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EFFICIENT ESTIMATION OF FUNCTIONALS OF THE SPECTRAL DENSITY

OF STATIONARY GAUSSIAN FIELDS

Carenne Ludeña
1

Abstract. Minimax bounds for the risk function of estimators of functionals of the spectral density
of Gaussian fields are obtained. This result is a generalization of a previous result of Khas’minskii
and Ibragimov on Gaussian processes. Efficient estimators are then constructed for these functionals.
In the case of linear functionals these estimators are given for all dimensions. For non-linear integral
functionals, these estimators are constructed for the two and three dimensional problems.

Résumé. Nous considérons le problème d’estimation d’une fonctionnelle de la densité spectrale d’un
champ gaussien. Nous établissons tout d’abord des bornes inférieures asymptotiques pour le risque
minimax. Dans le cas des champs de dimension 2 ou 3, nous construisons ensuite des estimateurs effi-
caces, c’est à dire atteignant asymptotiquement ces bornes inférieures, pour des fonctionnelles linéaires
et des fonctionnelles intégrales non linéaires de la densité spectrale.
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1. Introduction

It is a well known result that if in a parametric setting the log of the likelihood ratio has a certain quadratic
expansion in a local asymptotic sense (LAN families) then, for any sequence of estimators, lower bounds to the
maximum of a risk function can be found (see, for example, Le Cam et al. [18] for a general survey). Here the
quadratic expansion is taken with respect to the parameter and only small asymptotic changes in the value of
the parameter are considered. A sequence of estimators is efficient if the risk function asymptotically achieves
these lower bounds. This was shown by Hajek [14] for a sequence of sufficiently regular i.i.d. observations.
Moreover, it has been shown that lower bounds may also be obtained in infinite dimensional settings (see for
example Levit [19], Millar [22], Donoho et al. [10] and Birgé et al. [3]). Also, the sequence of observations need
not to be i.i.d. provided it has a certain regularity (see for example Efroimovich [12]).

Our main interest in this article is to find lower bounds for the maximum of the risk function of estimators of
sufficiently regular functionals of the spectral density of Gaussian fields. This is an infinite dimensional problem
based on dependent observations. However, the non parametric problem can be turned into a parametric one
when one approximates it in terms of a first order expansion on the value of the functional. Thus, if Gaussian
fields with sufficiently regular spectral densities are considered, then the classical LAN theory may be applied
in order to obtain lower bounds. This is what was done by Khas’minskii et al. [15] in the one-dimensional case.

Keywords and phrases: Efficient estimation, Gaussian fields, periodogram, tapered periodogram, spectral density, Toeplitz
matrices.
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It turns out that the regularity conditions on the spectral density that ensure this LAN behavior are related to
the asymptotic behavior of the trace of products of certain Toeplitz matrices and their inverses. In Lemma 1
we study this asymptotic behavior under L2 type conditions. This Lemma is based on a result due to Doukhan
et al. [11] (see also Avram [1]).

In order to obtain lower bounds that give uniform results over a class of functions, an additional
precompactness condition must be introduced. For this it seems necessary to require uniform bounds (in
norm) on the functions and their inverses. Let us also mention that the same kind of restrictions appear when
a Banach algebra approach is used to deal with this type of problems (see Bouaziz [4]).

Once lower bounds are given, it is necessary to construct efficient estimators to verify that these bounds
are indeed attainable. Periodogram based estimators are biased for dimensions greater than or equal to two
(see Guyon [13]). Hence, weighted versions of the periodogram must be considered instead. In the case of linear
functionals it is possible to construct efficient estimators based on the so called unbiased periodogram. In this
case the bias depends on the regularity of the convolution of the spectral density with the function defining the
linear functional. The estimator will be efficient if the linear functional is sufficiently smooth. The unbiased
periodogram, however, is not positive definite. We deal with this difficulty by considering tapered periodograms
(see Dahlhaus [6] and Yao [23]). In this case, restrictions on the dimension of the problem must be introduced.

For non-linear integral functionals, estimators are constructed using a first order expansion of the functional.
In order to control the bias, a minimal equicontinuity condition in L∞ is required of the spectral density. We
also indicate how these results can be extended to a more general class of functionals provided one can explicitly
control the bilinear form defining the second derivative.

This LAN property for stationary Gaussian fields and the construction of efficient estimators were previously
considered in Ludeña [20], under more restrictive conditions on the regularity of the spectral density.

The article is organized as follows. In Section 2 we give the main result which deals with minimax type
bounds for risk functions. In Section 3 we construct efficient estimators for linear functionals of the spectral
density. In Section 4 we consider efficient estimators of smooth integral non-linear functionals and in Section 5
we include the proofs of the stated results.

2. Lower bounds

Let X = {Xt, t ∈ Zd} be a centered, real, Gaussian stationary field (process if d = 1) with spectral density
f0 ∈ L2(T ) with T = (−π, π]d identified with the d-torus.

For k, j ∈ Zd denote the usual scalar product by < k, j >. For n ∈ Zd consider Ln the rectangular lattice in Zd
with vertices (i1, . . . , id) 0 ≤ ij ≤ nj , j = 1, . . . , d. The cardinality of this subset is |Ln| =

∏d
i=1 ni. We assume,

for the asymptotic results, that all ni, i = 1, . . . , d tend to infinity at the same rate, i.e., if mn = min{ni} and
Mn = max{ni}, then m−1

n Mn → c, a positive constant. By Ln − s we mean the set of points t ∈ Zd such that
t+ s ∈ Ln. Finally, for any given function g ∈ L1(T ), we denote by gs its sth Fourier coefficient.

Now consider a certain fixed enumeration τ of the elements of Ln. Define, for a given function g ∈ L1(T ),
T τn (g), the “Toeplitz” matrix of size |Ln| associated to τ , as the |Ln| × |Ln| matrix whose term (m, l) is given
by

gτ−1(m)−τ−1(l) =

∫
T
g(λ)eiλ<τ

−1(m),τ−1(l)> dλ.

If d = 1 this is the usual Toeplitz matrix, and if τ is a row or column enumeration, this is the usual block-Toeplitz
matrix. In most cases we shall omit τ in the notation. Indeed, we are mainly interested in the asymptotic
behavior of quadratic forms of this kind of matrices or their inverses, and the order of the enumeration (which
only changes the order of the eigenvalues) does not alter this behavior.

Let Lp, 1 < p ≤ ∞, be the closure of the trigonometric polynomials in the space Lp(T ) (L∞ = C), endowed
with the norm ‖ ‖p.

Assume that we observe X over Ln. We denote the vector of observations by xn = (xτ−1(1), . . . , xτ−1(|Ln|)),

according to the enumeration τ . Let txn stand for the transposed vector. Throughout this article xs shall denote
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the observation taken at site s, regardless of the enumeration τ . Our aim is to estimate a certain functional of
the spectral density φ(f0) based on these observations.

In order to do this we assume that the (unknown) spectral density f0 belongs to a closed class F ⊂ L2(T )
such that there exist m and M such that

inf
f∈F

inf
λ
f(λ) ≥ m > 0, (2.1)

sup
f∈F
‖f‖2 ≤M <∞ (2.2)

and there also exist positive functions wi satisfying the condition wi(hi)→ 0 for |hi| → 0, i = 1, . . . , d, and

sup
f∈F
‖f(·+ h)− f(·)‖2 ≤

d∑
i=1

wi(hi). (2.3)

Consider the class of functionals φ : L2(T )→ R, which are Gateaux differentiable in an open neighborhood of
F . For fixed f we can identify the derivative of the functional with a function in L2(T ) which we call Dφ(f).
Let Φ be the subclass of these functionals that satisfies:

sup
φ∈Φ

sup
f∈F
‖Dφ(f)‖ <∞ (2.4)

and

inf
φ∈Φ

inf
f∈F
‖Dφ(f)f‖ ≥ m > 0. (2.5)

Here ‖·‖ stands for the L2 norm. We assume that Dφ(f) is an even function for all φ ∈ Φ and f ∈ F .
Now let Φn be the set of all estimators φn of φ (f) based on xn, and let W be the set of all non decreasing

symmetric loss functions w over R+, w(0) = 0 that satisfy for all λ ∈ R∫ +∞

−∞
w(y) exp {−

1

2
λ2y2}dy <∞.

