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CUTOFF FOR SAMPLES OF MARKOV CHAINS

Bernard Ycart
1

Abstract. We study the convergence to equilibrium of n−samples of independent Markov chains in
discrete and continuous time. They are defined as Markov chains on the n−fold Cartesian product
of the initial state space by itself, and they converge to the direct product of n copies of the initial
stationary distribution. Sharp estimates for the convergence speed are given in terms of the spectrum
of the initial chain. A cutoff phenomenon occurs in the sense that as n tends to infinity, the total
variation distance between the distribution of the chain and the asymptotic distribution tends to 1 or 0
at all times. As an application, an algorithm is proposed for producing an n−sample of the asymptotic
distribution of the initial chain, with an explicit stopping test.

Résumé. Nous étudions la convergence vers l’équilibre d’échantillons de taille n de châınes de Markov
en temps discret et continu. Ces échantillons sont des châınes de Markov sur le produit cartésien de
n copies de l’espace initial par lui-même, et ils convergent vers le produit de n copies de la mesure
stationnaire de la châıne initiale. Des estimations précises de la vitesse de convergence sont données
en termes du spectre de la châıne initiale. Un phénomène de transition rapide se produit, au sens où
la distance en variation totale entre la loi de la châıne et la mesure d’équilibre converge vers 1 ou 0
quand n tend vers l’infini. Comme application, nous proposons un algorithme, muni d’un test d’arrêt
explicite, pour produire un échantillon de taille n de la mesure d’équilibre de la châıne initiale.
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1. Introduction

The word cutoff was coined by Diaconis and Aldous to characterize the property of many Markov chains,
usually with a high degree of symmetry, to converge abruptly to their stationary distribution. Diaconis [4] and
Section 2.4 of Saloff-Coste [16] are two general references on this phenomenon. One of the best known examples
is the random walk on the n−dimensional hypercube [5,6]. Let P (t) denote the distribution after t steps of that
random walk starting with equal coordinates, and π its stationary distribution. If the dimension n is large, the
total variation distance between P (t) and π, ‖P (t) − π‖, stays close to 1 for a while, then drops suddenly to a
small value and converges exponentially fast to 0 thereafter. The time at which the fall occurs is (1/4)n logn
(see Diaconis and Shahshahani [6]). A very precise description of the evolution in time of ‖P (t) − π‖ is given
by Diaconis et al. [5].

In this paper an analogous phenomenon is shown to occur for samples of Markov chains. Let P = (pij) be the
transition matrix of a reversible and irreducible discrete time Markov chain on a finite state space E = {i, j, . . . }.
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A natural way to build a sample of size n of that chain is to have n copies of it evolve independently. The result
is a Markov chain on the product space En, for which the transition probability from (i1, . . . , in) to (j1, . . . , jn)
is:

pi1j1 . . . pinjn .

It will be called the parallel sample chain, and its transition matrix will be denoted by P̃ . If π is the reversible
measure for the initial matrix P , then the product measure π̃ = π⊗n is reversible for P̃ . If n is large, it will be
shown that the parallel sample chain reaches its equilibrium measure π̃ at a cutoff time equal to

logn
2 log(1/α)

,

where α is the closest to 1 among absolute values of eigenvalues of P different from 1 (Props. 3.1 and 3.2).
Let us turn now to continuous time and consider a Markov generator Λ = (λij) on E, admitting π as its

reversible measure. Coupling together n independent continuous time Markov chains with generator Λ leads
to a chain on En, for which the only possible transitions change one single coordinate at a time. If jm 6= im,
the transition rate from (i1, . . . , im, . . . , in) to (i1, . . . , jm, . . . , in) is λimjm . All other transition rates are null.
The corresponding generator will be denoted by Λ̃. Again, π̃ = π⊗n is the reversible measure of Λ̃. As will be
shown in Propositions 3.4 and 3.5, a cutoff occurs for the chain with generator Λ̃, at time

logn
2β

,

where β is the smallest among absolute values of non null eigenvalues of Λ.
Discrete and continuous time Markov chains are related through harmonization, also called uniformization

in some references (see [3, 11, 16]). Let Λ = (λij) be a Markov generator on E and set

λ = max
i∈E

∑
j 6=i

λij .

Let IE be the identity matrix indexed by E. Then P = IE+(1/λ)Λ is a transition matrix on E. Conversely, if P
is a transition matrix and λ a positive real, then Λ = λ(P−IE) is a Markov generator on E. Let {Xk , k ∈ N} be
a Markov chain with transition matrix P , and {Kt , t ≥ 0} be a Poisson process with intensity λ, independent
from the chain {Xk , k ∈ N}. Define for each t ≥ 0:

Zt = XKt .

Then {Zt , t ≥ 0} is a continuous time Markov chain with generator Λ. Thus the discrete time chain {Xk} and
its continuous time version {Zt} differ only by a Poissonian change of scale.

Let us consider now the discrete time counterpart of the generator Λ̃ defined above. It is a transition matrix
on En for which at most one coordinate is changed at each step. If jm 6= im, the transition probability from
(i1, . . . , im, . . . , in) to (i1, . . . , jm, . . . , in) is λimjm/(nλ). That transition matrix will be denoted by:

Q̃ = IEn +
1
nλ

Λ̃.

A Markov chain on En with transition matrix Q̃ will be referred to as sequential sample chain. That chain has
a cutoff at time (1/2β)nλ logn.

In order to relate the parallel and the sequential sample chains, we shall set λ = 1 and Λ = P − IE . For
the parallel sample chain, all coordinates evolve simultaneously according to the transition matrix P . For the
sequential sample chain, one coordinate is picked up with probability 1/n, then it is changed according to P .
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Both versions have a cutoff at a time which is of order n logn (if counted in number of changes of coordinates).
However the constant differs. For P̃ (parallel sample), it is

1
2 log(1/α)

,

whereas for Q̃ (sequential sample), it is
1

2(1− α′) ·

Here α is the highest absolute value among eigenvalues of P different from 1, and α′ is the closest to 1 among
the same eigenvalues. If α = α′ then the parallel sample chain will reach equilibrium faster than the sequential
one (since log(1/α) > (1 − α)). But it may be the case that P has an eigenvalue very close to −1, the chain
being almost periodic. Then log(1/α) will be small, whereas 1−α′ may stay reasonably large. Not surprisingly,
the sequential sample chain will smooth out the effect of periodicity much faster than the parallel sample chain.

