ARNAUDLENY

Decimation on the Two Dimensionnal Ising Model : Non Gibbsianness at
Low Temperature. Almost Gibbsianness or Weak Gibbsianness ?

Publications de I’Institut de recherche mathématiques de Rennes, 1998, fascicule 2
«Fascicule de probabilités », , p. 1-71

<http://www.numdam.org/item?id=PSMIR_1998__ 2 A6_0>

© Département de mathématiques et informatique, université de Rennes,
1998, tous droits réservés.

L’acces aux archives de la série « Publications mathématiques et informa-
tiques de Rennes » implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=PSMIR_1998___2_A6_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Decimation on the two dimensionnal
Ising model :
non Gibbsianness at low temperature.
Almost Gibbsianness or weak Gibbsianness

-~

Arnaud Le Ny

Institut de Recherche Mathématique et CNRS (UMR 6625)
Université de Rennes 1
35042 Rennes, France
e-mail: aleny@maths.univ-rennesl.fr

Dublin Institute for Advanced Studies
10 Burlington Road, Dublin 4, Eire
e-mail: leny@stp.dias.ie

November 1998

Abstract

We show that the decimation on the 2Z2lattice for the two-dimen-
sionnal Ising model leads to a non Gibbsian measure at low tempera-
ture. We provide a complete proof of a result sketched by van Enter
et al.[5]. We also describe how we could restore this Gibbsianness,
investigating, following the terminology of Maes et al.[11, 12, 13], the
almost Gibbsianness and the weak Gibbsianness of this so-called dec-
imated measure.
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1 Introduction

It has been pointed out during the last decades that some pathologies may
occur by using Renormalization Group Transformations (R.G.T) to vari-
ous Gibbs measures [5, 12, 13, 1, 3, 7, 11]. A lot of examples are known
and these transformations lead to new families of random fields. A main
question is how to restore the Gibbsian formalism to these measures, fullfil-
ing Dobrushin’s claim :‘everything in the world is Gibbsian’. After a quick,
and non-exhaustive, description of the Gibbsian formalism, we study one of
the simplest transformations leading to non-Gibbsianness: the decimation
transformation on the two dimensionnal Ising model. We prove that, at low
temperature, the image of any Gibbs measure for this model by this trans-
formation cannot be Gibbsian. This proof was sketched in [5]. In the last
section, we describe briefly what has been done to restore the Gibbsian for-
malism for those ‘pathological’ measures. We shall apply this to our example
elsewhere.

2 Specifications and Gibbs measures

We introduce here the basic notions we need to define Gibbs measure, almost
Gibbs measures and weak Gibbs measures. The reference for this section,
and throughout this paper, are [9, 3].

2.1 Preliminaries
2.1.1 The configuration space -

Let (2, F,m) be a probability space defined as follows:
E is a finite set, and £ a o-algebra on it,
S is a countably infinite set,

And let mg be an a priori finite measure on (E, £).



We define! then the product space = E5 with its product o-algebra
F = £%5 and the usual product measure m = m@°.

The elements of 0 will be denoted by Greek ‘letters w, o, 7 and for each
w € , we denote w; the value of w at the site 1 € S. We often call these
random variables spins (at site ¢).

In the main part of this paper, we will consider :
Q={-1+1}¥", € =P({~1,+1}) , mo = 16_; + 16,

in order to modelize the two-dimensionnal Ising model, which will more
briefly be called 2d-Ising model.

We will always denote by S the set of all the finite subsets of S.

Moreover YA € S, we note Q) = E* and w, the canonical projection of
w on .

We also define, for all A C S, Fp to be the o-algebra generated by the func-
tions (w — w; for 1 € A).

2.1.2 Topology and locality on {2

The space 2 is called the configuration space and will also be equipped with
the usual? product topology (with respect to the discrete topology on E).
As the so called single-spin set E is finite, a typical neighbourhood of w € Q2
is given by ) -

Na(w)={c : oo = wp,0 arbitrary outside A} with A € S.

For the 2d-Ising model a basis of neighbourhoods for w is given by the sets
of the form (Ng)r>o Where

Nr(w)={c : ¢ = w on Ag and ¢ is arbitrary outside Ar}

1For more details about integration and measure theory, one could consult [6, 15].
2For any topological informations, see [4, 10].



and Apg is a square in Z? of lentgh 2R centered at the origin, R being any
integer strictly positive.

Definition 2.1 [locality and quasilocality] A function f:f) — R is said to
be local if A € S such that f is A -measurable, i.e f depends only on a
finite number of spins.

A function f:Q — R is said to be quasilocal if it is a uniform limit of some
sequence of local functions f,, 1.e :

lim sup | fa(w) = f(w) |=0

n—o00 wER

The lemmata (2.1) and (2.2) provide a caracterisation of quasilocal func-
tions which could be usefull. The proofs come from [9].

Lemma 2.1 :
A measurable function f on Q s quasilocal if and only if

lim  sup | f(w) - f(o) |=0 (1)

AtS w,0EQwp =0y

Here the convergence?, called “ convergence along a net of finite subsets
of S directed by inclusion ”, should be taken as:

lim f(A) =a
iff
Ve> 0,3 K. €SstS3AD K, =>| f(A)—al|<e

As S is directed by inclusion, one can consider the convergence along the
following particulars nets.

3See [10, 5]. There is no need to add any further requirement on K,: it is not a
convergence in the Van Hove sense.



Definition 2.2 [Cofinal sets] A subset Sp of § is called cofinal ifeach A € S
is contained in some A € Sg. ¢

For example, is S = Z? for d > 1, then the set
So={[-n,nl*NS, n>1}

of all centered cubes is cofinal.
As S is countable, one could show that there always exists a cofinal set S

and moreover, it is always possible* to chose Sy = (An)nen With A, € Anys

and lim,_;00 An Def UneNAn = S.

Proof of the lemma 2.1:

Let us first prove that each quasilocal function has the property (1). Let f be
quasilocal. By definition, there exists a sequence (f,)nen of local functions
such that

lim sup | fo(w) = f(w) |=0 (2)

n—oo WEQ

Yw,c € Q,

| flw) = f(o) | S| falw) = F(w) | + | falo) = f(o) | + | falw) = fu(0) | (3)

Let A € S and let w,o € Q such that wy = 5. The above inequality (3) is
obviously also true, hence we obtain

sup | f(w) = f(o) | <

w,0EQup=0p
2sup | fo(w) — flw) |+  sup | fal(w) = falo) | (4)
weN w0 EQwp=0p

Let ¢ > 0. The equation (2) yields:
AN >0, Vn 2> N, 2sup | fa(w) - f(w) | < ¢
weN

Let n > N.
fa is a local function: there exists A, € S such that f, is Fj -measurable. If
A D A,, then for w, o € Q1 such that wy = o4, we have | fo(w) — fa(o) |=0.
Using equation (4) we obtain:

Ve >0, IK. =Ast SOSAD K, = sup |f(w)—f(o)|< ¢

w0 EQwp=0p

4The family of all subsets of S is not countable, but S, family of all the finite subsets
of S, is countable.



and the first statement of the lemma is proved.

Let f be any measurable function with the property (1) and let So = (An)nen
be a cofinal sequence of § with A, C Any1 and lim,oo An = UnenAn = S.
Let o € Q be any arbitrary configuration and define a sequence (fn)nen of
local function by:

fa(w) = f(wAnUS\A,.)

Vn € N, f, is Fa,-measurable, then it is a sequence of local functions.
Let us recall the equation (1):

im  sup | f(w) - fo) =0

ATS o oeQuwp=0a

With A, and Sy defined above, we obtain:

im  sup | f(w)—f(o)|=0

nfoo w,aeﬂ,w,\n=a,\n
Here we have:

| fa(w) — f(w) |=] fleanosan) — flw) |

and then

sup | falw) = flw) | = sup| flwp,os\n,) = f(w) |

wEeN

< sup | flw) = f(o) |

a w,0E€Qwp, =0A,

hence

lim sup | fo(w) — f(w) =0

n—oo UJGQ

and the lemma is proved.
o

Thus®, as pointed out in [9], a non constant tail-measurable function can
never be quasilocal. :

5This result could be used at the end of the 3¢ part to prove the non-quasilocality of
the decimated measure.



Example A function is said to be tail-measurable if it is measurable with

respect to the so-called o-algebra at infinity 7o, «f NresFpe. For ex-
ample, one could consider the event

A={w: lim-l—Zw,'=0}

where A, is any cofinal sequence and | A, |= card(A,). The indicator
function of this event, defined by f(w) = 14(w) is tail-measurable, non
constant and non quasilocal (it is obviously non continuous, then non
quasilocal by lemma (2.2) below.).

o

Moreover, in our particular case, we have the the following

Lemma 2.2 :
When the single-spin space E is finite, f:QQ — R s quasilocal iff f is
continuous: ¢

Proof:
Assume first that £ is a separable metric space and endow §2 with the product
topology of the product metric d. Let f:) — R be uniformly continuous

Ve> 0, 3n >0, Yw,0 € Q, d(w,0) <n = | f(w) — f(o) |< ¢
Using the previous lemma, we want to prove that f is quasilocal by proving:

li — =
e | fw) = f(o) =0

The definition of the product topology insures that there exists K, € S such
that VA€ S, A D K., wpo = on = d(w,0) < n which implies, by uniform
continuity, | f(w) — f(¢) | < €. Hence f is quasilocal. If E is finite, it is a
compact metric space and so is §). Every uniformly continuous function on
(2 is continuous and then every continuous function is quasilocal.

Let us prove now that, when F is finite, every quasilocal function is contin-
uous. The product space {1 is equipped with the product topology of the
discrete topology on E and one could prove that

§(w,0) = Z Q—n(i)l{w#ﬂ.‘}
1€S

7



where n: S — N is any bijection, is a metric for the product topology on .
Let f be a quasilocal function on Q. Lemma (2.1) yields:

im  sup | f(w) = f(o) =0

ATS w,0EQwp=0p
and then

Ve>0,IK. €SstSO3AD K, = sup | f(w)—flo)l<e

w0 EQwp=0p

Let us fix w € . The previous statement yields
Ye> 0, dK. € Ss.t A D K,

=> Vo € st op =wa,| flw) — fo) |<e
and the expression of the product metric § yields to
In>0sté(w,o)<n = | f(w) = flo) < e

which proves that f is continuous.
o

2.1.3 Interactions and Hamiltonians

Definition 2.3 [potential (or interaction)] A potential ® is a family & =
(®4)4es of functions indexed by the finite subsets of S

¢, : QO —R
wi— @ 4(w)

such that VA € S, &4 is F4-measurable.o

Definition 2.4 [Hamiltonian with free boundary condition] VA € &, the
map

AE€S,ACA

is called Hamiltonian at volume A with free boundary condition (for the
interaction ®).o



Remark 2.1

As the sum involved in the definition of this Hamiltonian has a finite number
of finite terms, these objects are always well defined.

Definition 2.5 [Convergent interaction] A potential ® is said to be conver-
gent if the sum

HYw) E > Guw)

AES,ANA#D
exists Vwe Qand VAES. ¢

Remark 2.2

e By the existence of this sum, we mean the convergence of the net
(L aes.anazs.aca 2a(w))aes to a finite limit as A +S. Using cofinal
sequences (definition 2.2}, one could show that there is no need to fix a
sequence of increasing volumes along which the limits have to be taken
and it is enough to take A along an increasing sequence of a cofinal
set. Moreover, those sums can be convergent without being absolutely
convergent (see [13, 10]).

e If we do not precise the way this infinite sum is done, H? could be
ill-defined. Let us consider the potential ® defined on {—1,+1}% by
Wiy
li—7 |
= 0 otherwise

Vw e Q, Du(w) = if A= {i,j}

Let A € S and define B = {i € Z, w; = +1}. One could write
Z @A(UJ) = Z @A/(w) + Z <I>Au(w)
AES,ANA#D AES, ANA#D AES, ANA#D
where A’ = AN B and A” = AN B°. Here,

Z @A:(w) = Z @An(w) = Z !