Our main result is the following

Theorem 2.1. If conditions (2.1–2.4) and (2.5) are satisfied and if we define for f ∈ F and φ ∈ Φ

∆ = lim
δ→0

lim inf
|Ln|→∞

inf
Φn

sup
‖g−f‖<δ

Eg{w(|Ln|
1/2(φn − φ(g)))}

then,

∆ ≥
1
√

2π

∫ +∞

−∞
w
(√

2(2π)d/2‖fDφ(f)‖x
)
e
−x2

2 dx. (2.6)

This result is a multidimensional extension of an earlier result of Khas’minskii et al. [15]. These authors consider
(as in Hajek [14]) the problem of efficient estimation in a local asymptotic sense. For completeness, in what
follows we recall Hajek’s classical definition of LAN families.

Consider the sequence (using Hajek’s notation) xn of observations with a joint distribution given by Pn(·, θ),
where θ belongs to an open set Θ, in R. Let θ? be the true value of θ. Let us define Pn = Pn(·, θ?) and
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Pn,t = (·, θ? + n−1/2t) and let dQ
dP

be the Radon-Nikodym derivative of the absolutely continuous part of the
measure Q with respect to the measure P . Then given

rn(t, xn) =
dPn,t

dPn
h ∈ R

and n such that θ? + n−1/2t ∈ Θ, we have

Definition 2.2. Pn,t is Locally Asymptotically Normal (LAN) if

log rn(t, xn) = t∆θ? − 1/2t2Γθ? + Zn(θ?, t)

where ∆θ?
D
→ N(0,Γθ?) and Zn(θ?, t)→ 0 in Pn probability for all t ∈ R and Γθ? > 0.

Hajek showed in this context the existence of lower bounds for the maximum risk in a local asymptotic sense
for any sequence of estimators.

The proof of the existence of lower bounds given by Khas’minskii and Ibragimov is based on the fact that
the infinite dimensional problem of estimating in L2(T ) can be transformed into a parametric one, based on
the value of the functional in the true spectral density, which satisfies classical LAN conditions.

In order to extend these results to fields, making use of Toeplitz matrices techniques, the following lemma is
required.

Lemma 2.3. If f, g ∈ F , and if ‖f‖∞ ≤M , ‖g‖∞ ≤M , then for p ≥ 2

Tr[(Tn(f)Tn(g))p − Tn((fg)p)] = o(|Ln|M
p) (2.7)

and

Tr[(T−1
n (f)Tn(g))p − Tn(

(
g

f

)p
)] = o(|Ln|M

p). (2.8)

In equations (2.7) and (2.8), the term o(|Ln|Mp) is uniform in f, g ∈ F which satisfy ‖f‖∞ ≤M , ‖g‖∞ ≤M .
Also note that 1

|Ln|
Tr(Tn(h)) =

∫
T h(λ) dλ for any integrable function h.

For d = 1 the original proof of Theorem 1 in Khas’minskii et al. [15] required (2.1) and the existence of
β > 1/2 such that

sup
f∈F

∑
k

(1 + |k|2β)f2
k <∞.

However, Bouaziz [4] has shown using Banach algebra techniques that Lemma 2.3 holds under (2.1) and an
alternative set of conditions of the type

sup
f∈F

∑
k

(1 + |k|)f2
k ≤M <∞, and sup

f∈F
‖f‖∞ ≤M <∞. (2.9)

Using this result, it can be shown that for d = 1 under (2.1) and (2.9) Theorem 2.1 is still true.

3. Estimation of linear functionals

In this section we consider estimators of linear functionals of the spectral density f which is assumed to
belong to the class F described above. We are interested in estimators which are efficient for the quadratic loss
function in the sense described in the previous section, namely, estimators which satisfy a CLT with |Ln|1/2

rate, and have minimum variance.



EFFICIENT ESTIMATION OF GAUSSIAN FIELDS 27

By the Riesz Representation Theorem the continuous linear on L2(T ) functional φ can be identified with
a L2(T ) function φ(λ), such that φ(f) =

∫
T φ(λ)f(λ) dλ. Clearly, Dφ(f)(λ) = φ(λ) for all f ∈ F . In what

follows we shall use this integral notation which we hope will not be confusing.
Consider the following estimator of φ(f),

In(φ) =

∫
T
φ(λ)In(λ) dλ

where

In(λ) =
1

n(2π)d

∑
s∈Ln

ei<s,λ>
∑

t∈Ln−s

xsxs+t,

is the usual periodogram.
It was shown by Guyon [13] that the bias of the periodogram cannot be controlled at the CLT rates for

dimensions greater than one. He proposed estimators based on the unbiased periodogram defined as

I∗n(φ) =

∫
T
φ(λ)I∗n(λ) dλ.

Here

I∗n(λ) =
1

2πd

∑
s∈Ln

ei<s,λ>

cs

∑
t∈Ln−s

xsxs+t

with

cs =
∏
k∈Ln

(nk − |sk|).

Assume φ(λ) belongs to a class Φ, such that

sup
φ∈Φ

∑
s∈Zd

φ2
s <∞ and (3.1)

sup
φ∈Φ

∑
s∈Zd
|s|d|φs| <∞. (3.2)

We then have

Theorem 3.1. Assume that F and Φ satisfy conditions (2.3, 2.5) of Section 2 and conditions (3.1) and (3.2)
then

V ∗n = |Ln|
1/2(I∗n(φ)−EI∗n(φ))

converges in distribution to a centered Gaussian r.v. with variance 2(2π)d‖fφ‖2 for each f ∈ F and φ ∈ Φ.
Also

sup
φ∈Φ

sup
f∈F

E[|Ln|
1/2(I∗n(φ)− φ(f))] = o(1).

As a Corollary, I∗n(φ) is asymptotically efficient for the quadratic loss function.
The unbiased periodogram is unfortunately not positive definite. One possible solution is to consider

estimation based on the tapered periodogram [5, 6, 8, 23]. We assume w.l.o.g. that n = n 11, where 11 is
the vector of ones in Zd (Ln is a hypercube of edge length n).
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Define

hε(u) =


u/ε if u < ε

1 if ε ≤ u ≤ 1− ε

hε(1− u) if u > 1− ε

(3.3)

with ε = n−γ , γ > 0.
Let j = (j1, . . . , jd) and λ = (λ1, . . . , λd). Define

dT (λ) =
∑
j∈Ln

hε(j)xje
−i<j,λ> with hε(j) =

d∏
l=1

hε(jl/n).

Now define for each 1 ≤ l ≤ d

Hr(λl) =
n∑

jl=1

hrε(jl/n)e−ijlλl

and

Hr(λ) =
∑
j∈Ln

hε(j)e
−i<j,λ> =

d∏
l=1

Hr(λl).

The tapered periodogram is given by

ITn (λ) =

∣∣∣∣∣ dT (λ)

H2(0)

∣∣∣∣∣
2

· (3.4)

For φ ∈ Φ and f ∈ F consider the convolution t = φ ∗ f . Assume that there exist β > 0 and B such that

sup
Φ

sup
F

sup
x∈T
|
∂

∂xk
t(x+ h)−

∂

∂xk
t(x)| ≤ B

d∑
l=1

|hl|
β (3.5)

for k = 1, . . . , d. We have the following result,

Theorem 3.2. If F and Φ satisfy (2.3, 2.5) and (3.5) then for f ∈ F , φ ∈ Φ and γ < 1 + 1
β

(
1− d

2

)
we have

sup
φ∈Φ

sup
f∈F
|Ln|

1/2E(ITn (φ)− φ(f)) = o(1) (3.6)

|Ln|
1/2(ITn (φ)− EITn (φ))

D
→N (0, 2(2π)d

∫
T
φ2(λ)f2(λ)dλ). (3.7)

Furthermore if condition (2.2) is satisfied, then for all z ∈ R,

sup
φ∈Φ

sup
f∈F

lim
|Ln|→∞

|P
{

(|Ln|
1/2(ITn (φ) − φ(f)) < z

}
− P {ξ < z} | = 0 (3.8)

for ξ ∼ N (0, 2(2π)d
∫
T φ

2(λ)f2(λ)dλ).