Finally, take as a particular case E = {0, 1} and let P be the deterministic transition matrix

P =
(

0 1
1 0

)
.

Then the sequential sample chain with transition matrix Q̃ is the symmetric random walk on the hypercube of
dimension n. To avoid periodicity problems, Diaconis and Shahshahani ([6] p. 126) consider a slightly different
matrix, namely (1/(n+1))IẼ + (n/(n+ 1))Q̃. This does not change essentially the cutoff phenomenon and our
result is coherent with theirs for that particular case (cutoff at (1/4)n logn).

Due to their growing number of applications, Markov Chain Monte-Carlo (MCMC) methods have received a
lot of attention in the past ten years (see Robert [15] or Fishman [9] as general references). If π is a probability
distribution to be simulated, the idea is to express it as the reversible measure of a Markov chain. If that
Markov chain is simulated for long enough, and sampled at n regular instants, one can consider that the output
is an independent n−sample of the distribution π. One major problem is to decide what “long enough” means,
i.e. when exactly the algorithm should be stopped. Several heuristics have been proposed, in particular by
Raftery and Lewis [14] (see also Chap. 6 of Robert [15]). The cutoff phenomenon investigated here may provide
an answer to this question. An independent sample of size n of π is a realization of a random variable on En,
distributed according to the product measure π⊗n, which is reversible for both the parallel and the sequential
sample chain defined above. Thus, the desired sample can be obtained by simulating either sample chain up
to equilibrium, that is up to their cutoff times. Indeed, our results show that the sample chains are far from
equilibrium before their cutoff times, and that it is basically useless to run them for longer after. Cutoff times
are expressed in terms of the spectrum of the transition matrix P , which is not known in general. For the
parallel sample chain, we show that the cutoff can be algorithmically detected. Let F be some subset of E,
and let {X(t)} = {(X(t)

1 , . . . , X
(t)
n )} be the parallel sample chain, starting from coordinates equal to i at time

0. Consider the empirical measure of F at time t:

S
(t)
i (F ) =

1
n

n∑
m=1

11F (X(t)
m ),

where 11F (x) is the indicator function for x being in F . As n goes to infinity, and for t larger than the cutoff
time, this estimate tends to π(F ). Propositions 4.1 and 4.2 show that in general, S(t)

i (F ) stays far from the
target value π(F ) before cutoff, and will reach that value exactly at the cutoff time. Thus, by properly choosing
the initial state i and the subset F , one gets not only a way to estimate the cutoff time without knowing the
spectrum, but also a rigorous stopping test for MCMC methods.

The paper is organized as follows. Section 2 contains the algebraic results on the spectral decomposition of
P̃ and Λ̃, using Kronecker products and sums. Section 3 contains the main results. After recalling classical
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estimates of the distance ‖P (t) − π‖ of a Markov chain at time t to its reversible distribution, we prove the
cutoff results in discrete time (Props. 3.1 and 3.2), then in continuous time (Props. 3.4 and 3.5). Applications
to MCMC methods, and simulation results for some random walks on the line are presented in Section 4.

2. Kronecker products and sums

Coupling two independent discrete time Markov chains corresponds to a well known algebraic operation on
their transition matrices: the Kronecker product. Coupling together continuous time Markov chains leads to
a Markov chain on the product space, the generator of which is the Kronecker sum of the initial generators.
For the following classical definitions and results on Kronecker products and sums, we refer to Chapter 12 of
Bellman [1].

Definition 2.1. Let A and B be two square matrices indexed respectively by the elements of the finite sets E
and F :

A = (aij)i,j∈E and B = (bkl)k,l∈F .

The Kronecker product of A by B is the square matrix A⊗B, indexed by E × F , defined as:

A⊗B = (aij bkl)(i,k),(j,l)∈E×F .

The Kronecker sum of A and B is the square matrix defined as:

A⊕B = A⊗ IF + IE ⊗B,

where IE and IF denote the identity matrices indexed by E and F respectively.

The eigenvectors of the Kronecker product and sum are the same. They are easily deduced from those of A
and B.

Proposition 2.1. Let v = (vi)i∈E (respectively: w = (wk)k∈F ) be an eigenvector of A (respectively: B)
associated to the eigenvalue α (respectively: β). Then the vector

V = (viwk)(i,k)∈E×F

is an eigenvector associated to αβ for A⊗B, and to α+ β for A⊕B.

For the rest of this section n is a fixed positive integer. We shall consider n−fold products and sums of the
same matrix. Let us start with discrete time.

Definition 2.2. Let P = (pij) , i, j ∈ E, be the transition matrix of a homogeneous discrete time
Markov chain on the finite set E. We call parallel sample chain associated to P , a homogeneous, discrete
time Markov chain on the product set En, with transition matrix:

P̃ = P⊗n = P ⊗ · · · ⊗ P︸ ︷︷ ︸
n times

.

It is an immediate consequence of Definition 2.1 and Proposition 2.1 that P̃ is a transition matrix on En. Let
(i1, . . . , in) and (j1, . . . , jn) be two states in En. The coefficient of order ((i1, . . . , in), (j1, . . . , jn)) of P̃ is:

pi1j1 . . . pinjn .

So for the parallel sample chain, all coordinates change simultaneously at each step and they do so independently,
according to the transition matrix P .
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Definition 2.3. Let Λ = (λij) , i, j ∈ E, be the generator of a homogeneous continuous time Markov chain
on the finite set E. We call sequential sample chain associated to Λ, a homogeneous, continuous time Markov
chain on the product set En, with generator:

Λ̃ = Λ⊕n = Λ⊕ · · · ⊕ Λ︸ ︷︷ ︸
n times

.

Again, it is immediate to check that Λ̃ is a Markov generator on En. The coefficient of order ((i1, . . . , in),
(j1, . . . , jn)) of Λ̃ can be non null only if the two n−tuples differ at one coordinate at most. If jm 6= im,
the transition rate from (i1, . . . , im−1, im, im+1, . . . , in) to (i1, . . . , im−1, jm, im+1, . . . , in) is λimjm . So the
sequential sample chain is the concatenation of n independent copies of the chain with generator Λ.

