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Summary. Let {A.} be a sequence of nonnegative random variables such that N:= 
oo 

E l / Â v n l <«> almost surely. Let M be the class of all probability measures on 

[0,°o). Define a transformation T on M by letting T|i be the distribution of 
oo 

X A.Z., where the Z. are independent random variables with distribution jx, 

i = 1 

which are independent of {A.} as well. In earlier work, to study invariant 

measures of some infinite particle systems, Durrett and Liggett investigated 

the transformation T in the special case where llNll^r^ss.sup N <«>, More 

special cases where considered by Mandelbrot, Kahane and Peyrière, and 

Guivarc'h in the study of a model for turbulence of Yaglom. In this paper, we 

study the transformation in general. The functional equation |i=Tji then 

contains as special cases the well-known basic equations in general branching 

processes; these equations are closely related to the Kesten-Stigum theorem 

and the Seneta-Heyde norming for Galton-Watson processes. Assuming only EN<oo 
oo 

and E S A.log+A. <oo, we determine exactly when T has a nontrivial fixed point 

of finite or infinite mean and we prove that fixed points have some regular 
~ oo 

variation properties. The case where E N = < » or E S A.log+A. = ° o is also 
i = 1 

considered. If E N <<» and E ( X A.) + <<» for some 8>0, we find all the fixed 
i = 1 

points and we prove that all nontrivial fixed points have stable-like tails. 

Convergence theorems are given to ensure that fixed points can be obtained by 

natural iterations with some appropriate initial distributions. Other limit 

theorems are also obtained when there is no nontrivial fixed point. The work 

answers in particular a question of Athreya for Bellman-Harris processes and 

completes a result of Biggins for branching random walks. 

Key words: Smoothing transformation, Branching processes, Branching random 

walks, Mandelbrot's martingale, functional equation. 
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1. Introduction and main results 

Let A.>0 be a sequence of random variables (r.v.) with 

k = , 1 , '(AjX.) < ~ 

almost surely (a.s.) and let N>0 be a random integer such that for all i>N, 

A.=0 a.s. We note that when liNll := ess.sup 5J <<», N can be taken as a constant 

sufficiently large. Let M be the class of all probability measures on [0,°°). 
oo 

Define a transformation T on M by letting T(i be the distribution of X A.Z. 
N i = 1 

s X A.Z., where the Z. are independent r.v.'s with distribution u, which are 
i - i 1 1 

independent of {A.} as well. Of course T can be regarded as a (nonlinear) 

transformation on the class £ of Laplace transforms of elements of M: 

(T(|>)(t)= E n <KtA.) = E n <KtA), 
i= l 1 i=l 

where (and throughout) the product is taken over all the indices i such that 
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A.>0, and the empty product (which happens when N=0) is taken to be 1. We 
1 oo N °o N 

shall write alternatively JJ or JJ E or X according to convenience for 
i = 1 i = l i = 1 i = 1 

context. 

Kahane and Peyrière (1976), and Guivarc'h (1990) studied the fixed points of 

the transformation T in the case where N is constant and the A. (l^i^N) are 

independent and identically distributed. Their works were motivated by 

questions raised by Mandelbrot relating to a model for turbulence of Yaglom. 

Holley and Liggett (1981) studied the same problem in the case where N is 

constant and the A. (l<i<N) are fixed multiples of one random variable, and 

Durrett and Liggett (1983) considered the more general case where the N is 

constant but the A. have arbitrary joint distribution. Their works were 

motivated by a number of problems in infinite particle systems. Closely 

related results are given in Kahane (1987), Ben Nasr (1987), Holley and 

Waymire (1992), Collet and Koukiou (1992), Franchi (1993) and Chauvin and 

Rouault (1993), etc. 

If l<m=EN<°° and A.=l/m (l<i<N), then the equation 4>=TcJ> reduces to the 

Poincaré functional equation <|>(u)=E<|)N(u/m), which arises in the Galton-Watson 

process. Similar equations [which are always special cases of Our equation 

<t>=T<|>] arise in age-dependent branching processes or branching random walks. 

The study of these equations has been important, since it gives the limit 

behaviour of the population sizes of the associated processes. Many authors 

have contributed to it, see for example Harris (1948), Kesten-Stigum (1966), 

Seneta (1968, 1969 and 1974), Athreya (1971), Doney (1972 and 1973), Doney and 

Bingham (1974 and 1975) and Biggins (1977). 

The transfomation T, in its various forms, was also used to study some 

fractal sets or flows in networks, implicitly or directly by Mauldin and 

Williams (1986), Falconer (1986 and 1987) and Liu (1993). So, the greatest 
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advantage of the present work is perhaps that it reveals some intimate 

relations among the different subjects mentioned above: infinite particle 

systems, multiplicative chaos, branching processes, fractal geometry and flows 

in networks. 

Let ? be the set of all nontrivial fixed points of T: 

? = { \ieM: T[i=\i and | i*5 0 }. 

The elements (I of ^ will be identified with their Laplace transforms <|> as 

well. We suppose throughout the paper that 

P(N= 0 or 1) <1 and P(Vi>l, A= 0 or 1) <1. (HO) 

Otherwise, the situation is clear: 

(a) If P(N = 0 or 1) = 1, the equation \x=T\i reduces to 

z = s z 
N 

with S= £ A. independent of Z, and, taking logarithms, we see that 2*0 if and 
i = 1 

only S=l a.s.; 

(b) If P( N= 0 or 1) <1 and P(Vi>l, A= 0 or 1) =1, then the equation reads 

4>C0= f(<t>C0) (V&O), 

where f(t)= I P(N=k)t\ Therefore, if EN<1, then <|>(t)=l for all t>0; If EN>1, 
k=0 

then Vt>0, (J)(t)=l or q, q being the unique fixed point in [0,1) of f. Since 

<|>(0)=1, <J> is continuous and decreasing, we conclude that <|>(t)sl. So in both 

cases (EN^l or EN>1), T has only the trivial fixed point <|>sL 

For xe[0,oo), write 
00 N 

S(x):= S A"= I A^ , S:=S(1), 
1 = 1 1 = 1 

and 

p(x):= ES(x), 

where (and throughout) the sum is taken over all the i such that A>0, and the 

empty sum (which happens when N=0) is taken to be 0. The function p is well 

defined on [0,«>) with values in [0,«>]. We remark that 



5 

Smoothing Transformation 

S(0)=N and p (0 )=EN 

by our notations. If 

E N < « and E l A.log+A.<oo, (HI) 

where log +x = max(0,logx), then 
N 

p(x)<<» and p'(x)= E X AxlogA. <<» 
i = 1 1 1 

exists for all xe(0,l] (at the right point 1, p'(l) denotes the left 

derivative); p is strictly convex on (0,1) since 
N 

p"(x)= E I A*log2A. <oo 
i = 1 

exists for all xe(0,l) by (HI), and is strictly positive by (HO). Sometimes we 

shall need the condition that for some 8>0, 

E f N 1 + 5 ) < o o and E(Sl+b)<oo. (H2) 

It will be useful to remark that this condition is equivalent to 
E ( 5 1 + 5 J < o o , (H2') 

where 
N 

S:= X max(A.,l). 
i = 1 

The minimal conditions were given in LIU (1994) for existence of nontrivial 

fixed points with finite mean : 

Theorem 0. (Existence of nontrivial solution with finite mean) Under the 

condition (HI), T has a nontrivial fixed point with finite mean if and only if 

ES(l)log+S(l) «*>, p(l)=l and p'(l)<0. 