As a result of the uniform convergence in (3.8), ITn (φ) is asymptotically efficient for any w ∈W .
The condition imposed on γ yields that d < 2(1 + β). For d = 2 it is enough that β > 0. For d = 3 the

condition β > 1/2 must be satisfied. It is not possible to have d > 3.
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4. Non linear functionals

The results in this section deal with estimators of integral non linear functionals for Gaussian fields under
certain regularity conditions for the spectral density and the non linear functional. The regularity conditions
on the spectral density are used to control the bias in the multiparametric setting. There are also certain
restrictions that appear in order to control the remainder of the first order expansion of the functional. If higher
order expansions are possible, less regular spectral densities could be considered.

Throughout this section we require instead of (2.3) that there exist β > 0 and B such that

sup
F

sup
x∈T

∣∣∣∣ ∂∂xk f(x+ h)−
∂

∂xk
f(x)

∣∣∣∣ ≤ B d∑
l=1

|hl|
β (4.1)

for k = 1, . . . , d.
We assume that Ln is a hypercube of edge length n. Also that we can write φ(f) =

∫
T φ(f(λ), λ) dλ in a

rather abusive notation, which we hope will not be confusing. We require φ(g), g ∈ L2(T ) to be continuously
differentiable in the Fréchet sense. We shall call Dφ(g) the derivative at point g, as before. We remark that
for a given g, Dφ(g) : T −→ R can be identified with a function of L2(T ). Because of the integral form of
the functional, we have that the derivative can be written as Dφ(g)(x) = ∂/∂uφ(u, x)

∣∣
(g(x),x)

. For g ∈ L2(T ),

the second derivative, D2φ(g) can also be identified with a L2(T ) function, which because of the integral form
of the functional can again be written as D2φ(g)(x) = ∂2/∂u2φ(u, x)

∣∣
(g(x),x)

. Now, assume there exist k and

0 < δ < 1, such that

‖
∂2

∂u2
φ‖∞ < k and ‖

∂2

∂u2
φ(u1, ·)−

∂2

∂u2
φ(u2, ·)‖∞ ≤ k|u1 − u2|

δ. (4.2)

Actually, we deal with integral functionals in order to control the bilinear form which defines the second
derivative of the functional (in order to control the remainder of the Taylor series). More generally, we could
consider functionals of the spectral density φ(f) such that the bilinear form which defines its second derivative
can be written as

D2φ(f)(h, h) =

∫
T

∫
T
Kφ(f)(x, y)h(y)h(x) dxdy (4.3)

for any function h ∈ L2 and such that if h ∈ C(T ), then

sup
f∈F
‖

∫
T
Kφ(f)(·, y)h(y) dy‖∞ < M ‖h‖∞.

Assuming additionally the Hölder condition for the second derivative

‖(D2φ(f)−D2φ(g))(h, h)‖ ≤ k‖f − g‖δ‖h‖2,

it is not difficult to show that in this more general setting the proof of Lemma 6 (Sect. 5) is essentially the
same. We have preferred to give the proof only for integral functionals for simplicity in the notation. We
remark that condition (4.3) is trivially true for functionals for which the bilinear form of its second derivative is
defined by a bounded kernel Kφ(f)(x, y). In the case of integral functionals we would formally have D2φ(f)(x, y)

= D2φ(f)(x)δ0(x− y), where δ0 is the usual Dirac delta.
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Let K : R→ R be a symmetric, non negative and bounded density function supported over T . Then define
K(u) : Rd → R as

K(u) =
d∏
l=1

K(ul).

Consider the following kernel estimator of f ,

fh(x) =
1

hd

∫
T
K

(
u− x

h

)
ITn (u)du, (4.4)

h = n−ζ and ITn defined in (3.4).
Based on this pointwise estimator, we construct an estimator of φ(f), improving the evaluation of φ(fh) with

a linear term based on the derivative of the functional. Define,

φn(f) = φ(fh) +

∫
T
Dφ(fh)(λ)(ITn − fh)(λ) dλ. (4.5)

We have the following result,

Theorem 4.1. Assume that F and Φ satisfy (2.4, 2.5, 4.1) and (4.2). Assume that γ defined in (3.3) and ζ
defined in (4.4) satisfy

γ < 1 +
1

β

(
1−

d

2(1 + δ)

)
(4.6)

d

2(1 + δ)(1 + β)
< ζ <

2

5
(4.7)

and that β defined in (4.1) and δ defined in (4.2) satisfy

d

2
< 2(1 + δ)(1 + β)/5. (4.8)

Then for f ∈ F and φ ∈ Φ,

sup
φ∈Φ

sup
f∈F
|Ln|

1/2E(φn(f)− φ(f)) = o(1) and (4.9)

|Ln|
1/2(φn(f)−Eφn(f))

D
→N (0, 2(2π)d

∫
T

(Dφ(f)f)2(λ)dλ. (4.10)

Remark 4.2. As a consequence of the above set of restrictions we have d ≤ 3 as in Theorem 3.2. For d = 2,
β has to be greater than 1/4 and for d = 3, β > 7/8 (if δ = 1).

Remark 4.3. For d = 1 the proof of Theorem 4.1 yields that the most severe restriction on the regularity of
the spectral density is given by the error of a first order expansion. This error is given by a term of the type
‖f − fh‖2, with fh defined in equation (4.4) (as d = 1 we may use γ = 1 in Eq. (3.3)). This suggests the
convenience of studying estimators based on a second order expansion of the nonlinear functional φ.

As a corollary of Theorem 4.1 it follows from the results in Section 3 that φn(f) is an asymptotically efficient
estimator of φ(f) for the quadratic loss function.

Requiring from φ to be Fréchet differentiable on the entire L2 can be a restrictive condition for certain
interesting examples. Consider, for example, the functionals φB and φS , corresponding to the Burg entropy



EFFICIENT ESTIMATION OF GAUSSIAN FIELDS 31

and the Shannon entropy respectively, which are not Fréchet differentiable on the entire L2 but only are so on
the set F of spectral densities satisfying (2.1). In both cases a slight modification to the proof of Theorem 4.1
yields the asymptotic minimum variance Gaussian behavior of the estimator defined in Theorem 4.1. Consider
the Burg entropy functional

φB(f) =

∫
T

log f(λ) dλ

and the Shannon entropy functional

φS(f) =

∫
T
f(λ) log f(λ) dλ.

Then

DφB(f)(λ) =
1

f(λ)

which is well defined and bounded over F . Consider the truncated functional

φNB (f) =

∫
T

log(f(λ) ∨
1

N
) dλ.

It follows that φNB satisfies

‖D2φNB (f)−D2φNB (g)‖ ≤ CN2‖f‖∞‖g‖∞‖f − g‖ (4.11)

with C independent of N . Considering the similar truncation φNS (f) of φS(f), we have the following corollary
of Theorem 4.1

Corollary 4.4. If F satisfies (2.1) and (4.1) then there exists η = η(δ, γ, ζ, β), η > 0 such that for N = O(nη)

nd/2E(φNB (ITn )− φB(f)) = o(1) (4.12)

nd/2(φNB (ITn )−EφNB (ITn ))
D
→N (0, 2(2π)2d) (4.13)

and

nd/2E(φNS (ITn )− φS(f)) = o(1), (4.14)

nd/2(φNS (ITn )−EφNS (ITn ))
D
→N (0, 2(2π)d

∫
T

[log(f(λ)) + 1]2f2(λ) dλ). (4.15)

5. Proofs

Proof of Lemma 2.3: In order to prove this Lemma we will follow the ideas of the proof of Theorem 1 in
Avram [1] and those of Theorem 5.1 in Dahlhaus [7] on the convergence of the trace of products of Toeplitz
matrices and their inverses.

