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STOCHASTIC APPROXIMATIONS OF THE SOLUTION OF
A FULL BOLTZMANN EQUATION WITH SMALL INITIAL
DATA.

SYLVIE MELEARD

ABSTRACT. This paper gives an approximation of the solution of the
Boltzmann equation by stochastic interacting particle systems in a case
of cut-off collision operator and small initial data. In this case, follow-
ing the ideas of Mischler and Perthame, we prove the existence and
uniqueness of the solution of this equation and also the existence and
uniqueness of the solution of the associated nonlinear martingale prob-
lem.

Then, we first delocalize the interaction by considering a mollified
Boltzmann equation in which the interaction is averaged on cells of fixed
size which cover the space. In this situation, Graham and Méléard have
obtained an approximation of the mollified solution by some stochastic
interacting particle systems. Then we consider systems in which the size
of the cells depends on the size of the system. We show that the associ-
ated empirical measures converge in law to a deterministic probability
measure whose density flow is the solution of the full Boltzmann equa-
tion. That suggests an algorithm based on the Poisson interpretation of
the integral term for the simulation of this solution.

1. INTRODUCTION

In the upper atmosphere, the gas is rarefied and is described by the non-
negative density f(¢, z,v) of particles which at time ¢ and point  move with
velocity v. Then f(¢,z,v) is positive and normalized so that [ f(¢, z,v)dadv
is equal to one and satisfies the Boltzmann equation

= QT (S Ntz v)=Q(f, Nt z,v)
f(0,z,v) = folz,v) is a density of probability (1.1)

where
Q. (e, v) = / dn / do.B(o — v,n) [(t e, o) f(ta,0])  (12)
52 R3

and

Q_(fv f)(tvxvv) = f(tvxvv)l/f(tvxvv)
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24 SYLVIE MELEARD

Lf(t,z,v) = Ax f(t,z,.)(v)= /52 /RsB(U — vy, n) f(t, 2, vi)dvuedn;
Alz) = /52 B(z,n)dn. (1.3)

The nonnegative cross-section B(z,n) depends only on |z| and on [(z.n)|.
The velocities v' and v, represent the post-collisional velocities of two parti-
cles of velocities v and v, having collided in a position in which their centers
are on a line of direction given by the unit vector n belonging to the unit
sphere S2. Conservation of kinetic energy and momentum for binary colli-
sions implies that

vVV=v+ ((ve—v) - n)n, vl =v.+ ((v—0v)-n)n.

We refer to Cercignani et al. (1994) for physical comments on this model.

The Boltzmann equation presents many important difficulties, due to the
unboundedness of B and to the localization in space in the quadratic colli-
sion term (the interaction is not mean-field). In the general case, uniqueness
in not proved and existence of renormalized solutions is showed in the fa-
mous paper of DiPerna and Lions (1989). On the other hand, existence and
uniqueness have been studied by many authors under restrictive assump-
tions on the cross-section B (principally a cut-off assumption) and results
have been obtained in particular in small time or under small initial data, as
it can be found in Kaniel and Shinbrot (1978), Bellomo and Toscani (1985),
Hamdache (1985), Toscani (1986), Bellomo et al. (1988) and more recently
in Mischler and Perthame (1997). One follows the ideas of Mischler and
Perthame (1997), obtained in a more general situation of infinite energy, in
order to prove by a fixed point argument the existence and uniqueness of the
solution in a well chosen functional space B, in a case of cut-off collision
operator and small initial data. This existence and uniqueness result (The-
orem 2.1) is very close to ”a priori” assumptions in the paper of Babovsky
and Illner (1989).

The Boltzmann equation is an integro-differential equation, in which the
integral term comes from the randomness in the geometry of collisions. It
is natural to study its probabilistic interpretation. One associates with the
equation a nonlinear martingale problem and one obtains the existence and
uniqueness of the solution of this martingale problem in the space of prob-
ability measures having a measurable version of densities in 5,,.

Our aim is then to give a stochastic approximation of the solution of the
Boltzmann equation, obtaining thus a theoretical justification of the Nanbu
and Bird algorithms in this case (cf. Babovsky and Illner (1989)).

The interaction appearing in the collision term is localized in space and
is not mean-field. So we do not know how to construct directly approximat-
ing particle systems. One first delocalizes the interaction by considering a
mollified Boltzmann equation in which the mollifying kernel is issued from
a grid method. The space is shared in disjoint cells of size ¢ in which the
interaction is averaged. In this mean-field case, Graham and Méléard (1997)
prove some stochastic approximations of the solution of the mollified Boltz-
mann equation by interacting particle systems and obtain a precise rate of
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APPROXIMATIONS OF THE SOLUTION OF A BOLTZMANN EQUATION 25

convergence in (’)(exp(%)/n)7 where 7 is the size of the particle system.
Moreover, a unified approach for systems with simple or binary mean-field
interactions is given.