P 4
AES,ANA#D AES, ANA#D 1,JEZ l J I

and the series are not convergent, whereas H$ is well-defined if we use
nets as above.



e When the interaction has finite range, as we will define it later, those
series are always finite and we do not have to precise the way those
infinite sums are taken.

Definition 2.6 [Hamiltonian at volume A with boundary condition 7] Given
a convergent potential ®, we can define, V7 € Q,VA € S, the following
Hamiltonian at volume A with boundary condition 7,

Hy, : O—R
def

w —> Hiﬂ(w) = Hf(w,\TAc) = Hi(w | 7)

where wy7j¢ is the configuration which agrees with w in A and with 7 in A°.
o

Remark 2.3

A convergent potential is regular enough to define this Hamiltonian at finite
volume with boundary condition, but it won’t be enough to define the so-
called Gibbs specifications. Thus, we need the

Definition 2.7 [Absolutely convergent potential] A potential ® is said to
be absolutely convergent if and ounly if

VieS, o= Y sup|@a(w) < +oo (5)

AeS, A5 vEL

which is equivalent to the condition:

VAES, I8la T Y sup|®a(w)|< oo
AeS, Anazp “E?

<

Example : finite range potentials
We say that a potential ® has a finite range if there exists R € R such
that &4 # 0 = diamA < R where diamA = sup; ;c5 |7 — j||. One
could easily check that a finite range potential is absolutely convergent
if and only if ®4 is bounded for all A € S. A typical example is
provided by the 2d-Ising model studied in the third part.

10



Example : A convergent potential non absolutely convergent
This example comes from one of Sullivan (18]. Let us deal with a slight
modification of the one dimensional Ising model: take Q = {—1,1}%
and define a potential ® such that VA € S,Vw e Q

Qu(w) = %— iff wi=+1VieA={k,---,k+n—-1}LkeZ

0 otherwise

Thus @ is non null only for the finite sets of adjacent sequences in Z
on which the spins are all +1.

We prove now that @ is a convergent potential, and even more, we
prove that it is uniformly convergent in w. We have to prove that
for all A € S, the series HY(w) = 3 4140 4cs Pa(w) are uniformly
convergent in w. One could show that it is enough to prove it for
A = {0} (see [5]). Thus, following the remark (2.2), we only have to
prove that the sequence (3,50 4ca, ®a(w))nen, with Ay = [-N, N],
converges uniformly in w. Equivalently, we can prove that the sequence

(UN)Nen defined by

Uv=sup| >  ®aw)]|

YED  430,4nAS,#0
converges to zero when N goes to infinity. but

1k
Y. W) =) Y (klz) [] Ltw=n(@)

A30,ANAL #D k>N A30,|A|=k €A

where |A| = card(A). Let w € . We can dis{;inguish three different
behaviours.

w is the “+”-configuration: Vi € Z, w; = +1.
We have:

Yo Baw)= (k+ 1)(;;22

A30,4NA5, #0 k>N

At least one sequence of “4-” is semi-infinite around the origin:
We shall do it in one direction only, say left:

11



dng>0st: wpy =—landw; =+1Vi€Z, 1 < ng

Here,
. —1)* —1)*
Z Qy(w) = Z min (k + l,no)( k2) < Z(k+l)( kz)
A30,ANAS #0 k>N k>N

no sequence of “4” is infinite around the origin: Insuch a case,

In, €Z T stw, =—landw; =+1VieZT, i <ny
dn, €Z " stwn, =~landw;, =+1Vi€Z™, 1 > no

and then,

VN > max(ni, —ns), Z Qu(w)=0
AD0,ANAS#0

If we consider now N > max(n;, —n3), we obtain

0 SUnv=suwp| Y  ®aw)l<| Z(k+1)(_ﬁ)k|

k
Ve 430,4NAS,#0 k>N

and the term on the right is the tail of a well known alternated conver-
gent serie. Thus, this potential is uniformly convergent.

But it is not absolutely convergent:

2N

_.1"
S sup|aw)| = S 1) 2L
A30,AcAy “EDR n=0 n
~ N
- Z n2
n=0

and this is well known as a non-convergent serie. Thus, this potential
is not absolutely convergent®.

5The same kind of examples is, for the same reasons, provided if instead of -n% in the
definition of the potential, one take any sequence (cn)nen such that the serie Y ne, is
divergent and the sequence (ncs)nen is a decreasing sequence which converges to zero.

12



Remark 2.4

o In the literature, absolutely convergent is sometimes replaced by ab-
solutely summable ([7, 11, 9, 5]) or uniformly absolutely summable

([1, 13]).

e Requiring for a potential to be absolutely convergent will be enough to
define a Gibbsian specification associated with this potential, and then
to provide a ‘reasonnable’ modelization of the physical properties of the
system. This actually seems to be too strong, and this strenghening
causes the troubles we have in the 3¢ part.

2.2 Specifications, quasilocality and Gibbs measures

The main references for this section are again [9, 5].

2.2.1 Specifications

Definition 2.8 [Specification on (Q,F)] A specification is a family v =
{7a, A € S} of maps

o : QxF—[0,1]
(w, A) — Ya(w, A) def ya(Alw)

which satisfy :
1. VA € F,77(A|") is Fac-measurable.
2. Yw € Q,74(+|w) is a probability measure on (§2, F).
3. VB € Fac , (Blw) = 1p(w)

4. If A C A’ are finite sets, then yayo = var where y5v5 is a map on
Q x F defined by

Yarya(w, A) = yava(Alw) = / YA (Alw’)yar (dw'|w)
Q
(o]
Remark 2.5

13



e In a probabilistic point of vue, it is more natural to use the notation
ya(w, A), considering 5 as a probability kernel, whereas in statisti-
cal mechanics, we use y5(A|w) in order to consider it as a (regular)
conditional probability.

o In other words a specification on (2, F) acts as a family of probability
kernels from Fjc to F, which have the consistency property (4). We
underline that because of properness (property 3), a specification ~ also
satisfies the converse consistency relation

ACAN = YAYA? = YA

Let A,A’€ S, A€ F, we Q. Property (1) of a specification tells that
f(-) = var(A|-) is Fae-measurable, so it is Fp.-measurable because
Fpre C Fae. 1t is also positive, then Yw € Q, f(w) = limuyeo L4, (w),
with, Vn € N, A, C Apy1 and A, € Fj.. Using the Beppo-Levy
property in the integration of any positive measurable function, we
obtain

M (Alw) = I'Lm 14, (w')ya(dw'|w)
n—oo Q
= lim yx(An|w)
= l_i-)m 14,(w) by properness

= f(w) =1 (Aw)

e As described below, these objects are defined in order to specify some
versions of conditionnal probabilities of a probability measure u.
Let p € MT(Q,F), the set of all probability measures on (£, .F), and
assume’ it is possible to define regular versions of conditional proba-
bilities, with respect to the o-algebra F,. for A finite subset of S.
pl | Facl is defined p-a.s® on (Q, F) by the equalities :

VAEF, plA] Fadl() = Bulla | Facl() p - aus

The well-known properties of the conditionnal expectation with respect
to o-algebras allow us to give the following for u[- | Fac]:

"Because our spaces are nice, this is always possible (see [17]).

8-a.s means that the claim is true on a set of y-measure 1. My references in probability
theory and integration are [15, 6].

14



1. YA € Fae, plA|Fpc](w) is Fpc-measurable for y-almost every (w).
2. p-a.s(w), pl|Fac)(w) is a probability measure on (Q, F) °.
3. p-a.s(w),

VB € Fpe, p[B|Fpel(w) = Eu[1p|Fac)(w) = 15(w)

because 1p is Fj.-measurable.
4. if A’ C A, then Fpe C Fpre and p-a.s(w),

VA € F, ululAlFall Frel(@) = Al Fae] ()

It appears that specifications are good objects to describe condition-
nal probabilities, with the important objection that they are defined
everywhere on 2, for the convenient reason that we want to specify u
everywhere and not p-a.s.

o Vo,we Q, VA € §,74(clw) depends only on oa and wpe.

Definition 2.9 [measure consistent with a specification| Let v be a specifi-

cation on (2, F). The set

G(7) L {ue MF(Q,F) VA€ F YA€ S, ulA| Fael(-) =m(A ) u —aisi
6

is the set of the probability measures specified by v, or consistent with v. o
Remark 2.6

This definition reminds the Kolmogorov compatibility condition for the ex-
istence of a probability measure on an infinite product polish space. Instead
of dealing with the family of marginals of this measure, we deal with its
system of conditional probabilities. The Kolmogorov compatibility yields to
the existence and unicity of such a measure, whereas G(v) could have a lot
of different structure. We provide here few examples:

A specification for which G(y) = {u¢}: This is the Gibbsian description
of a reversible Markov chain on the integers. For more details about

9Because of the remark in the footnote 7.

15



this description, one could consult [9]. Let @ = {—1,+1}% and consider
a stochastic matrix
(12,7
l-q ¢

with p > 0, ¢ > 0 such that M is irreducible and aperiodic. Thus it is
an ergodic Markov chain °. Hence, we have the following properties:

Itve MI(E,)stvM =M
and
IMpeMF(Q,F)stVweQ, VEEN, Viy,---,i €N
pl(wigs s wi )] = vlwn ) M2 (Wi, wiy). - MR (g, wy,)
We also have the property

Vi k € E, lim M"(j k) = v(k) > 0

Let X = (Xn)nen be a sequence of random variables on ({1, +1}N, £8N)
of law u:

YVwe, VkeN, Viy,---,ix €N
m[Xil(w) = Wiy e 1X‘k(w) = wik] = /"[(wiu T 7wik)]
= V(wil )1‘412—11 (winwiz)' e MR (wik—nwik)
This sequence has the Markov property: Vk € N, Vi,7, €41, -, 60 € E
mXpp =i Xk =7, -, Xo=¢€] = pllwi,, =ilwi, =7, +,wo = €]
= .u[(wik+1 = ilwik = .7] = M(],Z)

but, because it is ergodic, this Markov chain is reversible and Vk €
N, VIe N, Vi,j,€xs21, - €41 € E

m[Xe =i Xeg1 =7, , Xiwt = €xq1]

= #[(wik = i‘wik“ = j) Tty Wkl = 6I<:+I]

19For more details about Markov chains, see [6].

16



,u[(wfk = i’wikq.l = j, C Ly We = €k+l]
plwie,, =3y Wit = €xgd]
V('l)M(Z,]) cee .M(€k+1_1, €k+1)
v(G)M(J, €xv2). - - M(€rgi1, €ti)
WOMGG)
o) - N(j,%)
and N is a stochastic matrix associated to the reverse chain. Hence,
we can extend this chain on Q = {~1, +1}% and it is still ergodic. We
shall now define a specification v such that g € G(y). We have to
compute u[o|ope = wpe], Vo € , Yw € Q, YA € S but it is enough
to construct it for all the finite subsets of S in the cofinal sequence of
cubes, i.e Vn € Nand A, = [-n,n]. Let n € Nand ¢ € Q

ploaqlong = wag]
Hle)—c0,—n—=1] T A Wn+1,00(]
.u'[w]—OO,—n—l]w['n+l,oo[]
,U'[“"—n—lal\uwn+1]
plw-n-1wni1]
U wen1)M(Wopn-1,0-n) 0 0 M(0p,wnt1)
V(Won-1)M?+2(w_p_1,Wny1)

If we define then
Zy, (""') = M*+? (w—n—l ) wn+1)

and

1
an(olw) = mM(w-n-l,U-n) o0 M(on,wny1)

we define a specification v such that x € G(v).