From now on, we shall assume that the transition matrix P and the generator Λ are related by P = IE + Λ.
This will simplify notations without restricting generality (see [16] p. 322). It is quite natural to consider also
the harmonized transition matrix on En associated to Λ̃.

Q̃ = IEn +
1
n

Λ̃.

This matrix Q̃ is related to P by:

Q̃ =
1
n
P⊕n =

1
n

P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

 .

A discrete time Markov chain onE with transition matrix Q̃ will still be called sequential sample chain associated
to P . The probabilistic interpretation of that chain is that at each step, a coordinate is chosen at random
between 1 and n, then its value is changed according to the transition matrix P , the two successive choices
being independent. Thus a discrete time sequential sample chain is a particular case of a product Markov chain,
in the sense of Mathé [13]. Notice that even if all coordinates are independent at time 0, it is no longer the case
at finite times, contrarily to what happens for the parallel sample chain. However asymptotic independence is
true for all sample chains. Whatever the initial state, the n coordinates of the parallel and sequential sample
chains will be asymptotically independent, and thus the limit distribution will be a direct product of stationary
measures for P . It is also an easy consequence of Proposition 2.1.

Proposition 2.2. Let P be the transition matrix of a Markov chain on the finite set E, and Λ = P − IE be the
associated generator. For each n, let πn be a stationary distribution for P and Λ. Then the product distribution

π1 ⊗ · · · ⊗ πn =

(
n∏

m=1

πm(im)

)
(i1,... ,in)∈En

is a stationary distribution for the parallel and sequential sample chains, in discrete and continuous time. If the
initial chain is ergodic, then so are the sample chains.

Our goal is to get sharp estimates on the convergence speed at which the product measure is reached for
sample chains. The most precise estimates on that convergence speed for a Markov chain can be obtained by
making use of the full spectrum of the transition matrix (see [16]). In our case, the spectrums of P̃ , Λ̃ and Q̃
are easily deduced from those of P and Λ, using iteratively Proposition 2.1. In order to simplify notations, we
shall assume that the matrices P and Λ can be diagonalized. The general case could be treated in a similar
way, at the expense of a tedious discussion and heavier notations. It will not be developed here.

Proposition 2.3. Let A be a square matrix indexed by the elements of a finite set E, with cardinality γ. Let
{α1, . . . , αγ} be the eigenvalues of the matrix A with possible multiplicities, and let {v1, . . . , vγ} be a base of
eigenvectors such that v` is associated to α` for all ` = 1, . . . , γ. Denote by E the set of all mappings from
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{1, . . . , n} to {1, . . . , γ}. To each element η = (η(m))m≤n of E, associate the vector Vη, indexed by the elements
of En, defined as follows. For each (i1, . . . , in) ∈ En, its coordinate of order (i1, . . . , in) is

Vη(i1, . . . , in) =
n∏

m=1

vη(m)(im).

Then Vη is an eigenvector for the matrices A⊗n and A⊕n. It is associated to the eigenvalue

n∏
m=1

αη(m) for A⊗n,

and to the eigenvalue
n∑

m=1

αη(m) for A⊕n.

The spectrums of the matrices P̃ , Λ̃ and Q̃ can be described as follows if we assume, in order to simplify
notations, that the eigenvalues of P are all distinct.

Corollary 2.1. Let {α1, . . . , αγ} be the eigenvalues of the transition matrix P . Let n1, . . . , nγ be non negative
integers such that

n1 + · · ·+ nγ = n.

Then
αn1

1 . . . αnγγ

is an eigenvalue for P̃ with multiplicity (
n

n1 . . . nγ

)
=

n!
n1! . . . nγ !

·

The values
(n1(α1 − 1) + · · ·+ nγ(αγ − 1))

and
1
n

(n1α1 + · · ·+ nγαγ)

are eigenvalues for Λ̃ and Q̃ respectively, with the same multiplicity.

All eigenvalues have been obtained since

∑
n1,... ,nγ

n1+···+nγ=n

(
n

n1 . . . nγ

)
= γn,

which is the dimension of the matrices.

3. Cutoff times for sample chains

The finite state space is still denoted by E, and its cardinality by γ. From now on, we shall assume that
the matrices P and Λ = P − IE are irreducible and reversible with respect to the (strictly) positive measure
π = (π(i)) , i ∈ E. Although reversibility may seem a very restrictive hypothesis, it is by far the most frequent
case in applications to MCMC methods. We believe that our results can be extended to the non reversible case
at the expense of heavier notations and techniques. Under the reversibility hypothesis, all eigenvalues of P and
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Λ are real. We shall denote by α` , ` = 1, . . . , γ the eigenvalues of P , and assume they are ranked in decreasing
order.

1 = α1 > α2 ≥ · · · ≥ αγ ≥ −1.

We shall assume moreover that P is aperiodic, which implies that αγ > −1. The eigenvalues of Λ will be denoted
by β` = α` − 1 , ` = 1, . . . , γ. The cutoff times will be expressed in terms of the two following quantities:

α = max{|α2|, |αγ |} and α′ = α2.

Reversibility means that P and Λ are self-adjoint in `2(π). Let D be the diagonal matrix with diagonal
coefficients equal to

√
π(i).

D = Diag
(√

π(i) , i ∈ E
)
.

Then DPD−1 and DΛD−1 are symmetric matrices. We shall denote by {v1, . . . , vγ} an orthonormal base of
eigenvectors of DPD−1, such that v` is associated to α` for all ` = 1, . . . , γ. The first vector will be chosen
such that

v1(i) =
√
π(i) , ∀i ∈ E.