This result reduces to the well-known Kesten-Stigum theorem in the context 

of Galton-Watson processes; it is due to Athreya (1971) for Bellman-Harris 

processes, to Doney for Crump-Mode processes (1972) and to Biggins (1977) for 

the general case under the condition ESA.(log A.) <«> instead of EN<oo . it was 

also obtained by Kahane and Peyrtere (1976) if llNll <«> and A. are i.i.d, and 

by Durrett and Liggett (1983) if l l N l l ^ o o . In the context of age-dependent 
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branching processes or branching random walks, a harder open problem was to 

know whether T has nontrivial fixed points of infinite mean in the case where 

ES(l)log+S(l) =00. [see for example Athreya (1971, p.598, problem (c)(i)) for 

Bellman-Harris processes.] 

The following theorem solves this in a much more general setting. 

Theorem 1. (Existence of nontrivial solutions of finite or infinite mean) 

If EN>1 and inf p(x) <1, then 9*0. The converse holds subject to (HI). 
xe[0,l] 

We remark that for the sufficiency part, we need neither EA.log+A.<oo nor E N < « \ 

For the necessary condition in the case where (HI) does not hold, the 

following comparison methode will be useful: 

Remark 1. If p(l)>I and 

+ n 

EA.log A.<oo for all i>l, and / / m m / E E A-logA- <0, (H3) 
n^oo f = i 

then ^ = 0 . More generally, if for some constant integer n>0 and random 

variables O^A.<A. (l<i<n), 

EA.log+A.<oo for all l<i<n, E l A>1 and E £ AdogA. <0, (H4) 
i=l 1 i=l 1 1 

then 9=0. 

This will be given in section 9. We remark that when EA.log+A.<«>, the 

integral EA.logA. is well defined and finite. The condition (H3) evidently 

holds in the context of branching processes (cf.§2.). 

By Theorem 1, assuming (HI), we obtain the minimal conditions for existence 

of any nontrivial fixed points of T: 

Corollary 1. Under the condition (HI), the following assertions are 

equivalent: 

(a) 9*0. (b) EN>1 and inf p(x)<l. (c) EN>1 and for some ae(0M p(a)=L 
x € [0,i] 
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(d) For some cc€(0,l], p(oc)=l and p'(oc)<0. 

This follows from Theorem 1 since the conditions (b),(c) and (d) are 

equivalent each other subject to the hypothesis (HI). In fact, to see that (c) 

implies (d), it suffices to choose the least a for which p(a)=l, using the 

convexity of p. The other implications are clear. 

If l l N l l ^ o o and EA.log+A.<oo (Vi), the result was shown by Durrett and Liggett 

(1983,th.l). [Although Durrett and Liggett's work assumes EAJ<<» for some 7>1, 

the condition EA.log+A. <«> (Vi) suffices in the proofs of their Theorem 1.]. 

We recall that a function £(x)>0 is called slowly varing at 0 (or <») if VX>0 

l(7ui)/i(u) ->1 as u»0 (or <»). 

Theorem 2. (Regular variation of nontrivial fixed point) Assume (HI) and 

Let a be the unique point in (0,1] such that p((x)=l and 

p'(a)<>0. If then for some slowly varing function t(.)>0 at 0, 

Um tM*l =1 ifa=l 
t->0+ tal(t) 

and 

Umsup LMlL <,l if a<l. 
t+0+ tal(t) 

Moreover, if (H2) holds, then we can take t(t)=c if p'(a)<0 and i(t)= c\logt\ 

if p'(a)=0, for some constant c>0. 

Remark 2. In the case where a<l, the Junction t(t) can be constructed shch 

that for all t>0 sufficiently small, l-$(t)<tat(t). 

Corollary 2. Under the conditions of Theorem 2, if \ie9, then the following 

conclusions hold: 

(i) IL(X,~) = 0(\al(x)) (x->+°°). (ii) / 0 xad\L(x)<°° for all a<=(0,a). 

(Hi) S°H xad\i(x)<oo a = l , p'(l)<0 and ESlog+S<*°. 

(iv) If a=l, then \i(t,oo)dt ~ t(x) is slowly varing. 
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This result was known only for Galton-Watson processes in the context of 

branching processes. For the proof, see Theorem 11.2. 

Theorem 3. (Convergence theorem) Suppose that 2*0. Let a be the unique point 

in (0,1] such that p(a)-l and p'(a)<0. Assume that either oc=i or (H2) holds. 

Iftye? and i\e£ are such that l-$(t) ~ l-r\(t) (t->0+), then 

Urn 7*T|=(|>. 

The result means that if the behaviour of r\ matches that of (|> at 0, then ((> 

can be obtained by iterations of T with the initial element r\. Other limit 

theorems will also be given, (cf. sections 7,8 and 9). 

Corollary 3. (uniqueness of nontrivial fixed points) Suppose that 9*0. Let a 

be the unique point in (0,1 J such that p((x)=l and p'(a)<0. Assume that either 

a=2 or (H2) holds. If <|> and ty2 are nontrivial fixed points of T such that 

l-tyjt) ~ l-$2(t) (t->0+), then 

As a special case, if a=l and <|> and $2 are nontrivial fixed points of T 

with same finite mean, then ty=ty2. 

Suppose that ^ 0 . Let a be the unique point in (0,1] for which p(a)=l 

and p'(l)<0. Let X a be a random variable with distribution determined by 

E * X a > = pTa) E S* AfX-logAp 

for nonnegative Borel functions / on R, where X denotes the summation over 

all the i's such that A>0. The problem is called of lattice type if there is 

an s>0 such that X is concentrated on the set sz={zs} (zei): 

Z P ( X = z s ) = l , 
Z 6 Z ™ 

where Z={0,±1, ±2,...}. Since 

^ c T ^ " pJa) E * A« l ( . I o g A . = z s ) , 

by the definition of X a , we see that the problem is of lattice type if and 

only if 
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P ( 0 0 = ' f i » A ? W,=*> • 
which reads also 

E I* A? [ l - l ( . l o g A i = z s f o r s o m e Z € Z ) ] =0. 