Now, G(v) is not empty and take any u’ € G(v) and prove that p' = p.
Let us remark that p' is Markovian by construction. The ergodicty of
this chain prove that p is the only probability measure on (€2, F) such
that

Vz,y € Z, lim M"(z,y) = p(y)

17



As they are probability measures on an infinite product space, it is
enough to prove Vw € 2, Vk € N, Viy,---,i; €N,
.u[(wil T ’wik)] = /",[(win T 7wik)]

Let us prove it first for the one dimensionnal cylinder, i.e for z € E,
let us prove that u'[oo = z] = uf[oo = z]. Because y’ is Markovian, we
have Vn € N

ploo=1z]= Z ploo=2z|oeny = a,0n41 = blu[o_n_y = a,0n41 = B]
a€EbEE

but Va € E, VbE E,

M"Y (a, z) M (z,b)
M™+2(q, b)

ploo = z|oon_1 = a,0041 =b] = Z
acEbeE

and using ergodicity, one obtain Ya € E, Va € E,
lim p'[og = z|o—n-1 = a,0n41 = b] =
n—co

and then p'(oq = z] = v(z) = ploo = 2).
We obtain the equality of those measures on the other cylinders in the
same way and u' = p.

<

An example where G(v) is empty: It has been provided by Spitzer and
deals with random walks on Z. This description comes from [2].
Let Y be a random walk on (2, F) and define a specification v by its
definition on cofinal sequence: Vn € N,Vo,w € )

YAn (O'A,.IWAs,) =Mma, [YA,. = UA..IY—n—I =W_n-1, Yn+1 = wn+1]

Assume now that there exists 4 € G(v) and define Vn € N, S, =
Yo — Y_,. Then S, follows a law B(n, ;) and

VYe>0,YVk€Z, Instmy, [S, =k] <ce

thus
VL€ Z, ulYo=kY_, = 1<e
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and then we must have
plYo=Fk <e

Thus, p can not be a probability measure and G(7) is empty.
o

A specification for which G(v) is not empty, neither a singleton: It will
be provided in the next part, where we will study the two-dimensionnal
Ising-model at low temperature.

2.2.2 Quasilocality and continuity for specifications

There is a canonical action of the elements of a specification on functions
and measures.
Let v be a specification on (2, F)

Definition 2.10 [Action on functions] Let f be any measurable function on

(€, 7)

f: Q9—R
o +— f(o)
VA € §, we define
‘)’Af : 0 — R
w — YA f(w)
with
wf(@) = [ Foym(doto)
Q

Definition 2.11 [Action on measures] Let 1 be any measure on (Q, F)
VA € S, pva is a measure on (2, F) defined by :

MG£WMM=A%MMMW)

o}

Remark 2.7
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o If u is a probability measure, so is uys because v, is a probability kernel.

e Thus, the product of two elements (i.e two probability kernels) of a
specifications yaya is, for w € 2, the action of vy on the measure
yar(dw'|w) and could be seen as well as the action of 45 on the mea-
surable map 5 (4|)

we can formulate the

Lemma 2.3 :

Let v be a specification on (2, F) and p a measure on (2, F). The following
characterizations of consistency holds:

1.
peEGl) < VAES, p=pmn

2. u€G(y) <« Thereis a cofinal subset Sy of S s.t

VA € So, p = pya

Proof:

1. Let p be consistent with . Definition (2.9) yields
VA e F,VYA € S, ulA|Frl(:) = ya(A])) g — a.s

Let us compute what it means, using the definition of conditionnal
probabilities.

VB € Fie, /B A Fae] (@)u(dw) = /B E, [14]Fae] (w)e(deo)
= [ ta)n(d)
B

= [ 1uena(m(a)
#(AN B)
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By consistency, this is also equal to

[ mAlo)uds) = [ 1a()in(Al)a(do)
Now let us prove “
Ywe R, VA€ F, VB € Fae, 1a(w)a(Alw) = (AN Blw) (7)

Let w € Q. By definition of a specification, v(-jw) is a probability
measure and then

7a(AN Blw) < inf(ya(Alw), ya(Blw)) = 7a(Alw)lp(w)  (8)
by property 3 of a specification (properness). Similarily,
AN B) < (A 1se(w) (9)
Now, the equality
(AN Blw) + (AN Bw) = 7a(Al0)15(w) + 1 (Alw)1pe(w)

proves that the inequalities (8) and (9) are equalities, thus (7) is proved
and we obtain, VA € F, VB € F).

WANB) = [ (AN Blu(de) = w(An B)

Taking B = 2 € Fjc, we obtain 4 = uy, as probability measures on
(€, F).

The converse statement

p=pya = p € G(y)

follows in the same way.

. We only have to prove that if there exists a cofinal set Sp of S with
p = pya YA € So, then p = pya holds VA € S. This follows directly
from the definition of a cofinal set:

VAe S, JA e Sost ACA
and using the consistency property of any specification, one obtain:
BYA = BYATYA = YA = |1
The existence of a cofinal set is insured by the remark following the

definition (2.2). ¢
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Definition 2.12 [Quasilocal specification] A specification v is said to be
quasilocal if and only if, for all A in S, for each (bounded) local function f,
yof is (bounded) and quasilocal. o

Lemma 2.4 If v is quasilocal, then for each (bounded) quasilocal function
f, f is (bounded) and guasilocal'.

Proof:

Let v a quasilocal specification, A € § and f be any quasilocal function on
(2, F). f has the following property:

£

2

As v is a quasilocal specification and g a local function, 59 is a quasilocal
function. Hence,

Ve > 0, Iglocal s.t ||f — glleo <

€

Ve > 0, Jh local s.t ||[yag — Al < 5

and then
vaf —Rllee < |l7af = 7agllce + 729 — Rlloo

€
< |lvaf — vaglle + 3

But, Yw € Q2
@) - o) | < / | £(o) = 9(0) | ya(dolw)
. -~ Q
17 = gllo /Q T (dolw)

< €
2

IN

Thus, for all f quasilocal
Ve> 0, dhlocal s.t [|[yaf — hlle < €

which proves that 4, f is quasilocal.
°

11'When E is discrete, all the local, quasilocal and continuous functions are bounded.

22



Remark 2.8

A typical example of quasilocal specification is given by Gibbsian speci-
fication, defined in the next section. The relationship between Gibbsian and
quasilocal specifications is studied more precisely in the so-called Gibbs rep-
resentation theorem (theorem (3.1)).

The following lemma establishes the equivalence between continuity and

quasilocality for a finite single-spin set E, and is proved after the lemmata
(2.2) and (2.4).

Lemma 2.5 v s quasilocal if and only if

V f quasilocal, VA € S, I{im sup | (W )(w) = (yaf)(e) |=0

‘'es w,aEQ,uA,=aA4

2.2.3 Gibbs specification - Gibbs states

Definition 2.13 [partition function] Let ® be a potential, w a configuration
in 2, and let 8 > 0. If it exists, we call partition function at inverse temper-
ature 3, at volume A, with potential ® and boundary condition w, and we
note it Z2%(w), the integral

B2 ) = | exp(—BHE (o ma ®A°(do) = [ exp(— Xa kal(do
78° () / p(—BH (0))m @ 628 (do) / p(~BHS (0))ra(do)

where we note'? %, the product measure my @ 684" on (2, F), where 6, is

the Dirac measure on z € E and my = m§*. o
Remark 2.9

In order to highlight the role of the boundary condition w, one could use
the following expression for the partition function:

2(w) = [ exp(~FHI(olu))ma(don)

Qp

12We underline here that k4 is a measure on (2, ) which depends of wye.
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Lemma 2.6 If ® is an absolutely convergent potential, then Vo € Q,Vw €
Q,YA € S, HY(o|w) is bounded. ¢

Proof:
By definition (2.6),

Hi(olw)= > ®a(oawse)

AES,ANA£D

Thus Vo € Q,Vw e Q,VAE S

| HY (olw) | < Z sup | 4(w) |
AES, AnA£p “EL

<sup||®fla < oo
)
and the lemma is proved.

o
As A is finite, so is Q4. Then, as H (o|w) is finite for all o € Q, the partition
function is always finite for an absolutely convergent potential and we can
always give the following

Definition 2.14 [Gibbs distribution at volume A] Assume that ® is an abso-
lutely convergent potential. For A € § and w € Q, we call Gibbs distribution
at volume A, with potential @, inverse temperature 3 and boundary condition
w, the probability measure 7f¢('lw) on (2, F) defined by:

VA€ F, /P (Alw) = —ro / 14(c) exp(—BH2(c))ka(do)  (10)

Zy’' (w) Ja

where £, still denotes the product measure mp @ 834 on (Q, F). o

Remark 2.10

As pointed out in the previous remark, one could write, in order to un-
derline the boundary condition,

Zﬁ“’l—( / 14(oawne) exp(—BHZ (c|w))ma(doa)

1ol (Alw) =
w) Ja,

We have the following lemma. The proof comes from [16]
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Lemma 2.7 Assume again that ® is an absolutely convergent potential.

1. 4P® = (fyfd’)AEs is a specification on (Q,F), called a Gibbs specifica-
tion.

2. It is a quasilocal specification.
o
Proof:

1. Let ® be any absolutely convergent potential. We know by the lemma
(2.6) that the partition function at finite volume A exists and is finite.
Let us prove first that the maps 'yfq’ are well defined VG > 0 and
VA€ S. Let A€ F and w € Q and define a measurable function fa
on (Q,F) by

1 <I>
falo) = 7 0) exp(—fHjy(0))

and we have
VP(Alw) = / 14(0) fa (o) (dor)

= /Q1A(0AwAc)fA(UAwAc)mA(dUA)

Using the proof of the lemma (2.6), we obtain

VAe F,VweQ, 0 <" ¥(Alw) <1

Hence, the maps fyf:d’ are well defined V3 > 0 and VA € S. Let w € Q.
Let us study the map

Y(w) + F—[0,1]
Ar— (Alw)

VA € F, we can write it

(Alw) = /,, fa(o)ra(do)
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The function f, is a positive measurable function on (Q, F). The well-
known properties of the integration of any positive measurable function
with respect to a positive measure insure us that the map 72 (-|w) is
a positive measure on ({2, F), and the normalisation by the partition
function yields to a probability measure. It also insure!® that VA € F
the map 72°(A|-) is a measurable function on (2, F). Thus, the items
(1) and (2) in the definition of a specification are checked.