We also need a result obtained by Doukhan et al. [11]. Actually, they deal with tapered Toeplitz matrices
(tapering functions are introduced in Sect. 3), so that non tapered matrices are just a particular case. Let Tn(f)
be the Toeplitz matrix associated with a function f . We have that Tn(f) is a Hermitian matrix, and if f is real
valued and even, then Tn(f) is real and symmetric.
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LetA be a linear operator on a finite-dimensional euclidean spaceK of dimension dK . Assume A is symmetric,
and let λj , j = 1, . . . , dK be its eigenvalues. The p-Schatten norms (for symmetric operators) are defined as
follows:

‖A‖p = [
dK∑
j=1

(λj)
p]1/p for 1 ≤ p <∞

‖A‖∞ = max
1≤j≤dK

λj for p =∞.

We have the following result,

Proposition 5.1. (Doukhan et al. [11]) Let f belong to Lp(T ), 1 ≤ p ≤∞. Then,

‖Tn(f)‖p ≤ |Ln|
1/p‖f‖p. (5.1)

Proof of (2.7): Actually (2.7) is a particular case of the more general result,

Lemma 5.2. Let {fk}1≤k≤p be a collection of functions that satisfy the conditions of Lemma 1. Then,

1

|Ln|
Tr

[
p∏
k=1

Tn(fk)

]
−

∫
T

p∏
k=1

fk(x) dx = o(Mp). (5.2)

Following Avram [1], the proof of (5.2) is done by induction on the number s ≤ p of those fk which are
non-polynomials. First assume fk, k = 1, . . . , p are polynomials (s=0), then (5.2) holds by multilinearity. Now,
for l ∈ Zd let Fl ∗ fk be the Féjer polynomial of fk. By the induction hypothesis,

1

|Ln|
Tr

[
Tn(Fl ∗ f

1)
s∏

k=2

Tn(fk)

]
−

∫
T
Fl ∗ f(x)

s∏
k=2

fk(x) dx = o(Mp). (5.3)

Consider the first term of the r.h.s. of (5.3). Given ε > 0, there exists l ∈ Zd such that ‖Fl ∗ f − f‖2 < ε for all
f ∈ F . Then it follows by Proposition 5.1 that

1

|Ln|
Tr

[
Tn(Fl ∗ f

1 − f1)
s∏

k=2

Tn(fk)

]
≤

1

|Ln|

∥∥∥∥∥
[
Tn(Fl ∗ f

1 − f1)
s∏

k=2

Tn(fk)

]∥∥∥∥∥
1

≤
1

|Ln|
‖Tn(Fl ∗ f

1 − f1)‖2‖
s∏
k=2

Tn(fk)‖2 ≤ ε(2π)d(p−1)Mp−1.

In our case we have used pk = ∞ because the functions are bounded, and have approximated by the Féjer
polynomials in L2. As a consequence of the equicontinuity condition in (2.3), since F is a closed, uniformly
bounded (by condition (2.2)) and equicontinuous class of functions fromL2, by the Fréchet-Kolmogorov theorem,
there exists a uniform bound over all this class.

Similarly, the second term of the r.h.s. of equation (5.3) tends to
∫
T f

1(x)
∏s
k=2 f

k(x) dx at the stated rates,
for all f ∈ F .

Proof of (2.8): For the proof of the second part of Lemma 2.3 we shall use a less general version of Theorem 5.1
in Dahlhaus [7]. In our case, we require the uniform continuity condition given by (2.3).

Lemma 5.3. Assume that f belongs to F where the latter satisfies (2.1) and (2.3). Assume that g ∈ L∞. Then

|Tr[(T−1
n (f)Tn(g))p − Tn(

(
g

f

)p
)]| ≤ o(|Ln|). (5.4)
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Proof of Lemma 5.3: We follow the same line of proof as Dahlhaus [7] and shall divide the proof into several
lemmas. Assume without loss of generality that Ln is a square of edge length n. Given a matrix A, consider
its norm ‖A‖∞. We have

‖A‖ = sup
x∈Cnd

(
x′A′Ax

x′x

)
where A′ is the conjugate transpose of A. Then,

Lemma 5.4. Under conditions (2.1, 2.2) and (2.3) if ‖f‖∞ < M we have

Dα(f) = ‖I − Tn(f)1/2Tn(((2π)2df)−1)Tn(f)1/2‖22 = o(|Ln|Mm). (5.5)

Proof of Lemma 5.4: We have that the l.h.s. of (5.5) is equal to

|Ln| − 2Tr[Tn(f)Tn(((2π)2df)−1)] + Tr[(Tn(f)Tn(((2π)2df)−1))2].

The proof follows from (2.7), using conditions (2.1–2.3) and ‖f‖∞ < M . We have used that∫
T
f(x)(2π)2df−1(x) dx =

∫
T

(f(x)(2π)2df−1(x))2dx = |Ln|.

Lemma 5.5. Let f and g be two positive, even functions with ‖g‖∞ < M and ‖f−1‖∞ < m, then

‖Tn(f)−1/2Tn(g)1/2‖∞ = O(Mm).

Proof of Lemma 5.5: As Tn(f) is invertible, we have

‖Tn(f)−1/2Tn(g)1/2‖∞ = ‖Tn(g)1/2Tn(f)−1/2‖∞ = sup
|x|=1

xtTn(g)x

xtTn(f)x
≤

∫
T |g(λ)||

∑
j xje

−ijλ|2∫
T |f(λ)||

∑
j xje

−ijλ|2
≤Mm.

Now, continue with the proof of Lemma 5.3 as in the proof of Theorem 5.1 in Dahlhaus [7].

Proof of Theorem 2.1: It is essentially the same as in Khas’minskii et al. [15]. Let

g̃N =

{
g if |g| ≤ N
0 if |g| > N

and let gN be an approximation to g̃N satisfying (2.3). Define

ψN (λ) = (f(λ)Dφ(f)(λ))N ‖(fDφ(f))N‖
−2.

Let θ = φ(f) and

fτ (λ) = f(λ) + (τ − θ)fN (λ)ψN (λ).

For large enough N , ‖(fDφ(f))N‖ > 0 .
If |τ − θ| is small then fτ (λ) is a spectral density,

‖fτ − f‖ = |τ − θ|‖ψNf‖ ≤ |τ − θ|KN‖f‖ = O(|τ − θ|),

∣∣∣∣ 1f − 1

fτ

∣∣∣∣ ≤ KN |τ − θ|

fτ
= O(|τ − θ|)
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and
dfτ

dτ
= fN(λ)ψN (λ)

where this last expression does not depend on τ and satisfies (2.3).
Also, because of φ’s differentiability

φ(fτ ) = φ(f) + (τ − θ)

∫
T
f(λ)Dφ(f)((λ)ψN (λ)dλ + o(|τ − θ|) = τ + o(|τ − θ|)

since
∫
T fDφ(f)ψN = 1 + o(1).

Estimating φ(f), when f belongs to the family fτ is equivalent to estimating τ . Let Pn,τ be the distribution
of xn with spectral density fτ .

Using results of Davies (the proof can be found in Appendix II in Davis [9]) and Lemma 2.3 we have the
following lemma:

Lemma 5.6. If F satisfies conditions (2.1) and (2.3), if supf∈F ‖dfτ/dτ‖∞≤ CN and |τ − θ| = O(|Ln|−1/2),
then Pn,τ is LAN with asymptotic variance

Γθ
2

=
1

2(2π)d

∫
T
f−2 dfτ

dτ
|τ=θ and ∆θ = P−1

n,θ

1

2nd/2
d

dτ
Pn,τ |τ=θ.

The proof of Lemma 5.6 is given at the end of the proof of the theorem.
Following the definition of ∆ it is clear that

∆ ≥ lim
δ→0

lim inf
|Ln|→∞

inf
φn

sup
|τ−θ|<δ

Efτ {w(n1/2(φn − φ(fτ ))}

and now, because of Section 4 in Hajek [14], the above expression is bounded from below by

2π−1/2

∫ +∞

−∞
w(yΓ

−1/2
θ /2) exp{−1/2y2}dy = 2π−1/2

∫ +∞

−∞
w

(
y(2π)d/2

√
2

[∫
T

fN

f2
ψ2
Ndλ

]−1/2
)

exp{−1/2y2}dy.

Letting N →∞ the proposition is thus proved.