Therefore, the problem is of lattice type if and only if there is an s>0 

so that with probability one, each A. is an integer multiple of s if A>0. 

We will always take s to be the largest possible such number and will refer to 

it as the span. We set s=0 if the problem is non-lattice. 

If s>0 and a<l , let S be the collection of all strictly positive 
tX,S 

infinitely differentiable functions p on R1 which satisfy 

(a) p(x+s)=p(x) for all xeR 1, and 

(b) (-l)k iLjeap(-loge)]<0 for all k=l,2,... 
dek 

If s=0 or ctssl, let S be the set of positive constant functions on R 1. The 

class e is relatively large for oc<l and s>0. For example, if a and b are 

numbers which satisfy 

I / ( a 2 +b 2 ) n °° [l+n 2/(j-cc) 2]' <1 

(0<a<l) and if ^ 
p(x)=l+ S (a sin nx +b cos nx) n n n = 1 

then p e B ^ ^ [cf. Durrett and Liggett (1983, th.5.2)]. 

Theorem 4 . (Totality of fixed points) Suppose that 9*0. Let a be the unique 

point in (0,1] for which p(a)=l and p'(a)<0. If (H2) holds, then there is a 

natural bijective correspondence between (J>€^ and peB which is given by 
IX, s 

Hm J-¥t) = 1 i f p Yaj<0 
*-0+ rp(-logt) 

and lim „ r =1 if p'(a)=0. 

t+0+ rp(-logt)\logt\ 
The result means that subject to (H2), the fixed points can be identified by 
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the behaviour of their Laplace transforms at 0. When oc=l and p'(a)<0, this 

just says that the fixed points are parametrized by their means, 

corollary 4. Under the conditions of Theorem 4, if a<l and the problem is 

nonlattice, then for all |ie M, there is a constant c>0 such that, as x*<*>, 

\i(x,oo) ~ cx'a if p'(a)<0, 

and \i(x,oo) ~ cxalogx if p'(a)=0. 

2. Applications 

2.1. Poincaré functional equation. 

Let N>0 be an integer-valued random variable with m= EN€(1,«>]- Seneta (1968) 

showed that if m<°°, then the Poincaré functioal equation 

•Cs) = E*N(£) (s>0) (2.1) 

has always a nontrivial solution in £; he proved in sequal (see Seneta 1974 or 

Athreya 1971) that for any nontrvial solution there is a slowly varing 

function £(s) at 0 so that l-(|>(s) ~ s£(s) (s^O). 

Let us consider a slightly more general form of (2.1): for any given 

a€(0,«>),(a may be <1,=1 or >1), we consider the functional equation 

<|>(s) = E<|>N(as) = Ttys) (s>0) (2.1a) 

in £. This is the special case of our general transformation T with A.=a if 

l<i<N and A=0 if i>N. Our theorems in section 1 apply, and we have 

Theorem 2.1. The Poincaré functional equation (2.1a) has a nontrivial solution 

in £ if and only if aEN<l (i.e., EAf<«> and a<l /EN); there is a nontrivial 

solution with finite mean if and only if ENlog*N<°°. For any nontrvial solution 

there is a slowly varing function (J(S) at 0 so that l-§(s) ~ st{s) (s->0). 

Each nontrivial solution can be obtained as a limit of iterations 7*ty (n^oo) 

of T [defined in (2.1a)] with an arbitrary initial element \|/€ie satisfing 

l-V(t) - H(t) (t*0). 
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Proof. We have p(x)=axEN. If a<l, then the hypothesis (H3) holds, so by 

Theorem 1 and Remark 1, the equation (2.1a) has a nontrivial solution if and 

only if aEN^l. By Theorem 0, There is a nontrivial solution with finite mean 

if and only if ENlog+N<oo. if a=l, then the hypothesis (HO) is not satisfied, 

and the conclusion comes from the discussion following that hypothesis. If 

a>l, then since EN>1, we can find a<\ such that aEN>l. Thus the result follows 

by Remark 1. • 

Let Zn(n>0) be a supercritical Galton-Watson process with ZQ=1 and Z^N. The 

well-known Kesten-Stigum Theorem says that if l<m=EZ i<°o, the random variables 

Zym11 converge almost surely to a nondegenerate random variable W if and only 

if EZ^og^^oo . This result is deepened by the Seneta-Heyde Theorem which 

says that, if 1<EN<«>, then there is a sequence of constants c >0 (c -**>) such 
n n 

that the random variables Z /̂c^ converge almost surely to a nontrivial random 

variable W whose Laplace transforms satisfies (2.1) (and c n~ m n if and only if 

EZjlog'^Z^oo). If EN=oo, it was proved by Seneta (1969) that such a sequence 

does not exist (even for convergence in distribution). We see that the last 

conclusion can also be derived by Theorem 2.1, noting that if (tec^-** is such 

that Z /c converge in distribution to some nontrivial random variable W, then 
n n 

for some 0<a<l, c /c t -» a (Seneta 1969,p.29) and consequently the Laplace 
n n+l 

transform of W satisfies (2.1a) (easy). 

2.2. Crump-Mode process. 

We consider a general branching process {Z(t):t£0} in the sense of Crump 

and Mode (1968-69) with a single ancestor Z(0)=1. Each individual reproduces 

independently; for any given parent individual the instants of birth of 

offspring are represented by the jumps of a counting process {N(t):t>0} with 

N(0)=0 and N(<»)<oo which increases by one at the instants of birth of 

offspring; this process and the life time L of the parent may be dependent. We 
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assume throughout that either 1<EN(O°)<©°, in which case there exists a unique 

positive a with 

EJ~ e a x dN(x ) =1, 

or EN(oo)=oo and 3 a positive a (necessarily unique) satisfing the preceding 

identity. It was proved by Doney (1972) that the limit (in distribution) 
w J l i m J W ( 2 . 2 ) 

exists, and satisfies the functional equation 

<|>(s) = E e x p { / ~ log<Kse a x)dN(x)} (s>0), (2.3) 

where ())(s)=Ee"^s. Writing N=N(oo) for the total number of offspring of a given 

parent, t .t,...,t for the successive instants of their births, and 
1 2 N 

-at. 

A. = e \ (l<i<N) (2.4) 

we see that (2.3) can be reformulated as 

4>(s)= E n <KsA.) = T<Ks). (2.3)' 
i=l 

Doney (1972) proved that (2.3) has a nontrivial solution <|> in £ with l-<t>(s) ~s 

(s-»0) if and only if EYlog+Y <«, where 

Y:= f~ e" a xdN(x) • I A.. (2.5) 
i = 1 

Our Theorems in section 1 complete this as follows: 

Theorem 2.2. The functional equation (2.3) has always a nontrivial solution in 

£. For any nontrivial solution <(>, there is a slowly varing function l(s) at 

0 such that l-$(s) ~ st(s) (s-^0). For any given slowly varing function t(s) 

at 0, there is at most one solution in £ satisfing l-ty(s) ~ st(s) (s^O). 