In this paper, one considers such systems in which the size of the cells
of the grid depends on the size of the system. More precisely, we assume
that § depends on n in the asymptotic exp(ﬁ)/n — 0 (when n tends

to infinity). Then one proves that the empirical measures of the associated
interacting particle systems converge in law to a deterministic probability
measure whose density flow is the solution of the full Boltzmann equation.
The convergence is obtained for probability measures on the path space and
convergence results for functionals of the paths can be deduced.

At our knowledge, this result (Theorem 5.4) seems to be the first pathwise
approximation result in a non mollified case and in dimension 3. Let us quote
Caprino and Pulvirenti (1995) and Rezakhzanlou (1996), who obtain the
convergence of stochastic particle systems to a one-dimensional Boltzmann
equation at fixed times. OQur approach is unified for simple or binary mean-
field systems, and allows to understand the similarity between Bird’s and
Nanbu’s algorithms. Moreover one gives a precise asymptotic between § and
n; that was an open question in Babovsky and Illner (1989).

One finally suggests an algorithm based on the Poisson interpretation of
the integral term to simulate the solution of the Boltzmann equation, which
avoids to discretize in time and exactly follows the pathwise history of the
particles.

2. THE EXISTENCE AND UNIQUENESS RESULT

Let us now prove the existence and uniqueness result obtained for the
Boltzmann equation in a case of bounded collision operator and small initial
data with finite energy.

THEOREM 2.1. Let o > 0 and T be a positive time. Let us assume that
(Hy): A€ L>(R?)
(H3): fo is a density function satisfying

0< folir, ) < L exp(-alol?) (2.1

(Vo) 1

where Cy is a real number such that Cy < Tl (/7FT = CaT-

Then there exists a unique function f € L>([0,T] x R® x R®) solution of
the Boltzmann equation (1.1) satisfying

0< f(t,e,v) < Cét) exp(—alv]?) (2.2)

where C'(t) is a positive and bounded function on [0,T] defined by % =
OLO — C,t.

Proof. The proof is completely inspired of the proof of Theorem 2 in Mischler
and Perthame (1997) given in a case of infinite energy. It consists first in
introducing an upper solution related to the Boltzmann equation, and second
in obtaining a fixed point theorem in a functional space related to this upper
solution.
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Let us consider g(t,v) = C(t)h(v), where h(v) = exp(—a|v|?). One would
like
g (t,0) = C(O)R(v) = Q¥ (g, 9) (o) = C*(O)QT (A h)(v)
CHBYh(v)L(h) (v),
since Q(h7 h) =0= Q+(h7 h) - Q_(h7 h) = Q+(h7 h) - hL(h)

Then one is looking for C' such that C' > C?sup, L(h)(v). Therefore
let us consider C' € C1([0,T],R) such that C'(0) = Cy and solving C'(t) =
| A]|oo (7/@)3/2C2(t). By denoting Cyy = || A]|ao(7/@)?/%, one finally obtains
that (C(t))~! = (Co)~! — C4t and the function

h(t,v) = %h(u) = %e—alvlr“ (2.3)
satisfies
deh(t,v) > CL,CHA(E,v) > 6QF (h, h)(t,v). (2.4)

Now one considers the set
Ba = {¢ € L(0,T] x R* x R?);0 < p(t,,v) < h(t, 0)}

with the norm [|¢||, = ess sup, . ,{|¢(t, z, v)|/|%exp(—a|v|2)|} for which
it is complete. The global existence and uniqueness of the solution of the
Boltzmann equation is deduced from a fixed point theorem in this space. As
in Mischler and Perthame (1997), let us define the mapping A : ¢ € B, —
1 = A(p), where 1 is the solution of

O +v- Ve + CO) Y = QF (p,9) + (CaC(t) — Lig))e,
P(0,2,v) = folz,v).

By a maximum principle one observes that A sends B, into B, and by (2.4)
that moreover

(2.5)

5
Vo1, 02 € Ba, A1 — Apafla < Zfle1 — @2]la-
Hence A is a contraction and admits a unique fixed point in B,, which is

solution of the Boltzmann equation. O

3. THE NONLINEAR MARTINGALE PROBLEM ASSOCIATED WITH THE
BOLTZMANN EQUATION

The weak form of the equation (1.1) is given for a function ¢ in C}(R®)
by

8t<ft7 99> - <ft7 v- Vx@
= (fulw, v)dudo, / (e, 0+ (v — v).m)n) — p(, v)
B(v — v, n) f(t, 2, v.)dndvy). (3.1)

(Remark that the mapping (v, v.) — (v/,v]) has a determinant equal to 1).
We associate with this evolution equation a nonlinear martingale problem
for which every solution is a probability measure on the path space whose
marginals are solutions of the equation (1.1).
Let us denote by P(D([0,T],R®)) the space of probability measures on
D([0, T], R®) having for every ¢ € [0, 7] a density with respect to the Lebesgue
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measure. Let us remark that following Meyer (1966) p. 193-194, there exists
for P in P(D([0, T], R%)) a measurable function p(t,z,v) on [0,T] x R® such
that for any ¢ € [0,T], p(t,.) is a density of P;,. We call such a function a
measurable version of the densities of P.