Let B € Fpe. Vo,w € §, 1g(0oawac) is independant of ¢ and

1g(opwpe) = 1p(wawse) = 1p(w)

and then, Vw € Q2

1
Rl = g /ﬂ La(onene)exp(~SHY(oho))ma(dr)
1
- 75 /Q A 18(wawne) exp(—BH (o)) )ma(dos)
- IL((U— ex _— agiw)m g
= o [, e aEemdn)
= 1p(w)

and item (3) is also true.
Let us check item (4). We will now assume, without any loss of gener-

ality, that 3 = 1. Let A,A’ € S such that A C A’ and let A € F and
w € . We want to prove

_ 7AI(AIUJ) = "}’A/’YA(AlLL))

where

'YA'(AIW) = ‘/Q 1,;('erArc)fA/(TA/wA:c)mA:(dTA:)
A’

and

T (Alw) = /ﬂ (Al )rae(drlw)

=‘/Q (A lA(UATAI\AwAIc)fA(GATA/\AwAlc)dO'A)fA/(TA:wA;c)dTA/
A A

13For more details on integration and measure theory, one could consult [15, 6].
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where we have written doy instead of my(doy). Let us compute what
7A’7A(A|w) is.

Yava(Alw) = / ga,a (Tana)dTana
QA'\A

where
gaa(Tana)

= | far(Tamanaware)( / La(oaTanaware) faloatanaware )doy)dry
A Qp

= / ]-A(O'ATA’\AU)A'C)fA(UATA'\AWA'C)fA'(TATA'\AwA’C)dUAdTA
QAXQA

= / lA(TATAI\AwAIc)fA(TATA:\AwA/c)fA:(O'ATAl\AwA/c)dU'AdT,(l1)
Qa XQp

using the trivial change of variable ¢(oa,7s) = (74,04). Now, let us

recall that .

Z3(0)

and let us prove the following

falo) = exp(~H{(0))

Lemma 2.8 Let fy be defined VA € S as above. The following state-
ments are equivalent:

() VYACAN €S, V€and§' € Q s.tépe =€),
C f(EFal€) = fal€) far(€) (12)
(b)) VAC N €S, V€€ Q,

far(€) = falé) A far(onéac)dos (13)

Proof:
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(a)

Let A, A’ € § such that A C A’ and let € and ¢ s.t £pe = €).. We
have
exp(— EAnA':,é(D ®4(£))
exp(— EAnA’;é@ ®4(¢))

= exp(—( Z (@4(&') — @4(€)))

ANA'#£D

= exp(—( Z D4(¢) — 24(8)))

ANA#D

because £} = {rc and VA € S, @4 is Fa-measurable. One could
prove in the same way:

Zp(E) _ Za(€)

Zy(€)  Za(8)

and (12) holds

Let us prove that (a) = (b). Assume (a) holds for A, A’ € S
such that A C A’ and let £ € Q.

n€) | fuloata)don = / Fu(€) fur (oabne)dorn

5

= A far(€) fa(oaéac)don

= fA'(f)/rz fa(oaéac)doa
= fa(€)

because fQA faloaéac)doy = 1.
Let us prove that (b) = (a) and consider £,£,A, A’ as above,
with €xe = €. Using (12),

fA'(f) =fA(§) q fA'(UAﬁAc)dUA

and

() =fa) | far(oaéye)don

Qa
but €xe = €} yields to

fa(onbne)don = / Far(onthe)don
Q Qa
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and then

fa(€)a(€) | faoabac)dan = fa(€)( | far(oaac)don) far(€)

QA - ‘QA

If an fA/(UAfAc)dO'A =0 13].’161114 fA;(é') = fAl(fl) and (13) hOldS.
Otherwise, it is strictly positive and (13) holds as well.

o
Then we obtain after (11):

gan(r) =

1A TATA,\AwA/c)fA(TA,ch)( fA'(a'ATA'\AwA'C)dO'A)dTA
A Qa

]-A TA/wA:c fAI(TAlwAIc)dTA
A

:a\:o\

and then
Yarya(Alw) =

/ (/ La(Tarwpre) far(Tarwnse )drp ) dTan

QA’\A QA

= /g; 1A(TAlwArc)fA/(TAlwAlc)dTA:
A
= v (Aw)

and item (4) is proved.

2. Let us prove it is a quasilocal specification and without any loss of
generality, we assume again that § = 1.
We first prove that, when ® is an absolutely convergent potential, the

14Properties 1,2 and 3 of a specification hold for v, and this requires f positive.

29



Hamiltonians HY are quasilocal functions for all A € S. Let A € S.
We want to prove, using lemma (2.1):

. ® <o
lim  sup | HY (w) —H{(c) |= 0
A'tS T WEQT p1=wy s

Let S 3 A’ O A and consider two configurations o and w such that
OAr = WA!.

HYw)-HR(0)= )  (%4(w)—B4(0)
AES,ANA#D

= S (@aw) - (o)) + > (a(w) = ®a(0))

AES,ANA#£0,ACN’ AES,ANA#£D,ANAC£D
the definition of a potential proves that

Y (Ba(w) —4(0)) = 0

AES,ANA#D,ACA’

because ® 4 is F4-measurable and opr = wy,. Hence

sup  |Hy(w)—HR(o)| < 2 > sup | ®4(w) |
TWELTpr=wys AES, ANA#D,ANA‘E £D weh

If ® is an absolutely convergent potential, we can write in R:

Z sup | ‘I)A(w) |
AES, ANA#D, AnAre 20 Y€

= Z sup | @4(w) | — >y sup | ®a(w) |

Aes,AnA#0, S92 A€S,ANA#0,ACA’ “€Y
The absoiute convergence of ® means that :

lim Z sup | P4(w) | = Z sup | Pa(w) | < o0

A'too
AES, AnA#D, ACA! “ED A€S, AnA£p “EL

Hence
lim su H®(w)-H%*0o) | = 0
A'1S dy“Gﬂ,UE:WA[ I A( ) A( ) I

which proves that HY is quasilocal.
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Remark 2.11

Requiring for a potential to be absolutely convergent is actually to
strong to prove this quasilocality. Let us prove here that the uniform
convergence is enough. ‘

sup | Hj(w) - H}(o) | < 2sup | > B4(w) |
T WwERTp1=wys weq AES, ANA#£D,ANA £
and ’
lim su ® =
moml T wk

AES, ANA#£D, ANA'e£p

is exactly the expression of the uniform convergence of this potential.
o

Let € > 0. The last result means that there exists A, local on  such
that

sup | HY(w) — ha(w) | < e
wEN

Let f be any local function on 2. We want to prove that there exists
a local function kj on §2 such that

sup | f(w) —ka(w) | < e
weN

recall that
1

Zp(w) Ja,

Yaf(w) = f(oawae) exp(—Ha(oawae))ma(doy)

and define

ka(w) = ZAl(w) - f(oawae) exp(—ha(oawsc))ma(doys)

Then we have

| 1 f(w) — ka(w) | <
ZAl(w) /QA | foawne) || exp(—Hp(opwae))—exp(—hys(oawae)) | ma(doy)

As both Hy and A, are bounded!®, there exists K, € R such that

Sué)g | exp(—Ha(0awae)) — exp(—ha(oawne)) |

15They are quasilocal and local, and E is finite.
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< Ky supn | Ha(oawne) — ka(opwpe) |
g,wE

leading to
sup | yaf(w) —ka(w) | < sup | f(w) | Ka e
weN weN

which proof the second statement of the lemma.
o

Definition 2.15 [Gibbs states (or Gibbs measures)] A Gibbs state is a mea-
sure consistent with a Gibbs specification. We often say that it is consistent
with an absolutely convergent potential. o

Remark 2.12

e Let y be a Gibbs state (for an absolutely convergent potential). Then
by the definition of consistency (equation (6))

VA€ F, plA1Fa](-) = Eu[1a|Fac](-) = m(Al) 4 — a.s (14)

this caracterisation of Gibbs measures is called D.L.R equation, after
Dobrushin, Lanford and Ruelle who introduced it first.

As « is a quasilocal specification, no version of the conditional proba-
bilities of p with respect to the o-algebra generated by the cofinite'®
subsets of S can be discontinuous as function of the boundary condition
w. One often say that they are essentially discontinuous.

e A Gibbs specification is quasilocal but the converse is not true in gen-
eral. However, most of the quasilocal specications are Gibbsian, and
we precise this now.

Definition 2.16 [non nullness] A specification + is said to be :

1. non null iff VA € §,VA € F verifying m(A) > 0, we have :
(7a(Alw) >0, Vw € Q)

2. uniformly non null iff VA € §,3ay, By with 0 < ap < By < oo such
that

apm(A) < ya(Alw) < Bam(A) Yw €, VA e F.

16 A cofinite set is the complementary of a finite set.
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[od
We can now formulate the important

Theorem 2.1 (Gibbs representation theorem) Let v be a specification
on (Q,F). The following statements are equivalent:

1. There exists an absolutely convergent potential ® such that v is the
Gibbsian specification for ® ( and the a priori measure m).

2. v is quasilocal and uniformly non null (with respect to m).
Moreover, if the single-spin set is finite, these are equivalent to
e v is quasilocal and non null with respect to m.

o2

Proof:

1. Let v be a specification consistent with an absolutely convergent po-
tential ®. We know by lemma (2.6) that it is a quasilocal specification.
Moreover, it is non null by construction. As the distribution defined by
~ is absolutely continuous with respect to the a priori measure m, this
is equivalent to uniform non-nullness. Thus, any Gibbsian specification
is uniformly non-null and quasilocal.

2. Let v be any quasilocal specification uniformly non null with respect
to the a priori measure m. Vw € Q, VA € S, 45(-|lw) is absolutely
continuous with respect to m and one could write:

a(Alw) = / gr(0)m(do)

where ga is a non negative measurable function on ({2, ). Moreover,
the properties 1, 2 and 3 of any specification enable us to write it

7A(A|‘-U)=/ﬂ1A(UAwA°)fA(UAwA°)'9A(d0)

with fo(c) > 0 for all & € 2 by non-nullness.
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Let us use now the property (4) of a specification:
VACA €S, yaya =
The proof of lemma (2.7) yields to the statement: Vw € 2, VAE S
/ lA(TA;wA:c)fA: (TA/wA:c)dTA/
Qu
= / lA(TAlwAlc)fA(TA/wA/c)(/ fA’(aATA’\AwA’CdUA)dTA’
QA’ QA

But, because VA € S, fo > 0, this means that for ma/-almost every
TAl € QAI, eVt € Q,

far(rawnre) = fa(rawae) | fa(oaTanawase)don
Qp -

using lemma (2.8), one obtain VA C A’ € §,V¢, ¢ s.t €pe = &)
(&) fn (&) = fal€) far(§) (15)
Let a be any fixed configuration in 2 and define:
Do={c€Q: JAES, oprc = ap}

Let w € ,: 3A € S s.t opc = ape and define Ag(w) = Nawpe=apeA

in order to obtain

VA E S, wae = ape == Ap(w) CA
Now, let us prove that we can define a unique function
He : Q, — R such that:
e H*(a)=0
[ VwEQa, VAES)

L exp(Hw)
fa(w) fQA exp(H®(opwpe)doy
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We still consider w € 2, and let us define

H*(w) = In(fao(w)(@)) = In(fasw)(a))

We have H%(a) = 0 and let us first consider A 2 Ag(w) = A,.
Using the equation (15), we obtain

ex al iy - on(w)
p(H*(w)) Tola)
Sao(waoaas)
on(a)
_ W)
= 5@ ()

