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POISSON PERTURBATIONS ∗

Andrew D. Barbour
1

and Aihua Xia
2

Abstract. Stein’s method is used to prove approximations in total variation to the distributions
of integer valued random variables by (possibly signed) compound Poisson measures. For sums of
independent random variables, the results obtained are very explicit, and improve upon earlier work of
Kruopis (1983) and Čekanavičius (1997); coupling methods are used to derive concrete expressions for
the error bounds. An example is given to illustrate the potential for application to sums of dependent
random variables.

Résumé. On utilise la méthode de Stein pour approximer, par rapport à la variation totale, la
distribution d’une variable aléatoire aux valeurs entières par une mesure (éventuellement signée) de
Poisson composée. Pour les sommes de variables aléatoires indépendantes, on obtient des résultats très
explicites ; les estimations de la précision de l’approximation, construites à l’aide de la méthode de
“coupling”, sont plus exactes que celles de Kruopis (1983) et de Čekanivičius (1997). Un exemple sert
à illustrer le potentiel de la méthode envers les sommes de variables aléatoires dépendantes.
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1. Introduction

In a series of papers, beginning with the pioneering work of Presman (1983) and Kruopis (1986), and
continuing with those of Čekanavičius et al. (see for example, the references in Čekanavičius 1997), it has
been shown that signed compound Poisson measures can be used to make very close approximations in total
variation to the distributions of sums of independent integer valued random variables. Signed compound Pois-
son measures µ on the integers are measures of the form µ = exp{λ(F − E)} for some λ ∈ R, where F is any
probability distribution on the integers and E is the unit mass on 0: multiplication is interpreted as convolution,
and the exponential is defined through its power series. Such measures may be signed measures if λ < 0, but it
is always the case that µ{Z} = 1.

In this paper, we confine our attention to the very small subset of such measures of the form πµ,a, for µ > 0
and a ∈ R, having generating function

π̂µ,a(z) :=
∑
r≥0

zrπµ,a{r} = exp
{
µ(z − 1) + 1

2a(z2 − 1)
}
, (1.1)

which are concentrated on Z+, together with their translates

π(m)
µ,a , m ∈ Z; π(m)

µ,a {s+m} := πµ,a{s}, s ∈ Z+. (1.2)
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The generating function (1.1) is that of the convolution of the Poisson distribution Po(µ) and, for a > 0, the
distribution of 2Z, where Z ∼ Po(a/2); for a < 0, the measure πµ,a must be a signed measure, in view of
Raikov’s (1938) theorem. For many purposes, this class is already wide enough to give good approximations;
indeed, we often assume that µ is large but a is bounded, in which case πµ,a is a small perturbation of Po(µ),
a Poisson distribution with large parameter. In these circumstances, πµ,a{r} is positive even when a < 0,
except for very large values of r, and the total negative mass is exponentially small with µ: hence the signed
measure πµ,a could actually be replaced as an approximation by a probability distribution, with a very small
change in total variation.

In order to use measures from the family πµ,a as approximations, we need to have a way of showing how close
they are to the distribution of any given random variable. Previous work has largely concentrated on Fourier
methods, limiting the scope of applicability. Here, we show how Stein’s method can be used. For a > 0, the
measures πµ,a are compound Poisson distributions, and the general theory in Barbour and Utev (1998, 1999)
could be invoked. However, the particular form of the πµ,a allows us to prove better bounds on the solutions
of the Stein equation by a much easier argument, which is also valid for a < 0, provided that µ is large enough
by comparison to |a|. Indeed, the same method can be used to establish bounds on the solutions of the Stein
equation (Th. 2.5) which are of optimal order in µ, for a whole class of compound Poisson distributions. Bounds
of this order were previously known only for the Poisson distribution.

We first use Stein’s method to demonstrate that the measures πµ,a are often close to other, better known
distributions, so that approximation with respect to πµ,a can then be more easily understood. We then show how
to use the πµ,a to prove approximation theorems with respect to total variation distance for sums of independent
integer valued random variables, under much the same circumstances as are required for the usual central limit
theorem, and we give very explicit error bounds. For sums of independent indicator random variables, our
bounds have much better constants than those of Kruopis; for more general summands, explicit bounds seem
to be new. In particular, we show that the family (1.2), restricted to have 0 ≤ a < 1, can frequently be used
to give good approximations. This family consists entirely of probability distributions, and comes as near as
possible on Z to a family of translates of the Poisson distribution Po(µ) by any real displacement; furthermore,
for large µ, these distributions are extremely close to the negative binomial distribution with the same mean and
variance. Finally, we use a very simple example to illustrate that approximations of this kind can in principle
also be obtained for sums of dependent random variables.

2. A Stein equation

It follows directly from the definition in (1.1) that

µπµ,a{0} = πµ,a{1}; aπµ,a{r − 2}+ µπµ,a{r − 1} = rπµ,a{r}, r ≥ 2, (2.1)

from which it follows that πµ,a{f} = 0 for all f of the form

f(j) = ag(j + 2) + µg(j + 1)− jg(j) (2.2)

for bounded g, where, for a function f and a measure µ, µ{f} :=
∑
r f(r)µ{r}. This suggests a Stein equation

for the measure πµ,a. The following lemma gives the necessary properties of the solutions.

Lemma 2.1. For any µ > 0, a ∈ R such that µ + a > 0 and θ = |a|(µ + a)−1 < 1/2, and for any bounded
f : Z+ → R, there is a solution g = gf : Z+ → R to the Stein equation

ag(j + 2) + µg(j + 1)− jg(j) = f(j)− πµ,a{f}; j ≥ 0, (2.3)

which satisfies

‖gf‖ ≤
2

1− 2θ
(µ+ a)−1/2‖f‖; ‖∆gf‖ ≤

2
1− 2θ

(µ+ a)−1‖f‖, (2.4)

where ∆g(j) := g(j + 1)− g(j) and ‖ · ‖ applied to functions denotes the supremum norm.
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Proof. We construct gf as a perturbation of the solution g0 to the Stein equation

(µ+ a)g0(j + 1)− jg0(j) = f(j)− Po(µ+ a){f}, j ≥ 0, (2.5)

for the Poisson distribution Po(µ+ a) with mean µ+ a; g0 satisfies (Barbour et al., Lem. 1.1.1)

‖g0‖ ≤ 2(µ+ a)−1/2‖f‖; ‖∆g0‖ ≤ 2(µ+ a)−1‖f‖. (2.6)

To do this, define Tg for any bounded function g : Z+ → R to be the solution g̃ of the equation

(µ+ a)g̃(j + 1)− jg̃(j) = f(j)− Po(µ+ a){f} − a∆g(j + 1) + aPo(µ+ a){∆g(·+ 1)}, j ≥ 0. (2.7)

Consider the sequence (gn, n ≥ 0) defined by gn = Tgn−1, n ≥ 1, with g0 as in (2.5). Then, writing hn(j)
= gn(j)− gn−1(j), we have

(µ+ a)hn(j + 1)− jhn(j) = −a∆hn−1(j + 1) + aPo(µ+ a){∆hn−1(·+ 1)}, (2.8)

so that, from (2.6),

‖hn‖ ≤ 2|a|(µ+ a)−1/2‖∆hn−1‖; (2.9)

‖∆hn‖ ≤ 2|a|(µ+ a)−1‖∆hn−1‖ = 2θ‖∆hn−1‖. (2.10)

From (2.10) and (2.6), it then follows that

‖∆hn‖ ≤ (2θ)n‖∆g0‖ ≤ 2(2θ)n(µ+ a)−1‖f‖;

in conjunction with (2.9), this gives
‖hn‖ ≤ 2(2θ)n(µ+ a)−1/2‖f‖.

Hence gf = limn→∞ gn exists uniformly and satisfies Tgf = gf , and

‖gf‖ ≤
∑
n≥1

2(2θ)n(µ+ a)−1/2‖f‖+ ‖g0‖ ≤
2

1− 2θ
(µ+ a)−1/2‖f‖.