DEFINITION 3.1. The probability measure P € P(D([0,T],R®)) is solution
of the nonlinear martingale problem (M) if for every function ¢ € C} (RF),
for (X, V) the canonical process on D([0,T],R? x R?),

t
P(X0, V) — (Xo, Vo) — / V,.Vap( X, Va)ds

/ /52 /Rg (X5, Vs 4 ((0x = Vi) .n)n) — (X, V5))
B(V; = ve, n)p(s, X, va) dvadnds

is a P-martingale, where p(t,.) is a measurable version of the densities of
the flow of marginals (FP;)>0, Fo(dadv) = fo(z,v)dzdv.

Clearly this definition does not depend on the choice of the measurable
version of the densities of P.

Let us denote by P,(D([0,T],R®)) the subspace of P(D([0,T],R)) such

that a measurable version of the densities p satisfies 0 < p(t, z,v) < /Az(t7 v)
for almost every (¢, z,v) € [0,T] X RS, h being defined in (2.3). Then it is
true for every measurable version of the densities.
THEOREM 3.2. Under assumptions (Hy) and (H3), the nonlinear martin-
gale problem (M) has a unique solution P in Py (D([0,T],R)). Every mea-
surable version of the densities of P is almost surely equal to the solution f
of the Boltzmann equation (1.1) defined in Theorem 2.1.

Let us first observe that if P is solution of (M), then by taking the
expectations in the martingale problem, each measurable version p of its
densities is solution of the Boltzmann equation (1.1). Moreover if we assume
that 0 < p(t,z,v) < /Az(t7 v), then p is almost surely equal to f by Theorem
2.1. Therefore, we first study the following classical martingale problem
associated with the function f.

DEFINITION 3.3. A probability measure P € P(D([0,T],R®)) is a solution
of the martingale problem (M) if for every function ¢ € CL(RY),

1
SO(XLH ‘/t) - S‘Q(X07 VO) - / VS'vxS‘Q(XM VS)dS

/ /52 /Rs XS7V + ((U* o VS) ) ) - @(stvs))
B(Vs — v, n) f (8, X, vi)dvadnds (3.2)

is a P-martingale and Py(dzdv) = fo(z,v)dzdv.

ProposITION 3.4. Under assumptions (Hy) and (H3), the martingale prob-
lem (./\/lf) has a unique solution P! absolutely continuous with respect to the
Lebesque measure. Its density q is solution of the evolution equation

(](t7 T, U) = fo(ﬂC — tv, U) ‘|‘/0 (St—s)*Q(% f)(57 L, U)dS, (3'3)
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where Sy is the semigroup associated with the flow solution of 0;q+ v.Vq =
0, and (S;)* is the dual operator.

Proof. 1) (H) and (2.2) imply the jump kernel B(Vs—uv., n) f(s, X5, vi)dv.dn
has a finite total mass uniformly in s, X, V5. Moreover, the drift part in
(3.2) has a Lipschitz continuous coefficient. In this case, the existence and
uniqueness of a solution P/ of (M) is well known.

2) Let us now prove that the solution P/ has a density ¢. Let (T),),ey be
the sequence of random jumps of the process Z under P7; there is a finite
number of random jumps on the time interval [0,7T]. Following Jacod and
Shiryeav (1987) p. 136 and, since the jump measure B(V, —v., n) f(s, X, vy)
dv.dnds is absolutely continuous with respect to time, the law of the first
jump Ty conditionally to Xg = 2, Vy = v has a density with respect to the
Lebesgue measure. Since the law of (Xg, Vp) has the density fo, then the
triplet (Xo, Vo, To) has a density with respect to the Lebesgue measure. Of
course, it is the same for (X7, Vy—,T0) = (Xo + ToVo, Vo, To). Moreover,
conditionally to (X7,—, Vr,—,Tp), the law of the jump AVy, has clearly a
density and we deduce that the law of (X7, Vp,,To) has a density. By the
Markov property, we then obtain that for every T,,, the law of (X1, Vi, T})
has a density, and so that P/ has a density ¢ with respect to the Lebesgue
measure. By taking expectation in (3.2), we obtain moreover that the flow
(q¢) satisfies for ¢ in C}} (R®)

9e(gt, ©) = (g1, v - Voip)
= (w(o,0)dado, [0+ (00 = v)n)n) = o(a,v)
B(v — v, n) f(t, 2, v.)dndvy). (3.4)