Hence, VA D Ag(w),
H*(w) = In(fa(w)) — In(fa(a))
and equation (17) yields to

/exp(H“(aAwAc))daA = / exp(H®(opapc))doa
Qa Qa

fa(onaae)
o, Jfala)
1
fa(a)

and (16) is true Yw € Qq, VA 2D Ag(w)
Let us consider now A C Ao(w). Using lemma (2.7), we write:

dO'A

fao(w) = fa(w) [ fao(oawae)doy

Q4
w) = on (w)
fA( ) an fAO(O'AwAc)dO'A
and (16) yields to
exp(H*(w)) 1

fa(w) = Jan, exP(H(onswng))don, fo, fas(oawas)don
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but

fao(oawne) = fao(oawpo\awag)
exp(H*(oawp\awag))
Jo, exp(He(Taowag))dTa,

and then we obtain

/ fao(oawne)doy = Ja, exp(H*(oawn<))doa
Qa Ao \YAWA A fQAQ exP(Ha(TAowAg))dTAo
hence
falw) = exp(H*(w))
fQA exp(Ha(aAwAC))daA

and (16) is true VA € S. Thus the function H® is well defined by (16)
on {3, and the value in a brings the unicity.
Now Define for all A € §

@A : 0 —R
o ®a(o) = ¥ (-1)"\BIH*(0pap:)
BcA

and use the convention ®3 = 0. these maps are well-defined on Q
because we only use H*(opgap:). We can also define, VA € S, Vo € Q,
a map H} by the expression

Hi(o) = H*(opan)

such that, by Mobius’inversion formula ([8]), VA € S, Vo € 2

Hi(o) =) Pa(o)

ACA

and this yields to

H*(0) =) ®4(0)

AeS

Moreover, VA € S, ®,4 is F4-measurable, up to property (3) of a
specification which proves that H®(- x asc) is Fa-measurable.
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Define now, provided these sums are well defined!”, forall A € S

gan Qa—-—>R

o— gao) = Z ®4(0)

ANA#D,AES
then

H“(aAwAc) —-gA(a'AwAc) = Z @A(O'ALUAC)
ACA<,AeS

> Bulwae)

ACA< Aes

This is independant of wy and V€ € Q, we obtain Vw,o € Q,VA € S,
ga(oawne) = H*(oawpe) — H*(Eawne)
Now, we can compute
exp(H®(opwae))
fQA exp(He(Tawpe))dTa

)
exp(ga(gawa:)). exp(H*(§awa<))
Ja, €xp(ga(Tawnc)). exp(He(Eawae))dTa
)
)

fa(oawpe) =

exp(ga (Tawae
Ja, exp(ga(Tawae))dry

Define now Vo € Q, VA € S, a configuration o* by

o = gifieA

T

= a; otherwise
We can then define VA € S, VA € S, the maps V4 and G, on Q by
Va(o) = ®4(c?)

and

Gale)= >  Valo)

ANA#0,A€S

17% is a vaccum potential defined from v with vaccum state a. It does not need to be
convergent or consistent with v. See [12, 9]
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in order to obtain Vo € ), Vw € 2, VA€ S

fa(oawse) = exp(GA(aAwAc);

fﬂ exp(Ga(Tawpe))da

Thus, Gp(0|w) = Ga(oawae) is a good candidate to describe the Hamil-
tonian at volume A with boundary condition w with interaction poten-
tial V.. We shall prove now that it is an absolutly convergent potential,
using the quasilocality of the specification.

First of all, one should prove, using indicator functions, that this imply
Vo € Q the quasilocality of the function w —— fa(cawse).

The absolute convergence of V means that

Z sup [Va(w)] < +oo
AGSWEQ

i.e
but, Vw € 2, VA € A"

then

S sl Y s (2%

ACA' wef ACA’® BCA wp=ap,w€fl

the quasilocality of fz proves that this converges to zero when A’ 1 S.
Thus, every quasilocal and uniformly non null specification is Gibbsian.
When F is finite, we do not need uniform non-nullness to characterize
the absolute continuity of measures and non-nullness is enough to write
fa in an exponential form. The proof follows from the general case.

2.2.4 Some results about G(v)

We only describe here what we’ll need in the next part. Those sets are
studied in much more details in [9)].
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Definition 2.17 [Feller property] A specification is said to be Feller if for
each A € S,
feC() = wnfel()

[

Here, C(2) is the space of the continuous functions in Q. In the field studied
in this paper, this is equivalent to the quasilocality property mentionned
above.

We still denote (An)nen a cofinal sequence of S.

Lemma 2.9 :
Assume § is a compact metric space and let v be a Feller specification. The
following statements hold:

1. G(«) ts not empty.

2. Moreover, y is consistent with v if and only if it is a limit point (in the

weak topology'®) of a sequence (vnya, )neN for some arbitrary sequence
(Un)nen of probability measures on (R, F).

o
Proof: Let us first prove the second statement.

o Let 4 € G(y). Then, by lemma 2.2,
VAES, poa =

hence
Vn €N, pya, = p

Define now v, = g, ¥n € N, we obtain g = vy, Vn € N.
e Denote Vn € N, pn = vya,. The compactness of Q yields to this of
MF(Q), and this means that there exist a convergent subsequence for

the weak topology, still denoted (in)nen. We note u its limit and let
us prove that p is consistent with v by checking

VAES, pyn = p

183 sequence (un) of probability measures on (€2, F) converges to a probability measure

on (Q,F) p in the weak topology iff limn_oo(f, fdin) = [, fdu for each continuous
function f.
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We prove first that we can write
pya = lm voya,ya
n—o0

because, if f is any continuous function on (2, ), Then

Vn’YA,.’YA[f]= /Q Yalf Iw]un'y,\n[dw]

the Feller property of v proves that 44 [f|w] is a continuous function of
w and then

lim vnalf] = [ wlllulds]
= plf]

But we also know that VA € S,3ng € N, st n > ng => A, D A.
Thus, Yn > no, YA.YA., = YA, Which proves that

plf] = lim vaya,7a(f]
= nli-)Ig) Vn’YAn[f]
= ulf]
and p € G(7)-

The first statement comes directly from this. let ¢ € Q and define Vn € N,
Vn = d,, the Dirac measure in a. Then, we easily check that u® = v, v, =
Y. (|a) exists and is a probability measure consistent with 7.
o

We shall now use these results for the Ising model on Z?, called 2d-Ising
model.
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3 An example where non-Gibbsianness arises:
decimation on the 2d-Ising model

3.1 Introduction to the 2d-Ising model
3.1.1 Configuration space and interaction

Let us consider now the particular case :
Q={-1,+1}2", E=P{-1,+1}) , mo = 16_, + L6,

Take also a constant J > 0 and denote by (:7) a pair of nearest neigh-
bourgs!® in Z2.

VA€ S, Yo,we N, V8> 0,

Hﬁw( )= Hﬁ (o|lw) f Z BJoio; — Z BJow; (18)
(i5)cA (i3).i€AJEA

is the Hamiltonian at volume A and boundary condition w for the Ising model
at temperature § with coupling J. For more tractability, we shall assume
that 8 = 1 and we will write J instead of 3J. As the range R of this near-
est neighbourgs interaction is finite (R = 1), it is an absolutely convergent
potential and the lemma (2.7) yields that the Gibbsian specification 4 which
arises is quastlocal.

Let’s write what v is:
VAe S, VAe F, Vwe Q,

YA (Alw) = ZAl(w) /QIA(U) exp( Z Joio; + Z Jow;) ka(do)

(i5)CA (33),i€EA,JEAC
(19)

where we still use the notation ka(do) = mp ® 684 (do) and where the
partition function is given as usual by

0 < ZA(w)=Lexp( Z Joio; + Z Jow;) ka(do) < oo

<ij>CA <ii>, €A, JEAC

19 j € Z? are nearest neighbourgs iff ||i — j|| = 1 where ||.|| is the usual euclidean norm
in R2,
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Remark 3.1

Here, the o-algebras F, are atomic and the Gibbs specification can be defined
atom per atom:

VAES, VoeQ, Ywe (],

1
Za (o) exp( Z Joio; + Z Jow;)

(zi)ca (i7),i€A,jEAC

Ta(olw) =

As the specification is quasilocal and the single-spin set is finite, lemma
(2.2) yields that it is a Feller specification and by the lemma (2.9), we know
that G(v) is not empty. Moreover we have the following

Theorem 3.1 There exists J, > 0 such that:
1. for J < J., there is a unique Gibbs measure .

2. forJ>J.,|G(7v)|> 1.
Moreover, G(7y) is a convez set whose extreme points are the measures

gy and p_, which can be selected respectively by the '+’ and the '—'
boundary condition?®. We also have Mo(J) < pi[oo] = —p_[oo] > 0.

o
Remark 3.2

In the second statement of this theorem, when G(y) isn’t a singleton, we
say that there is a phase transition. In this case with the lattice ZZ%, a well
known proof of the arising of a phase transition is based on the so-called
Peierls’argument([9, 14]).

3.1.2 The decimation transformation

Definition 3.1 [Decimation] The decimation transformation on Z? with
spacing 2 to is the transformation

T : Q—TO)=0=0
w— W

defined by Vi € Z?, w! = wy; o

20The '+’ (resp. the '=') b.c is the configuration w € Q for which w; = +1 (resp —1),
Vi e Z2
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Remark 3.3

(Q,F,\) = (,F,)). Then why the primes ? We shall use the notation
with a prime ’ for all the objects studied after the decimation transformation,
and without any prime ’ when they are considered before it. This is just a
trick to know which kind of object we are studying.

Weshall now, and during all the study of the decimation, fix p to be a?!
Gibbs measure for this 2d Ising model.

T acts on measures: we define?? the decimated measure v to be the image
of u under the decimation transformation T

v=Tu
and we can describe this in two ways:

1. VA e F
V(A') = u(T~1 (A7) = u(A)
with the notation A = T-}(A") € F.
2. Vf measurable and bounded on Q2

f /f )dp(o

T acts on subsets of S: we can define a canonical decimation action 7 on
the ’even’ sites of Z2 i.e 2Z? defined by:

T:z2=2z"+12
and this gives rise to an action on subsets:
VA C2Z* N =T(A) = {z € Z*% 2z € A} C Z°

we have to underline here that it maps the finite subsets of 2Z? on the
finite subsets of Z2, but its inverse transformation 7! does not map

21T case of phase transition, we do not precise which it is.
22For the measures and for functions, we do not use any prime !
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the cofinite subsets of Z? on the cofinite subsets of 2Z2% Let us deal
with the case we will study untill the end, when A’ = {0} consists of
the origin of Z2. Then

A° = Z2\{0}
and
T7'A®) = {z=2z'st2’ €A}
{z =22, 2’ € Z% &' # 0}
= 22°\{0}
[(Z\22%) u {0})°
AC
where

X = (Z3\222) U {0}

isn’t a finite subset of Z2. This will bring some troubles for the compu-
tation of the conditional probabilities of v, and it will be detailed more
precisely in the next section (see fig 1).

3.2 The decimated measure v
3.2.1 Introduction

We claim here that for suitable coupling®®J the decimated measure v is not
gibbsian for any gibbs measure y of the 2d-Ising model.

Assume here that v is Gibbsian. From the previous part, we know that it
should be consistent with a Gibbs specification. Then, there exists a quasilo-
cal specification v consistent with v and verifying;:

VAI € SI, VA/ € .7'-,, V[AllfAlc](') = ’)’AI(A,") v—a.s

In order to prove that v is not Gibbsian, we shall prove that there exists a A’
finite and a f local on ' such that no version of v[f|Fy«](:) is quasilocal?*.
Equivalently, we want to find ' in £’ for which there exists a f local with

23We recall that by J we mean 3J: hence suitable J means here suitable temperature.
24For any probability measure v, we note v(f) or v[f] the expectation of f under v
when it exists.
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V[ f|Fare](w') essentially discontinuous®.