Any solution <|) can be obtained as a limit of iterations 7*y (n**>) of T 

(defined in (2.3)') with an arbitrary initial element \\fe£ satisfing l-y(t) ~ 

1-tyt) (t->0). 

Of course, the uniqueness in the above theorem can also be reformulated in 

the following way: if (J> ,<J> e£ are solutions satisfiny i-<)> (s) (s) (s^O), 
1 2 1 2 
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then 6 =6 . 

The Bellman-Harris process is the particular case of a Crump-Mode process 

with 
N «=<S: if 

where the offspring distribution N and the lifetime L are mutually 

independent. In this case, the functional equation (2.3) or (2.3)' reduces to 

<Ks)= E(Ase" a L) =T<J>(s), (2.6) 
-aL 

where a is the unique number in (0,°o) satisfing ENe =1 (We suppose that 

EN>1). Athreya (1971) proved that (2.6) has a nontrivial solution <|> in £ with 

1-<|>(S)~S (s->0) if and only if ENlog+N <«>, and demanded whether it had always a 

nontrivial solution in £ if ENlog+N=oo. Our Theorem 2.1 answers this question 

in a more general setting. 

2.3. Branching random walks 

A branching random walk on the real line R1 can be described in the following 

way. An initial ancestor, who forms the zeroth generation, is created at the 

origin. His children form the first generation and their positions on the real 

line are described by the point process Z 1 on R1. Thus Z 1 is a random locally 

finite counting measure. The people in the nth generation give birth 

independently of one another and of the preceding generations to form the 

(n+l)th generation. The point process describing the displacements of the 

children of a person from that person's position has the same distribution as 

Z 1 . Let {z°} be an enumeration of the positions of the people in the nth 

generation, and Z n be the point process with the atoms {z^}. Define 
m(9):= E I exp(-9zj) = E J e^dZ^t ) . 

We assume m(0)>l and m(8)<°o for some fixed 0. The generation size Z n (-°° ,oo) in 

the branching random walk form a supercritical Galton-Watson process. It is 

known (see Biggins 1977) that 
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Wn(9):= m(0)"n I exp(-6zn) 
r r 

is a martingale with respect the a-field generated by the births in the 

first n generations, and the limit 

W(9):= lim Wn(G) 

satisfies the functional equation 

«s)= E n K«A) • Ttfs) • (2.7) 
r 

with <|)(s)=Ee" s W ( 0 ) and 
A = m(ey1exp(-6zj). 

(Therefore EL A=l). We consider the equation (2.7). If 9=0, it reduces to the 

Poicarg functional equation (2.1). So we assume 8*0. Biggins (1977) obtained 

sufficient conditions for this equation to have nontrivial solutions of 

finite mean. Our results in section 1 will be applied to complete Biggins' 

theorem. We notice that if 

m(0)<oo and E l Iz 1 |exp(-9z*)<oo , (2.8) 
r r r 

then 
m(x)<oo and m'(x)= -E £ z^xpC-xz1) e (-00,00) exists 

r 
for all x€(0,8] if 6>0 and for all xe[9,0) if 8<0; Also (HI) holds since 

p(0)=EN=m(0) and ElAj logA r l< 9m(9)"1E I exp(-9zJ)|ZM +|logm(9)|; 
r 

Finally for all xe(0,l], 

p(x)= E I A x = m(9x)/[m(9)]x (2.9) 
r r 

and 

p'(x)= [9m'(9x) - m(9x)logm(9)] /[m(9)]x. (2.10) 

Therefore, by Corollary 1, Theorem 2 and Remark 2, and Theorem 3 and 

Remark 3, we obtain 

Theorem 2.3. Assume m(0)>l and m(%)<<*> for some fixed 9*0. Then the functional 

equation (2.7) has always a nontrivial solution in £. Assume additionally 



15 

Smoothing Transformation 

(2.8) and let a be the unique number in (0,1] such that 

m(Qa) = /m(ej7a and Gm'(Qa) - m(Q<x)logm(e) <0. (2.11) 

Then: 

(a) For any nontrivial solution <J>, there is a slowly varing function t(s) at 

0 such that 1-tys) ~ st(s) (s->0+) if a = i and l-ty(s) £ sat(s) for all 

sufficiently small s>0 if a<l; 

(b) For any given slowly varing function t(s) at 0, there is at most one 

solution <|> in £ satisfing l-$(s) ~ st(s) (s^O); 

(c) Any solution <|> can be obtained as a limit of iterations 7*ty (n-¥*>) of T 

(defined in (2.7)) with an arbitrary initial element ye£ satisfing l-y(s) ~ 

1-tys) (s*0); 

(d) All solutions are of finite moments of order strictly inferior to a; 

their a-th moments are finite if and only if 

E Wl(Q)log+Wl(Q) <oo and Qm'(Q)-m(Q)logm(Q) <0 (2.12) 

(so a=ij . In particular, there is a solution of finite (first) moment if and 

only if (2.12) holds. 

3. Sufficient conditions 

We first determine the extinction probability \i{o} of any fixed point | i€3\ 

We remark that M-{o}s<|)(«>) if c> is the Laplace transform of \i. 

Theorem 3.1. If 3*0, then (a) EN>1, and (b) for any \ie$, \i{0] is the unique 
oo ~ 

fixed point in [0,1) of the function fit) := £ P(N=k)tk =EfN. 

Proof. Let{Z.} be independent random variables with distribution (i, which 

are independent of {A.} as well. Then the extinction probability q:=ji{0} 

e[0,l) satisfies 

q= P(Z1=0) = P( S A.Z=0) = P(Vi Z=0 if A>0) = X P(N=k)q\ 
i = i k=o 

So / has a fixed point in [0,1). Since / is convex, /(1)=1 and / (1)=ER it 
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follows that EN>1 or /(t)=t for all t. In the latter case N=1 a.s., which is 

excluded by our hypothesis (HO). So EN>1, and / has a unique fixed point in 

[0,1), which proves both parts of the theorem. • 

We then remove the moment condition EAJ<OO (Y>1, i=l,2,...) of a result of 

Durrett and Liggett (1983, Theorem 1). 

Lemma 3.2. Suppose that H^ r»0 0<0 0- / /p(0)>i and inf p(x)<l, then 2*0. 
° ° x € [ 0 , l ] 

Proof. Since ll^ rll o o<», N can be taken as a constant. If for some y>l and all 

i=l,2,... EAJ<<», then (HI) holds and the given conditions are equivalent to 

p(oc)=l and p'(cx)<0 for some oce(0,l]. So the conclusion follows by Theorem 1 of 

Durrett and Liggett (1983). 