We can extend this formula to functions (¢, z) which are in C}} ([0, T] x R°)
by It6’s formula. Let S; be the semigroup associated with the flow ¢ +
v.Vyq = 0 and S} the dual operator, Sy = S_;. Of course, Sip(z,v) =
¢(z + tv,v). For a fixed ¢ in [0, 7] and ¢ in C}(R®), we choose ¢(s,z,v) =
Si—sp(z,v) = (x4 (t—s)v,v). Then dsip+v.V 10 = 0 and ¥(t,.) = ¢. The
equation (3.4) extended to 1 implies that for every function ¢ in C}(RF),

/99($7U)(](t,$,v)dxdv
= /St@($7v)f0(x7v)dwdv

¢
+ [ ] Saple ol e ats,n, o) = fsn, v gl o)
B(v — v, n)dndv.dzdvds
= /c,o(ac,v)St*fo(x,v)dxdv
¢
+ /c,o(w,v)/ S ([f(syz,v)q(s,z, ") — f(s,2,04)q(s, @, 0)]
0
B(v — v, n)dndv,)dzdvds

ESAIM: P&S, MARCH 1998, VoL. 2, 23-40



APPROXIMATIONS OF THE SOLUTION OF A BOLTZMANN EQUATION 29
and then we deduce that for every ¢ € [0, T], dedv almost surely,
¢
dltia,0) = fole = ot o)+ [ (S Qe Nlsoids. (35)
0

O

ProposITION 3.5. Under assumptions (Hy) and (Hsy), the evolution equa-
tion (3.5) has a unique solution in L>([0,T], L}(dzdv)).

Proof. Let ¢’ be another solution of the evolution equation. Then

lg(t) — ( HLl (dzdv)

= [ S Q1) ~ QU sl 3
< ISR - QU s D s ds

= [ 1@t 1) = QU 1 s

/ JU1s s eDllats. ) = o (50,00

—|— |f(s,2,v)||q(s, 2, 0) — ¢'(s,2,v)|} B(v — vy, n)dndv.dadvds

< / () — ¢(5) |21 (doany s

by (H;) and (2.2). We deduce by usual Gronwall’s Lemma that the solution
of the evolution equation is unique in L ([0, T], L}(dzdv)). O

IN

We now prove Theorem 3.2.

Proof. We first consider ¢ € C}([0,7] x R®) with compact support. We can
then prove by using Fubini’s theorem and the integration by part formula
that

Ot (fe, ) = (fe,v - Voo + 0))
= (fi(=, v)dwdv,/(lb(t, z, v+ ((ve —v).n)n) — P(t,z,v))
B(v = vy, n) f(t, z, vi)dndv,).

We obtain by approximation the same formula for every function 1 €
CH([0,T] x R®), and considering (s, z,v) = Si—s¢(z,v), ¢ € CL(RE), we
obtain as before that the solution solution f of the full Boltzmann equation
(1.1) is solution of the evolution equation (3.5). The uniqueness proved in
Proposition 3.5 implies that ¢ = f. Then the solution of (./\/lf) is in fact a
solution of (M).

Let us now consider two solutions P and ¢ of (M) with measurable
versions of the densities bounded by h. Thus these densities are solutions
of (1.1) bounded by h and so are almost surely equal, and equal to f, by
Theorem 2.1. Since the nonlinearity in the martingale problem just depends
on this common flow f, we now get a (classical) martingale problem in which
the jump measure is given and bounded. The uniqueness in this martingale
problem implies that P = (), hence we get Theorem 3.2.
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The flow of densities is equal to f and satisfies moreover for each t € [0, 7]

St = Sl = o100+ [ (S QUL Mo ms)ds, as.n a3
0
O

Let us now give a regularity result for the function f, useful later in the
proof of Proposition 5.2. The property stated below, as well as Theorem
2.1, are very close to properties presented as conjectures in Babovsky and

Hlner (1989).

PRrROPOSITION 3.6. Let us assume that
(Hs3): There exists K > 0 such that for every h € R?,

|f0($ + h,U) - f0($7U)|

e—alvl?

< K|hl, (3.7)

ess SUP,cR? yeR?

then the same property holds for f: there exists Kt > 0 such that
|f(t7$ —I—h,?}) — f(t,$,?])|

e—alvl?

< Krlh|, Vh € R® (3.8)

€SS SUPi¢(o,T],weR3 veR3

Proof. f is solution of the evolution equation (3.6) and

flt,x+ hyv) = f(t,z,v)
(et h— to,0) — fola — to,v)

//[( (s, +h— (t— 8)o,0)) fs, 2+ — (t — 5o, o)
 flsx = (t = $)u, ) fls @ — (E— 8o, v’))
—(f(s,ac—l—h—(t—s)v,v*)f(s,x—l—h—(t—s)v,v)

— f(s,z = (t = s)v,v) f(s,z — (t — s)v, v))] B(v — v, n)dndv.ds.