Furthermore, since Tgf = gf , it follows from (2.6) and (2.7) that

‖∆gf‖ ≤ 2(µ+ a)−1{‖f‖+ |a|‖∆gf‖},

so that ‖∆gf‖ ≤ 2
1−2θ (µ+ a)−1‖f‖. Finally, again since Tgf = gf , it follows from (2.7) that

agf (j + 2) + µgf(j + 1)− jgf (j) = f(j)− Po(µ+ a){f}+ aPo(µ+ a){∆gf(·+ 1)}, (2.11)

and applying πµ,a to both sides gives

0 = πµ,a{f} − Po(µ+ a){f}+ aPo(µ+ a){∆gf(·+ 1)},

so that, from (2.11), the function gf indeed satisfies (2.3).

The following corollary is immediate. The notation ‖ · ‖ is used with measures to denote the total variation
norm: if ν is a (signed) measure on Z, with positive and negative parts ν+ and ν−, then ‖ν‖ = ν+(Z)−ν−(Z).

Corollary 2.2. Suppose that µ, a ∈ R satisfy µ + a > 0 and θ = |a|(µ + a)−1 < 1/2. If W is any random
variable on Z+ such that

|E{ag(W + 2) + µg(W + 1)−Wg(W )}| ≤ ε (2.12)
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for all g = gf as in Lemma 2.1 with ‖f‖ ≤ 1, then ‖L(W )− πµ,a‖ ≤ ε. In particular, if

|E{ag(W + 2) + µg(W + 1)−Wg(W )}| ≤ ε0‖g‖+ ε1‖∆g‖ (2.13)

for all bounded g : Z+ → R, it follows that

‖L(W )− πµ,a‖ ≤
2

1− 2θ

{
(µ+ a)−1/2ε0 + (µ+ a)−1ε1

}
·

If W can take values in the whole of Z, the corresponding result is a little more complicated.

Corollary 2.3. Suppose that µ, a ∈ R satisfy µ + a > 0 and θ = |a|(µ + a)−1 < 1/2. Let W be a random
variable on Z such that

|E{ag(W + 2) + µg(W + 1)−Wg(W )}| ≤ ε0‖g‖+ ε1‖∆g‖ (2.14)

for all bounded g : Z→ R. Then it follows that

‖L(W )− πµ,a‖ ≤
2

1− 2θ

{
(µ+ a)−1/2ε0 + (µ+ a)−1ε1 + (1− θ)P[W ≤ −1]

}
· (2.15)

In particular, if also EW = µ+ a and VarW = µ+ 2a, then

‖L(W )− πµ,a‖ ≤
2

1− 2θ

{
(µ+ a)−1/2ε0 + (µ+ a)−1[ε1 + 1]

}
· (2.16)

Proof. For bounded f : Z+ → R, take gf as given by Lemma 2.1, and extend to gf : Z→ R by setting gf (j) = 0,
j ≤ 0. Note that gf(0) is not actually defined by (2.3), but that, from (2.3) with j = 0 and from (2.4),

(µ+ a)|gf(1)| = |f(0)− πµ,a{f} − a(gf(2)− gf (1))| ≤ (1 + ‖πµ,a‖)‖f‖+ |a| ‖∆gf‖ ≤
2

1− 2θ
‖f‖,

so that this extension continues to satisfy (2.4), provided that we have ‖πµ,a‖ ≤ (1− 2θ)−1.
For a ≥ 0, it is immediate that ‖πµ,a‖ = 1 ≤ (1− 2θ)−1. For a < 0, take any f with ‖f‖ ≤ 1, and use (2.5)

to give

πµ,a{f} − Po(µ+ a){f} =
∑
j≥0

((µ+ a)g0(j + 1)− jg0(j))πµ,a{j} = −aπµ,a{∆g0(·+ 1)},

the last line coming from (2.2), giving

‖πµ,a‖ ≤ 1 + 2|a|(µ+ a)−1‖πµ,a‖

from (2.6). Hence, if a < 0 and θ = |a|(µ+ a)−1 < 1/2, then

‖πµ,a‖ ≤ (1− 2θ)−1. (2.17)

In terms now of functions on Z, (2.3) is equivalent to

(f(j)− πµ,a{f})1{j≥0} = {agf(j + 2) + µgf (j + 1)− jgf (j)}1{j≥0}, (2.18)

defining the value of hf (j) = agf (j + 2) + µgf (j + 1) − jgf(j) for j ≥ 0, the definition of gf then giving
hf (−1) = agf(1) for j = −1, and hf (j) = 0 for j ≤ −2. Hence, from (2.14), it follows that, for any bounded
f : Z→ R,

|agf (1)P[W = −1] + E{(f(W )− πµ,a{f})1{W≥0}}| ≤ ε0‖gf‖+ ε1‖∆gf‖,
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and hence that

|Ef(W )− πµ,a{f}| ≤ 2‖f‖P[W ≤ −1] +
2

1− 2θ
|a|(µ+ a)−1‖f‖P[W = −1]

+
2

1− 2θ
{(µ+ a)−1/2ε0 + (µ+ a)−1ε1},

completing the proof of (2.15). The particular case then follows by applying Chebyshev’s inequality.

Remark. The Chebyshev bound for P[W ≤ −1] can of course be improved, if more information about W is
available.

The following corollary can also prove useful.

Corollary 2.4. Suppose that µi, ai satisfy µi + ai > 0 and θi = |ai|(µi + ai)−1 < 1/2, i = 1, 2. Then

‖πµ1,a1 − πµ2,a2‖ ≤ k(µ1 + a1)−1/2{|µ1 − µ2|+ |a1 − a2|},

with k = 2/(1− 2θ1) if a2 ≥ 0, k = 2/{(1− 2θ1)(1− 2θ2)} if a2 < 0.

Proof. Apply πµ2,a2 to (2.3) with a = a1 and µ = µ1, using the fact that πµ2,a2{f} = 0 for all f as given
in (2.2) with a = a2 and µ = µ2. This, together with (2.4), gives

|πµ2,a2{f} − πµ1,a1{f}| ≤ {|µ1 − µ2|+ |a1 − a2|}
2

1− 2θ1
(µ1 + a1)−1/2‖f‖ ‖πµ2,a2‖.

The corollary follows by taking arbitrary f such that ‖f‖ ≤ 1, and using (2.17) to bound ‖πµ,a‖.
The perturbation argument of Lemma 2.1 can easily be modified to cover a more general class of compound

Poisson distributions. This class is particularly useful in problems where a crude Poisson approximation is to
be refined.

Theorem 2.5. Let λi ∈ R+, i ≥ 1, satisfy

θ :=

∑
i≥1

iλi

−1∑
i≥2

i(i− 1)λi < 1/2. (2.19)

Then, for any A ⊂ Z+, the Stein equation∑
i≥1

iλig(j + i)− jg(j) = 1A(j)− CP (λ){A}, j ≥ 0, (2.20)

for the compound Poisson distribution CP (λ) has a solution g = gA satisfying

‖gA‖ ≤
1

1− 2θ

∑
i≥1

iλi

−1/2

; ‖∆gA‖ ≤
1

1− 2θ

∑
i≥1

iλi

−1

. (2.21)

These simple bounds are in stark contrast to the much more complicated behaviour of the solutions to the Stein
equation (2.20) which can occur when θ > 1/2. Note also that, by defining

θ :=

∑
i≥1

iλi

−1∑
i≥2

i(i− 1)|λi|,

signed compound Poisson measures such that
∑
i≥1 iλi > 0 and θ < 1/2 could also be covered. If only λ1 and λ2

are non–zero, the definition of θ reduces to that of Lemma 2.1.
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3. Approximating πµ,a

The measures πµ,a are not immediately familiar, especially since, for a < 0, they are not probability measures.
Our first use of the results of the previous section is therefore to show that the πµ,a are often close to more
widely used distributions. To start with, we show that, at least when |a| � µ, the measures πµ,a can be seen as
small perturbations of the Poisson distribution Po(µ). More precisely, for µ ≥ 1 and c1, c2 ∈ R, let ν(µ, c1, c2)
denote the (still possibly signed) measure on Z+ defined by

ν(µ, c1, c2){s} = Po(µ){s}
(
1 + c1µ

−1(s− µ) + 1
2c2µ

−2{(s− µ)2 − µ}
)
, (3.1)

s ∈ Z+, which satisfies ν(µ, c1, c2){Z+} = 1. As for πµ,a, if µ is large and c1, c2 remain bounded, there are
probability measures differing in total variation from the measure ν(µ, c1, c2) by an amount which is exponen-
tially small in µ. Under these circumstances, we show in the next two theorems that measures close to ν(µ, c1, c2)
are also close to the measure πµ′,a′ with

µ′ = µ+ c1 − (c2 − c21) and a′ = c2 − c21. (3.2)

We begin with a lemma, showing that ν(µ, c1, c2) almost satisfies a Stein equation of the form (2.3).