Let A’ be any finite subset of Z2. We have to compute the conditional
probabilities v[-|Fp«]. They are defined v-a.s by:

VA" € F', v[A'|Fpe] = B, [1a/| Fpre

And more precisely, using the definition of the conditional expectation with
respect to a o-algebra, v(A’|Fyr) is defined as an equivalence class of random
variables Y on (@, F,v) equals v almost surely and verifying:

1. Y is Fpe-measurable.
2. Y e LY, F,v).
3. VB' € Fpre, [g V[A|Farel(W)v(dw') = v(A'N B).
If we use now the definition of v, we obtain:
v(A'N B = w(TH(A' N B") = u(AN B)

with A = T-!}(A’) and B = T~!(B’). When B’ describes Fyr, B describes
Fye with A = T~1(A’). Using again the properties of the conditional expec-
tations, we obtain

AANE) = [ WA ()

and then
VAN FL (W) = plAIA] (T ') v — a = s(W)

so we have to compute the conditional probabilities u[A|Fc] for A non
finite.

Remark 3.4

o We wrote A° = T"!(A”). This is not mistyping. We do not use A°
because T~1(A’°) is not a cofinite set (and we usually use this notation
for cofinite sets) as shown on the figure 1 below. A short computation
leads to

A =ZA\(2N) = T-Y(A) U (Z3\2Z2).

25gee remark 2.12.

45



e We should also emphasize that A° = T~1(A’) does not imply A =
T-Y(A).

Let us consider, untill the end of this paper, the simple case A’ = {0}. In

this case, A° consists of all the spins of 2Z? except the origin: If we ’knew’
everything except the origin on the decimated system ), we ’know’ the spins
on 2Z? except at the origin. Then ) is the origin plus the sites which are
not in Z2 (see figure 1 and figure 2 next page : the letters denote the value
of spins on the underlying sites and the ? indicate that the spin over the
underlying site is unknown ).
Thus in order to compute the conditional probability v[-|Fpr«], we have to
compute the conditional probability for u[-|Fic] with A non finite. We are
in trouble here because, as p is a Gibbs measure for the 2d-Ising model, the
D.L.R equations give these probabilities only for the finite sets.

46



a b
N
d o N
-1 3

fig1: The conﬁg'&ration space after decimation, '
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fig 1b : the configuration space before Q
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3.2.2 Study of the conditional probabilities for u

We want to compute p[-|Fiej(w) when w € T7!(w'), with w’ € Q'. We know
that u is a Gibbs measure for the 2d-Ising model. Then there exists Q, with
1#(£2,) = 1 such that: '

Ywe, Voew, VAe S

plolone = wae] = ZAl(w) epo( Y Jooy + Y Jowy)  (20)

{(i7)cA (i7).i€A,jEAS

but we want to study u[:|Fyc] with A non finite. One could then prove the
following

Lemma 3.1 :

Let ' € Q' and let A a infinite subset of Z%. Then the restriction®®of
Ll | Facl(w') to (Q, Fr) is a Gibbs measure for a potential (absolutely con-
vergent) & = ®(A\,w') which depends on A and w'. o

We shall not prove this lemma in the general case, because we do not
need it. We will prove it in the next section for particular choices of ).
We could do it in the general case exactly in the same way. We will choose
a configuration w’ in order to obtain a failure of quasilocality for all the
conditional probabilities p[-|Ficj(w), Yw € T} (w').

3.3 Non-Gibbsianness of the decimated measure
3.3.1 Study of a particular boundary condition
Let w’ be the alternative configuration, defined by

Y = (ml’xz) c Z2’ o (_1)1'1+2:2

ry T

Define u“'** as the restriction of u[-|Fac](w') to (Qa, Fa). As X is fixed
(we always take now A’ = {0}), we will forget it and note u*'* = pu*'. We
want to prove that it is a Gibbs measure on (), F)).

In order to do it, let A C A finite and let 7 € Q,, which yields the following
picture:

?We define the restriction gy of a probability measure u from (2, F) to (Qa, Fa) by:
VYA € Fy, ur(A) = p(A x Qae).
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fig 2 : Configuration space {1y with the alternative configuration in A°.

We want to check the D.L.R equations for a suitable interaction and to
compute for u*’-almost 7 and V oy, € Q,

F‘WI[O')\IO'/\\A = Tanal = Z plolona = mana, Tac = wie]
orcENre

by definition of the restriction of a probability measure on a subspace.
Here, we took the obvious notation: o is the configuration which agrees with
oy in A and with oye in A°. w is still in T7(w').

Only one term in the previous sum is not zero: when o)c = wye, which is the
alternative configuration on A°

then we have:

p [oalona = maal = plo]|Facurel(mwae)
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But A°UX = (ANA), and ANX = A is a finite subset of Z2. We can now
use?” the D.L.R equations (14) to obtain p — a.s(mwye):

ploaloac = 1a.] = Z“” eXP (Dooi+ S owit Y. am)

(i5)ca (if)i€A,jEN (ij)i€A,jednAc
(21)
where as usual

Z3(r) = Z exp( z Joio; + Y Jow; + Z JoiT;)
oAEQH {(i7)ca (i7),d€A,JEAS (i7),i€A,jEANAS

and in the sum E(ij),ieA,je/\c Joiw;, the j are ’even’, i.e j = 2k with k € Z2
such that w; = wj, 1s fixed in the alternative configuration.
Assume® that we can find an w € T-!(w') such that w € Q, , the set on
which the D.L.R equations occur for u. Then, we obtain the validity of (21)
for pu'-almost 7 € Q.
Thus we have proved the :

Lemma 3.2 Let W' be the alternative configuration defined above and assume
there ezists w € T~'(w') for which the D.L.R for u are valid. Then u*, the

restriction of ul-|Fxe](w) on (Qx, F)) is a Gibbs measure for some absolutely
convergent potential. ¢

We shall give the expression of the potential later, during the computation of
a quantity we will define later, the so-called the magnetisation. We shall then
observe (fig 3) that the coupling which comes from the ’even’ sites cancels
and we obtain a Gibbs measure for an Ising model on (), F,), with the same
definition of the nearest neighbourgs than in Z?, with an external magnetic
field A = —J.

We shall explicit this later: we do not need it now. We just need to know that
there is some Gibbs measure for the interaction of the previous equation.
In case of phase transition, we do not know which it could be, and we shall
prove that local variations in w’ could change drastically the selected phase?®
This will yield to a non-Gibbsianness of the decimated measure. In order to
do it, we shall compute the so-called magnetisation, defined below, for v’ in
a neighbourhood of the alternative configuration.

27 Assuming the D.L.R equations for y are valids for w.

28We shall not check this assumption now because we shall only be intersted by the
study for w’ in a neighbourhood of the alternative configuration. We shall check that it is
then always possible such configurations.

29We sometimes call phase a Gibbs measure.
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3.3.2 Computation of the magnetisation

We want to prove a non quasilocality of v at sufficiently low temperature.
We have then to consider the action of the conditional probabilities on the
local functions. The local function we choose should be characteristic of the
phase transition mentioned above. Namely, it should be an order parameter
of the phase transition®. We shall consider here the so-called magnetisation
which can be defined in our model as the mean spin at the origin. Hence, we
consider the local function

f: 9 —R
o' — f(o') = og0

and we want to study v|ogq|Fare)(w') for differents values of w'. Let us
consider first that ' is in the alternative configuration. Then

v[op ol Farel(w') = p* [o0,0]

as described in the previous section.

We know that this is a Gibbs measure for some interaction, then by the
lemma (2.9) their exists a sequence (VrRYA,)ren Whose weak limit is u*'.
Let R be any positive integer.

Let Ar be the intersection between A and the square centered at the origin
of length 2R. We then know that their exists a sequence vg such that:

(000)* & 14 [000] = lim (go,0)*" "
R—co

where

(o0) " = / 1 (00,01 Fas )(TR)dvrITR]
Y]

is the expectation of the spin at the origin when the boundary conditions
which selects u*' have the law vg. Let first fix one boundary condition g
and note (-)*""® the expectation under the measure u*'[-|Fa ](7r). We know

that x4 is a Gibbs measure on (), Fy). The lattice on which it is defined
is composed by all the non-even spins plus the origin. In order to study this

301n statistical mechanics, an order parameter of an absolutely convergent potential
which admit a family {;, j € J} of distinct Gibbs measures is a finite system {f1,..., fa}
of local functions which discriminated these Gibbs measures by meaned of the associated
expectation values {¢;(f1),..., 4 (fn)}. Seef9)].

31



measure on a more conventionnal lattice, let us try to fix the spin at the
origin.

Define Lg = {i € Ar s.t i, and i, are both odds} and Hgr = Ar\Lrg.

we have, using the notation® xp(doy) = my, ® 5®’\\An(da)\)

TX\AR
'
(000)" ™ =

L/ 0-0OeJ(Uo,o—l)(Z(w)‘74)62(¢j),ieAR,,'ex\AR Joir; H(ez(ia)CAa‘]a"”‘)nA (doy)
7w TR ! R

QA GGLR

(22)

and

Zu/',-rR — / eJ(O'o]o—l)(Z(io) U‘)ez(ij)yieAR,jE*\AR JG‘.‘TJ’ H (62("°)CARJU“U")KE(C{U,\)
L a€Lp

Those integrals are finite and positive and we can integrate out with re-
spect to the origin first. We obtain, with A\* = A\{0} where 0 denotes the

origin of the lattice and k3 (doy,) = mpy, ® Jgg(da,\*) with AR = Ag\{0}:
(0‘0,())“/’7& =

: (1= [ e Ew o) eZenieapserar 77im TT (eZtacan T7e%) 2 (4, )
Zw’,‘rn R
ka aELR

(23)

and for the partition function

7R = 14 / e~ 2 (Zq0) %) X tisien paeria g 17 [T (eXtmcan?®= )i (dors)
Qi a€Lg )
(24)
Where > (ioy means that the sum is taken over all the spins attached to the
origin.
Hence, we only have to compute the expectation of e~ (Zi0) %) with respect
to the Gibbs distribution with boundary condition 7 for an Ising model on
(Qxx, Fr+) when the spin is fixed to be '+’ at the origin. We obtain this
model because of the very particular interaction we get with the alternative
configuration: The contributions of the ’even sites’, which are on the alter-
native configuration, annihilate themselves.

31c% is the restriction of ka, to (2, Fa).
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We have then the alternative configuration everywhere on 2Z? and an Ising
distribution on the so-called decorated lattice A\*.

We note ut*'"® this measure and (-)**""® the expectation with respect to
it. Hence, (23) yields to: :

1 — (e~2J(00,1t01,0401,0+00,-1)\+w' TR
(d0,0)" ™ = te )

14 (e—ZJ(O'o.l+01,o+0-1.o+00,-1 )>+,w’,TR (25)

In order to study this model, and because we will have to compute it, we
shall study (00,1)""‘""’“, the expectation of one spin attached to the origin.
We have the :

Lemma 3.3
(00,1)+,w’,m = (tanh(J(o11 + 0'_1’1))>+,w’,m

1 '
= ((5 tanh(ZJ))(Um + 0._1'1)>+,w TR
where 0, and o_1,, are the spins attached to oq ;.