Then
|f(t,$—|—h,?]) —f(t,$,?])|
e—alvl?
|f0($ +h— tv, U) — fO(tv T —tv, U)|

e—alvl?

/Ot/ (f(s7 x+ Z__a|(f|2_ s)v, vl)

X |f(s,x4+h— (t—s)v,v') = f(s,2 — (t — s)v, V)]
n f(syz = (t = s)v,v)

|2

e—olv

XU@w+h—@—swwb—f@w—@—swwbo
X B(v = v, n)dndv,ds
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/Of/ (f(s, T+ ]z—_al(vtl; )0, v.)

X|f(s,z+h—(t—s)v,v)— f(s,z — (t — s)v,v)]
L+ f(s,z—(t —s)v,v)

|2

e—lv
X|f(s,z+h—(t—s)v,v,) — f(s,2 — (L — s)v,v*)|)
X B(v — v, n)dndv.ds.
Let A9 ,(f) = ess sup,, ltothv)=ftov)] e have

e—alvl?
|f(t,x—|—h,v)—f(t,x,v)|

|2

e—oz|v

/|2 —OZ|’U |2

—oz|u*| Aoz fe —alv Aoz f —avl?
< K+ 4D //( _a|5|2> N J(Ne

e—CVIvI2

+ eolvsl? Ay () + e—a|v*|2A27s(f))B(v — Uy, n)dndu,ds.

We use the conservation of energy: |v]? + |v.|? = [v/|* + |[vL]?. So we get

|f(t,$—|—h,?]) —f(t,$,?])|

e—oz|v|2
< Klh|l+ 4 / /Aa HelP B(v = v,, n)dndv,
<
and finally
. 2 t o
LA < KW+ 200G [ a7 (s 3.9)
0
Gronwall’s Lemma allows to conclude. O

4. THE MOLLIFIED PROBLEM
4.1. THE MOLLIFIED NONLINEAR MARTINGALE PROBLEM

Mollifying consists in delocalizing in space the interaction appearing in
the Boltzmann equation in order to obtain a mean-field model. We cover
R? by a grid of cubic, uniform disjoint cells A of volume |A] = §2, and we
introduce the regularizing kernel

I’(x,y) == Z]II,EAI[yeA (4.1)
The kernel Q) is replaced by Q?, defined by

Q(f. )t a,v) = /Uwaﬂﬁﬁwwb—ﬂu%mﬂu%mﬂ
X B(v — vy, n)I° (2, y)dydndv,
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which leads to the mollified equation

Of+v-Vof =Q°(/, ). (4.2)
By using the fact that

HQS(fv f) - Qé(gmg)HLl(dl’dv) < C((S)Hf—I_gHLl(dxdv)Hf - gHLl(dxdv)7

one prove that this equation has a unique solution in L°°([0, 7], L}(dxdv)).
Indeed, the above inequality implies that there exists Tj such that there is
existence and uniqueness in L ([0, Tp], L' (dzdv)) and one constructs piece-
wise the solution on [0,7]. But under small initial data, one can prove
moreover that

ProrosiTION 4.1. Under assumptions (Hy) and (H3), the unique solution
1% of (4.2) with initial condition fy satisfies for almost (t,z,v) € [0,T] x RS,

0< fi(t,,0) < hit,v).

Proof. Since Q(s(iz, lAz) = Q(/Az, iz), the function h is also an upper solution for
the mollified problem. The same arguments as in the proof of Theorem 2.1
imply that a solution of the mollified equation is also obtained by a fixed
point theorem in B, associated with the contraction A® defined as in (2.5)

by replacing Q% by Q°*. O

One deduces from Proposition 4.1 the existence and uniqueness of the
solution for the mollified nonlinear martingale problem associated with Q?,
whose proof is completely similar to that of Theorem 3.2.

THEOREM 4.2. Under assumptions (Hy) and (H3), there exists a unique
probability measure P® € P, (D([0,T],R®)), solution of the mollified nonlin-
ear martingale problem defined as follows. For every function ¢(z,v) on
R*x R3, C} in z and bounded in v,

t
(X0, V) — 9(Xo, Vo) — / V,.Va( X, V)ds
0

eVt (= Vo) = (X, )
X B(Vy — vy, n) I (X4, y) P (dydv,)dnds (4.3)

is a P® martingale, where PS‘g is the marginal at time s of P, Pg(dacdv) =
folz,v)dadv.

4.2. THE APPROXIMATING INTERACTING PARTICLE SYSTEMS

As in Graham and Méléard (1997), one defines mean-field interacting par-
ticle systems which approximate the solution of the nonlinear martingale
problem (4.3) associated with the mollified equation. These systems corre-
spond to different physical models: first a simple mean-field model (Nanbu’s
system), second a binary mean-field model (Bird’s system).