Proof of Lemma 5.6: Define θ = φ(f0). Let τ = θ + t|Ln|−1/2, for some t ∈ R. Call

∆θ =
1

2

1

|Ln|1/2
dPn,τ

dτ

∣∣
τ=θ

P−1
n,θ . (5.6)

From the definition of the multivariate Gaussian density, we have

dPn,τ

dτ
=

d

dτ

∫
R|Ln|

e−i
txnye−1/2tyΣτy dy (5.7)

where

(Στ )kj =

∫
T
fτe

i(j−k)λdλ.

In the multidimensional case, k and j are multi–indices so that matrix Σ may be considered (w.l.o.g.) by
columns. That is, (Σ)kj refers to the term in column m = (j1 − 1)n + (j2 − 1)n + · · · + jd and row
l = (k1 − 1)n+ (k2 − 1)n+ · · ·+ kd.

Since ∫
R|Ln|

ykyje
−itxnye−1/2tyΣτy dy =

∂2

∂xj∂xk

∫
R|Ln|

e−i
txnye−1/2tyΣτy dy,
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we have

dPn,τ

dτ
= Pn,τ

∑
k∈Ln

∑
j∈Ln

∫
T

dfτ

dτ
ei<k−j,λ>dλ

−ajk +
∑
l,m

xlxmalkamj

 (5.8)

where Σ−1
τ = (ajk). Set

(Σ′τ )kj =

∫
T

dfτ

dτ
ei(j−k)λdλ.

With this notation,

∆θ =
1

2

1

|Ln|1/2
[
txnΣ−1

θ Σ′θΣ
−1
θ xn − Tr(Σ−1

θ Σ′θ)
]
. (5.9)

We have,

1. E(∆θ) = 0.
2. V ar(∆θ) = 1

2
1
|Ln|

∑
ς2i where ςi are the eigenvalues of Σ−1

θ Σ′θ.

3. cumm(∆θ) = 1
2

1
|Ln|m/2Tr(Σ

−1
θ Σ′θ)

m.

In order to prove the first part of the lemma, we must show that

V ar(∆θ)→
Γθ
2

=
1

2(2π)d

∫
π

f−2dfτ

dτ
|τ=θ (5.10)

and that

lim
|Ln|→∞

cumm(∆θ) = 0. (5.11)

In order to complete the proof, we must verify that the sum of remaining terms of the logarithm of the likelihood
ratio minus ∆θ tends to zero in probability. The proof can be found in Davis [9] (cf. Th. 4.2). We shall give a
sketch.

Set

An = 1/2
[

log det(Σθ)− log det(Στ ) +t xnΣ−1
θ xn −t xnΣ−1

τ xn

−t|Ln|−1/2[txnΣ−1
θ Σ′θΣ

−1
θ xn − Tr(Σ−1

θ Σ′θ)] + 1/2t2Γθ
]
. (5.12)

We want to show that An tends to zero in probability. It will be shown that both the expectation and the
variance tend to zero. First, we calculate the expectation.

E(An) = 1/2

[
log det(Σθ)− log det(Στ ) + Tr(I −ΣθΣ

−1
τ ) +

t2

2|Ln|
Tr(I −Σ

′2
θ Σ

−2
θ )

]
.

From linear algebra it is known that,

‖Tn(f)‖∞ ≤ ‖f‖∞ and ‖Tn(f)−1‖∞ ≤ ‖f
−1‖∞, (5.13)

Tr(AB) ≤ ‖A‖2 ‖B‖2, (5.14)

‖AB‖2 ≤ ‖A‖2‖B‖∞, (5.15)

‖A‖∞ ≤ ‖A‖2 ≤ |Ln|
1/2‖A‖∞. (5.16)
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Also if ‖A‖∞ < 1 then

log |I +A| − Tr(A) +
1

2
Tr(A2) ≤

1

3
‖A‖∞‖A‖

2
2/(1− ‖A‖∞)3 (5.17)

and if A = A(θ) and B = B(φ) are differentiable, then

Tr(A(θ)B(φ)) = Tr

([
A(0) + θ

d

dθ
A(θ1)

] [
B(0) + φ

d

dφ
B(φ1)

])
(5.18)

for 0 < θ1 < θ and 0 < φ1 < φ.
Call A = ΣθΣ

−1
τ − I. We have

E(An) ≤ 1/6‖A‖∞‖A‖
2
2(1− ‖A‖∞)3 + 1/4[t2Tr(Σ−2

θ (Σ′θ)
2)− Tr(A2)]

since

‖A‖∞ ≤ ‖Σθ −Στ‖∞‖Σ
−1
τ ‖∞ ≤ Kt|Ln|

−1/2 < 1 (5.19)

by the first expression in (5.13). Also, ‖fτ − f‖∞ ≤ KNt|Ln|−1/2 and ‖Σ−1
τ ‖∞ <∞ again by (5.13).

Making use of the bounds obtained for ‖A‖∞ and the inequality stated in (5.15), it follows that the first
summand in E(An) is O(|Ln|−1/2). Defining A(τ) = B(τ) = Σ−1

τ (Σθ − Στ ), using the relations |τ − θ|
= t|Ln|−1/2, A(θ) = 0 and d

dτA(τ) = Σ−1
τ Σ′τ , in view of equation (5.18) we have that the second term is equal

to

1/4
t2

|Ln|
Tr(Σ−2

θ (Σ′θ)
2 −Σ−1

θ1
Σ′θΣ

−1
θ2
Σ′θ). (5.20)

Again by (5.13) we have that

‖Σ−1
θ −Σ

−1
θ1
‖∞ ≤ |f

−1 − f−1
θ1
| = O(|Ln|

−1/2). (5.21)

Rewrite (5.20) as

1/4
t2

|Ln|
Tr(Σ−2

θ (Σ′θ)
2 −Σ−1

θ1
Σ′θΣ

−1
θ Σ′θ) + 1/4

t2

|Ln|
Tr(Σ−1

θ1
Σ
′

θΣθ
−1Σ

′

θ −Σ
−1
θ1
Σ
′

θΣ
−1
θ2
Σ
′

θ). (5.22)

The first term in (5.22), following (5.14, 5.16, 5.17) and (5.21) is bounded by

‖Σθ‖
2
∞‖Σ

−1
θ ‖∞O(|Ln|

−1/2). (5.23)

By (5.13) this expression is bounded as dfτ (·)
dτ and f−1(·) are bounded. The second term in (5.22) can be

controlled in an equivalent fashion.
Now consider the variance. We have V ar(An) = 2

∑
i∈Ln

ς2i with ςi the eigenvalues of

Υτ = 1/2

[(
Σθ
−1Σ−1

τ −
t

|Ln|1/2
Σθ
−1Σ′θΣ

−1
θ1

)
Σθ

]
.

Using the same arguments as for the expectation,

V ar(An) ≤ t2‖Σ
′

θ‖∞‖Σ
−1
θ1
−Σ−1

θ ‖∞‖Σ
−1
θ2
−Σ−1

θ ‖∞ = O

(
1

|Ln|

)
· (5.24)



EFFICIENT ESTIMATION OF GAUSSIAN FIELDS 37

We remark that the above bounds are based on inequalities in (5.13) as applied to the difference |f − fτ |.
To complete the proof of Lemma 5.6, the convergence in distribution of ∆θ is a consequence of Lemma 2.3.

This is just because its p-cumulants with p > 2 are given by

2p−1(p− 1)!
Tr(Tn(f)Tn(φ))p

|Ln|p/2
·

Proof of Theorem 3.1: We have

E(In(φ)) = 2πd
∑
|sk|<nk

csφsfs

|Ln|
=

1

|Ln|
Tr(Tn(φ)Tn((2π)df))

=
1

|Ln|
Tr(Tn(φ(2π)df)) +O

(
|Ln|1−1/d

|Ln|

)
E(I∗n(φ)) = 2πd

∑
|sk|<nk

φsfs = 2πd
∑
|sk|<nk

φsfs +

∫
T
φf − 2πd

∑
s

fsφs

=

∫
T
φf − 2πd

∑
s6∈α

φsfs ≤

∫
T

2πd

|Ln|

∑
s

|s|φsfs =

∫
T
φf +O(|Ln|

−1)

where O(|Ln|−1) is uniform for f ∈ F and φ ∈ Φ. Also, we have

V ar(In(φ)) =
∑
s

∑
t

φsφt

|Ln|2
E

 ∑
l∈Ln−s

xlxl+s
∑

j∈Ln−t

xjxt+j − (2π)2dcsctfsft


and

V ar(I∗n(φ)) =
∑
s

∑
t

φsφt

csct
E

 ∑
l∈Ln−s

xlxl+s
∑

j∈Ln−t

xjxt+j − (2π)2dcsctfsft

 .

