each other. The unit circle in the g plane which se-
parates these two values of § s applied upon the segment y =1 to + 1

and the v Rierann-surface is two-sheeted.
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The topological structure of ély can be different if T, and Tl
cross or not the unit circle. It is easily checked that the parabola 11 {( V, )
crosses the unit circle if and only if (¢ +‘%/2p)z is smaller than 1;
Accordingly Tl never crosses the unit circle and only two cases have to

be distinguished

Case 1 ) : ¢ - o 2 A (7.7)
Case ii) : f- ;3@ LA (9.8)
Let us call C, and C, the images of T, and Ti,. In case i) C, and C, are
in the same Riemann sheet and C, encloses the segment y = -1 to +1. In
case ii), C, crosses the segment v = -1 to +1 and it consists into two parts
cﬁf) and ?(%) (see fig, 1) where Cg?) is in the same Riemann sheet as C,
1

is in another sheet. A consists then into two parts :

whereas Cy
A§;)bounded by C, and C(g) and‘fxilx bounded by Cg}) in another sheet.

Let us note thatl, does not cross the circle with its center at
the origin which touches it at its apex. Accordingly,ésgl) is completely
contained inside an ellipse with its focii at y = 1 which is tangent to
Cgl) at its apex on the real axis. This remark will prove to be important

in the future.

8 - Analytic properties of the absorptive part.

Since the absorptive part A“(s,cose9) is not an analytic function
of s, the analyticity domain of Ia(v) is the intersection of the analyticity
domains of I (V,p") as a function of Y . Therefore Id(v,pz ) must be ana-

lytic inside the strip &y defined by
- 2x {Rev & O
In fact it will be shown below that the integration over p in the expres-

sion of Lq(ﬁ) can be restricted to a finite range of values of p around k.

We shall call ny(p,k) the domainfﬁsgl) without the cut along the
real axis. We have indicated explicity its dependance upon p for a given

value of k, For the values of p which satisfy Eq. (7.7), the domain is

empty. We shall also call it A&x(p) when the notation x replaces the notation



v. We are now ready to prove the following theoren :

Theorem : A necessary and sufficient condition for I, (V,p*, k) to be
analytic inside the strip A, is that the absorptive part A, (s,x) be

an analytic function of x inside the domain Ziy(p,k).

When one continues the expression (7.1) for I_ (v ,p*) along a
path M which starts from a point with Rey = O inside the strip Aﬁp, the sin-
gularity at x =y of F(?V ,pl,x) will vary along a path‘( inside ASY which
starts from a point of C, . as long as Y does not cross the integration seg-
ment from x = -1 to +1, the integral (7.1) will remain an analytic function
of Y. This is always so when condition (7.7) is satisfied i.e. when the

domain 2§y(p,k) is empty.

Under the conditions (7.8) and (6.12) we shall first note that ¢
is an analytic function of v inside A, so that it is equivalent to dis-
cuss the analyticity properties of I, (7 ,p*) as a function of J inside

A, or as a function of y inside z&y.

Dropping all unnecessary parameters and calling f(y) the function

(\OI (V) o
AL @ Eq. (7.1) takes the form
Ty ‘
+ i Ve
Figr = Aux}k5~x) “x (8.1)

-1

The determination of the square root is fixed from values of y with Re y > 0,

i.e. from the right of C, where it is taken to be positive definite.
Cd

The difference 2F(y) between the two determinations of f(y) in

the two Riemann sheets is given by

A
[ A(x) dx
Fy) = | s (8.2)
x iy -x

which shows immediately that, if A(x) is analytic in 4£ _ , F(y) is ana-

lytic in Zké}) .
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To prove the necessity part of the theorem, we solve Eq. (8.2)
which is an Abel equation :

F'(y) dy

nt
Ax) = 2| — (8.3)
Ty Vx -y

If F(y) is analytic, F'(y) exists and the integral is well-defined. It

(1)

shows that A(x) is an analytic function of x in ékxl . In order to show
that it is analytic in ZSX , i.e. that it has no singularity at x = 1, we
note that, f(y) is an analytic function of § , It can therefore be written

as a uniformly converging series in a neighborhood of y = 1 as

oy = 1
£(y) = 2= b (y-1"+ 2 a (y-1)" 3 (8.4)
Mo n nre n
from which
' ol 4L
Fy) = = an(y-l)n 2 (8.5)

From Eq. (8.3) we get then
2 M+ 3)
2 2 a_ yo (8.6)
=0 M({n+1) n

which has the same circle convergence as the series (8.5). Which proves the

A(x) =

3

theorem.