Let (2™, v™) = ((z1,v1), (22, V2), ..., (¥, v,)) be the generic point in (R)".
We introduce the mapping e; : h — ej.h = (0,...,0,k,0,...,0) € (R®)™ with
h at the i-th place. We consider ¢ € C}((R®)") and define two systems of
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particles:
The Nanbu system is a Markov process in D(R 4, (R®)™) with generator
Z v;. Vg o(a", v")
=1
1
n—1

_I_

S [l o+ el - ) - ol 07)
1<iZj<n
x B(v; — v, n) (i, 2;)dn. (4.4)
The Bird system is a Markov process on the same space with generator

n

Zvi.vmqb(w”, v")

=1
1 1 0 om
+ 1 Z /§(q§(9€ 0" 4 e (((v; —vi).n)n
1<ii <n
+ e.(((vi —vj).n)n)) — ¢(z",v"))B(v; — vy, n)]é(xi, z;)dn. (4.5)
In both cases, Z0" = (X%n Vin) = (z01n z82n 7577} denotes the

Markov process and |.|7 the variation norm in the space of signed measures
on the Skorohod space D([0, T], (R%)%), for any k € N.

THEOREM 4.3. Under hypothesis (Hy), let us denote by As the real number
| Al /0 and assume that (Zg’m)lsign are i.i.d. with law Fp.

(i) There is propagation of chaos in a strong sense: for given T and k,
AsT + A(%T2
n—1

(ii) If moreover Py(dzdv) = fo(x,v)dzdv and fy satisfies the assumption
(HQ)f

\L(Z%1, . 28Ry — L2509k | < 2k(k — 1) (4.6)

5,in 5 et -1
|£(Z ! ) - P |T < 6ﬁ7 Vi € {17 ...771}7 (47)

where P° is the solution of the nonlinear martingale problem (4.3).

(iii) The empirical measures pdn =n~t Yo Ozsin converge in probability
to P° in P(D([0, T],R®)) for the weak convergence for the Skorohod metric
on D([0, T], R) with the convergence rate VK + e T /y/n — 1.

Proof. In Graham and Méléard (1997), (4.6) is proved, and also the con-
vergence of Z%™ to a probability measure Q in the sense of (4.7), where @
is uniquely defined using a Boltzmann tree and is solution of the mollified
nonlinear martingale problem (4.3).

It is easy to show, as in the proof of Proposition 3.4, that for each ¢,
Q)¢ is absolutely continuous with respect to Lebesgue’s measure. The only
difference between the two proofs concerns the conditional law of AVy,. In
the present case, this law is absolutely continuous with respect to Qr, (dyduv,.)
which is the law of (X7,_,Vp,—) and is then absolutely continuous with
respect to Lebesgue’s measure. So the conditional law of AVr, under )
has a density. Let us denote by ¢ the measurable version of densities of ()
belonging to L ([0, T], L}(dzdv)). By taking expectations in (4.3), we prove
that ¢ is solution of (4.2). The uniqueness of the solution of this equation
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in L°°([0,T], L (dzdv)) implies that for every t, ¢(t) = f*(t), dzdv a.s.. By
Proposition 4.1 and Theorem 4.2, we conclude that Q = P°. So we have
(4.7) and (iii). O

5. APPROXIMATION OF THE NON MOLLIFIED BOLTZMANN
EQUATION

We consider interacting systems in which the size of the cells depends on
the size of the system. We will prove that if we assume (H;), (H3) and take

an asymptotic (n,d(n)) which tends to (4o00,0) such that exp(Tgl(iglg’o)/n

tends to zero, then the empirical measures of the system (ZS(”)’”) converge
when n tends to infinity to the solution of (M).

As seen in Theorem 4.3, the empirical measures of (Z%7") converge to P°.
Let us now study the convergence of P? to P when § tends to zero. Consider
a sequence (6(!));en which tends to zero when [ tends to infinity. Denote
Pl = P’0) and f! a measurable version of the densities of P! solution of
(4.2), and in the same way Q' = QD and I' = 1°0).

PropoOsSITION 5.1. Let us assume (Hy), (H3), that Py has a second moment
and that for each l, P}(dzdv) = Py(dzdv) = fo(x,v)dzdv.

Then the family (P') is tight when [ tends to infinity.

Proof. The canonical process (X!, V') under P' belongs to D([0, 7], R®) and
is a sequence of D-semimartingales in the sense of Joffe and Métivier (1986).
Moreover, since

| /((U —v.).n)nB(v — vy, n)]l(av7 y)antl(dydv*ﬂ

< Ml [ o= vl y, 0 1o )y
(T ol

< 1l S ol el an,

< K(jo|+1).