It follows that,

|V ar(I∗n(φ)) − V ar(In(φ))| ≤ (2π)2d
∑
s

∑
t

[
1

csct
−

1

|Ln|2

]
φsφtK|Ln|

=
(2π)2d

|Ln|

∑
s

∑
t

φsφt

[
|Ln|2 − csct

csct

]
=

(2π)2d

|Ln|

∑
s

∑
t

φsφt|s|
2|t|2

[
|Ln|2 − csct
csct|s|2|t|2

]

with [
|Ln|2 − csct
csct|s|2|t|2

]
= O

(
1

mn

)
·

Let τk be the eigenvalues of Tn((2π)df)Tn(φ). We have

V ar(|Ln|
1/2In(φ)) =

2

|Ln|

∑
k∈Ln

τ2
k .



38 C. LUDEÑA

So that it follows from Lemma 2.3 that

V ar(|Ln|
1/2In(φ)) =

2

|Ln|
Tr(Tn((2π)2df2φ2)) +O(m−1

n ) = 2(2π)d
∫
T
f2φ2 +O(m−1

n ).

Now we shall use the fact that Vn is asymptotically Gaussian to show that V ∗n also is so. Let φN be a
trigonometric polynomial of degree N, N = (N1, ..., Nd). In this case

In(φN ) =
∑
|s1|≤N1

. . .
∑
|sd|≤Nd

φsr̂s

where s = (s1, . . . , sd), and

r̂s =
1

|Ln|

∑
l∈Ln−s

xlxl+s, rs = E(xlxl+s).

Since Vn is Gaussian, then

|Ln|
1/2

(
r̂s −

cs

|Ln|
rs

)
is also Gaussian for any s such that |sk| ≤ Nk, k = 1, . . . , d.

Let

r̃s =
1

cs

∑
l∈Ln−s

xlxl+s.

If we prove that

|Ln|
1/2(r̃s − rs) (5.25)

is asymptotically Gaussian, then we would have proved this property for |Ln|1/2V ∗n in the case of trigonometric
polynomials since

|Ln|
1/2V ∗n (φN ) = |Ln|

1/2
∑
|sk|≤N

φs(r̃s − rs),

where the r.h.s. is a linear combination of terms given by (5.25).
In order to show the asymptotic normality of (5.25), we notice that we can rewrite this expression as

|Ln|3/2

cs

(
r̂s −

cs

|Ln|
rs

)
and that |Ln|

cs
tends to one because N is fixed. Thus, because both V ∗n and Vn have equivalent variances, we

can write

|Ln|
1/2V ∗n (φN )→N (0, σ2

N ), σ2
N =

∫
T
φ2
Nf

2

or equivalently,

E
(
eiu|Ln|

1/2V ∗n (φN )
)

= e−u
2/2σ2

N . (5.26)

Asymptotic normality in the general case is obtained by approximating φ ∈ L2(T ) by trigonometric polynomials,
and letting N →∞ in (5.25).

Proof of Theorem 3.2: The convergence in distribution of the l.h.s. of (3.7) is a consequence of Proposition 5.1,
given above, and has been proved in Doukhan et al. [11].
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To show the convergence to zero of the l.h.s of equation (3.6), we will verify that

nd/2E

∫
T
φ(λ)(ITn − f)(λ) = o(1), (5.27)

and that o(1) is uniform for any f ∈ F and φ ∈ Φ. To verify (5.27) assume first that d = 1. Then

∫ π

−π

|u|β+1

sin2 u/2

∣∣∣∣∣∣
n−1∑
j=0

h

(
j − 1

n

)
− h

(
j

n

)
eiuj

∣∣∣∣∣∣
2

du

=

∫ π

−π

|u|β+1

sin2 u/2

∣∣∣∣∣∣
n1−γ∑
j=0

nγ−1eiuj +
n∑

j=n1−γ

nγ−1eiuj

∣∣∣∣∣∣ |2 du
= (nγ−1)2

∫ π

−π

|u|β+1

sin2 u/2

∣∣∣∣∣∣
n1γ∑
j=0

eiuj +
n∑

j=n1−γ

eiuj

∣∣∣∣∣∣
2

du (5.28)

= (nγ−1)2

∫ π

−π

|u|β+1

sin2 u/2

∣∣∣∣ sin(2n1−γ − 1)u/2

sinu/2
(e−i(n−n

1−γ ) + 1)

∣∣∣∣2 du ≤ 4nγ−1

∫ π

−π

|u|β+1

sin2 u/2
Fn1−γ (u) du

where Fn(t) is the Féjer kernel. Now we use the fact that the Fourier coefficients of b(u) = |u|β+1

sin2 u/2
are of order

bk = O(|k|−β). It follows that

nγ−1

∫ π

−π

|u|β+1

sin2 u/2
Fn1−γ (u) du = O(nγ−1(n1−γ)1−β). (5.29)

We have t(x) − t(0) = x
∫ 1

0 Dt(θx) dθ. Thus, the l.h.s. of (5.27) can be written as

1

H2(0)

∫ π

−π
(t(u)− t(0))

1

sin2 u/2

∣∣∣∣∣∣
n−1∑
j=0

(
h(
j + 1

n
)− h(

j

n
)

)
e−iuj

∣∣∣∣∣∣
2

du

=
1

H2(0)

∫ π

−π

u

sin2 u/2

∫ 1

0

(Dt(θu)−Dt(0)) dθ ×

∣∣∣∣∣∣
n−1∑
j=0

(
h(
j + 1

n
)− h(

j

n
)

)
e−iuj

∣∣∣∣∣∣
2

du

≤
K

H2(0)

∫ π

−π

|u|1+β

sin2 u/2

∫ 1

0

θβ dθ ×

∣∣∣∣∣∣
n−1∑
j=0

(
h(
j + 1

n
)− h(

j

n
)

)
e−iuj

∣∣∣∣∣∣
2

du. (5.30)

The second equality is true because

u

sin2 u/2

∣∣∣∣∣∣
n−1∑
j=0

(
h(
j + 1

n
)− h(

j

n
)

)
exp−iuj

∣∣∣∣∣∣
2

is an odd function and Dt(0) is a constant, so that we are integrating an odd function over T . The inequality is
a consequence of (3.5). So under the theorem’s conditions over β and γ, (5.27) follows from (5.29). Finally the
multivariate result is a consequence of the multiplicative structure of Hr(u) and the multidimensional Taylor
expansion of t(x). Notice that the bounds in equation (5.29) only depend on condition (3.5).
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The proof of (3.8) proceeds in the same manner as the proof of Lemma 2.3 in Khas’minskii et al. [15].

Proof of Theorem 4.1: Let us first notice that

φn(f)− φ(f) = φ(fh)−φ(f)−

∫
T
Dφ(fh)(fh − f)(λ) dλ

+

∫
T
Dφ(f)(ITn − f)(λ) dλ+

∫
T

(Dφ(fh)−Dφ(f))(ITn − f)(λ) dλ.

Because of the regularity conditions over φ given in (4.2)

|φ(fh)− φ(f)−

∫
T
Dφ(fh)(fh − f)(λ) dλ| ≤ ‖fh − f‖ sup

0<θ<1
‖Dφ(fh + θ(fh − f))−Dφ(fh)‖ ≤ K‖fh − f‖

2.