Lemma 3.1. Define µ′ and a′ as in (3.2), and suppose that µ, c1 and c2 are such that µ′ + a′ ≥ µ/2. Let
g : Z+ → R be any function satisfying ‖g‖ ≤ 4(µ′ + a′)−1/2 and ‖∆g‖ ≤ 4(µ′ + a′)−1, and define h by

h(j) = a′g(j + 2) + µ′g(j + 1)− jg(j).

Then |ν(µ, c1, c2){h}| ≤ k{3.1}(µ, c1, c2)µ−3/2, where

k{3.1}(µ, c1, c2) := 4
{

(|c1| |2a′ + c2|+ |c2|) + µ−1/2(2|a′|+ |c1|)|c2|+ µ−1|a′c2|
}
·

Proof. By definition, we have

ν(µ, c1, c2){h} = E
{(

1 + c1µ
−1(Z − µ) + 1

2c2µ
−2{(Z − µ)2 − µ}

)
× (a′g(Z + 2) + µ′g(Z + 1)− Zg(Z))

}
, (3.3)

where Z ∼ Po(µ). Now E(Zg(Z)) = µEg(Z + 1) for any g for which the expectations exist; using this identity
to eliminate powers of Z in (3.3) yields, after some computation,

2ν(µ, c1, c2){h} = E
{
k1∆2g(Z + 1) + a′c2∆3g(Z + 1) + c2µ

−1[a′∆2g(Z + 1) + c1∆g(Z + 1)− g(Z + 1)]
}
,

where k1 = c1(2a′ + c2), and a′ = c2 − c21, as in (3.2). The last two terms have expectations bounded by
8|c1c2|µ−2 and 8|c2|µ−3/2 respectively, because of the bounds on ‖g‖ and ‖∆g‖ and because µ′ + a′ ≥ µ/2.
Then the bound on ‖∆g‖ also shows that

|E∆2g(Z + 1)| ≤ 4(µ′ + a′)−1
∑
j≥1

|P[Z = j]− P[Z = j − 1]| ≤ 8
√

2e−1µ−3/2,

and that

|E∆3g(Z + 1)| ≤ 4(µ′ + a′)−1
∑
j≥1

|P[Z = j]− 2P[Z = j − 1] + P[Z = j − 2]| ≤ 16µ−2,

by Barbour et al., pp. 222 and 224. The lemma now follows by collecting terms.

As a consequence of Lemma 3.1, we have the following approximation.



POISSON PERTURBATIONS 137

Theorem 3.2. For µ ≥ max{1, 8|c2 − c21|, 2|c1|}, we have

‖ν(µ, c1, c2)− πµ′,a′‖ ≤ k{3.1}(µ, c1, c2)µ−3/2,

where µ′ and a′ are as in (3.2).

Proof. Take any f : Z+ → R with ‖f‖ ≤ 1, and construct gf using Lemma 2.1 with µ′ for µ and a′ for a. Note
that, by the assumption on µ, µ′+a′ ≥ µ/2 and 4|a′| ≤ (µ′+a′); hence, from Lemma 2.1, ‖gf‖ ≤ 4(µ′+a′)−1/2

and ‖∆gf‖ ≤ 4(µ′ + a′)−1. Now apply Lemma 3.1 in conjunction with (2.3) to give

|ν(µ, c1, c2){f} − πµ′,a′{f}| ≤ k{3.1}(µ, c1, c2)µ−3/2, (3.4)

from which the theorem follows.

Note that k{3.1}(µ, c1, 0) = 8|c1|3 and that k{3.1}(µ, 0, c2) = 4|c2|(1 + (2µ−1/2 + µ−1)|c2|). Thus ν(µ, c1, 0) is
close to πµ′,a′ for all |c1| � µ1/2, and ν(µ, 0, c2) is close to πµ′,a′ for all |c2| � µ. Hence, in particular, πµ,a can
be reasonably approximated by the member ν(µ+ a, 0, a) of the family ν(µ, c1, c2), as long as |a| � µ.

The theorems given so far are useful when πµ,a is a genuinely small perturbation of Po(µ), which is the case
if |a| � µ. However, it is at times useful to allow |a| to be of the same order of magnitude as µ, and still have
simple probability approximations to πµ,a. When a > 0, πµ,a is already a probability measure, and so no further
approximation is required. However, this family of compound Poisson distributions is less well known than the
negative binomial family, using which good approximations can often also be obtained, as in Corollary 4.8. If
a < 0, the obvious family to use is the binomial Bi(n, p). Here, the fact that n has to be integral requires
some small adjustment. Matching mean and variance requires that np = µ + a and that np(1 − p) = µ + 2a,
or, equivalently, that n = |a|−1(µ + a)2 and that p = |a|(µ + a)−1. If n so defined is not integral, choose ε
to satisfy |a|−1(µ − ε + a)2 = n = b|a|−1(µ + a)2c, where bxc denotes the largest integer m ≤ x, and set
p = |a|(µ − ε + a)−1. We can then use Bi(n, p) to approximate πµ−ε,a, and Bi(n, p) ∗ Po(ε) to approximate
πµ,a, since the convolution πµ−ε,a ∗ Po(ε), for any 0 ≤ ε ≤ µ, is just πµ,a. Our choice of ε is typically of order
µ−1|a|, and thus the convolution Po(ε)∗Bi(n, p) is a rather simple distribution with which to approximate πµ,a.
Binomial approximation is treated later in Theorem 4.1 as a special case of sums of independent indicators.

The binomial and negative binomial approximations are not the only possible choices. Another possibility
is to approximate πµ,a by a translate of a compound Poisson probability distribution, π(m)

χ,b as defined in (1.2),
with b ≥ 0. To achieve this, we first need to show that translating πµ,a by 1 changes the measure by at most
O(µ−1/2) in total variation.

Lemma 3.3. For any µ > 0 and a ∈ Z such that θ = (µ+ a)−1|a| < 1/2,∥∥∥πµ,a − π(1)
µ,a

∥∥∥ ≤ k(µ+ a)−1/2, (3.5)

where k may be taken to be 2/(1− 2θ) if a > 0, and 2/(1− 2θ)2 otherwise.

Proof. Use Lemma 2.1 and (2.2) to give

πµ,a{f(·+ 1)} − πµ,a{f} =
∑
j≥0

(agf(j + 3) + µgf (j + 2)− (j + 1)gf(j + 1))πµ,a{j}

= −πµ,a{gf(·+ 1)},

with ‖gf(·+ 1)‖ ≤ 2
1−2θ (µ+ a)−1/2‖f‖. Hence

|πµ,a{f(·+ 1)} − πµ,a{f}| ≤
2

1− 2θ
(µ+ a)−1/2‖πµ,a‖ ‖f‖.

If a ≥ 0, ‖πµ,a‖ = 1, and if a < 0 we have ‖πµ,a‖ ≤ 1/(1− 2θ) from (2.17), proving the lemma.

We are now in a position to prove our approximation by a translate of a compound Poisson distribution. We
use dxe to denote the smallest integer m ≥ x.
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Theorem 3.4. Suppose that a < 0 and that µ ≥ 5(|a| + 1). Define m = d|a|e, b = a + m = d|a|e − |a| and
χ = µ− 2m. Then ∥∥∥πµ,a − π(m)

χ,b

∥∥∥ ≤ 21(|a|+ 1)(µ+ a)−3/2.