Hypotheses 3.2.1 in Joffe and Métivier (1986) are satisfied and Proposition
3.2.3 in Joffe and Métivier (1986) implies in our case that the family (P') is
tight in P(D([0, T],RY)). O

PROPOSITION 5.2. Assume (Hy), (Hz), (Hs) (c¢f. Proposition 3.6) and if f
denotes the unique solution of the Boltzmann equation in B, then

sup [ f'(t,.) = f(t, )Ip < Krd(l) (5.1)
t<T
and thus tends to zero when | tends to infinity.

Proof. Let us first remark that there exists a constant K7 such that for each
(z,v) in R® and ¢ in [0, T7,

|/f(t,y,v)]l(x,y)dy—f(t,x,v)| < Kpb(lye 1P, (5.2)
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Indeed, we have

I/ft% Yo, y)dy — f(t,z,v)]

= |/ flt,y,v t,x,v))(s(l) I[{yeAZ}dy|
< I(T/|y—w|e aful® I[{yeAZ}dy by Proposition 3.6
< Kps(lye PP,

We now use the evolution equations satisfied by f' and f:

f(t7$7?]) = fO(x - Ut,?]) + /t(St—S)*Q(.ﬁ f)(87$7?])d87 a.s. in L, 0,
0

fl(b%U) = folz —vt,v)+ /t(St_s)*Ql(fl7fl)(57$7v)d87 a.s. in x, v.
0

So we have

f%uam—f@wmo=[ﬂ&ﬂv(@uﬂﬂwwWﬁﬁ)@wwMa

and if we denote || fl|z1; = ||/ (¢, )||11(dwdv), We obtain

But

t
Hﬂ—ﬂm¢§AH@UKM—QUJNmﬂ& (5.3)

Q'S 1N = QU )5, 2, 0)

/B(U — v, n)

< o) o) = ) o)
C[f (s, @, o) f (s, @, 0l) = f(s, 2, 0) f (s, v*)]) dndv.
/B(U o, n)
< o) o) = ) o)
— [ 1y ) s 02) = S50, (5,000
b [ 1)y 5,0, £(5,00) = F(s,2,0)f(5.9.00)
C[f(s, @, o) f (s, @, 0l) = f(s 2, 0) f (s, x,v*)]) dndv.
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L n>( [ 1wy [f’<s7x,v'><f’<s,y,v;> ~ (s y,0)
—I—f(s,y,vi)(fl(s,x,v’) — f(s,x,v'))
(o) (Fls,yart) — fs.a v;>>]

- [ Feay [f’(87w7v)(f’(87y7v*) ~ s y,00)
‘|‘f(57 Y, U*)(fl(sv T, U) - f(57 €T, U))
(s 0) (5,0 00) — f(s 2, v*>>])dndv*

<l | [ ([ Pt P 1 0 ) = 5000

+ f(S,y,Ui)|fl(S7$7U/) - f(87$7vl)|
+ fl(87$7?])|fl(87y7?]*) - f(87y7v*)|

T F sy v (s 0) — Fls, 2 v>|)

—I_f 5, &,V |/f S,y,?]*)] (x,y)dy—f(s,x,v*ﬂ)dv*]
< Ao (Th + T2 + 15+ Ty + T5 + T5).

The equation (5.2) implies that

Ts < KT(S(Z)/f(s,x,v’)e_aw;'z}dv*

Te < KT(S(I)/f(s,x,v)e_a|“*|2dv*.

Otherwise,

c(r "o
1< S [ el [l gy sy, ot) = S5, 0o,

and in the same way,

T, < @/ —alul? |f(s,x,v) f(s,av,v)|dv*7

T, < /—aw/ (@, 9)dy| F(s, 9, v2) — £ (5,7, 0.)|dvs,
C

T, < <T [t s ) = s, o
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Then we deduce that

/| fl Qf, ) (s,2,v)|dzdv
KTHAHoo (1)

X /(/f(s,w,v’)e_aw“z}dv*—|—/f(s,w,v)e_a|”*|2dv*)dxdv

b Sl [ ([t [ el ) = Hs g,

+ / I sy 2 0) = f (s, ) do
+ /6_a|vl2/Il(xvy)dmfl(svyvv*) —f(57y7v*)|d?]*

+ / T s, 0) - f(wvv)ld”*) dadv.

We apply Fubini’s theorem, the change of variable (v,v.) — (v',v]) with
determinant 1 and observe that the terms containing (v’,v.) are equal to
the correspondent terms with (v, v,). Hence we obtain

/| Q'S Y = QU N) (s, z,v)|dedy < 2K7C,6(1)
2, S,
We deduce that
1 = Fllzre < 2I<'T0a5(l)T+4Ga$/otufl — fllptds (5.4)

and by Gronwall’s Lemma there exists a constant K > 0 such that

sup || ff — fllp s < Ko(1).
<T
Finally, sup, < I - fllzr + tends to zero when [ tends to infinity. O

THEOREM 5.3. Under (Hy),(Hs), (Hs3) and if By has a second order mo-
ment, then the sequence (P') converges to the unique probability measure

P c P, (D([0,T],R®) defined in Theorem 3.2.