It then follows that we can write φn(f) − φ(f) = An + Bn + Cn where |An| ≤ K‖fh − f‖2 and nd/2Bn is
asymptotically Gaussian (for all f ∈ F and all φ ∈ Φ) as seen in Theorem 3.2 for d ≤ 3. Note that in this case
(3.5) is a consequence of (4.1). On the other hand,

Cn =

∫
T

(Dφ(fh)−Dφ(f))(λ) (ITn − f)(λ) dλ =

∫
T
D2φ(f)(fh − f)(ITn − f)(λ) dλ

+

∫
T

(fh − f)(ITn − f)(λ)

∫ 1

0

(D2φ(f + θ(fh − f))−D2φ(f))(λ) dθdλ = J + L.

Because of (4.2) we have

L ≤

∫ 1

0

θδ dθ‖(fh − f)(ITn − f)‖ ‖fh − f‖
δ ≤ ‖(fh − f)‖4 ‖(I

T
n − f)‖4 ‖fh − f‖

δ.

To prove the convergence in distribution of the l.h.s. of equation (4.10), we must verify that nd/2An and nd/2Cn
tend to zero in probability for all f ∈ F and φ ∈ Φ.

The proof is completed by the following lemma:

Lemma 5.7. Assume that F and Φ satisfy (4.1) and (4.2). Then, under the conditions of Theorem 4.1 for γ
and ζ we have that nd/2An and nd/2Cn tend to zero in probability for all f ∈ F and φ ∈ Φ.

Remark 5.8. If the bilinear form which defines the second derivative of the functional φ (see Eq. (4.3)) is
defined by a two variable kernel Kφ(f), bounded uniformly for f ∈ F , the term Cn above is actually bounded

by K‖fh− f‖1+δ ‖ITn − f‖, which can be controlled in the same manner as ‖fh− f‖2. Then Lemma 5.7 follows
using essentially the same arguments. The more general case described in (4.3) can also be controlled in a
similar fashion.

To prove Lemma 5.7 we will show that for all f ∈ F and φ ∈ Φ,

nd/2E‖fh − f‖
2 → 0, (5.31)

E

(
nd/2

∫
T
D2φ(f)(fh − f)(λ)(ITn − f)(λ) dλ

)2

→ 0 (5.32)

and

nd/2E‖fh − f‖4‖I
T
n − f‖4‖fh − f‖

δ → 0. (5.33)
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In order to do this we need to give satisfactory bounds for E‖fh − f‖pp, with p = 2, 4.
It can be shown that (see Dahlhaus [5]):

• For γ as defined above

EITn (λ) = f(λ) +O

(
1

n

1+β(1−γ)
)

•

Cov(ITn (µ), ITn (λ)) = C0

(∣∣∣∣H2(λ+ µ)

H2(0)

∣∣∣∣2 +

∣∣∣∣H2(λ− µ)

H2(0)

∣∣∣∣2
)

(1 + o(1)).

• There exists a family of summable functions Lns (λ) such that |H1(λ)| ≤ KLn0 (λ) (see Dahlhaus [5], Eq. (6));
Lns (λ) ≤ logs nLn0 (λ) and

∫
T Lp(λ−µ)Lq(−λ+ν) dλ ≤ Lp+q+1(ν−µ) (see Dahlhaus [5], Lem. 2). Although

Dahlhaus’ proofs are one-dimensional, the multiplicative structure of functions Hr(λ) allows for a direct

generalization to higher dimensions. In this case n should be changed to nd and logn to logd n.

We are ready to calculate E‖fh − f‖2. First of all,

E‖fh − f‖
2 ≤ C

(
E‖fh −Efh‖

2 +E‖Efh − f‖
2
)
.

Call

w(x) =
1

hd
K
(x
h

)
·

With this notation

fh =

∫
w(x− µ)ITn (µ)dµ.

Since for small enough h ∫
w(x− µ)dµ = 1,

then

f(x) =

∫
w(x− µ)f(x)dµ x ∈ T .

It follows that

Efh − f =

∫
w(x− µ)(f(µ)− f(x))dµ +O

(
1

n1+β(1−γ)

)
,

and, hence, we obtain

‖Efh − f‖
2 =

∫ ∫
w(x− µ)(f(µ)− f(x))dµ

∫
w(x− λ)(f(λ) − f(x))dλdx

+O

(
1

n1+β(1−γ)

)
×

∫
w(x− λ)(f(λ) − f(x))dλdx +O

(
1

n1+β(1−γ)

)
·
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Expanding f(λ) in a Taylor series, by (4.1) we have

∫
w(x− µ)(f(µ)− f(x))dµ =

d∑
l=1

∫
w(x− µ)(xl − µl)∫ 1

0

∂f

∂xl
(xl + θ(xl − µl))−

∂f

∂xl
(xl) dθ dµ

≤
d∑
l=1

B

∫
w(xj − µj)(xj − µj)

1+β = O(h1+β) = O

(
1

n(1+β)ζ

)
· (5.34)

The latter bound is proved using the change of variables zl = xl−µl
h

in each of the above integrals. Thus

‖Efh − f‖
2 = O

(
1

n1+β(1−γ)
+

1

n(1+β)ζ

)2

or more generally, for the case of p integrals we have

‖Efh − f‖
p
p = O

([
1

n1+β(1−γ)
+

1

n(1+β)ζ

]p)
· (5.35)

Second,

E‖fh −Efh‖
2 = E

∫ ∫ ∫
w(x− µ)w(x− λ)Cov(ITn (λ), ITn (µ))dλdµdx.

We see that∫ ∫
w(x− µ)w(x− λ)|H2(λ + µ)|2dλdµ =

∑
j

∑
k

h2(j/n)h2(k/n)

(∫
e−iλ(j−k)w(x− λ)dλ

)2

=
∑
j

∑
k

h2(j/n)h2(k/n)w2
j−ke

−2ix(j−k).

It then follows that∫ ∫ ∫
w(x− µ)w(x− λ)|H2(λ + µ)|2dλdµdx =

∑
j

h4(j/n)w2
0 = O(n).

On the other hand,∫ ∫
w(x− µ)w(x− λ)|H2(λ− µ)|2dλdµ =

∑
j

∑
k

h2(j/n)h2(k/n)w2
j−k

and ∫ ∫ ∫
w(x− µ)w(x− λ)|H2(λ− µ)|2dλdµdx = O(nd(1+ζ)).

Factorizing w(·) and H2(·) we obtain

E‖fh −Efh‖
2 = C0

1

H2
2(0)

O(nd(1+ζ))(1 + o(1))
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and since H2(0) = O(n)

E‖fh −Efh‖
2 = O

(
1 + o(1)

nd(1−ζ)

)
· (5.36)

Third, because of (5.35) we see that in order to study E‖fh−f‖pp for even p, it is enough to considerE‖fh−Efh‖pp.
For this purpose we consider the centered even moments of order greater than or equal to 2 of the tapered
periodogram.

We have that ∣∣∣∣∫ E(fh −Efh)p(x)dx

∣∣∣∣ (5.37)

is bounded by

K

∫ ∣∣∣∣∣∣
∫
T pd

E

p∏
j=1

w(x− αj)(I
T
n −EI

T
n )(αj)dα

∣∣∣∣∣∣ dx. (5.38)

As in the proof of Lemma 7 in Dahlhaus [5], we want to control the expectation of products of the centered
periodogram. As the underlying process is Gaussian, the expectation in equation (5.38) is the sum over all

possible ways of coupling a vector of size 2p. From the definition of dTn , and as the periodogram is centered,
this is equivalent to consider all couples (αj ,−αk) for 1 ≤ j < k ≤ p.

In order to formalize this construction, consider the set of all partitions P = {P = (P1, P2, . . . , Pp)} with
|Pj | = 2, j = 1, . . . , p of the table

a1 b1
a2 b2
...

...
ap bp.

Here ai and bi stand for the corresponding position of αi and−αi in equation (5.38). Define now variables βai and
βbi belonging to the set C = {β1,−β1, . . . , βp,−βp}, for each partition P = (P1, P2, . . . , Pp), taking into account
the Pj to which ai and bi belong. The sign depends on the order (given by that of the array) of appearance in
the corresponding Pj . We have

∑p
i=1 βai + βbi = 0. We say we have a subtable if

∑q2
i=q1

βai + βbi = 0, for some

1 ≤ q1 < q2 ≤ p. Since couples of the form (αj ,−αj) do not occur, we can decompose the table into at most
p/2 separate subtables of size 2.