To prove the result in the general case, we define 

A.(M)= A . A M s min(A.,M) 

for all M>0 and i>l, and let p w and T be the corresponding function and 
M M 

smoothing transformation defined in terms of (A.(M)} just as p and T were 

defined in terms of { A . } . Then PM(0)= p(0) >1. Since 

inf PM(x)< inf p(x)£l, 
x € [ 0 , l ] x € [ 0 , l ] 

T has a nontrivial fixed point t\xt by the preceding conclusion, and 
M M 

T| (oo)=qe[0,l) is independent of M by Theorem 3.1 since the function f(t) 

defined therein does not depend on M. Choose c>0 such that T]M(c)=(q+l)/2. This 

is possible since r|M(0)=l and r|M(©o)=q. So T M has a fixed point ^M(0*=^lM(ct) 

with 

(|)M(l)=(q+l)/2. 

By the selection and continuity theorem, we can choose a sequence M so that 

(|>M converge to a limit <|> which is the Laplace transform of a possibly 
n 

defective distribution |Li (see for example Feller 1971, pp.267 and 431). Since 
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evaluating this at M=M and passing to limit as n-*>o, we obtain by the 

dominated convergence theorem that 
N 

ф(0= E n <t>(tA). 
i=l 

Letting t-*0 we see that ф(0+)=Дф(0+)), where / ( t ) = E t N . Since 

ф(0+)£ф(1)=(я+1)/2 e (q,l), it follows that ф(0+)=1 and ф(оо)£ф(1)<1. Thus ц is 

not defective and Ц*б0. Consequently феУ. • 

We now prove our main theorem for existence of nontrivial fixed points. 

Theorem 3.3. If p(0)>l and inf p(x)<l, then 
xeio.i] 

Proof. The argument is similar to that used in the proof of Lemma 3.2. For 

M=l,2,..., define A.=A. if i^M and A.=0 if i>M. Let T M be the corresponding 

smoothing transformation defined in terms of {A.} and put 

PM(x)= E I A| (x£0), 
Ì = 1 

where MAN:= min(M,N). Then P M 00 increases to p(x) for all x>0 as M increases 

to <*>. Choose M sufficiently large such that pM(0)>l. Since 

inf PM(x)£ inf p(x)<l, 
x € [ 0 , l ] x € [ 0 , l ) 

T has a nontrivial fixed point ri with q^=ri (°°)€[0,1) by Lemma 4.2. Note 
M М М М 

that q is the extinction probability of a supercritical Galton-Watson process 
M 

with offspring distribution 
M A N 

N M : = .^,1{A>0} 

which increases with M, we see that q w decreases as M increases. Thus the 
limit 

q:= 1 im q M exists with q<l. 

Choose c>0 such that ti (c)= (qw+l)/2. So T has a fixed point фЛ0:=т (ct) 
M M M M M 

with 
У 1 ) =(qM+l)/2. 

By the selection and continuity theorems for distributions and Laplace 
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transforms, we can choose a sequence so that <|>M converge to a limit <(> 
n 

which is the Laplace transform of a possibly defective distribution \i. Since 

<|>M is a fixed point of T M , 
M A N 

• i i ( t ) = B E

i n 1 ^ t A

i ) -

Evaluating this at M=Mn and passing to limit as n-*», we obtain by the 

dominated convergence theorem that 
N 

<>(t)= E n 4>(tA). 
i=l 

Letting t->0 we see that <J>(0+)=̂ (<J>(0+)), where /(t)=EtN. Since 

<|>(0+) ><KD =Hm (|)M (1) = lim (q M +l)/2 = (q+l)/2 <= (q,l), 
n n 

it follows that <|>(0+)=1 and ((>(«>)< <I>0)<1- T h u s H * s n o t defective and J L L ^ 8 0 -

Consequently (J>€?. • 

We remark that we can prove in fact that q also verifies q=Eq by passing to 
N M 

limit in q =Eqw as M-*oo. So q=<t>(°°). 
M M 

4. Necessary conditions. Basic properties of fixed points. 

Throughout this section, we assume (HI). Let a be a point in (0,1] and X 

a random variable with distribution determined by 

= p { a ) E S * A ? * l o g A i > (4.D 

for nonnegative Borel functions / on R, where X denotes the summation over 

all the i's such that A>0. This is possible since the right hand side of 

(4.1) is a positive linear functional with unit norm. Given with <|>*1, 

define D (x) and G (x) by 

D a (x)= e a x[l-<t)(e-x)] and 

ax r N -x N v ^ ( 4 - 2 > G a(x)= e a x E{n <l>(e XA.) -1+ X [l-<|)(e"xA.)]i. 

For <j>€i£, we define £) and G_, analogously in terms of $. 
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Lemma 4.0. (i) //ф=Гф, then &Jx)= p(a)EDJx+X) -GJx). 
vX IX IX vX 

OLX 1 0 0 e^GJx) Z0 is a decreasing function of хеш . ex 
(ш) / / $£ф, then G<,G„. 

a. a ^ 

(iv) GJx)£ eaxEF(mm{n,SDJx)e'ax}), where S= I max(A},l) and F(u)=e'u-l+u. 

P w / With some slight modifications, the argument is the same as those in 

the proofs of lemmas 2.3,2.4 and 2.6 of Durrett and Liggett (1983,pp.282-284). 

In fact, part (i) holds since 
N N 

D a (x)= e a x [ l -$(e- x ) ] = e ^ f l - E n tfe"xAj)] = ^ E П Ц ( е " Х А . ) ] - О а ( х ) 

N a 
= E X iA° tD a(x-logA.)-G a(x) = p(a)ED a(x+X a) -G a (x). 

Parts (ii) and (iii) follow from the fact that 
N N N N 
П u. -1+ I (1-u.) £ n v. -1+ E (1-v.) if 0<u.£v.£l. 

i= l ' i= l * i=l i=l 1 

For part (iv), use the inequality u< e"^" u^ to obtain 

G a (x) < e a x E J exp(-E [1-ф(е"ХАр]| -1+ ^[1-ф(е"хА.)]|>. 

Since фе£, IlMH) is decreasing and 1-ф(и) is increasing in u. Therefore 

1-ф(е"хАр <, max(A.,l) [1-ф(е_ х)]. 

Part (iv) now follows from the monotonicity of F on [0,«>) and the fact that 

I [1-ф(е"хА.)] й гшп{Я5[1-ф(е~х)]} = min{N,SZ> М * " 0 " } . 
¡ = 1 1 a 

For part (v), note that since l im D a(x)e = l im [1-ф(е )] =0, it suffices, 
X->oo X-*oo 

by changing variables t= D a ( x ) e " a x , to show that 

lim ^ = 0 . 
t->0 
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But this follows from the dominated convergence theorem since is bounded 

on (0,°°) and tends to zero as u->0+, and since S has a finite first moment by 

(HI). . 