Proof :
Let us establish the first equality. The Bayes’formula yields:

> ut R oon = +los = &y # (0, )]t Ro, = &, # (0,1)]
EEQ*

but /,t+’wl'TR(0'0,1 = +loz =&,z # (0,1))
'u+,w’,7'}2(0-0'1 = —*—,a'z = §I,x # (0’ 1))
u+yw/,7'ﬂ(a'z = é..’tjx # (0, 1))
_ exp(J 2o 00 & T J Liiienn i)
exp(J Xz 0,1)) Eeo + J Liisyeng §i&i)

The terms coming from bonds which do not touch (0,1) cancel and, if
we note z ~ (0,1) when z is attached to (0,1), we obtain:

u"l",w’,‘rﬂ(ao,l = +|0'1. = 6:)1: # (0’ 1)) =

#+,w',TR(a-0,1 = +lo‘z = E.‘l:)x ~ (0, 1))
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Hence

(Co) ™™ = ptR(ogy = +) — pTR(ggy = )
= (tanh(J Z og))HeTR
z~(0,1)

= (tanh(J(o11+ 0—1, 1)))+’“’"TR

and the first equality is proved.
The second equality is just a trick using the fact that the spins take
values in {—1,+1}, then 011 + 011 € {—2,0,+2}.

(o114 0-11) =201+ 010 =2] - 2o + 01 = =2
and, using tanh 0 = 0 and tanh(—z) = — tanh =z
(tanh(J(o11 +0-11))) =
tanh(2J)u (o1, + 01,1 = 2] — tanh(2J)p' (011 + 0211 = —2]
. .

Thus, we shall only have to study the distribution of the spins in Lg, the
lattice of spins whose coordinates are both odd.

+ . —_ . + . —_— . +

AR
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fig 3 : Ising model on the decorated lattice A*

We then have to compute {oy;)t* ™R, As claimed before®?, we can inte-
grate out as we want and we will begin by integrating out. with respect to
the spins in Hpg, the sites of the decorated lattice which have exactly two
neighbours (see fig 3).

We call H = Hr\l'r where I'n = Ag\Ag-; is the boundary of Ag. The
sites in H are those which have two neighbours in Ap.

We also call H, = Hg N Tg: it is the set of the sites which have two neigh-
bourgs in the lattice A*, one in Ag and the other, ’filled’ by the boundary
condition 7, outside Agp. Let’s compute:

(0‘1,1)4-'“/7-}2 =

1
/ 011A%(0,da)AR(o, do) Ar(a, do)
Qs

Z+ yw’ TR

where

A%(o,do) = H (e7s(ov+ow)m (doy))

bEHE
Ab(o,do) = H (e? o+ (day))
beH}
Ag(o,do) = g mo[daa]cpajg\’;f; (doaag)
aELR

where for each b € Hpg, we call b’ and b” its neighbourgs who are in Lg or
filled by the boundary condition 7 in Agy;.
If we compute the integral above, we obtain

/ 01,1( H /eJob(ab/-i-dbu)mo[da.b]) H mo[daa] ®5?::,\\1:2R[d7—/\\1\ﬁ]
Qg beHp U E a€Lp

we can easily compute

eJ(UbI +oyu) + e—J(o‘b/ +aym)
2

/eJab(ab:+ab/;)mo[dab] —
E

321t is Fubini’s theorem with positive measurable functions.
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then the contribution of the spins in Hp does not appear in the integral
anymore, because the set {(¥',0"),b € Hg} is Lr. We would like to obtain
now a coupling interaction between the spins in Lg: let’s try to write

eJ(O'bI +oyn) + e—J(db; +oyn)
2

- KeJ’a'b/abu (26)

where K is a constant which cancels by normalisation.
On the event {0y = +1,0s» = +1}, we should have

cosh[2J] = Ke”'
and on the events {oy = —1,04s = +1} and {op = +1,04 = —1}
1=Ke™”

then, one could take K = e’ and /' = cosh[2J] i.e J' = 5 In(cosh[2J]) in
the equation (15) which leads to®

(g11)T' ™" =

1

V'Y caarscrn 9+ T caars el p.a’er\a p TaTal
Z+,w’,7a[2 (1.6 e RoE so'>eClpa'€NAR a)mLR[daLa]

Lp

33We use the same notation for the partition function but we should multiply it by
K = ¢’ to obtain this of this new Ising model.
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fig 4 : Ising model on 2Z? with coupling J’

One could, and should, remark that it is ezactly the magnetisation of

an Ising model with coupling J’ on 2Z2 with the boundary condition 7 on
(/\\AR) N 2Z2.
When the temperature is low enough, we know by the theorem (3.1) that a
phase transition arises for this model. We will now do the same computation
on a neighbourhood of the alternative configuration, and we will prove that
on a same neighbourhood, a small variation of the w’ will lead to different
selection of the extreme phase®*, and this will bring the essential discontinuity
we want.

3.3.3 Computation of the magnetisation on the neighbourhood of
the alternative configuration.

Recall that we have to prove an essential discontinuity in «’, i.e that no
version of v[o}, ,|Fa.](w') can be continuous. We will have to work on sets of
non zero v-measure.

34 An extreme phase is one of the extreme points of the convex set G(7) (see [9]).
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Define Ay = Ary if R is odd (which is the case in fig 4) and Ay = Az if R
1s even.

Np={v € Q,w), = wf{‘,:,w' arbitrary outside Az}

! ' ralt ! _ I . . /
Ny ={uw €8 yWh, = WAL Wy, = HLw arbitrary outside Az}
Np.={u'€ Q’,wf\,ﬂ = wX‘,: 1’w{"n+1 = —1,u’ arbitrary outside Az}

Where w®' is the alternative configuration defined in the previous section
and ['p = AR\AR_,.

(Mg, R > 0) is a basis of neighbourhoods for this alternative configuration.
Moreover, Ng , and Mg _ are open sets in the product topology, so we have

v(Npy+) = v(Ng-) > 0.

Computation on Np

We want to compute v[og 5| Far](wy) for wi € Ng 4. We know from section
(3.2) that for v-almost (wy), VA’ € F

v[og,0l Fae](wi) = ploool Fac)(ws)

with® w; € T} (w}), o € T7Y(¢’) and A° = T-1(A").

Let fix again A’ = {0}.

Recall that we have v(Ng+) > 0, then u[T}(NMgr4)] > 0 and then we can
find®® w; € T-}(Ng,4) for which the D.L.R equations are valids for 4. Then
we can use the lemma (3.2) to prove that u“1 is a Gibbs measure on ({2, F)).
We will note it37 u*.

Let us do again what has been done for the alternative configuration in the
section(3.3.2), changing in the notation w’ by ’+’. We know that we have
some Gibbs measure, which can be obtained as a weak limit of some (possibly
stochastic with law vg) boundary conditions 7p and we obtain again

v[og ol Fare](w]) = (o0,0)* = lim (og,0) 7
R0

35We do not care which we take in T~!(w}) because we will only use it when it coincides
with wj on the new configuration space.

36This justifies the claims of the footnotes 27 and 28.

37This is not the '+’-phase...which will be noted ..
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where

(Goo) R = / 5 Gl Fanl (ra)dvr(r)

Let us again assume that vg is a Dirac measure in 7g, and try again to obtain
a Gibbs measure on a more conventional lattice, the decorated lattice, by
fixing the spin at the origin to be '+’

We obtain an expression for (q,0)*'"® similar to (22), except that we have an
external magnetic field. For example, the integral in the numerator of (22)
should be replaced by:

/ (0’0,06‘](%”—1)(2(“’) i) H A(O’, a)ez(ij),iEAR,je/\\AR JoiTj eZieAR hio; )K:j\%(dO',\)
Qy

a€Lp
(27)
where
A(o,a) = 2= (ia)cA g Joadi
where the external magnetic field is defined below and we obtain
1 — (e~ (v01+010+00,—1+0-1,0)\+,+.TR
(o)t = 14 ) (28)

1+ (e-'?-f(do,x+01,o+do,-x+0—1,o))+,+,‘rn
where (-)T'T"R is the expectation under®® y*+7® the Gibbs measure on
(2xx, Fax) obtained from pt 7R by fixing the spin at the origin to be ’+’( see
section (3.3.2)).

Using the same techniques as in the section (3.3.2), we will just have to study
the distribution in Lg, sublatice of Z? consisting of the ’odd’ sites contained
in Ag, to compute (o ,1) TR,

38The first '+’ means that the spin is fixed to be *+’ at the origin, the second that the
configuration after decimation is in Ag, +.
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b/l
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h=2J
AR
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fig 5 : rise of a magnetic field on I'gy; and g

As in the case of the alternative configuration, we obtain an Ising model on
the decorated lattice (2x«, Fax), with the important exception that an exter-
nal magnetic field h; appears on some sites i (see figure 4 above) because of
the spins '+’ on I'p: the annihilation of the contribution of the ’even sites’
does not occur here, it was only due to the alternative configuration. We
obtain:
h; = 2J if i € Ty and is surrounded by two spins '+’ from w;

; = 3J if*® ¢ € Tgyy and its neighbourg j € Ppyp iss.t ;= +1
h;i = J if ¢ € I'p41 and its neighbourg j € gy iss.t 75 = —1
h; = 0 otherwise.

We shall now use the two following lemmata to obtain an upper bound

for (o1,1)7*™®. These are well-known results, and a proof can be found in
[14].

Lemma 3.4 (Griffiths’ inequalities) :
Let us consider the Ising model on a lattice S with positive generalized external

39it is then surrounded by two spins ’+’ from w;.
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magnetic field, i.e with a Hamiltonian defined by:
VAC S ,Vou, €0y

HA(O’A) =-J Z gi0; — Zhio'i'

{(i5)CA i€A
with J >0 and h; >0, Vi€ S.
Then
1.
VI CA, (or)a 20 (29)
2.
VT, T C A,
{(oror)a — {or)a{or)a 20 (30)
o
Remark 3.5

When the generalised magnetic is negative everywhere, we have the same
kind of inequalities but we have to change '>’ by ’<’ .

Lemma 3.5 VT C A, Vi€ A

6<;Z;>A = (o7oi)a — (oT)a(0i)a (31)

<

Thus, with a positive generalized magnetic field, the magnetisation increases
when increasing the parameter h; when this is positive everywhere, and de-
creases when it increases when it is negative.

Now, we use those two lemmas to forget the magnetic field wich appeared
on ['r. Thus a lower bound for (oy,,)™*™® will be the magnetisation of an
Ising model on the decorated lattice with coupling J and with an external
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magnetic field A = 2J on*® 'y, and this lower bound is valid for all boundary
condition T.

If we integrate out, as we have done for w'*", with respect to the spins which
have exactly two neighbours in the decorated lattice, we obtain that a lower
bound for (y,;)**® is the magnetization at volume Ag of an Ising model on
272, with coulping J' and with an external magnetic field A’ on the boundary
I'r and 2A’ on the corners of this boundary. Doing the same computation as
in section (3.3.2), we obtain:

ralt

J = %ln(cosh[QJ]) > 0

and

1
R = iln(cosh[Qh]) = %ln(cosh[4J]) >0

And we should emphasize that the bound is uniform in 75

+ +J - ~ - K
* * %k >:/
bl/
+ ~ + - +
JI
i) * q' * *
+ + - + +
* AR
+ + + - +

fig 6 : Ising model on 2Z? with magnetic field on Tg.

“0We recall that Tr C A then the magnetic field only acts on the spins which are not
fixed by w'.
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The action of this positive magnetic field on the boundary is exactly the
same as the action of a boundary condition '+’ on the following boundary
gy for the Ising model on 2Z2. Let us assume that a phase transition arises
for this model, i.e J' > J.. If we use the results of the theorem (3.1), we can
do the following computation.