We can increase the analyticity domain by noticing that in the
Legendre expansion (8.3) of A (s, x), all the coefficients al(s) are po-
sitive. Accordingly, if A, (s, x) is analytic for x real between 1 and
X, » 1, it has to be analytic inside the ellipse with its focii at x = + 1
and semi-axis Xy . Taking into account the remark at the beginning of Section
8 about the analyticity domains of I_ (¥, p" ) ans L, (), we get the

following new theoren.
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Theorem : A necessary and sifficient condition for property P to be satis-
fied is that A, (s, x) be an analytic function of x inside the smallest

ellipse with its focii at x = % 1 which contains 4351) .

This smallest ellipse has for major semi-axis

a= % ( go + \-gf.‘. : )

-’ 2 _l__kq' " \2_ (8'7)
[ P ] ; £, <4

\ 2pk p/

For a given value of p, the largest value of a will be obtained for the

smallest value of f{ , i.e. for k=p, or

I o moy =2
a =%l 1-— +/1- — (8.8)
max RN P \ Py -
The corresponding value of the momentun transfer is
~ 2
t = 2p* ( 1) = rCp o) (8.0)
o T2 (2 -1 = Rt

(p -4 )

it is a decreasing function of p and tends to 4 w*  when p tends to
i

infinity.

As a final remark, let us note that the case i) where ¢{ - f*/p

is larger than 1 does not lead to any condition on the absorptive part so
that the discussion is not modified if we cut off the wave-packet to values

of p which satisfy

I
(p - k) <2 r-k (8.10)
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Conclusions.

e have obtained that the contribution of any channel o« to the
absorptive part A, (s,t) is an analytic function of t inside an ellipse.
This ellipse contains positive values of t up to t = 4(AL when the
energy tends to infinity. Since the total absorptive part A (s,t) is a
sum of A, (s,t) over the finite number of channels open at energy S,

it is also analytic in the same region.

When & is a two-particle channel, unitarity tells us that the
amplitude for the two initial particles going to channel o is also an

analytic function of t.

It has to be emphasised that these results depend only upon the
finite-range hypothesis as expressed in an experimental way by property

P. They do not involve any reference to quantum field theory.

The same results have been obtained in a recent work by A. Martin
as a consequence of quantum iield theory 4). This is a beautiful achieve-
ment, however we feel that it involves going a very long way from the
axioms of field theory as compared to the very simple arguments given here,
Since our results are in the form of a necessary and sufficient condition,
the result of Martin together with ours give a proef that property P is
satisfied in quantum field theory. This is a marked progress with respect
to the cluster properties of this type which have been obtained up to
now 5). It also showsthat Martin's result in fact does not depend upon cau-

sality but only upon the spectral properties.

Not all the consequences of our technique have been drawn. In
particular, we shall have to examine the analytic properties of Ad(s,t)

in the low-energy region.
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In our considerations, the mass J appears as a parameter. In
the case of pion-pion scattering, using a dispersion relation in s and

crossing, it is easy to show that p=m

It is of a foremost importance to investigate the derivation
of dispersion relations along the same lines of measurement theory as we
have done here. It is well known that it has been impossible up to now
to derive analyticity properties in s directly from causality (i.e. the
observed signal does not peecede in time the initial signal) because the
spectrum of energy has a gap for systems of particles with a finite mass.
It is our opinion that this difficulty is spurious. Indeed, in order to
produce a signal which is zero for negative times, one must take into
account explicity the generation of particles, i.e. for instance the ac-
celerator. This breaks up the invariance of the subsystem made up by the
particles with respect to translation of time and therefore suppresses
the gap in energy. We intend to investigate if a careful analysis of the
production of particles, together with the down-to-the-earth notion of
causality does not in fact imply dispersion relations. A preliminary ana-

lgsis on the Schrédinger equation support this view,

I have benefited from useful remarks or criticisms by M. Froissart,
J. Bros, K. Hepp, R. Haag and JL. BASDEVANT, I also want to thank
G.F. Chew and S. Mandelstam for their encouragements. The beginning of
this work was made during a stay at the Lawrence Radiation Laboratory in
Berkeley and I thank David L. Judd for his hospitality.
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Figures Captions

Fig, la : The dorain A“’ image of the strip Ay

-

Case 1) v~ fu’-b > 4

Fig, 1b : The domain .} image of the strip &)

Case ii) £~ W’P o4






