PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

JEAN-PIERRE CONZE YVES GUIVARC'H ALBERT RAUGI

Dépassement des sommes partielles pour des v.a. indépendantes sans moment

Publications de l'Institut de recherche mathématiques de Rennes, 1998, fascicule 2 « Fascicule de probabilités », , p. 1-6

http://www.numdam.org/item?id=PSMIR_1998___2_A1_0

© Département de mathématiques et informatique, université de Rennes, 1998, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Dépassement des sommes partielles pour des v.a. indépendantes sans moment

Jean-Pierre Conze, Yves Guivarc'h, Albert Raugi IRMAR, Université de Rennes I Campus de Beaulieu, 35042 Rennes Cedex, France

Si (X_n) est une suite stationnaire de v.a. positives intégrables, le théorème ergodique implique que, presque sûrement, X_{n+1} ne dépasse la somme $X_1 + \ldots + X_n$ qu'un nombre fini de fois. On se propose de démontrer que, pour des v.a. i.i.d non intégrables telles que $\mathbb{P}(X_n > t)$ soit en $\frac{1}{t}$, le dépassement $X_{n+1} > X_1 + \ldots + X_n$ a lieu, presque sûrement, une infinité de fois.

Théorème: Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes strictement positives identiquement distribuées, de loi commune μ , définies sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. On suppose qu'il existe des réels strictement positifs C_1 et C_2 tels que:

$$\frac{C_1}{1+t} \le \mu(]t, +\infty[) \le \frac{C_2}{1+t}, \ \forall t > 0.$$

Alors la série $\sum_{n>1} \frac{1}{X_1 + \cdots + X_n}$ diverge IP-p.s. et

$$\sum_{n>1} 1_{\{X_{n+1}>X_1+...+X_n\}} = +\infty, \ IP - p.s..$$

La démonstration de ce théorème va se faire en plusieurs étapes.

Nous appelons G la fonction définie pour t > 0 par : $G(t) = \mu(]t, +\infty[)$.

Première étape

Rappelons d'abord une extension classique du lemme de Borel-Cantelli (cf. Neveu [1], corollaire de la proposition IV-6-3).

Lemme 1: Soit $(A_n)_{n\geq 0}$ une suite croissante de sous-tribus de \mathcal{F} . Soit $(Z_n)_{n\geq 1}$ une suite de v.a.r. définies sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ telles que, pour tout $n\geq 1$, $0\leq Z_n\leq 1$ et Z_n est A_n -mesurable.

Alors
$$\left\{\sum_{n\geq 1} Z_n < +\infty\right\} = \left\{\sum_{n\geq 1} \mathbb{E}[Z_n | \mathcal{A}_{n-1}] < +\infty\right\} \mathbb{P} - p.s..$$

Appelons \mathcal{F}_0 la tribu triviale et, pour $n \geq 1$, désignons par \mathcal{F}_n la tribu engendrée par les v.a.r. X_k , $1 \leq k \leq n$. Pour tout entier $n \geq 1$, nous avons :

$$\mathbb{E}\left[1_{\{X_{n+1}>X_n+\ldots+X_1\}}|\mathcal{F}_n\right] = G(X_1+\ldots+X_n).$$

Du lemme 1, il résulte alors que les deux assertions du théorème sont équivalentes. Dans la suite, nous prouverons la première.

Deuxième étape

Le lemme suivant est inspiré du lemme 2 de [2] (H. Diamond et J. Vaaler) :

Lemme 2: Soit $0 < \varepsilon < \frac{1}{2}$. Pour IP-presque tout $\omega \in \Omega_0$, il existe un entier $N(\omega)$ tel que, pour tout entier $n \geq N(\omega)$, il existe au plus un entier k de $\{1, \ldots, n\}$ pour lequel $X_k \geq n$ $(\log_2 n)^{\frac{1}{2} + \varepsilon}$.

Preuve: Considérons un réel $\alpha > 0$. Pour tout entier $p \ge 1$, posons:

$$A_p = \bigcup_{1 < \ell < k < p} \{ X_{\ell} > \alpha \ p \ (\log_2 p)^{\frac{1}{2} + \epsilon} \} \cap \{ X_k > \alpha \ p \ (\log_2 p)^{\frac{1}{2} + \epsilon} \}.$$

Nous avons

$$I\!\!P[A_p] \le \sum_{1 \le \ell < k \le p} G^2(\alpha \ p \ (\log_2 p)^{\frac{1}{2} + \varepsilon}) \le \frac{C_2^2}{2\alpha^2} \ \frac{1}{(\log_2 p)^{1+2 \ \varepsilon}},$$

et donc $\sum_{m\geq 0} \mathbb{P}[A_{2^m}] < +\infty$.