If a ≥ 1 and µ ≥ 3a, take m = −bac, b = a− bac and χ = µ− 2m, giving∥∥∥πµ,a − π(m)
χ,b

∥∥∥ ≤ 16a(µ+ a)−3/2.

Remark. If a ∈ Z, then b = 0 and π(m)
χ,b is a shifted Poisson distribution. In all cases, 0 ≤ b < 1, so that πχ,b

is close to being Poisson if χ is large. Corollary 4.8 shows that πχ,b is even closer to the negative binomial
distribution with the same mean and variance.

Proof. Let Z ∼ πχ,b, so that, from (2.2),

E{bg(Z + 2) + χg(Z + 1)− Zg(Z)} = 0 (3.6)

for all bounded g. Now take any bounded f , and use Lemma 2.1 to show that

Ef(Z +m)− πµ,a{f} = E{agf(Z +m+ 2) + µgf (Z +m+ 1)− (Z +m)gf (Z +m)},

where gf (·+m) is bounded as in (2.4). Applying (3.6), it then follows that

Ef(Z +m)− πµ,a{f} = E{(a− b)gf (Z +m+ 2) + (µ− χ)gf (Z +m+ 1)−mgf(Z +m)}
= E{(a− b+m)gf(Z +m+ 2) + (µ− χ− 2m)gf(Z +m+ 1)} −mE∆2gf (Z +m)}
= −mE∆2gf (Z +m),

by choice of χ and b. But now∣∣E∆2gf(Z +m)
∣∣ ≤ ‖∆gf‖ ∥∥∥πχ,b − π(1)

χ,b

∥∥∥ ≤ 4(µ+ a)−1‖f‖ 4(χ+ b)−1/2 ≤ 16
√

5/3(µ+ a)−3/2‖f‖,

from Lemma 2.1 and Lemma 3.3, and because χ ≥ µ−2(|a|+ 1) ≥ 3µ/5 under the given conditions on µ and a;
note also that χ + b ≥ 4|b| under these conditions, as is needed to apply Lemma 3.3. Since 0 ≤ m < |a| + 1,
the first part of the theorem now follows. The proof of the second part is entirely similar, with the rôles of πµ,a
and πχ,b interchanged; now χ+ b ≥ µ+ a ≥ 4 ≥ 4b, simplifying the final calculation.

4. Applications: Independent summands

Let W =
∑n
i=1 Ii be a sum of independent Be (pi) random variables. By using a signed compound Poisson

measure as approximation and matching the first two moments, Kruopis (1986) showed that an error in total
variation of order λσ−3θ3 is obtained, where λ =

∑n
i=1 pi, θl = λ−1

∑n
i=1 p

l
i and σ2 =

∑n
i=1 pi(1 − pi). This

approximation is extremely accurate. It has an error of at most order σ−1, as good a rate as for Kolmogorov
distance in the usual normal approximation, if the pi are of order 1, and the error is roughly of order λ−1/2p2 if
the pi are small, combining the λ−1/2 factor with the O(p2) error of the one term Poisson–Charlier expansion.
Here, we use Stein’s method, as developed in Section 2, to sharpen his constants.

Theorem 4.1. With notation as above, take µ = λ(1 + θ2) and a = −λθ2, and suppose that θ2 < 1/2. Then

‖L(W )− πµ,a‖ ≤
2

1− 2θ2
θ3τ
−1/2, (4.1)

where
τ = σ2 − max

1≤i≤n
pi(1− pi).
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In particular, if µ > 0 and a < 0 are such that n := (µ+ a)2/|a| ∈ Z+ and p := (µ+ a)−1|a| < 1/2, then

‖Bi(n, p)− πµ,a‖ ≤
2p2

(1− 2p)
√

(n− 1)p(1− p)
· (4.2)

Proof. For W as defined above, we have

EWg(W ) =
n∑
i=1

piEg(Wi + 1),

where Wi = W − Ii is independent of Ii. Choosing µ and a as specified, and for any choices of µi and ai,
1 ≤ i ≤ n, such that

∑n
i=1 µi = µ and

∑n
i=1 ai = a, we have

E{Wg(W )− µg(W + 1)− ag(W + 2)} = E
n∑
i=1

(
pig(Wi + 1)− µi{pig(Wi + 2) + (1− pi)g(Wi + 1)}

− ai{pig(Wi + 3) + (1− pi)g(Wi + 2)}
)

= E

{
−

n∑
i=1

aipi∆2g(Wi + 1)

}
+

n∑
i=1

E
{
g(Wi + 1)(pi − µi(1− pi)

+ aipi) + g(Wi + 2)(−µipi − ai(1− pi)− 2aipi)
}
·

Taking µi = pi + p2
i and ai = −p2

i , the second expression vanishes, giving

|E{ag(W + 2) + µg(W + 1)−Wg(W )}| =
∣∣∣∣∣
n∑
i=1

p3
iE∆2g(Wi + 1)

∣∣∣∣∣ . (4.3)

This gives

|E{ag(W + 2) + µg(W + 1)−Wg(W )}| ≤
n∑
i=1

p3
i ‖∆g‖ 2dTV (L(Wi),L(Wi + 1)),

and, since the Wi have unimodal distributions, it follows that

dTV (L(Wi),L(Wi + 1)) ≤ max
j≥0

P[Wi = j] ≤ e−τiI0(τi) ≤
1

2
√
τi
,

from Barbour and Jensen (1989), where τi =
∑
j 6=i pj(1− pj). The theorem now follows from Corollary 2.2.

The bound (4.1) is rather neater than that of Kruopis (1986), and for small θ2 it improves on Kruopis’s
constant by a factor of about 10. If θ2 is larger, some of this advantage is lost. However, in such cases,
approximation by a translated measure can give some improvement. Here, we approximate using the probability
distribution nearest to a Poisson that can be obtained by translation from the family πµ,a.

Theorem 4.2. Let m = dλθ2e, µ = λ(1 + θ2)− 2m and 0 ≤ a = m− λθ2 < 1. Then

‖L(W )− π(m)
µ,a ‖ ≤ 2θ−1

2 θ3τ
−1/2

{
(1− θ2) + θ2λ

−1(1 +
√
τ)/θ3

(1− θ2)− 3λ−1

}
· (4.4)
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Proof. We compare the distribution of W −m on Z with πµ,a, using Corollary 2.3. Arguing as for Theorem 4.1,
and writing gm(w) for g(w −m), we obtain

E{(W −m)g(W −m)− µg(W −m+ 1)− ag(W −m+ 2)}

= E
n∑
i=1

(
{−aipi∆2gm(Wi + 1)−mi(1− pi)∆2gm(Wi)}

+gm(Wi + 1){pi − 2mi(1− pi)−mipi + aipi − µi(1− pi)}
+gm(Wi + 2){−ai(1− pi)− 2aipi − µipi +mi(1− pi)}

)
,

where
∑n
i=1mi = m,

∑n
i=1 µi = µ and

∑n
i=1 ai = a. Taking mi = βp2

i , ai = −(1−β)p2
i and µi = pi+(1−2β)p2

i

for any β makes the last two terms zero, giving

|E{(W −m)g(W −m)− µg(W −m+ 1)− ag(W −m+ 2)}|

≤
(
|1− β|

n∑
i=1

p3
i + |β|

n∑
i=1

p2
i (1− pi)

)
2‖∆g‖dTV (L(Wi),L(Wi + 1)).

Now take β = (λθ2)−1dλθ2e, giving m, µ and a as in the statement of the theorem, and note that θ3 ≥ θ2
2; this

gives

|E{(W −m)g(W −m)− µg(W −m+ 1)− ag(W −m+ 2)}| ≤
{
aθ3

θ2
+
(
λ+

a

θ2

)
(θ2 − θ3)

}
τ−1/2‖∆g‖,

and the theorem follows from Corollary 2.3.

For large λ, this bound is preferable to that of Theorem 4.1 when θ2 > 1/3. Taking the better of these
two bounds always results in an improvement by a factor of at least 3, compared to the bound obtained by
Kruopis (1986).