For t = 0, 1, . . . we shall denote by P (t)
i the distribution at (discrete) time t of a Markov chain with transition

matrix P , starting from state i at time 0. This distribution is the i−th row of the matrix P t. Through
diagonalization, it can be expressed in terms of the eigenvalues and eigenvectors of DPD−1 as:

P
(t)
i (j) =

√
π(j)√
π(i)

γ∑
`=1

v`(i) v`(j) αt` , ∀i, j ∈ E. (3.1)

In continuous time, we shall denote by Q(t)
i the distribution at time t ≥ 0 of a Markov chain with generator Λ,

starting from state i at time 0. It is the i−th row of the matrix exp(tΛ). Its expression is the following:

Q
(t)
i (j) =

√
π(j)√
π(i)

γ∑
`=1

v`(i) v`(j) exp(tβ`) , ∀i, j ∈ E. (3.2)

The distance between the distribution at time t of a Markov chain and its stationary distribution can be
measured in many ways (see Sect. 6 of [4]). We shall use only the total variation distance and the chi-square
distance. The total variation distance between P

(t)
i and π is:∥∥∥P (t)

i − π
∥∥∥ = max

F⊂E

∣∣∣P (t)
i (F )− π(F )

∣∣∣ =
1
2

∑
j∈E

∣∣∣P (t)
i (j)− π(j)

∣∣∣. (3.3)

The chi-square distance is:

χ
(
P

(t)
i , π

)
=
∑
j∈E

(
P

(t)
i (j)− π(j)

)2

π(j)
· (3.4)

By the Cauchy-Schwarz inequality, one has:∥∥∥P (t)
i − π

∥∥∥ ≤ 1
2

(
χ(P (t)

i , π)
)1/2

. (3.5)
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The chi-square distance is particularly adapted to the reversible case. The following expressions are easily
deduced from (3.1) and (3.2).

χ
(
P

(t)
i , π

)
= −1 +

1
π(i)

γ∑
`=1

v2
` (i)α2t

` , ∀t = 0, 1, . . . (3.6)

χ
(
Q

(t)
i , π

)
= −1 +

1
π(i)

γ∑
`=1

v2
` (i) exp(2tβ`) , ∀t ≥ 0. (3.7)

Of course the choice of the initial state is crucial in the cutoff phenomenon. All our sample chains will be
initialized deterministically by the state ı̃ of En, for which all coordinates are equal to i ∈ E.

ı̃ =

i, . . . , i︸ ︷︷ ︸
n times

 .

We shall first treat the parallel sample chain, with transition matrix P̃ = P⊗n on En. The cutoff time for that
chain is

logn
2 log(1/α)

·

We want to prove that the total variation distance between the distribution at time t, P̃ (t)
ı̃ and the product

distribution π̃ = π⊗n tends to 1 before cutoff time and to 0 after. We shall first prove the latter.

Proposition 3.1. Let ε be a positive real. Assume

t >
log n

2 log(1/α)
− log π(i)

2 log(1/α)
− log(log(1 + 4ε2))

2 log(1/α)
· (3.8)

Then, ∥∥∥P̃ (t)
ı̃ − π̃

∥∥∥ < ε.

Remark: The result could have been presented in a more usual way by saying that if t > (logn+c)/(2 log(1/α))
for some c > 0 then, ∥∥∥P̃ (t)

ı̃ − π̃
∥∥∥ < 1

2

(
−1 + exp

(
e−c

π(i)

))1/2

·

Formula (3.8) clearly shows the importance of the initial state i in the cutoff phenomenon. It can be expected
that starting from a state i with a low asymptotic probability will delay and attenuate the cutoff effect.

Proof. It suffices to prove the inequality for the chi-square distance χ(P̃ (t)
ı̃ , π̃). We shall use the exact expression

(3.6) of that distance, adapting it to the eigenvalues of P̃ . Let D̃ be the diagonal matrix, indexed by Ẽ, whose
diagonal coefficient of order (i1, . . . , in) is

√
π(i1) . . . π(in). It is easy to check that

D̃P̃ D̃−1 = (DPD−1)⊗n.

Thus the eigenvectors of D̃P̃ D̃−1 can be deduced from those of DPD−1 by Proposition 2.3. Let η be a mapping
from {1, . . . , n} to {1, . . . , γ}, and Vη be the vector indexed by Ẽ and defined by

Vη(i1, . . . , in) =
n∏

m=1

vη(m)(im).
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For all ` = 1, . . . , γ denote by n` the cardinality of η−1(`). The vector Vη is an eigenvector of D̃P̃ D̃−1, associated
to the eigenvalue:

αn1
1 . . . αnγγ .

Its coordinate of order ı̃ is
Vη (̃ı) = vn1

1 (i) . . . vnγγ (i).
Thus the chi-square distance can be expressed as:

χ(P̃ (t)
ı̃ , π̃) = −1 +

1
πn(i)

∑
n1,... ,nγ

n1+···+nγ=n

n!
n1! . . . nγ !

(v2
1(i)α2t

1 )n1 . . . (v2
γ(i)α2t

γ )nγ

= −1 +

(
v2

1(i)
π(i)

α2t
1 + · · ·+

v2
γ(i)
π(i)

α2t
γ

)n
.

In the right hand side of the last equality, the first term in the n−th power is equal to 1. Using (1+x) ≤ exp(x),
one gets:

χ(P̃ (t)
ı̃ , π̃) ≤ −1 + exp

(
n

γ∑
`=2

v2
` (i)
π(i)

α2t
`

)
≤ −1 + exp

(
n

π(i)
α2t

)
.

To obtain the last inequality, we have used the definition of α and the fact that
∑
` v

2
` (i) = 1, the base {v`}

being orthonormal.
Now

χ(P̃ (t)
ı̃ , π̃) < ε ⇐=

n

π(i)
α2t < log(1 + ε)

⇐= t >
logn

2 log(1/α)
− log π(i)

2 log(1/α)
− log(log(1 + ε))

2 log(1/α)
·

The result follows by (3.5).

Proposition 3.2 proves the convergence to 1 of ‖P̃ (t)
ı̃ − π̃‖ before the cutoff time. The proof will use classical

Chernov bounds for the tail probabilities of the binomial distribution (see for instance [2] p. 55).

Lemma 3.1. Let B be a binomial random variable with parameters n and p. For all b ∈]0, 1[, define

h(p, b) =
(

1− p
1− b

)1−b (p
b

)b
·

Then
P [B > nb] < hn(p, b) if b > p,

and
P [B < nb] < hn(p, b) if b < p·

Proposition 3.2. Let i be an element of E such that

w(i) =
∑

`: |α`|=α
v2
` (i) > 0.