(o1)TTR > /nifﬂ(a'l,1)+'+’m] dvg(Tr) = i%f[(01,1)+'+'fﬂ]
then .
(1) PHR > (000)+.ARsa = M, (J) >0.

where (000)+ 4., 1S the magnetisation at volume Apy; with '+ boundary
condition mentionned above. In this computation, we use the property for
the '+'-phase of the Ising model to be the weak limit of the Gibbs distribu-
tion with boundary condition '+’

computation on Ny_ :

Let us choose wy € Mg and wy € T~!(Ng,-) such that the D.L.R equations
for u are true for it. We know that this is possible because v(Ng,.) > 0. We
want to compute

v[og ol F'ael(wy) = ulooe| Facl(wr)

for A’ = {0}. We know by the previous paragraph that this the expectation
under some Gibbs measure g2 = y~ on (@, F»), which can be selected as a
weak limit of Gibbs measures with boundary condition 7r of law vg and we
obtain similarly*!

v[og ol F'ael(wy) = (000)” = I%i_{rgo«fo,c))—'m

where

(c00)™"" = jﬂ ™ 000l Fan)(7R)dva(r)

We can write in the same way as in the previous paragraph for the formula

(28):
1— (6—2-](0’0,1+61,o+¢70,—1+a_1.o))+y—ﬂ'}z

TR o
(00'0> 1 + (e—2J(00,1+01,o+60,—1+0-1,o)>+,-,TR

41The (-)~ is just a notation. This is not the expectation under any ’—’-phase..
Y P
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where (-)*'"R is the expectation under ut =%, the Gibbs measure on (Qxx ,, )
obtained from p~"® by fixing the spin at the origin to be '+’( see section
(3.3.2)).

Now let us study this measure by computing (o) ~""?, as we have done for
NRg,+, and compute first (01,1)*"""® as above. The spin at the origin is still
fixed to be '+’ and we have similarly situation as this in the Mg +-case: this
magnetisation is this of an Ising model on the decorated lattice with coupling
J > 0, with an external magnetic field. The only changes are the values of
this magnetic field and the places it acts.

—_ _ b” —_ —_— —
T

- + ¥ - + -
h=-2J

_ — + _ —

Py —J—q’ o b qu
\
h=-2J

R

fig 5b : rise of a magnetic field on ' and gy,

We have
h; = —2J if 1 € 'p and is surrounded by two spins -’ from w,
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h; = —3J if*? 1 € 'p4; and its neighbourg j € Tpyp is s.t 75 = —1

hi = —J if ¢ € Tp41 and its neighbourg j € T'ry; is s.t 75 = +1

h; = 0 otherwise. We have then 2 differences: the magnetic field is here nega-
tive, and their a shift on its location on I'z. But we can use the remark (3.5)
about the Griffiths’inequalities, and use them in the same manner to forget
the magnetic field on ['r in order to obtain an upper bound for {gy,)*"”
valid for all boundary condition 7r. This upper bound is the magnetisation
of an Ising model on the decorated lattice with coupling J > 0 and with an
external magnetic field h = —2J on Igy;.

Now, if we proceed as in the previous paragraph, when we consider J' > J,
we obtain the following upper bound: '

(1,)"™" < (T00)-rpr =5 =M,(J') < 0.

where (-)_ A;z,, is the magnetisation of an Ising model on 2Z? at volume
Azp+2 with the '—' boundary condition, which appears because of the nega-
tive magnetic field on the boundary.

We obtain a magnetisation opposite to the one previously obtained because
changing w; into wj leads to the selection of a different phase.

Let’s now compute {0g0) " in a different way, in order to compare it to
(00,0)T"*® much easily.

We come back to the beginning, i.e section (3.3.2). We had

(Go0) ™ E

/ 1~ (00,0 Fare}(Tr)dvR[TR]
Q

We still have the equation (22) except that a negative magnetic field arises at
the boundary. Let us do a change of variable in the integral (27), changing ¢
into —¢ (’spin-flip’), we obtain that the integral becomes (multiplicated by
(—1)" &l which cancels with the partition function)

/ (_O_O'OeJ(—ao,o—l)(Z(w)o'.') H A(O‘, a)ez(ij),ieAR,jex\ARJa'i‘rjezie,\nhidi)ni\z(da/\)
Qx

a€Lp
where
A(0,a) = eStimcan oecs
42it is then surrounded by two spins '—’ from w;.
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and if we integrate out with respect to the origin first, this leads to:
1- / e 2 L0y H A(o, a)eZtiienpienng 7T o Dieag By X (4, )
QA* QGLR
where h! = —h;. We obtain the following*3:

1— <e+2J(ao_1+01,o+00,—1+0—1,0)>+v+"’R

—wWR -
<U0,0) - 1+ (€+2J(0°'1+01'°+00v"1+a_1'°)>+’+’VR

We shall now use this for the final computation.

3.4 Essential discontinuity of the conditional probabil-
ities for v:

Let us consider now w| € Ng 4+ and w) € Mg _ as above.
Then we have for some boundary condition of law vg

v[00,0lF (03el(w1) = 00,0l F (0yel(wz) = lim ((50,0) "7 — (00,0)™"%)

where, with x =" +' or '—/,

1 - (6-2\](‘70,1 +01,0+00,—1 +0-1,o)>+,*,VR

(000

9

*VR ..
) 1+ (e—2J("0,1+01,o+00,~1+a_1,o)>+,*,uR

using the previous section, we have:

(F0,0) TR — (000) "R =

1— <e—2J(Uo,1+01,o+60,—1+6—1,o)>+y+,VR 1— (e+2-7(00,1+<71,0+00,-x+a_1,o)>+,+,vn

1+ <e—2J(ao,1+01,o+oo,-—1+o_1,o))+,+,ua - 1+ (e+2J(ao,1+al,o+ao,_1+o-_.1,0)>+,+,ug -

2(<e+2J(vo,1 +01,0+00,-1 +a-1,o)>+,+,uR _- (e—2J(00,1 +01,0+00,—1 +a_1,o)>+,+,uR)

D(R)

where the denominator D(R) =

(1 + (6-2J(00,1+01,o+do,_1+a_1,o)>+,+,m)(1 + (e+2J(ao.1+01,o+ao,~x+a_1,o))+,+,m)

*30One could think that the spin-flip would change the origin into ’’. It is true, but the
previous computation proves that we obtain these expectation with respect to the measure
we had when the origin was fixed to be '+'.
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is positive. let us study the sign if the numerator N(R) =:

2(<e+2J(ao,1 +01,0+00,-1 +a—1,o)>+,+,ug _ <6—2J(ao_1 +01,0+00,-1 +U_1,o)>+,+,l/ﬂ)

N (2J)k ky+,+,v
= 2((2 (doq + 0O10+ 001+ 0_10)" )R

k!
=0
2 (=2J)*
— <Z ( = ) (00,1 + o100+ 00,1 + 0—1,0)k>+’+’"3)
k=1 *

= 8J(0'0,1 + 71,0 + 00,~1 + 0-_1,0>+1+,VR
2. (20
+ 4J Z m<(00,1 + 010+ 00-1 + 0_1’0)2k+1>+,+,,,a
k=1 *

and then we have

N(R) 2 32](0’0,1>+’+’UR

because under this phase, we have a positive generalized external magnetic
field, and we know by Griffths’inequality(1) that for k odd,

<(00,1 + 0110 + 0'0,_1 + o'_l'o)k)+,+,l/n Z 0

If J is such that J' > J., we know that (go;)*+*r 2% M,(J') > 0, then
we obtain

lim (< 00 > — < 000 >7*®) < lim (32J < o, >HTR)
R0 R=o0
= 16JM,(J)> 0

This proves the non-quasilocality of the decimated measure. If we express
this in a topological way, we obtain the

Lemma 3.6 (essential discontinuity) Let J' > J, and let w'* be the al-
ternative configuration.

Ve > 0, YN neighbourhood of w" | 3R, > 0 such that VR > R, , we can find
N, Ng- CN with v[Ary] = v[ARr,-] > 0 and for v-almost w| € Ng 4,
for v-almost w € Ng -,

V[O'(I),olfio}C](wi) - V[Uc'),olf{o}c](w;) > €

Thus, no version of the conditional probabilities of v given .7:{0}5 can be con-
tinuous.
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Hence the following theorem expresses the non-Gibbsianness of the decimated
measure at low temperature, for the 2d-Ising model.

Theorem 3.2 Let u be any Gibbs measure for the Ising model on Z2, with
coupling J > }argcosh(e?’*] and without any external magnetic field. Then
the decimated measure cannot be consistent with any absolutely convergent
potential: It is not a Gibbs state.

4 The Dobrushin program

This failure of Gibbsiannity does not come from the pathologies of the deci-
mation transformation, which forget’ a lot of spins. It has been proved in [5]
that non-Gibbsianness arose in many other transformations of the renormal-
ization group, such that some Kadanoff transformation for the Ising model
or some cases of the majority rule transformation for the Ising model. The
proofs are based on this developped in the previous section.

The requirement of being consistent with an absolutely convergent potential
appears to be too strong. Using this, sveral authors have tried to restore this
formalism by requiring weaker conditions (see [3, 1, 12, 13, 7] for example).
We describe here the restoration of Maes et al. ([12, 13, 11]), and we shall
apply it to this decimated measure elsewhere. The example mainly used by
Maes et al. is very similar: it is the projection of the Ising model on the real
line.

4.1 Almost Gibbsianness

Let (Q,F,A) be a probability space as described in section 2, and let v be
any probability measure on ({2, F).

Definition 4.1 [Bad configuration] A configuration w € Q is ’bad’ for v if
for some i € S,e>0,YA € §,3A' DA A €S, and 7,7 € Q such that:

| vwilwavitan] — v[wilwamang] [ > €
(o

Thus the alternative configuration of the previous section was a bad config-
uration for the decimated measure.
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Lemma 4.1 If w is a ’bad’ configuration for v and if v is a specification
consistent with y then 31 € S such that vy (o|-)is discontinuous inw. o

We call S, the set of all the conﬁgurations which are bad for v.

Definition 4.2 [Almost Gibbsian measure] A probability measure v on (2, F)
is almost Gibbsian if there exists a specification vy such that v € G() and
v(§2y) = 1 where

oy ={w : YA€ S, VF € F, ya(F|-) is continuous in w}
o
Remark 4.1

o A Gibbs measure is almost Gibbsian ! (2, = Q)

e We don’t deal with potentials here.

Theorem 4.1 e S, =0 < v is Gibbsian
o v[5,] =0 < v is almost Gibbsian

e [S,] >0 < v is not almost Gibbsian
o

4.1.1 Weakly Gibbsian states

Definition 4.3 [Weakly Gibbsian measure] A probability measure v on (Q, F)
is weakly Gibbsian if there exists a potential ® and a tail-measurable set Qg
such that

1. ® is absolutely convergent on (¢
2. I/[Qq;] =1

3. For every Fj-measurable function f, its expectation value is given by

1 e
v(fl= ‘/Q Zon(0ne) flwa) eHal ) dufwye]
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As Qg is a tail-measurable set, then Z,(wa<) is well defined Yw € Qg and we
can write the integral above.

We have the

Theorem 4.2 Ifv is almost Gibbsian then v is weakly Gibbsian and we can
choose Qg = Q., such that v € G(v) ¢

The converse is not true in general. Some examples and the basics properties
of the weakly Gibbsian states can be found in [12, 13, 11]. A variational
principle is given in [11] but apparently, no large deviation principle has
been given yet.

the next stage of our work is to the investigate the almost Gibbsianness and
weak Gibbsianness of the decimated measure.
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