The proof of the following lemma follows that of Lemma (2.11) of Durrett 

and Liggett (1983,p.285). However, we shall give the details which are not 

only for the convenience of readers but will also be used later. 

Lemma 4.1. (a) Fix ae(0,l] and let A be the set of all functions g on R1 

which satisfy 

(i) g(o)=l, 

(H) g(yk^ is decreasing in y, and 

(Hi) g(y)^^^^ is increasing in y. Then A is uniformly bounded and 

equicontinuous on bounded sets, and, for all ge 4^ and all ye R1, 

Min {e^, i(1-a)y} < g(y) < Max fe^, e^ty. (4.3a) 

If additionally g'(y) exists, then 

-a-OL)g(y) < g'(y) < ag(y). (4.3b) 

(b) Assume the problem is non-lattice and let 2 be the set of all functions 

g in 4a which satisfy 

g(y) = p(a)Eg(y+Xah VyeR1. (4.4) 

Then S is the set of all convex combinations of g (y) = Ja~^ for the 

(at most two) $'s which satisfy 0<$<1 and p(pj=7. 

Proof (a) Fix yelR1. By properties (ii) and (iii), if Ay>0, then 

g(y+Ay)e 
-«(y+Ay) < g ( y ) e - « y m d g^+Ay^-aXy+Ay) ;>g(y)e ( 1- a> y. 

That is, 
g(y)e" ( 1 "°° A y £ g(y+Ay) < g ( y ) e a A y if Ay>0. (4.5a) 

Similarly, 

g (y )e o c A y < g(y+Ay) <g (y )e~ ( 1 " a ) A y if Ay<0. (4.5b) 

We remark that (4.5) can be rewritten as 
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gCy,) M i n f e ^ V 0 - ^ } * g (y 2 * g ( y i ) Maxic^y,^1-^} (4.6a) 

for all (y^y^eiR2, where Ay=y 2-y r Taking y i = l , (4.6a) gives (4.3a). As a 

consequence of (4.3a), 4a is uniformly bounded on bounded sets. Again by 

(4.6a), 

gfy) Min{e a A y- l ,e - ( 1 -° c ) A y- l} <: g(y 2)-g( y i) 

^ g ( y i ) Max{e a A y-l ,e- ( 1 - c x ) A y-l} . (4.6b) 

Combing this with (4.3a), we see that d is equicontinuous on bounded sets. 
ix 

Dividing (4.6a) by Ay and letting Ay-»0 give (4.3b). 

(b) It is easy to check that gfi€ © a if and only if 0<P^1 and p(P)=l. Thus 

the conclusion is immediate if B = 0 . Assume then that S is not empty. By (a) 
IX IX 

and Ascoli's theorem, S a is a relatively compact subset of COR1) with the 

topology of uniform convergence on bounded sets of R 1 . We claim that 2 is 

also closed. Let Sn^^a be such that g^(y) -» g(y) (n-»«>) uniformly on bounded 

sets for some g€C(R1). Then it is easily seen that ged . Since 
IX 

8jy+Xa) <S exp{a(y+X a)} + exp{-(l-a)(y+Xa)} [by (4.3)], 

Eexp{aX a} =p(0)/p(l)<«. and Eexp{-(l-a)Xa) =p(l)/p(a)<oo, (4.7) 

by the dominated convergence theorem, we see that VyeR1, 
lira Egjy+X ) = E£(y+Xa). (4.8) 
n-*oo 

Thus we can pass to the limit in g (y) = p(oc) Eg (y+X ) to obtain (4.4). Hence 
D n IX 

g e S ^ , and so B is closed. Thus B is a compact convex subset of C(Rr) (the 
(X IX IX 

convexity is easy). Therefore S a is the closed convex hull of its extreme 

points by the Krein-Milman theorem. 

Suppose that g is an extreme point of B and let 
IX 

g (y) = g ( U + y ) 
g u W g ( U ) * 

By (4.4) and the fact that Eg(X r t) =l/p(oc), 
IX 

_Eg(u+X a ) g u ( y ) g ( u ) P [ X a € d u ] 
g ( y ) = n E g T X ^ T = ^ g ( u ) P [ X a e d u ] ' 



22 

Q.-S. Liu 

Since g e B„ for each u and g is extremal, this implies that g=g for all u in 
u OC * u 

the support of the distribution of X . Therefore 

g(u+y)=g(u)g(y) (4.9) 

for all y and all u in the support of X . Let 

U={ueR!: VyGR1, g(u+y)=g(u)g(y)}. 

Then QJ is a sub-group of (R*,+) since (i) if ueli, then taking y=-u in (4.9) 

gives g(-u)=l/g(u), and consequently, for all yeR1, 

g(-u+y)=g(u+(-u+y))/g(u) =g(-u)g(y). 

Thus -U6U; (ii) if u ^ u and u 2€U, then u +u 2€U because Vy€R*, 

g(«1+u2+y)=g(u i)g(u2+y)= g(u l)g(u2)g(y) = g(u i+u2)g(y). 

Therefore U is either dense in R1 or of the form az for some a>0. In fact, 

writing a=inf{ue(U: u>0}, we can easily verify that u is dense in R1 if a=0, 

and U=aZ if a>0. Since U contains the support of X and the problem is 

nonlattice, we conclude that U is dense in R1, and so l^R 1 as g is continuous. 

It follows that g=gfi for some p. This completes the proof of the lemma. • 

Theorem 4.2. Assume (HI) and &¥0. Then (a) there is an ae[0,l] so that p(a)=l, 

and (b) if and ae(0,l] is such that p(a)=l and p'(a)<0, then 
Da(x+y) 

limsup i) / r l £1 if p'(a)<0 

and 
Da(x+y) 

^-%JTT=1 IFP'<A)=0' 

where y>0 is any multiple of s if the problem is of lattice type of span s, 

and arbitrary otherwise. 