Proof. The sequence (P') is tight, so a subsequence of (P!), still denoted
by (P'), converges to a probability measure . Then, almost surely in ¢,
P! converge to ;. Let us consider the sequence of associated measurable
densities f'. By Proposition 5.2, (f') converges to f in L°([0, T], L' (dzdv)).
Therefore, for almost every ¢, ; has a density which is equal to f(¢,.). Let
us now prove that ) is the unique solution of (M) defined in (3.2).
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Following Joffe and Métivier (1986), it suffices to prove that
T
lim ds/dxdvfl(s,x,v)

X (/Acp(ac,v,v*,n)B(v - v*,n)]l(ac,y)fl(s,y,v*)dndv*dy

—/Acp(x, v, Uy, n)B(v — v, ) f(s, 2, v*))dndv* =0 (5.5)

where Ap(z,v,v.,n) = @(x,v+ (v — v).n)n) — e(z, V).
Since all the terms are bounded,

T
ds [ dzdof!
/0 s/ zdvf'(s,z,v)
X (/Acp(x,v,v*,n)B(v— v*,n)]l(x,y)fl(s,y,v*)dndv*dy
_/Acp(x,v,v*,n)B(v - v*,n)f(s,x,v*))dndv*
T
= [ ds [ £lsn 0B - v Spte, v, o) o)
0
(f’(& Yy, vs) = f(s,y, v*)) dndydv,dxdv
T
b [ s [ flsn 0B - v oo, vn)
0
(/Il(x,y)f(s,y,v*)dy—f(s,x,v*))dndv*dxdv

— T1—|—T2.
We have
T [ [
T < 2lelleoll Al / s / e, y) f(s,2,0)
X (/|fl(87yvv*) —f(s,y,v*)|dydv*)dxdv
< 2|l | Al KS()T / m%y)dw@ / ol gy
T
< %ugouoocazwz)r

The second inequality comes from equations (5.5) and (2.5). This term
tends to zero when [ tends to infinity.
Now, we have using Lemma 5.3

T3]

IN

T

QHL,QHOOHAHOOKTcS(l)/ ds/fl(&x7v)e_a|”*|2dv*dxdv
0

2[|ellocCa Ko ()T

IN

and T tends to zero when [ tends to infinity.
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Then ) is the unique probability measure P defined in Theorem 3.2 and
so the sequence (P') has a unique limit value P and thus converges in law
to P. O

We finally conclude by our main result which proves that for a good as-
ymptotic (n,d(n)), we can construct a stochastic interacting particle system
whose law converges when n tends to infinity to the law P associated with
the solution of the full Boltzmann equation. More precisely we prove:

THEOREM 5.4. Let us assume (Hy),(H3), (Hs) and that Py has a second
order moment. Let n € N* and consider a sequence of positive real numbers

d(n) which tends to zero in an asymptotic such that exp(%)/n tends to

zero when n tends to infinity, then

(i) for every 1 < i < n, the sequence of laws of Z8(n)in converges in
P(D([0,T],RE)) to the probability measure P defined in Theorem 3.2.

(ii) The empirical measures of the interacting particle system (Z°0)) cic,,
converge in law (and in probability) to P in P(D([0, T], R°)). o

The proof just consists in associating Theorems 4.3 and 5.4.

6. TWO ALGORITHMS FOR THE BOLTZMANN EQUATION

We deduce from the above study two algorithms associated either with
the simple mean-field interacting particle system or with the binary mean-
field interacting particle system. The description of the algorithms is the
same in both cases, since the theoretical justification is unified for the two
systems.

As seen previously, the empirical measure p®("" approximates the law
of the Boltzmann process whose marginal at time ¢ is equal to the solution
f(t,.) of the Boltzmann equation.

We simulate the particle system. For a fixed n, there are n particles
and the total jump rate for the n(n — 1)/2 pairs of possible interactions
is nAs(ny/2, as seen in (4.4) and (4.5), where Agqy = [|Alleo/(6(n)7). A
Poisson process of rate nA(g(n)/Q gives the sequence of collision times. At
each of these times, we choose uniformly the pair of particles which interact,
update the particles under the free transport, compute the mass of the jump
measure following (4.4) or (4.5). Let us denote by B this jump measure

n

and by |B| its mass. Then we follow an acceptance-rejection procedure.
We discard the jump with probability 1 — |B|/A5(n) and with probability
|B|/A5(n) we choose the joint jump amplitude according to B/|B|. All this
is done independently. We only evaluate at each step the cross-section of
the interacting pair and not those of the n(n —1)/2 pairs. This simulation is
exact if we simulate exactly the exponential variables related to the Poisson
process, instead of discretizing in time.
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