Let c be a positive real. There exists n0(c) > 0 such that if n > n0(c) and

t <
log n− c

2 log(1/α)
,
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then ∥∥∥P̃ (t)
ı̃ − π̃

∥∥∥ > 1− 4 exp
(

−ecw2(i)
8π(i)(1− π(i))

)
· (3.9)

Proof. Notice first that the total variation distance is a decreasing function of time, so that if we can prove (3.9)
for some t, it will also be true for all smaller values of time. We are going to exhibit a set F̃ ⊂ En depending
on t, such that for n large enough, and t < (logn− c)/(2 log(1/α)),

π̃(F̃ ) > 1− 2 exp
(
−ecw2(i)

8π(i)(1−π(i))

)
and P̃ (t)

ı̃ (F̃ ) < 2 exp
(
−ecw2(i)

8π(i)(1−π(i))

)
·

This will prove the result, by definition of the total variation distance (3.3). Notice that (3.9) is trivially true if
the righthand side is negative. From now on, we assume c is large enough to make it positive. The construction
of the set F̃ will make use of the number of coordinates equal to i in the sample:

Ni(i1, . . . , in) =
n∑

m=1

11{i}(im).

Under P̃ (t)
ı̃ , the distribution of Ni is binomial with parameters n and P

(t)
i (i), whereas under π̃, it is binomial

with parameters n and π(i). Notice that P (2t)
i (i) is a decreasing function of time. The idea is that for t even,

and below cutoff, the number of coordinates equal to i in a sample chain, starting from ı̃, is significantly higher
than nπ(i). Thus we define F̃ as follows:

F̃ =
{

(i1, . . . , in) ∈ En : Ni(i1, . . . , in) < n(π(i) + (P (t)
i (i)− π(i))/2)

}
·

Recall the identity (3.1):

P
(t)
i (i) =

γ∑
`=1

v2
` (i) αt`.

Assume t = t(n) remains even and c = c(n) is a bounded function such that t = (logn− c)/(2 log(1/α)). Then

P
(t)
i (i) = π(i) + n−1/2ec/2w(i) + o(n−1/2).

Applying Lemma 3.1 with p = π(i) and b = π(i) + (P (t)
i (i)− π(i))/2 yields

π̃(Ẽ \ F̃ ) < exp
(

−ecw2(i)
8π(i)(1− π(i))

+ o(1)
)
.

If Lemma 3.1 is applied to p = P
(t)
i (i) and the same value of b, the same bound holds for P̃ (t)

ı̃ (F̃ ). The result
follows.

At this point it is natural to ask whether the cutoff result could hold uniformly whatever the initial state of
the sample chain. In Proposition 3.2, the hypothesis clearly indicates that convergence can happen earlier than
logn/(2 log(1/α)), depending on the initial state. But it does not happen later and Proposition 3.1 easily yieds
a uniform upperbound.

Proposition 3.3. Let ε be a positive real. Assume

t >
logn

2 log(1/α)
− log π

2 log(1/α)
− log(log(1 + 4ε2))

2 log(1/α)
, (3.10)
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with π = mini∈E π(i). Then, ∥∥∥P̃ (t)
ı − π̃

∥∥∥ < γε,

for all ı = (i1, . . . , in) ∈ Ẽ.

Proof. For i ∈ E, denote by ni the number of coordinates of ı, and by {Ỹ (t)
i } the sample chain reduced to those

coordinates. Proposition 3.1 applies to {Ỹ (t)
i }, replacing n by ni. But the {Ỹ (t)

i }’s are independent and the
distribution of the sample chain X̃ is the product of their distributions, through appropriate renumbering of
coordinates. Now if P and π (respectively P ′ and π′) are probability distributions on Ẽ (respectively Ẽ′), then

‖P ⊗ P ′ − π ⊗ π′‖ ≤ ‖P − π‖+ ‖P ′ − π′‖.

The result follows immediately.

Let us now turn to continuous time. The sequential sample chain has generator Λ̃ = Λ⊕n on En. As before,
the sample will be initialized with identical coordinates. The distribution at time t ≥ 0 will be denoted by Q̃(t)

ı̃ .
The cutoff time is

logn
2(1− α′) ·

Proposition 3.4. Let ε be a positive real. Assume

t >
logn

2(1− α′) −
log π(i)

2(1− α′) −
log(log(1 + 4ε2))

2(1− α′) · (3.11)

Then,
‖Q̃(t)

ı̃ − π̃‖ < ε.

Proof. The proof follows exactly the same lines as that of Proposition 3.1. It relies on an upper bound for the
chi-square distance χ(Q̃(t)

ı̃ , π̃). The eigenvalues of Λ are:

0 = β1 > β2 ≥ · · · ≥ βγ ,

where β` = α` − 1. With the notations of Propositions 2.3 and 3.1, the vector Vη is an eigenvector of D̃Λ̃D̃−1,
associated to the eigenvalue

n1β1 + · · ·+ nγβγ .

Using (3.7), the chi-square distance can be expressed as follows.

χ(Q̃(t)
ı̃ , π̃) = −1 +

1
πn(i)

∑
n1,... ,nγ

n1+···+nγ=n

n!
n1! . . . nγ !

(
v2n1

1 (i) . . . v2nγ
γ (i)

)
exp

(
2t(n1β1 + · · ·+ nγβγ)

)

= −1 +

(
v2

1(i)
π(i)

exp(2tβ1) + · · ·+
v2
γ(i)
π(i)

exp(2tβγ)

)n

≤ −1 + exp

(
n

γ∑
`=2

v2
` (i)
π(i)

exp(2tβ`)

)
≤ −1 + exp

(
n

π(i)
exp(2tβ2)

)
.

The result follows easily from the last inequality (recall that 1− α′ = −β2).

Proposition 3.4 yields immediately a uniform result analogous to Proposition 3.3 which will not be written
here.
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Proposition 3.5. Let i be an element of E such that

w′(i) =
∑

`:α`=α′

v2
` (i) > 0.