There are analogous results for sums of integer valued random variables which are not restricted to take the
values 0 and 1. Suppose that W =

∑n
i=1 Zi, where the Zi are independent and integer valued, and satisfy

E|Z3
i | <∞. Define

ψi := E|Zi(Zi − 1)(Zi − 2)|+ |EZi|E|Zi(Zi − 1)|+ 2E|Zi| |VarZi − EZi|; (4.5)

d
(i)
+ := dTV (L(Wi),L(Wi + 1)); d+ := dTV (L(W ),L(W + 1)), (4.6)

where Wi := W − Zi.
Theorem 4.3. For any m ∈ Z such that

(2/3)VarW < EW +m < 2VarW, (4.7)

we have

‖L(W +m)− πµ+2m,a−m‖ ≤
2

(1− 2θm)(EW +m)

{(
|m|d+ +

n∑
i=1

ψid
(i)
+

)
+ em(W )

}
, (4.8)

where

µ = 2EW −VarW ; a = VarW − EW ; θm = |VarW − (EW +m)|/(EW +m), (4.9)

and where em(W ) = 0 if W +m ≥ 0 a.s., and em(W ) = 1 otherwise.

Proof. Newton’s expansion with remainder gives

g(z + l) = g(z + 1) + (l − 1)∆g(z + 1) + η(g, z, l), (4.10)
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where

η(g, z, l) =


∑l−2
s=1(l − 1− s)∆2g(z + s), l ≥ 3;

0, l = 2, 1;∑−l
s=0(−l − s+ 1)∆2g(z − s), l ≤ 0.

(4.11)

Hence, for any bounded g, l ∈ Z and 1 ≤ i ≤ n, it follows that

|Eg(Wi + l)− (l − 1)Eg(Wi + 2)− (2− l)Eg(Wi + 1)| ≤ ‖∆g‖ (l− 1)(l − 2)d(i)
+ , (4.12)

where we have used the general inequality

|E∆2g(U + j)| ≤ 2‖∆g‖dTV (L(U),L(U + 1)). (4.13)

Fix any 1 ≤ i ≤ n. Then applying (4.12) with l = j gives

E{Zig(W )} =
∑
j

jqijEg(Wi + j) =
∑
j

j(j − 1)qijEg(Wi + 2) +
∑
j

j(2− j)qijEg(Wi + 1) + φ1i, (4.14)

where qij = P[Zi = j] and

|φ1i| ≤ ‖∆g‖d(i)
+ E|Zi(Zi − 1)(Zi − 2)|. (4.15)

Then, taking l = j + 1 and Wi for z in (4.10), we have

Eg(W + 1) =
∑
j

qijEg(Wi + j + 1) =
∑
j

qij{jEg(Wi + 2) + (1− j)Eg(Wi + 1)}+ φ2i, (4.16)

where

φ2i =
∑
j

qijEη(g,Wi, j + 1); (4.17)

whereas, with l = j + 2, we obtain

Eg(W + 2) =
∑
j

qijEg(Wi + j + 2) =
∑
j

qij{(j + 1)Eg(Wi + 2)− jEg(Wi + 1)}+ φ3i, (4.18)

where

φ3i =
∑
j

qijEη(g,Wi, j + 2). (4.19)

Careful calculation now shows that, for any choices of µi and ai,

|µiφ2i + aiφ3i| ≤ ‖∆g‖d(i)
+ {|µi + ai|E|Zi(Zi − 1)|+ 2|ai|E|Zi|}· (4.20)

Thus, from (4.14, 4.16), and (4.18), it follows that

aiEg(W + 2) + µiEg(W + 1)− E{Zig(W )} = Eg(Wi + 2){µiEZi + ai(1 + EZi)− E{Zi(Zi − 1)}}
+ Eg(Wi + 1){µi(1− EZi)− aiEZi − E{Zi(2− Zi)}}+ aiφ3i + µiφ2i − φ1i,

and taking
ai = VarZi − EZi; µi = 2EZi −VarZi,
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the coefficients of Eg(Wi + 2) and Eg(Wi + 1) vanish. This then implies, using (4.15) and (4.20), that

|aiEg(W + 2) + µiEg(W + 1)− E{Zig(W )}| ≤ ‖∆g‖d(i)
+ ψi. (4.21)

Finally, again from (4.13), we have

|mE∆2g(W )| ≤ ‖∆g‖ |m|d+; (4.22)

hence, adding (4.21) over 1 ≤ i ≤ n and then subtracting (4.22), we find that

|(a−m)Eg(W + 2) + (µ+ 2m)Eg(W + 1)− (W +m)Eg(W )| ≤ ‖∆g‖
{
|m|d+ +

n∑
i=1

ψid
(i)
+

}
, (4.23)

with a =
∑n
i=1 ai = VarW − EW and µ =

∑n
i=1 µi = 2EW − VarW as in (4.9). For any m such that (4.7) is

satisfied, the quantity θm defined in (4.9) is less than 1/2, and we can apply Corollary 2.3 with a−m for a and
µ+ 2m for µ, proving the theorem. If W +m ≥ 0 a.s., then Corollary 2.2 can be applied instead.

There is considerable flexibility inherent in Theorem 4.3, both in the choice of m and in the fact that the Zi
need not be centred. The two corollaries that follow are chosen to illustrate standard situations.

Corollary 4.4. If (2/3)VarW < EW < 2VarW , then

‖L(W )− πµ,a‖ ≤
2

(1− 2θ)EW

{(
n∑
i=1

ψid
(i)
+

)
+ e0(W )

}
, (4.24)

where θ = (EW )−1|VarW − EW | and µ and a are as defined in (4.9).

Corollary 4.5. If VarW ≥ 3, then

‖L(W +m)− πµ+2m,a−m‖ ≤
2

(VarW − 3)

{(
|m|d+ +

n∑
i=1

ψid
(i)
+

)
+ em(W )

}
, (4.25)

where m = bVarW − EW c and µ and a are as defined in (4.9). Here, we always have 0 ≤ a − m < 1 and
VarW − 2 ≤ µ+ 2m ≤ VarW .

For comparison with the usual central limit theorem, Corollary 4.5 is appropriate. Setting s2
n =

∑n
i=1 VarZi

and Γn =
∑n
i=1 E|Zi−EZi|3 as usual, the numerator in Corollary 4.5 is bounded by CΓn+ 1 for some universal

constant C, so that, when s2
n →∞, the error bound is of order Γns−2

n max1≤i≤n d
(i)
+ . This differs from the usual

Lyapounov ratio Γns−3
n in that max1≤i≤n d

(i)
+ replaces a factor of s−1

n . It is easy to see that a change is required
here, when proving approximation bounds with respect to total variation distance, because, if Zi ∼ 2Be (p)
for all i, then Γns−3

n = O(n−1/2), whereas W is concentrated on the even integers, and is therefore far from
any of the measures πµ,a. Nonetheless, Proposition 4.6 below shows that max1≤i≤n d

(i)
+ is frequently of order

O(n−1/2), so that the classical rate of approximation is recovered; in particular, this is so if Zi ∼ F for all i, for
any strongly aperiodic distribution F on the integers.

Corollary 4.4 exploits the fact that the ψi are small if the Zi mostly take the values 0 and 1. For example,
suppose that

P[Zi = 1] = pi; P[Zi = 2] = qi ≤ cp2
i for some c > 0;

P[Zi = 0] = 1− (pi + qi),

where the pi and qi are such that
∑n
i=1(pi + qi) ≥ 2 and that

θ = (EW )−1|VarW − EW | ≤
∑n
i=1 |2qi − (pi + 2qi)2|∑n

i=1(pi + 2qi)
≤ 1

4
·
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Then
ψi = (pi + 2qi)

{
2qi + |2qi − (pi + 2qi)2|

}
= O(p3

i ),

so that the bound given in Corollary 4.4 can be shown to be uniformly of order
(∑n

i=1 p
3
i

/∑n
i=1 pi

)
max1≤i≤n d

(i)
+ .