Proof. The argument follows that of the proof of Theorem 2.12 of 

Durrett-Liggett (1983,p.286). Fix an oc€=(0,l] and put 

g x(y) = D a(x+y) /D a (x). 
By Lemma 4.0, 

Da(x)= p(a)EDa(x+Xa) -Ga(x). 
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Evaluating this at (x+y) and dividing by D (x) gives 
VX 

gx(y) = P < a ) E g / y + j y - gx(y). (4.10) 
CX 

Since <|>eje, Dn(y}&a^ =l-(|)(e'"y) is decreasing in y and D „ ( y ) e ^ " a ^ is 

increasing in y. Hence g ed„ for all xeR 1, where ¿ is defined in Lemma 4.1. 
x cx a 

By that lemma, the collection {g R1} is uniformly bounded and 

eqicontinuous on bounded subsets of Rl, and hence is relatively compact in the 

topology of uniform convergence on bounded sets. Suppose x^oo and g x (y)-*g(y) 
n 

uniformly on bounded sets of R1 for some g€C(R*). As in the proof of (4.8), it 

is easily seen that limE* (y+X,J = Eg(y+X„). Thus we may pass to the limit 
X CX (X n-»oo n 

in (4.10) to obtain (4.4), using Lemma 4.0(v). Assume from now on that the 

problem is nonlattice. The lattice case is similar. Since geS^, by Lemma 4.1, 

there is a pe [0,1] for which p(p)=l. This proves part (a) of the theorem. For 

part (b), suppose now that p(oc)=l and p'(a)<0. Again by Lemma 4.1, 

g(y) = X + (1-X)e" ( i 3" a )y (4.11) 

for some A,€[0,1], Pe [0,1] with p(p)=l, and all yeR 1. Since p(.) is convex, we 

have (tea if p*(a)<0 and p=oc if p'(ot)=0. It follows from (4.11) that g(y)<l if 

y>0 when p'(oc)<0 and g(y)=l when p'(oc)=0. Since this is true for all limit 

points of gx(y) as x->°o, the proof of the theorem is complete. • 
Corollary 4.2. Suppose that <|>€f, ae(0,l], p(a)=l, p'(a)<0, then 

(a) limsup ^ logD (x) <0, and X cx 
x-*°° 

1 5 

(b) G (x) is directly Riemann integrable on R1 if ES <«> far some 8>0. 
CX 

"OCX 
Proof Part (a) follows from Theorem 4.5 and the monotonicity of e G a (x). To 

D a ( x + y 0 ) 
see this, let y >0 be such that limsup p £1. Ve>0, 3xQ=x (y ,e) such 

x->«> or ' 
that Vx>x . D / v(x+y )< ( l+eP - fx ) . Iterating this gives that for all m=l,2,... 

0 CX 0 cx 

logD a(x o+my 0)£ mlog(l+e) +logD a(xQ). 
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For all y>0, choose mew such that xQ+my0^y <x0+(m+l)yQ. Thus 

-a(x +y) -a(x +my) 
D a (x 0 + y)e ^ D a ( x 0 + m y 0 ) e 

and 

i logD a(x 0+y) £ i { logD a(x 0+my 0) + a(y-my0) } 

* + I { logD a(x 0) + a(y-myo) }. 
0 ; 0 J 

Letting y-̂ oo gives limsup \ logD (x +y) < log(l+e). Thus (a) holds. 
y^oo J 

For part (b), again since e " a x G (x) is decreasing in x, it suffices to show 
vX 

that G (x) is integrable on R1 (see the proof of Corollary 2.17 of 

Durrett-Liggett 1983,p.287). By Lemma 4.0(iv), 
G„(x)< e a xEF(min{Ñ,SD f y(x)e" a x}) <, e ^ E F ^ f í e ^ E Ñ , 

(X vX 

where F(u)= e" u-l+u. It follows that f° G ix )dx <~. To deal with 
-OO vX 

integrability at -H», for all e>0 so small that 0< e/(a-e) <min(l,8), choose xQ 

Cv 
so that for x>x , D (x)<e . Again by Lemma 4.0(iv), 

0 vX 

J~ G a(x)dx <, S~ e a x EF(SD a (x)e- a x )dx 
0 0 

< S~ e a x EF(Se-( a - e ) x )dx = f ^ du, 
0 u 

where a=exp{-(a-e)xo} and p=e/(oc-e). Since 0<p<min(l,8) and the last integral 

is finite if (and only if) ES1+6<OO (see for example Bingham and Doney 1974, 

p.718, Theorem B),we see that S°? G (x)dx <<», which ends the proof of (b). • 
x o 

The following result is the key to identifing the elements of 

Theorem 4.3. Assume (H2) and Let a be the unique point in (0,1] for 

which p(a)=l and p'(a)<0. If §e$, then there is a pes so that 
IX; U 

lim = 1 ^ p'(a)<0 
f-»0 + rp(-logt) 

and lim ——L§Lll r =1 if p'(a)=0. 
t*0+ t p(-logt)\logt\ 
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Proof. With some obvious modifications, the proof is the same as that of 

Theorem 2.18 of Durrett and Liggett (1983, pp.288-292), where the crux is 

their Lemma 2.3, Theorem 2.12(b) and Corollary 2.17, which correspond our 

Lemma 4.0, Theorem 4.2(b) and Corollary 4.2(b) respectively. However, since 

the argument is very interesting and not evident, we present it as follows for 

the convenience of readers. Let S be the random walk with S =0 whose 
n 0 

increments have distribution X . Since p(oc)=l and <|>€y, Lemma 4.0 gives 

Da(x)= EDJx+XJ -GJx). (4.12) 

Let us begin with the transient case where EX a=-EZ A.logA=-p'(a)>0. Iterating 

(4.12) and passing to the limit, we see that 
Da(x)= lim ED (x+S) -X.EG (x+S^. (4.13) 

n-*°° k= 0 

Here the sum is finite and tends to 0 as x-*+«> by Corollary (4.2) and the 

renewal theorem, while the limit 

p(x):=lim EDJx+S ) £D„(x)>0 
n-*oo 

exists because EDJx+S) in increasing in n by (4.12). Since D ( x ) e is 

decreasing in x and D (x)e"^" a ^ x is increasing in x, the function p(x)/p(0) 

is in A (defined in Lemma 4.1), and so p(x) in continuous on R 1 . Since 

p(x)= Ep(x+Xa), 

p(x)/p(0) is of the form (4.11) with some Xe [0,1] and Pe[a,l] in the 

nonlattice case and is s-periodic in the lattice case (cf.Lemma 4.1(b) or 
OCX 

Choquet's theorem for harmonic functions). Since D a (x)^ e , lim sup p(x) <<». 

Therefore p(x)/p(0)=l (i.e.p(x) is constant) in the nonlattice case and p(x) 
"*X 

is s-periodic in the lattice case. Putting 9=e and recalling the 

definition of D , it follows from (4.13) that 
1A» 
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l im W*> - i . 
9->0 + Bap(-logB) 

To check that in the lattice case that 

( . l ) k .[eVlog6)]<0 
d8 k 

for all k=l,2,...and 9>0, use the periodicity of p to write 

eap(-log9) =9ap(-log6+ns) 

^ n a s reV^'pC-loge+ns)!^^-^ 

L 1 -<}>(ee"ns) J 

Therefore 9 ap(-log9) = lim e n a s [l-( |)(ee" n s )] . Since <|>e2, it follows that the 

derivatives of 0 ap(-log9) have the correct signs. Note that since is 

monotone, if a= l then p is both monotone and periodic, and hence constant. 