Let c be a positive real. There exists n0(c) > 0 such that if n > n0(c) and

t <
log n− c
2(1− α′) ,

then

‖Q̃(t)
ı̃ − π̃‖ > 1− 4 exp

(
−ecw′2(i)

8π(i)(1− π(i))

)
· (3.12)

Proof. The proof is similar to that of Proposition 3.2. There are only two differences. The first one is that Q(t)
i (i)

is a decreasing function of time in all cases. The second one is the estimate of Q(t)
i (i), for t < (log n−c)/(2(1−α′)).

By the identity (3.2):

Q
(t)
i (i) = π(i) + n−1/2ec/2w′(i) + o(n−1/2).

The rest of the proof is identical, and we shall omit the details.

The discrete time sequential sample chain has transition matrix Q̃ = (1/n)P⊕n. It differs from the continuous
time sample chain by a Poissonian change of scale, with intensity n. Its cutoff time is

n log(n)
2(1− α′) ·

The analogue of Proposition 3.4 is obtained straightforwardly using the spectral decomposition of Q̃ and
standard inequalities. For the lowerbound, the technique of Propositions 3.1 and 3.2 does not apply since
the coordinates of the chain are not independent anymore. One can deduce from Proposition 3.5 a weaker
result by using the large number properties of the Poissonian change of time (see also [5] p. 59). We shall not
detail these results.

Diaconis et al. [5] give a very precise description of the total variation distance ‖Q̃(t)
ı̃ − π̃‖ for the random

walk on the hypercube. We believe that their results can be generalized to the present situation. Let {X(t)} =
{(X(t)

1 , . . . , X
(t)
n )} be the parallel sample chain, starting from ı̃ (the argument is the same for in continuous

time). Consider the empirical measure associated to {X(t)}:

S
(t)
i (F ) =

1
n

n∑
m=1

11F (X(t)
m ) , ∀F ⊂ E.

For all F ⊂ E, the random variable S(t)
i (F ) is binomial, with parameters n and P (t)

i (F ). As t tends to infinity,
it converges in distribution to a binomial with parameters n and π(i). For n large, these binomial distributions
have normal approximations. The maximum over F of the total variation distance between the two normal
approximations is an asymptotic lower bound for ‖P̃ (t)

ı̃ − π̃‖. In view of Remark A (p. 60 of [5]), it seems
natural to conjecture that it is actually a good approximation. The idea of using the empirical measure for
cutoff detection will be implemented in Section 4.
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4. Application to MCMC convergence

In a growing number of applications, sampling from a given distribution π is done through the simulation of
a Markov chain, admitting π as its reversible measure. Many methods for constructing the transition matrix P
of such a chain have been proposed, in particular the famous Metropolis algorithm (see Chap. 4 of Robert [15]).
The goal being to obtain a sample of size n of the distribution π, one can run a single trajectory of the chain
with transition matrix P , and sample it at n regular instants, far enough from each other. The problem is to
choose those instants, optimizing the running time of the algorithm while guaranteeing the distribution of the
sample (see [15], Chap. 6). An alternative is to run n independent copies of the chain, starting all from the
same initial state, i.e., simulate the parallel sample chain studied in the previous section. The advantage of
the latter approach is that the cutoff time is a natural stopping time for the algorithm: the distribution of the
sample is far from the goal before cutoff time, and very close after. So the simulation should be run at least
until cutoff time, while it is useless to run it for much longer after. Since the cutoff time grows only as log(n),
this method seems reasonable from the point of view of computing time. Here the sequential sample chain will
not be considered, since it is algorithmically less efficient.

Of course, one should observe that after the term in O(log(n)) of formula (3.8), comes a term in O(log(π(i)),
which is an indication of the fact that the cutoff effect will be delayed and damped in the case of a very large state
space. A clear cutoff can be expected in practice only if the sample size n is much larger than the cardinality
of the state space γ. This is undoubtedly a serious limitation to the method proposed here.

In general the state space E has a large number of elements, and computing the spectrum and eigenvectors
of P is not feasible. We will show that the cutoff time can be detected algorithmically without knowing a priori
its value. The idea is an extension of the method of proof of Propositions 3.2 and 3.5. There, it was shown
that the proportion of the sample coordinates equal to i should be far from π(i) before cutoff, and reach that
value exactly at cutoff. However, if π(i) is small, testing the proportion of coordinates equal to i can lead to
very imprecise results. But the same reasoning can be applied to the probability of any subset F of E. Let
{X(t)} = {(X(t)

1 , . . . , X
(t)
n )} be the parallel sample chain, starting with all coordinates equal to i. The empirical

measure of F at time t is

S
(t)
i (F ) =

1
n

n∑
m=1

11F (X(t)
m ).

Assume that i ∈ F (this does not restrict generality, since F can be replaced by E \F ). Thus S(0)
i (F ) = 1. We

define the hitting time of the asymptotic value π(F ) as the following random variable Ti(F ):

Ti(F ) = inf
{
t ≥ 0 : S(t)

i (F ) < π(F )
}
·

It is natural to expect that Ti(F ) should be close to the cutoff time. This is not always true.

Proposition 4.1. Let {X(t) ; t ∈ N} be the parallel sample chain with transition matrix P̃ , starting from
X(0) = ı̃. Assume i and F are such that:

• wi(F ) =
∑

`: |α`|=α

∑
j∈F

√
π(j)√
π(i)

v`(i) v`(j) > 0,

• P (t)
i (F ) is a decreasing function of t.

Then

Ti(F )
(

log(n)
2 log(1/α)

)−1

converges to 1 in probability as n tends to infinity.

In other terms, log(n)/(2Ti(F )) is a consistent estimator of log(1/α).
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Proof. The probability distribution of the parallel sample chain {X(t) ; t ∈ N}, starting from X(0) = ı̃ will be
denoted by Prob. Let c be a constant. We need to prove that, with a probability tending to 1 as n tends to
infinity, Ti(F ) is larger than c log(n)/(2 log(1/α)) if c < 1 and smaller if c > 1. The former will be proved first.

Denote by t0 the integer part of c log(n)/(2 log(1/α)). The probability that Ti(F ) ≤ t0 is the probability
that at least one of the S(t)

i (F ) is smaller than π(F ), for t = 0, . . . , t0. Hence:

Prob[Ti(F ) ≤ t0] ≤
t0∑
t=0

Prob
[
S

(t)
i (F ) < π(F )

]
≤ t0Prob

[
S

(t0)
i (F ) < π(F )

]
.