Proposition 4.6 below now shows that

max
1≤i≤n

d
(i)
+ ≤

(
n∑
i=1

(pi + qi)− 1

)−1/2

,

provided that pi ≤ 1/max{4, c} for all i, so that we recover a bound of order
(∑n

i=1 p
3
i

)
(
∑n
i=1 pi)

3/2, as in
Theorem 4.1.

Our estimates of the distances d+ = dTV (L(W ),L(W + 1)) and d
(i)
+ = dTV (L(Wi),L(Wi + 1)) are obtained

by coupling arguments. The following proposition serves as a simple example of what can be obtained.

Proposition 4.6. Suppose that Zi, 1 ≤ i ≤ n, are independent integer valued random variables, and set
ui = 1− dTV (L(Zi),L(Zi + 1)), U =

∑n
i=1 min{ui, 1/2}. Then, if W =

∑n
i=1 Zi, we have

dTV (L(W ),L(W + 1)) ≤ U−1/2.

Hence also, if Wi = W − Zi, we have

max
1≤i≤n

dTV (L(Wi),L(Wi + 1)) ≤ (U − 1)−1/2.

Proof. First suppose that ui ≤ 1/2 for all i. Then the Mineka coupling (Lindvall 1992, Sect. II.14) shows that

dTV (L(W ),L(W + 1)) ≤ P[T > n],

where T is the time at which a simple symmetric random walk (Sm, m ≥ 0) with S0 = 0 and

P[Sm+1 − Sm = 1] = P[Sm+1 − Sm = −1] = 1
2 (1− P[Sm+1 = Sm]) = 1

2ui (4.26)

first hits the level 1. But, by the reflection principle,

P[T ≤ n] = 2P[Sn ≥ 2] + P[Sn = 1],

and hence, again by symmetry,

P[T > n] = P[Sn ∈ {0,−1}] ≤ 2 max
j
P[Sn = j].

The proposition then follows from Lemma 4.7, because ui ≤ 1/2 for all i. If, for any i, ui ≥ 1/2, the Mineka
coupling can be modified in such a way that (4.26) holds with 1

2ui replaced by 1/4 for such i, so that Lemma 4.7
can still be applied.

Lemma 4.7. For the random walk (Sm, m ≥ 0) defined above, if also max1≤i≤n ui ≤ 1/2, then

max
j
P[Sn = j] ≤ 1

2U
−1/2.

Proof. By Fourier inversion, since ui(1− cos t) ≤ 1 under the stated condition on the ui, we have

max
j
P[Sn = j] ≤ 1

2π

∫ π

−π

∣∣∣∣∣
n∏
i=1

(1− ui(1− cos t))

∣∣∣∣∣ dt ≤ 1
2π

∫ π

−π
exp

{
−

n∑
i=1

ui(1− cos t)

}
dt

= e−UI0(U) ≤ 1
2U
−1/2,
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where I0 is a modified Bessel function (Abramowitz and Stegun 1964, Sect. 9.6), and the lemma follows.

Remark. The proposition can of course be extended by the use of blocks, if too many of the ui are zero. As
discussed in Lindvall (1992, Sect. II.12–14), if the Zi are independent and identically distributed with a strongly
aperiodic distribution F , then

dTV (L(W ),L(W + 1)) ≤ cn−1/2

for some constant c = c(F ) <∞. If Zi has a unimodal distribution, then ui = 1−maxj P[Zi = j].
As a final result in this section, we show that the negative binomial distribution NB (k, p) can be closely

approximated by a measure of the form πµ,a, if p < 1/3. Here, for any k > 0 and 0 ≤ p < 1, we define

NB (k, p){l} := (1− p)k
(
k + l − 1

l

)
pl, l ∈ Z+.

Corollary 4.8. For any k > 0 and 0 < p < 1/3,

‖NB (k, p)− πµ,a‖ ≤
4p2

(1− p)(1− 3p)
1√

k log(1/(1− p))
,

where µ = kp(1− 2p)(1− p)−2 and a = kp2(1− p)−2.

Proof. Take an arbitrary n > 0, and let W =
∑n
i=1 Zi, where the Zi ∼ NB (kn−1, p) are independent. Note

that W ≥ 0 a.s., and that the conditions of Corollary 4.4 are satisfied if 0 < p < 1/3. Now, for large n,

EZi(Zi − 1)(Zi − 2) =
2k
n

(
p

1− p

)3

+O(n−2);

EZi =
k

n

(
p

1− p

)
and |VarZi − EZi| = O(n−1),

showing that
n∑
i=1

ψi = 2k
(

p

1− p

)3

+O(n−1).

But for all n large enough,

1− dTV (L(Zi),L(Zi + 1)) = P[Zi ≥ 1] = 1− (1− p)k/n = kn−1 log(1/(1− p)) +O(n−2),

so that, from Proposition 4.6,

d
(i)
+ ≤

{
k log(1/(1− p)) +O(n−1)

}−1/2
.

Noting also that θ = p/(1− p), the conclusion now follows from Corollary 4.4 and by letting n→∞.

Remark. If 0 < a < 1 and µ is large, we can take k = (µ+ a)2/a and p = a/(µ+ 2a) in Corollary 4.8, showing
that

‖πµ,a −NB (k, p)‖ ≤ 4a2

(µ2 − a2)
√
a−1(µ+ a)2 log{(µ+ 2a)/(µ+ a)}

≤ 4/{µ1/2(µ2 − 1)}·

Thus, for large µ, the translated compound Poisson distribution πµ,a with 0 < a < 1 is approximated extremely
closely, to order O(µ−5/2), by the negative binomial distribution NB (k, p) with large k and small p as given
above.
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5. Applications: 2-runs

The theory developed here can also be used to obtain sharper error estimates of approximations to sums
of dependent indicator random variables. Not surprisingly, the dependent case is much more complicated
than the independent case. To illustrate how the theory works here, we consider a very simple problem: the
approximation to the number of 2-runs of 1’s in a sequence of independent indicator random variables ξi with
P[ξi = 1] = pi, 1 ≤ i ≤ n. This problem has the advantage of having been well studied previously. In particular,
when pi = p for 1 ≤ i ≤ n, compound Poisson approximation in total variation to the distribution of W has
been examined in Arratia et al. (1990), Roos (1993) and Eichelsbacher and Roos (1998). To avoid edge effects,
we treat i + nj as i for 1 ≤ i ≤ n, j = 0,±1,±2, . . . Define Ii = ξiξi−1 and W =

∑n
i=1 Ii, so that W is our

random variable of interest; note that EIi = pi−1pi and EW =
∑n
i=1 pi−1pi.

Our argument is based on showing that, for suitably chosen µ and a, the expression

E{ag(W + 2) + µg(W + 1)−Wg(W )} (5.1)

can be bounded in the form given in (2.13), so that Corollary 2.2 can be applied. When computing the
expectations in (5.1), the aim is first to use the local dependence structure to reduce all of them as far as
possible to linear combinations of Eg(X + 1) and E∆g(X + 1), for some suitable random variable X . We then
pick µ and a to make the coefficient of Eg(X+1) vanish in (5.1), and reorganize the coefficients of E∆g(X+1) to
reduce the term into E∆2g(Y + 1), for another suitable random variable Y . All terms then involve expectations
of the form E∆2g(X + j), bounded by using the inequality∣∣E∆2g(X + j)

∣∣ ≤ ‖∆g‖ ‖L(X + 1)−L(X)‖, (5.2)

which is of the form needed to apply Corollary 2.2. The next lemma shows how the total variation distance
in (5.2) can be translated into an explicit function of pi.