Par suite pour IP-presque tout ω , il existe un entier $N_1(\omega)$ tel que, pour tout entier $m \geq N_1(\omega)$, il existe au plus un entier k de $\{1, \ldots, 2^m\}$ pour lequel $X_k \geq \alpha 2^m (\log_2 2^m)^{\frac{1}{2} + \epsilon}$. Il s'ensuit que pour tout entier $n > 2^{N_1(\omega)}$, il existe au plus un entier k de $\{1, \ldots, 2^{\lceil \log_2 n \rceil + 1}\}$ pour lequel $X_k \geq \alpha 2^{\lceil \log_2 n \rceil + 1} (\log_2 2^{\lceil \log_2 n \rceil + 1})^{\frac{1}{2} + \epsilon}$.

Ceci implique qu'il existe au plus un entier k de $\{1,\ldots,n\}$ tel que $X_k \geq \alpha \ 2^{\frac{3}{2}+\varepsilon} \ n \ (\log_2 n)^{\frac{1}{2}+\varepsilon}$. D'où le résultat, en prenant $\alpha = 2^{-(\frac{3}{2}+\varepsilon)}$.

Troisième étape

Lemme 3: Soit $\varepsilon > 0$. Pour presque tout $\omega \in \Omega$, il existe un réel $C(\omega) > 1$ tel que, pour tout entier $n \geq 1$,

$$\frac{n \, \log_2 n}{C(\omega)} \le \sum_{k=1}^n X_k \, 1_{\{X_k \le n \, (\log_2 n)^{\frac{1}{2} + \epsilon}\}} \le C(\omega) \, n \, \log_2 n.$$

Preuve. Pour tout entier $n \geq 1$, notons T_n les sommes tronquées :

$$T_n = \sum_{k=1}^n X_k \, 1_{\{X_k \le n \, (\log_2 n)^{\frac{1}{2} + \epsilon}\}}.$$

Nous avons:

$$\begin{split} E[T_n] &= n \ E\left[X_1 \ 1_{\{X_1 \le n \ (\log_2 n)^{\frac{1}{2} + \epsilon}\}}\right] \\ &= n \ \int_0^n \ P[t < X_1 \le n \ (\log_2 n)^{\frac{1}{2} + \epsilon}] \ dt \\ &= n \ \int_0^n \ (\log_2 n)^{\frac{1}{2} + \epsilon} \ G(t) \ dt - n^2 \ (\log_2 n)^{\frac{1}{2} + \epsilon} G(n \ (\log_2 n)^{\frac{1}{2} + \epsilon}). \end{split}$$

D'où l'on déduit que

$$C_1 \le \liminf_n \frac{E[T_n]}{n \log_2 n} \le \limsup_n \frac{E[T_n]}{n \log_2 n} \le C_2. \tag{1}$$

De même, nous avons:

$$var(T_n) = n \ var(X_1 \ 1_{\{X_1 \le n \ (\log_2 n)^{\frac{1}{2} + \epsilon}\}})$$

$$\leq n \ \mathbb{E}\left[X_1^2 \ 1_{\{X_1 \le n \ (\log_2 n)^{\frac{1}{2} + \epsilon}\}}\right]$$

$$\leq n \ \int_0^{n \ (\log_2 n)^{\frac{1}{2} + \epsilon}} 2 \ t \ \mathbb{P}\left[t < X_1 \le n \ (\log_2 n)^{\frac{1}{2} + \epsilon}\right] \ dt$$

$$\leq n \ \int_0^{n \ (\log_2 n)^{\frac{1}{2} + \epsilon}} 2 \ t \ G(t) \ dt$$

$$\leq 2 \ C_2 \ n^2 \ (\log_2 n)^{\frac{1}{2} + \epsilon}.$$

D'où la majoration :

$$var\left(\frac{T_n}{n \log_2 n}\right) \le \frac{2 C_2}{(\log_2 n)^{\frac{3}{2} - \epsilon}}, \ \forall n \ge 2.$$

On en déduit la convergence de la série $\sum_{p\geq 1} var(\frac{T_{2^p}}{2^p \log_2 2^p})$ et par suite la

convergence \mathbb{P} -p.s. vers zéro de la suite de v.a.r. $\left(\frac{T_{2p} - \mathbb{E}[T_{2p}]}{2^p \log_2 2^p}\right)_{p \geq 0}$.