Consider a partition which divides the table into p/2 separate subtables. For this partition the corresponding
term in equation (5.38) is,

n−pd
∫ ∣∣∣∣∣∣∣
∫
T p

p∏
j=1

w(x− αj)

∫
T 2

2∏
j=1

f(βaj )×
2∏
j=1

H1(αj − βaj )
2∏
j=1

H1(−αj − βbj )dβ

p/2

dα

∣∣∣∣∣∣∣ dx. (5.39)

Recalling the definition of w(x),

∫ p∏
j=1

|w(x− αj)| dx = O(h−(p−1)d) = O(ndζ(p−1)).
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So, as a consequence of equation (6) and Lemma 2 (a) in Dahlhaus [5] which give bounds for H(x) and its
integrals we obtain the upper bound for (5.39)

n−pd
(∫
T 2

f(λ1)f(λ2)LT2 (λ1 − λ2)

)p/2
×O(nd(p−1)ζ) = O(n−d(p/2−(p−1)ζ) log2 n). (5.40)

In obtaining the latter bound we have used the fact that f(λ) is bounded and have taken into account the
properties of the tapered periodogram (cf. Dahlhaus’ Lemma 2 (b)). Notice that (5.36) is just (5.40) when
p = 2.

It is not difficult to show that an upper bound for each of the terms in equation (5.38) is given when we
consider partitions which lead to p/2 separate subtables. As the total number of partitions depends only on p,
the upper bound found in equation (5.40) yields an upper bound for equation (5.38).

Proof of Lemma 5.7: We have to show the convergence to zero of the l.h.s. of equations (5.31, 5.32) and (5.33).
Under (4.6, 4.7) and (4.8) the convergence to zero of the l.h.s. of equation (5.31) follows from (5.35) and (5.36).
On the other hand, since δ ≤ 1 we have

nd/2E‖fh − f‖4‖I
T
n − f‖4‖fh − f‖

δ ≤ nd/2(E‖fh − f‖
4
4E‖fh − f‖

4δ)1/4(E‖ITn − f‖
2
4)1/2.

Now because of (5.35) and (5.40), we have asymptotically

E‖fh − f‖
4
4 = O

(
1

nd(2−3ζ)
+

1

n4(1+β)ζ
+

1

n2(1+β(1−γ))

)
E‖fh − f‖

4δ = O

(
1

nd(1−ζ)2δ
+

1

n4δ(1+β)ζ
+

1

n4δ(1+β(1−γ))

)
·

Under the lemma’s assumptions we have

d(2− 3ζ) + d(1− ζ)2δ > 2d

4(1 + β)ζ + 4δ(1 + β)ζ > 2d

4(1 + β(1− γ)) + 4δ(1 + β(1− γ)) > 2d

which asserts that the l.h.s. of equation (5.33) converges to zero provided we show that E‖ITn − f‖
4
4 = O(1).

Following the same line of proof as that used for equation (5.35) we can show that ‖EITn − f‖
4
4 → 0. Thus it is

enough to verify that E‖ITn −EI
T
n ‖

4
4 is bounded. As before, we have that

E

∫
T

(ITn −EI
T
n )2(µ) dµ ≤

1

n2
|

∫
T

∫
T 2

f(λ1)f(λ2)H1(λ1 − µ)H1(−λ1 + µ)

× H1(λ2 − µ)H1(−λ1 + µ) dλ1dλ2dµ|

=
1

n2

∫
T

(∫
T
f(λ)|H1(µ− λ)|2 dλ

)2

dµ = O(1).



EFFICIENT ESTIMATION OF GAUSSIAN FIELDS 45

Finally, we have

E

∫
T

(ITn −EI
T
n )4(µ) dµ ≤ n−4|

∫
T

(∫
T 2

f(λ1)f(λ2)H1(λ1 − µ)H1(−λ1 + µ)

× H1(λ2 − µ)H1(−λ1 + µ) dλ1dλ2

)2

dµ|

= n−4d

∫
T

(∫
T
f(λ)|H1(µ− λ)|2 dλ

)4

dµ = O(1).

Now consider the l.h.s. of equation (5.32). We rewrite this expression as

ndE

(∫
T
D2φ(f)(ITn −EI

T
n )(fh −Efh)(x) dx

)2

+ nd2E

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(EITn − f)(x1)

×(ITn −EI
T
n )(x2)(fh −Efh)(x1)(fh −Efh)(x2) dx + ndE

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(EITn − f)(x1)

×(EITn − f)(x2)(fh −Efh)(x1)(fh −Efh)(x2) dx + nd2E

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(ITn −EI
T
n )(x1)

×(ITn −EI
T
n )(x2)(Efh − f)(x1)(fh −Efh)(x2) dx + ndE

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(ITn −EI
T
n )(x1)

×(ITn −EI
T
n )(x2)(Efh − f)(x1)(Efh − f)(x2) dx + nd4E

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(ITn −EI
T
n )(x1)

×(EITn − f)(x2)(Efh − f)(x1)(fh −Efh)(x2) dx + ndE

∫
T 2

D2φ(f)(x1)D2φ(f)(x2)(EITn − f)(x1)

×(EITn − f)(x2)(Efh − f)(x1)(Efh − f)(x2) dx = A1 +A2 +A3 +A4 +A5 +A6 +A7.

First, remark

ndE

(∫
T
D2φ(f)(ITn − EI

T
n )(fh −Efh)(x) dx

)2

= nd
∫
T 4

D2φ(f)(x2)D2φ(f)(x4)w(x1 − x2)w(x3 − x4)

×E
4∏
j=1

(ITn −EI
T
n )(xj) dx ≤ O(nd(2ζ−1)). (5.41)

On the other hand, as in the proof of the convergence to zero of the l.h.s. of (5.33) it can be shown that for
odd p

∫
T p
|E(ITn −EI

T
n )(x1) . . . (ITn −EI

T
n )(xp) dx| = O(n−dp/2). (5.42)
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Thus, we have

A2 = 2ndE

∫
T 4

D2φ(f)(x1)D2φ(f)(x2)(EITn − f)(x1)w(x1 − x2)

×w(x3 − x4)(ITn −EI
T
n )(x2)(ITn −EI

T
n )(x3)(ITn −EI

T
n )(x4)

≤ nd‖w‖∞‖EI
T
n − f‖∞‖D

2φ(f)‖2∞

∫
T
w(x1 − x2)dx1

×

∫
T 3

|E(ITn −EI
T
n )(x2)(ITn −EI

T
n )(x3)(ITn −EI

T
n )(x4)| ≤ O

(
nd(5/2+ζ)

n3d+1+β(1−γ)

)
·

The bound in equation (5.43) is a consequence of the properties of the tapered periodogram, the definition of
w(·) and equation (5.42).

Using (5.35) and going through essentially the same steps as in the case of A2 we have,

A4 = O

(
nd(5/2+ζ)

n3d+(1+β)ζ

)
· (5.43)

Again using the properties of the tapered periodogram, equation (5.35) and going through the steps of the proof
of equation (5.33) we have

A3 = O(n−2(1+β(1−γ)))

A5 = O(n−2(1+β)ζ)

A6 = O(n−(1+β(1−ζ)+(1+β)ζ))

A7 = O(nd−2(1+β(1−γ)+(1+β)ζ))).

This completes the proof, under the lemma’s restrictions on γ, ζ and β.

Proof of Corollary 4.4: The proof of (4.12) follows from

E(φNB (f)− φB(f)) = E(φNB (f)− φNB (f)) + (φBN (f)− φB(f)).

The first term is o(nd/2) as φBN satisfies the conditions of Theorem 4.1. The second term is zero for large enough
N , since f is strictly positive. The convergence in distribution stated in (4.13) is a consequence of Theorem 4.1
for fixed N . The result follows by choosing η small enough so that (5.31, 5.32) and (5.33) tend to zero in
probability, as n → ∞. The asymptotic variance in (4.13) follows because DφNB = 1

f∨N which tends to 1
f as

N →∞.
The proof of statements (4.14) and (4.15) are obtained in a similar fashion.

I would like to thank the anonymous referees, whose very helpful suggestions have improved the presentation considerably.
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