Lemma 5.1. Let (ηm, m ≥ 1) be independent indicator random variables with P(ηm = 1) = αm, m ≥ 1, and
set η0 = 0, i.e. α0 = 0, and Ym =

∑m
i=1 ηiηi−1. Then, for each n ≥ 2,

bn(α1, α2, ..., αn) := ‖L(Yn)−L(Yn + 1)‖ ≤ 4.6√∑n
i=1(1− αi−2)2αi−1(1− αi−1)αi

·

Proof. We construct a suitable coupling. Let (ζm, m ≥ 1) be an independent copy of (ηm, m ≥ 1). Set η′0 = 0,
and define

η′i =
{
ζi, if ηi−1 = η′i−1 = 0;
ηi, otherwise;

(5.3)

then define Y ′m = 1 +
∑m
i=1 η

′
iη
′
i−1. Let Dm = Ym− Y ′m and δm = Dm −Dm−1, then δm takes values 0,±1, and

{δi 6= 0} = {ηi−2 = η′i−2 = 0, |ηi−1 − η′i−1| = 1, ηi = 1} · (5.4)

Set Ri = 1{δi 6=0} and R =
∑n
i=2Ri. For each i ≥ 2, we have

ERi = P(δi 6= 0) = 2αi−1(1− αi−1)αiP(ηi−2 = η′i−2 = 0),

so

ER ≥ 2
n∑
i=2

(1− αi−2)2αi−1(1− αi−1)αi. (5.5)

Direct expansion gives

Var(R) =
n∑
i=2

ERi(1− ERi) + 2
n∑
i=2

∑
i<j≤n

[E(RiRj)− ERiERj ]. (5.6)
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However RiRj = 0 unless j ≥ i+ 3, when, from (5.3), we have

E(Rj | ηi = η′i = 1) = E(Rj | ηi = 0, η′i = 1) = E(Rj | ηi = 1, η′i = 0);

then it also follows that

E(RiRj) = P(Rj = 1|Ri = 1)P(Ri = 1) = P(Rj = 1|ηi = η′i = 1)ERi,

which in turn implies that

|E(RiRj)− ERiERj | ≤ (ERi)|E(Rj |ηi = η′i = 1)− ERj | (5.7)
= (ERi)|E(Rj |ηi = η′i = 1)− E(Rj |ηi = η′i = 0)|P(ηi = η′i = 0).

Now let U = min{k ≥ i + 1 : ηk = ζk}. Then U is independent of ηi and η′i, with P[U ≥ j − 1]
=
∏j−2
k=i+1{2αk(1− αk)}, and

L((ηk, η′k)k≥l |U = l, ηi = η′i = 1) = L((ηk, η′k)k≥l |U = l, ηi = η′i = 0)

for all i+ 1 ≤ l ≤ j − 2. Hence, for each such l,

E(Rj |U = l, ηi = η′i = 1) = E(Rj |U = l, ηi = η′i = 0),

and it follows from the fact that 2αl(1− αl) ≤ 1/2 and (5.7) that

|E(RiRj)− ERiERj | ≤ (ERi)P(ηi = η′i = 0)P(U ≥ j − 1) ≤ E(Ri)P(ηi = η′i = 0)2−(j−i−2), j ≥ i+ 3.

Noting that Ri ≥ 0, we get from (5.6)

Var(R) ≤ 3ER. (5.8)

Taking τ0 = 0, define the stopping times

τj = min{m > τj−1 : δm 6= 0}, j ≥ 1.

Then R = r is equivalent to τr ≤ n < τr+1, and the conditional distribution L((δτj , 1 ≤ j ≤ r)|R = r) is a
uniform distribution on {−1, 1}r, so the conditional distribution L(Dτj , 0 ≤ j ≤ r|R = r) = L(Zj , 0 ≤ j ≤ r),
where (Zj , j ≥ 0) is a random walk with Z0 = −1 and P(Zi − Zi−1 = 1) = P(Zi − Zi−1 = −1) = 1/2, for all
i ≥ 1. Define

J = min{j ≥ 1 : Dτj = 0},
and let

Y ′′m =
{
Y ′m, m < τJ ;
Ym, m ≥ τJ .

Then, because of the coupling, it follows that

L(Y ′′n ) = L(Y ′n) = L(Yn + 1),

and that

‖L(Yn)−L(Yn + 1)‖ = ‖L(Yn)−L(Y ′′n )‖ ≤ 2P[Yn 6= Y ′′n ]. (5.9)

On the other hand, as in the proof of Proposition 4.6, it follows from the reflection principle for the symmetric
Bernoulli random walk that

P(Yn 6= Y ′′n |R = r) = P( max
1≤j≤r

Dτj ≤ −1|R = r) = P(max{Zi, 0 ≤ i ≤ r} ≤ −1) = P[Zr ∈ {−2,−1}]

= max
j
P(Zr = j) ≤

√
2
πr
≤ 0.8√

r
,
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for all r ≥ 1, which yields, for any constant 0 < κ < 1,

P(Y ′′n 6= Yn) =
∞∑
r=0

P(Y ′′n 6= Yn|R = r)P(R = r) ≤ P(R ≤ κER) +
0.8√
κER

≤ 3
(1− κ)2ER

+
0.8√
κER

, (5.10)

this last because of Chebyshev’s inequality and (5.8).
If

s(α) :=
n∑
i=1

(1− αi−2)2αi−1(1− αi−1)αi ≤ (4.6/2)2 = 5.29,

the bound given in the lemma is clearly true, so we assume henceforth that s(α) > 5.29, and thus ER > 10.58
from (5.5). Choosing κ = 0.2197412784, we thus find that

3
(1− κ)2ER

+
0.8√
κER

≤ 1√
ER

{
3

(1− κ)2
√

10.58
+

0.8√
κ

}
, (5.11)

and the lemma follows from (5.9–5.11).

Theorem 5.2. Let W denote the number of 2–runs, as defined above, and let

a =
n∑
i=1

pi−1pi[(1− pi−1)pi−2 + (1− pi)pi+1 − pi−1pi],

µ =
∑n
i=1 pi−1pi − a and

γ =
n∑
i=1

(1− pi+1)2pi(1− pi)pi−1 − 6 max
1≤j≤n

(1− pj+1)2pj(1− pj)pj−1.

If θ = |a|/(µ+ a) < 1
2 , then

‖L(W )− πµ,a‖ ≤
9.2
∑n
i=1[3pi−2pi−1pipi+1 + p3

i−1p
3
i + 4p2

i−1p
2
i pi+1 + 4pi−2p

2
i−1p

2
i + 7pi−3p

2
i−2p

2
i−1pi]

(1− 2θ)(µ+ a)
√
γ

·

In particular, if pi = p < 1
4 for all 1 ≤ i ≤ n, and n > 7, then

‖L(W )− πµ,a‖ ≤
27.6p2 + 73.6(p3 + p4)

(1− 2θ)
√

(n− 6)(1− p)3p2
·

Proof. For 1 ≤ i ≤ n− 1, let

Vi = W − ξi−2ξi−1 − ξi−1ξi − ξiξi+1, Xi = Vi − ξi−3ξi−2 − ξi+1ξi+2; (5.12)

V 1−
i = Vi − ξi−3ξi−2, V 1+

i = Vi − ξi+1ξi+2; (5.13)

V 2−
i = V 1−

i − ξi−4ξi−3, V 2+
i = V 1+

i − ξi+2ξi+3. (5.14)

To simplify the typography, we drop i from Vi and pick it up when we need it. Using the fact that Vi, ξi−1 and
ξi are independent, we have

g(W + 2) = {g(W + 2)[ξi−1ξi + (1− ξi−1)ξi + ξi−1(1− ξi) + (1− ξi−1)(1− ξi)]}
= {g(V + ξi−2 + ξi+1 + 3)ξi−1ξi}+ {g(V + ξi+1 + 2)(1− ξi−1)ξi}

+{g(V + ξi−2 + 2)ξi−1(1− ξi)}+ {g(V + 2)(1− ξi−1)(1− ξi)}·
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Expressing as much of this as possible in terms of second differences, we obtain

g(W + 2) = {∆2g(V + ξi−2 + ξi+1 + 1)ξi−1ξi}
+2{[g(V + ξi−2 + ξi+1 + 2)− g(V + ξi+1 + 2)− g(V + ξi−2 + 2) + g(V + 2)]ξi−1ξi}
−{[g(V + ξi−2 + ξi+1 + 1)− g(V + ξi+1 + 1)− g(V + ξi−2 + 1) + g(V + 1)]ξi−1ξi}
+{[g(V + ξi+1 + 2)− g(V + 2)− g(V + ξi+1 + 1) + g(V + 1)](1 + ξi−1)ξi}
+{[g(V + ξi−2 + 2)− g(V + 2)− g(V + ξi−2 + 1) + g(V + 1)]ξi−1(1 + ξi)}
+{[g(V + ξi−2 + 1)− g(V + 1)]ξi−1}+ {[g(V + ξi+1 + 1)− g(V + 1)]ξi}
+{∆g(V + 1)(1 + ξi−1ξi)}+ g(V + 1).