The last inequality comes from the fact that P (t)
i (F ) is decreasing. Notice that the distribution of nS(t)

i (F ) is
binomial, with parameters n and P

(t)
i (F ). As in the proof of Proposition 3.2, we may assume that t0 is even.

From (3.1) comes:
P

(t0)
i (F ) = π(F ) + wi(F )n−c/2 + o(n−c/2).

Chernov bound (Lem. 3.1), applied to p = P
(t0)
i (F ) and b = π(F ) gives:

Prob
[
S

(t0)
i (F ) < π(F )

]
≤ exp

(
− w2

i (F )
2π(F )(1− π(F ))

n1−c + o(n1−c)
)
.

If c < 1 then t0Prob[S
(t0)
i (F ) < π(F )] tends to 0 as n tends to infinity. Let now c be larger than 1. Let d be

an integer, t and s two positive reals. Consider the d regularly spaced instants t+s, . . . , t+ds, and define S as
the random vector

S =
(
St+si (F ), . . . , St+dsi (F )

)
.

Our goal is to show that
Prob

[
S ∈ [π(F ),+∞)d

]
can be made arbitrarily small, for a particular choice of t, s and d such that:

logn
2 log(1/α)

< t+ s < t+ ds <
c logn

2 log(1/α)
·

Some estimates on the distribution of the vector S are needed here. For m = 1, . . . , n denote by Jm the random
vector

Jm =
(
11F (X(t+s)

m ), . . . ,11F
(
X(t+ds)
m

))
.

The vectors Jm are i.i.d. and their sum is nS. Their expectation is

E[Jm] =
(
P

(t+s)
i (F ), . . . , P (t+ds)

i (F )
)
.

Denote by C = (Ckh) their covariance matrix. For 1 ≤ k < h ≤ d one has:

Ckk = P
(t+ks)
i (F )(1− P (t+ks)

i (F )),

Ckh =
∑
j∈F

P
(t+ks)
i (j)P ((h−k)s)

j (F )− P (t+ks)
i (F )P (t+hs)

i (F ).

Let v =
√
π(F )(1− π(F )). From (3.1), as t and s tend to infinity, C tends to the diagonal matrix v2Id. More

precisely, let ‖.‖∞ be the maximum absolute value of all coefficients of a matrix. One has:∥∥C − v2Id
∥∥
∞ ≤ (k1α

t + k2α
s),
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where k1 and k2 are two constants, not depending on d.
Fix n0 and c0 such that for n > n0 and t > (log(n) + c0)/(2 log(1/α)):

P
(t+ks)
i (F ) < π(F ) +

1√
n
·

Then

Prob
[
S

(t+ks)
i (F ) ≥ π(F ) , 1 ≤ k ≤ d

]
≤ Prob

[√
n(S(t+ks)

i (F )− P (t+ks)
i (F )) ≥ −1 , 1 ≤ k ≤ d

]
.

The idea is to bound the above probability by the probability of [−1,+∞)d under the d−dimensional Gaussian
distributions Nd(0, C) (mean 0, covariance matrix C) and Nd(0, v2Id). For this, two successive bounds are
needed, first a Berry-Esséen estimate, then a bound for the distance between the two normal distributions.
This is a standard procedure for empirical processes, and can be found in several references, such as Doukhan
([7] p. 51) and Giné [10]. Using the inequalities given in the proof of Lemma 5.6 of [10] (p. 132), one gets:

Prob[S ∈]π(F ),+∞[d] ≤ Nd(0, C)(]−1,+∞[d) +
k3dv

2

√
n
≤ Nd(0, v2Id)(] −1,+∞[d)

+
k3dv

2

√
n

+ k4(d)(αt + αs) = ρd +
k3dv

2

√
n

+ k4(d)(αt + αs),

where ρ = Φ(1/v) < 1, denoting by Φ the standard Gaussian distribution function. For ε > 0, one can fix d such
that ρd < ε/3, then n1 > n0 such that for n > n1, k3dv

2/
√
n < ε/3. It remains to choose t > (logn/(2 log(1/α))

and s such that
Prob[S ∈]π(F ),+∞[d] < ε.

Thus the probability that Ti(F ) is smaller or equal to t+ds is larger than 1−ε. Moreover, for n large enough,
the choices can be made to satisfy:

t+ ds <
c logn

2 log(1/α)
·

Hence the result.

As already remarked in the proof of Proposition 3.2, the hypothesis that P (t)
i (F ) is a decreasing function of

time is fulfilled for F = {i}, if all eigenvalues of P are non negative. This can be ensured replacing P by P 2, i.e.
simulating two steps of the chain in a row. The problem is that the hypotheses of Proposition 4.1 cannot be
checked in practice, except in very particular cases. Notice though that if the state space E is endowed with a
partial order and if the Markov chain with matrix P is stochastically monotone for that order (see for instance
Massey [12]) then there are some natural choices for i and F . Indeed, let i be a maximal element, and F be an
increasing subset of E:

j ∈ F =⇒ k ∈ F , ∀k ≥ j.
Then P

(t)
i (F ) (or Q(t)

i (F )) is a decreasing function of time. This can be used for instance for birth and death
processes or attractive spin systems.

In general, it can be expected that P (t)
i (F ) − π(F ) will change sign several times, so that the hitting time

Ti(F ) will be significantly lower than cutoff. This can be arranged by considering a new family of hitting times.
We shall define T (M)

i (F ) as the first time at which S(t)
i (F ) enters a confidence interval around π(F ).

Definition 4.1. Let i ∈ E, F ⊂ E and M > 0. Let {X(t) ; t ∈ N} be the parallel sample chain with transition
matrix P̃ , starting from X(0) = ı̃. We call hitting time of π(F ) starting from i at level M , the random variable

T
(M)
i (F ) = inf

{
t :
√
n|S(t)

i (F )− π(F )|√
π(F )(1− π(F ))

< M

}
·
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As can be expected, the analogue of Proposition 4.1 holds for T (M)
i (F ), under weaker hypotheses.