Compte tenu des inégalités (1), il s'ensuit que :

$$C_1 \le \liminf_{p} \frac{T_{2^p}}{2^p \log_2 2^p} \le \limsup_{p} \frac{T_{2^p}}{2^p \log_2 2^p} \le C_2;$$
 (2)

d'où l'on déduit :

$$\frac{1}{2} C_1 \leq \liminf_n \frac{T_n}{n \log_2 n} \leq \limsup_n \frac{T_n}{n \log_2 n} \leq 2 C_2.$$

Remarque : Lorsque $G(t) \underset{+\infty}{\sim} \frac{C}{t}$, pour un réel C > 0, alors nous obtenons :

$$\lim_{n \to +\infty} \frac{T_n}{n \, \log_2 n} = C.$$

Il suffit dans la démonstration de remplacer la suite d'entiers $(2^p)_{p\geq 0}$ par les suites $([a^p])_{p\geq 0}$ avec a réel > 1. $([a^p]$ désigne la partie entière du réel a^p).

Quatrième étape

Nous avons:

$$\sum_{k=1}^{n} X_k = T_n + \sum_{k=1}^{n} X_k \, 1_{\{X_k > n \, (\log_2 n)^{\frac{1}{2} + \epsilon}\}}.$$

Posons $M_n(\omega) = \max\{X_k(\omega) : 1 \le k \le n\}$ D'après le lemme 2, pour \mathbb{P} -presque tout $\omega \in \Omega$, il existe un entier $N(\omega)$ tel que, pour tout $n \ge N(\omega)$, la somme

$$\sum_{k=1}^{n} X_{k}(\omega) \, 1_{\{X_{k} > n \, (\log_{2} n)^{\frac{1}{2} + \epsilon}\}}(\omega)$$

soit réduite à au plus un terme et donc majorée par $M_n(\omega)$.

Compte tenu du lemme 3, nous avons donc, pour n assez grand, $X_1 + \cdots + X_n \le M_n + C(\omega)$ $n \log_2 n$. Pour montrer le théorème, il suffit de montrer que la série $\sum_{n \ge 2} \frac{1}{M_n + n \log_2 n}$ diverge IP-p.s..

Nous avons, pour tout entier $n \geq 2$,

$$\sum_{k=2}^{n} \frac{1}{M_k + k \log_2 k} \ge \sum_{k=2}^{n} \frac{1}{M_k + k \log_2 k} 1_{\{M_k \le k \log_2 k\}}$$

$$\ge \sum_{k=2}^{n} \frac{1}{2 k \log_2 k} 1_{\{M_k \le k \log_2 k\}}$$

$$\ge \sum_{k=2}^{n} \frac{2}{2 k \log_2 k}$$

$$-\sum_{k=2}^{n} \frac{1}{2 k \log_2 k} 1_{\{M_k > k \log_2 k\}}.$$

Or nous avons:

$$\sum_{k=2}^{n} \frac{1}{2 k \log_2 k} \mathbb{P}\left[\left\{M_k > k \log_2 k\right\}\right] \le \sum_{k=2}^{n} \frac{1 - \left(1 - G(k \log_2 k)\right)^k}{2 k \log_2 k}$$

$$\le \sum_{k=2}^{n} \frac{1}{2 k (\log_2 k)^2} < +\infty.$$

La série $\sum_{k=2}^{n} \frac{1}{2 k \log_2 k} 1_{\{M_k > k \log_2 k\}}$ converge donc IP-p.s..

D'où le résultat.

Remarque : Si la fonction G est de l'ordre de $\frac{1}{t^{\alpha}}$ avec $0 < \alpha < 1$, ou plus généralement si la fonction $\frac{1}{G}$ est sous-additive, nous avons

$$\sum_{k\geq 1} 1_{\{X_{n+1}>X_1+...+X_n\}} = +\infty \ \mathbb{P} - p.s.$$

En effet les v.a.r. $\frac{1}{G(X_k)}$, $k \ge 1$, vérifient $\mathbb{P}(\frac{1}{G(X_k)} \ge t) = \frac{1}{t}$.

Le théorème implique alors que :

$$\sum_{k>1} 1_{\{\frac{1}{G(X_{n+1})} > \frac{1}{G(X_1)} + \dots + \frac{1}{G(X_n)}\}} = +\infty \quad \mathbb{I}P - p.s$$

et la sous-additivité de la fonction $\frac{1}{G}$ donne le résultat voulu.

Nous remercions Christian Bonatti et Bernard Schmitt d'avoir attiré notre attention sur le problème des dépassements $X_{n+1} > X_1 + \ldots + X_n$ pour des variables sans moment.

Références

H. G. Diamond, J. D. Vaaler: Estimates for partial sums of continued fraction partial quotients, Pacific J. of Math., Vol. 122, no 1, 1986.

J. Neveu : Calcul des Probabilités, Masson.

le 7 décembre 1998