Noting that the second and third terms are 0 unless both ξi−2 and ξi+1 are equal to 1, and other terms can be
worked out in the same way, we have

Eg(W + 2) = pi−1piE∆2g(V + ξi−2 + ξi+1 + 1) + 2pi−1piE{∆2g(V + 2)ξi−2ξi+1}
+E{∆2g(V + 1)[−pi−1piξi−2ξi+1 + (1 + pi−1)piξi+1 + pi−1(1 + pi)ξi−2]}
+E{∆g(V + 1)(pi−1ξi−2 + piξi+1 + 1 + pi−1pi)}+ Eg(V + 1).

In similar fashion, we have

Eg(W + 1) = E{g(V + ξi−2 + ξi+1 + 2)ξi−1ξi}+ E{g(V + ξi+1 + 1)(1− ξi−1)ξi}
+E{g(V + ξi−2 + 1)ξi−1(1− ξi)}+ E{g(V + 1)(1− ξi−1)(1− ξi)}

= E{[g(V + ξi−2 + ξi+1 + 2)− g(V + ξi+1 + 2)− g(V + ξi−2 + 2) + g(V + 2)]ξi−1ξi}
+E{[g(V + ξi−2 + 2)− g(V + ξi−2 + 1)− g(V + 2) + g(V + 1)]ξi−1ξi}
+E{[g(V + ξi+1 + 2)− g(V + ξi+1 + 1)− g(V + 2) + g(V + 1)]ξi−1ξi}
+E{[g(V + ξi+1 + 1)− g(V + 1)]ξi}+ E{[g(V + ξi−2 + 1)− g(V + 1)]ξi−1}
+E{∆g(V + 1)ξi−1ξi}+ Eg(V + 1)

= E{∆2g(V + 2)(pi−1piξi−2ξi+1)}+ E{∆2g(V + 1)pi−1pi(ξi−2 + ξi+1)}
+E{∆g(V + 1)(pi−1ξi−2 + piξi+1 + pi−1pi)}+ Eg(V + 1),

and

EIig(W ) = pi−1piE{g(V + ξi−2 + ξi+1 + 1)[ξi−2ξi+1 + (1− ξi−2)ξi+1

+ξi−2(1− ξi+1) + (1− ξi−2)(1− ξi+1)]}
= pi−1piE{g(V + 3)ξi−2ξi+1 + g(V + 2)[ξi−2(1− ξi+1) + (1− ξi−2)ξi+1]

+g(V + 1)(1− ξi−2)(1− ξi+1)}
= pi−1pi[E{∆2g(V + 1)ξi−2ξi+1}+ E{∆g(V + 1)(ξi−2 + ξi+1)}+ Eg(V + 1)].

Collecting these three expansions, and for any choices of ai and µi, we find that

E[aig(W + 2) + µig(W + 1)− Iig(W )] = aipi−1piE∆2g(V + ξi−2 + ξi+1 + 1)
+ (µi + 2ai)pi−1piE{∆2g(V + 2)ξi−2ξi+1}
+ E{∆2g(V + 1)[ai(1 + pi−1)piξi+1 + aipi−1(1 + pi)ξi−2

+ µipi−1pi(ξi−2 + ξi+1)− (1 + ai)pi−1piξi−2ξi+1]}
+ E{∆g(V + 1)[ai + (µi + ai)pi−1pi + pi−1(ai + µi − pi)ξi−2

+ pi(ai + µi − pi−1)ξi+1]}+ Eg(V + 1)[(µi + ai)− pi−1pi]. (5.15)

We now choose ai = pi−1pi[(1− pi−1)pi−2 + (1− pi)pi+1− pi−1pi] and µi = pi−1pi−ai so that
∑n
i=1 ai = a and∑n

i=1 µi = µ, then the last term of (5.15) vanishes. Then we apply Lemma 5.1 to bound (5.15). The first term
of (5.15) is bounded by

|ai|pi−1pi‖∆g‖bn(1, pi−2, pi−3, ..., p1, pn, ..., pi+1, 1).
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By (5.12–5.14) the second and third terms of (5.15) can be respectively reduced and bounded as

(pi−1pi + |ai|)
(
Πi+1
j=i−2pj

)
|E∆2g(Xi + ξi+2 + ξi−3 + 2)|

≤ (pi−1pi + |ai|)
(
Πi+1
j=i−2pj

)
‖∆g‖bn−2(1, pi−3, pi−4, ..., p1, pn, ..., pi+2, 1)

and

|(aipi + p2
i−1p

2
i )pi+1E∆2g(V 1+

i + ξi+2 + 1) + (aipi−1 + p2
i−1p

2
i )pi−2E∆2g(V 1−

i + ξi−3 + 1)

− (1 + ai)
(
Πi+1
j=i−2pj

)
E∆2g(Xi + ξi+2 + ξi−3 + 1)|

≤ (|ai|pi + p2
i−1p

2
i )pi+1‖∆g‖bn−2(pi−2, pi−3, ..., p1, pn, ..., pi+2, 1)

+ (|ai|pi−1 + p2
i−1p

2
i )pi−2‖∆g‖bn−2(1, pi−3, ..., p1, pn, ..., pi+1)

+ (1 + |ai|)
(
Πi+1
j=i−2pj

)
‖∆g‖bn−2(1, pi−3, ..., p1, pn, ..., pi+2, 1),

while the fourth term of (5.15) becomes

|pi−1pi(1− pi−1)E{∆g(Vi + 1)(pi−2 − ξi−2)}+ pi−1pi(1− pi)E{∆g(Vi + 1)(pi+1 − ξi+1)}|
≤ |pi−1pi(1− pi−1)pi−2E{∆g(Vi + 1)−∆g(V 1−

i + ξi−3 + 1)}|
+ |pi−1pi(1− pi)pi+1E{∆g(Vi + 1)−∆g(V 1+

i + ξi+2 + 1)}|
=
(
Πi
j=i−3pj

)
(1− pi−1)(1− pi−2)|E{∆2g(V 2−

i + ξi−4 + 1)}|
+
(
Πi+2
j=i−1pj

)
(1− pi)(1− pi+1)|E{∆2g(V 2+

i + ξi+3 + 1)}|
≤
(
Πi
j=i−3pj

)
(1− pi−1)(1− pi−2)bn−3(1, pi−4, ..., p1, pn, ..., pi+1)

+
(
Πi+2
j=i−1pj

)
(1− pi)(1− pi+1)bn−3(pi−2, ..., p1, pn, ..., pi+3, 1).

Because all the above b′is can be bounded by 4.6√
γ and |ai| ≤ pi−2pi−1pi + pi−1pipi+1 + p2

i−1p
2
i , summarizing the

above information, the theorem follows from adding up the bounds for 1 ≤ i ≤ n, after some calculation.

The approximation obtained improves in a number of ways on those previously known. The previous study
has been concentrated on independent and identically distributed Bernoulli random variables only. For this
particular case, the simplest good bound is that of Roos (1993, Th. 3.C); it has an explicit constant, but is only
of order O(p2 log(np2)) when np2 →∞. The bound given in Eichelsbacher and Roos (1998) almost always has
the better order O(p2), though the constant is complicated to write down. Here, we have a relatively simple
constant, which can be improved if it is assumed for instance that

∑n
i=2(1 − αi−2)2αi−1(1 − αi−1)αi is large,

together with an order O(p2/
√
np2), which is even better than O(p2) when np2 →∞. This is rather impressive

precision. Curiously, the variance of the compound Poisson approximations differs from the true variance by
an amount of order np4, and this is presumably responsible for the fact that an approximation of better order
than O(p2) is not obtained.
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