Proposition 4.2. Assume i and F are such that

• wi(F ) =
∑

`: |α`|=α

∑
j∈F

√
π(j)√
π(i)

v`(i) v`(j) 6= 0,

• P (t)
i (F )− π(F ) is non null for all t ∈ N.

Then

T
(M)
i (F )

(
log(n)

2 log(1/α)

)−1

converges to 1 in probability as n tends to infinity.

Proof. As in the proof of Proposition 4.1, we must prove that, with a probability tending to 1 as n tends
to infinity, the hitting time T (M)

i (F ) is larger than c log(n)/(2 log(1/α)) if c < 1 and smaller if c > 1. For
c > 1, the argument is comparable, and we shall not reproduce it here. For c < 1, let t0 be the integer part
of c log(n)/(2 log(1/α)). We need to prove that for all t = 0, . . . , t0, P (t)

i (F ) stays away from the confidence
interval [

π(F )± M√
n

√
π(F )(1− π(F ))

]
.

There exists a fixed t1 such that |P (t)
i (F )−π(F )| is strictly decreasing for t > t1. The equation P (t)

i (F ) = π(F )
has at most γ solutions in R+, all between 0 and t1. Since it is assumed that none of these solutions is an
integer, one gets

min
t≤t1
|P (t)
i (F )− π(F )| > 0.

By the already used argument (Chernov bound), with probability tending to 1 with n, the hitting time T (M)
i (F )

will be larger than t0.

We believe that the cases where both Ti(F ) and T
(M)
i (F ) fail to detect the cutoff are rarely encountered in

practice. Running a parallel sample chain up to a hitting time can reasonably be expected to output a fair
sample of the target distribution π. We present below two examples of Markov chains, for which simulations
experiments have been run. Let us start with an example where Ti(F ) fails to estimate the cutoff time, whatever
i and F . Consider the following transition matrix P on E = {1, 2, 3}.

P =

 0.5 0.5 0
0.5 0 0.5
0 1 0

 . (4.1)

Its reversible measure is:
π(1) = 0.4 π(2) = 0.4 π(3) = 0.2.

The eigenvalues are {−0.809 , 0.309 , 1}, thus α = 0.809 and α′ = 0.309. Since P (1)
3 (3) = 0, the hitting time

T3({3}) is always equal to 1. As n tends to infinity, the hitting time T1({1}) converges to 3, since P (3)
1 (1) = 0.375.

All other hitting times tend to 1, 2 or 3. It is clear on this example that the problem comes from the oscillatory
behavior of P (t)

i (F ), which is alternatively smaller and larger than the target value π(F ). This is due to
the negative eigenvalue. Replacing P by P 2 solves the problem. Table 1 presents estimated values for the
expectation and standard deviation of T1({1}), computed over 1000 independent experiments, using P 2 instead
of P . The theoretical value log(n)/(2 log(1/α)) is given for comparison.

Simulation estimates for the parallel sample chain based on P , for hitting times of π(1), starting from i = 1,
at different levels M are presented in Table 2. In order to ease the interpretation, the levels M where chosen
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Table 1. Estimated mean and standard deviation of T1({1}), compared with cutoff time, for
the parallel sample chain based on P 2, where P is given in (4.1).

n estimated
mean

standard
deviation

log(n)
2 log(1/α)

1000 12.668 5.167 16.297

10000 18.056 4.896 21.729

by reference to the standard Gaussian distribution:

M = Φ−1

(
1 + ε

2

)
·

With that choice, T (M)
i (F ) appears as the first entry time in a bilateral confidence interval with asymptotic level

of confidence ε. The sample size is n = 10000, and the expectations and standard deviations were estimated
over 1000 independent simulations. The expectations should be compared with the theoretical value of the
cutoff time: log(n)/(2 log(1/α)) = 21.729. The expectation and standard deviation of T (M)

1 ({1}) are decreasing
functions of ε.

Table 2. Estimated mean and standard deviations of T (M)
1 ({1}), for the parallel sample

chain based on the matrix P of (4.1).

ε 0.1 0.2 0.3 0.4 0.5

estimated
mean 21.201 16.540 14.367 13.516 12.766

standard
deviation 9.048 4.909 3.790 2.978 2.453

In order to test the method with different sizes of state space, the natural random walk on E = {1, . . . , γ}
was considered (Ex. 2.3.1 p. 348 of Saloff-Coste [16]). The transition matrix P is the following.

P =


0.5 0.5 0 . . . 0
0.5 0 0.5 . . . 0
...

. . . . . . . . .
...

0 . . . 0.5 0 0.5
0 . . . 0 0.5 0.5

 . (4.2)

The uniform measure is reversible: π(i) = 1/γ for all i. The spectral decomposition of P is given explicitly in
Feller [8], XVI.3. It turns out in this case that α = α′. We chose i = 1 and F = {1, . . . , j}, for j ranging from
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1 to γ−1. Table 3 presents estimates of the expectation T1({1, . . . , j}), each computed over 1000 independent
experiments, for the parallel sample chain of size n = 10000. For each value of γ, the theoretical value of the
cutoff time, log(n)/(2 log(1/α)) is given for comparison. For each value of i and j, a relative error was computed
as the quotient of the amplitude of the 0.95 confidence interval by the mean. The maximum of these relative
errors was found to be 0.0168.

Table 3. Estimated mean of T1({1, . . . , j}), compared with cutoff time, for the parallel
sample chain based on the matrix P of (4.2).

γ\j 1 2 3 4 5 6 7 8 9 log(n)
2 log(1/α)

3 9.0 9.1 6.6
4 16.1 17.4 16.2 13.3
5 24.4 27.0 27.0 24.6 21.7
6 34.1 38.2 39.4 38.1 34.0 32.0
7 44.4 49.9 52.6 53.0 50.1 44.9 44.3
8 56.3 63.9 68.1 69.5 68.5 64.6 56.8 58.3
9 69.1 78.7 84.1 87.1 86.7 84.7 79.3 70.2 74.3

10 82.8 95.0 102.3 106.1 108.1 107.0 103.0 96.0 84.0 92.1

Many thanks to Anestis Antoniadis, Claudine Robert and Alain Le Breton for pleasant and helpful discussions, and the
anonymous referee for careful reading of the manuscript.
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