Turning now to the recurrent case EX =-p'(oc)=0. Let x be the first time that 
IX 

S enters (0,°o), so that S_. is the strict ascending ladder variable associated 
ii T 

with X„. Since X„*0, T < ° ° a.s. By (4.12), 
IX IX 

D a ( x + s ; - 'i'ojxaj 
k= 0 

is a martingale. By the martingale stopping theorem, 
T A d - 1 

E D < x < x + S T A n > - E * G a ( x + \ > = D a < x ) " < 4- 1 4> 
k =0 

By (4.7) and (3.6a) of Chap.XII of Feller (1971), 
aS 

Ee T <oo. (4.15) 
OCX 

Therefore, since D (x)<e and S <S_ for n<t, we may pass to the limit in 

(4.14) to obtain 

ED a(x+S x)-D a(x) = R(x):= E V G^SJ = X EG (x+TJ9 (4.16) 
k = 0 k = 0 

where is the random walk whose increments have the distribution of the weak 

descending ladder variable for the original random walk S , and the last 
n 

equality holds by the duality lemma of Sect.XII.2 of Feller (1971). 
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By the renewal theorem and Corollary 4.2(b), there is a strictly positive 

continuous function p(x) which is constant in the nonlattice case and periodic 

of period s in the lattice case so that 

lim [R(x)-p(x)]=0 (4.17a) 

in the nonlattice case and 

lim [R(x+ns)-p(x)]=0 (4.17b) 

in the lattice case. Consider now the nonlattice case only, since the lattice 

case is handled similarly with derivatives and integrals being replaced by 

diferences and sums respectively. Integrating (4.16) and using (4.3), (4.15) 

and Fubini's theorem, we obtain 

fQ R(z)dz = fQ [EX 0

T D^(z+y)dy]dz = E / 0

X [fQ D^(z+y)dz]dy 

= E X 0

T D a(x+y)dy -c, (4.18) 

S 
where c=Ef x D_,(y)dy= /~P(S >y)D (y)dy<°°. Since D (x)e" a x is decreasing in x, 

O IX U w IX IX 

D^x+yVD-Jx) < e a y for y>0 (cf.also (4.3)). Therefore, dividing (4.18) by 
(X IX 

D / V(x) and using (4.15), Theorem 4.2 (b) and the dominated convergence theorem, oc 
we see that 

S*0 R(z)dz+c 
lim nc—jr~r = ES_ , 

which is positive and finite. Therefore, by (4.17), 

D c t ( x ) 1 1 ^ lim a

v = Jc- lim ±T* p(z)dz (4.19) 

exists and is positive and finite. In the lattice case, the corresponding 

conclusion is that 
D (x+ns) ( , 

V» " W - 4 ^ < 4- 2 0> 
for each xeR 1. By the monotonicity and (4.19), D (x)/x is bounded at +°o. Hence 

IX 

by (4.3b)(with g(.)=D /Y(.)/DrY(0)), D (x)/x has a uniformly bounded derivative 
vX IX IX 
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at -H». Hence the family of the functions u (x)=D (x+ns)/(x+ns) (n^l) is 
n IX 

equicontinuous on [0,s], so pointwise convergence implies uniform convergence. 

Therefore (4.20) implies 
D a ( x ) . 

№ -rjm " -isr- ( 4 - 2 1 ) 

Part (b) of the theorem now follows from (4.19) or (4.20) with p(x) replaced 

by p(x)/ES_, by putting 9=e" x. The verification that p(x)€ 2 is the same as 
T vX,S 

in the transient case, which was dealt with earlier in this proof. • 

5. Stable transformation. Canonical fixed points. 

The idea of stable transformation plays an essential role for the study of 

smoothing transformation. It is due independently to Durrett and Liggett 

(1983) and Guivarc'h (1990) with some different points of view. The formalism 

here is slightly different from theirs. 

For oc€(0,l), define a transformation S : £ -> £ by 

( S a « ( t ) = <|>(ta) ( V * € « ) . 

To see that S (|> e£, it suffices to note that if Y and Z are independent random 
a 

variables with Laplace transforms e"1 and respectively, then YZ 1 / C C has 

Laplace transform S <|>. For convenience, if oc=l, S is naturally taken to be 

the identical transformation. 

Definition 5.1. The transformation S defined above is called a stable 

transformation. 

For a>0,let T be the transformation analogous to T obtained by replacing A. 
IX l 

with A^. The importance of the stable transformation is due to the following 

interesting conjugate relation. 

Theorem 5.2. (Conjugate relation) For all as (0,1), 
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Proof. For any <j>e£, 

(TSa<j))(t)= En (Sa<j>)(tA.) = En 0( t a A^) =(Ta<|))(ta) = (SaTa<J»(t) • 
i = l i = l 

Corollary 5.3. For o.e(0,l), if tye£ is a fixed point of T , then is a fixed 
IX cx 

point of T. 

Proof. By theorem 4.1, if 4>=T(X<>, then T(Sa<J>)=Sa(Ta<|>)=Sa<t>. • 

Corollary 5.4. Suppose that EN<°o. If far some ae(0,l], ES(a)log*S(a) <©*, 

p(a)=l and y'(a)<0, then for all constant c>0, T has a fixed point <(> with 

1-tyt) ~ cta (t^O). 

Proof. Under the given conditions, the transformation T has a fixed point <(>„ 
cx oc 

with mean 1 by Theorem 0. So T has a fixed point (j):̂  S (J) with l-ty(t) ~ t a 

IX cx 

(t^O) by Corollary 5.3. Since for all constant c>0, (|)(t):=(j)(ct) is a fixed 

point whenever is, the proof is finished. • 

To make clear the totality of fixed points of T, let us introduce after 

Guivarc'h (1990) the notion of canonical fixed points of T: 

Definition 5.5. A nontrivial fixed point ^ of T is termed canonical if it can 

be expressed in the form <|)=S \|f for some fixed point \\r of 7V, where ae(0,1] is 
(X (X 

the unique point such that p(a,)=l and p'(a)<0. 

Thus if a< l , the canonical fixed points of T are exactly all those which can 

be obtained from the fixed points of T by the stable transfomation. So the 
VX 

study of canonical fixed points (and only those) in the case where a<l can be 

transfered to the study for the case where oc=l. If cc=l, all fixed points of T 

are called canonical. 

A natural question is to ask, for the case where oc<l, whether there are 

fixed points which are not canonical. Our theorem of totality of fixed points 

will show that the answer is positive in the lattice case, and negative in the 

non-lattice case (cf.Sect.10). 

http://cf.Sect.10
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6. Regular variation of fixed points under first moment conditions 

We shall use the following simple result on slowly varing functions. 

Lemma 6.1. If g(u)>0 is monotone, then Urn g(Xu)/g(u)=l for some 0<htl if and 

only if it holds for all \>0 (that is, g(u) is slowly varing). 

Proof It suffices to prove that if Urn g(7ui)/g(u)=l for some 0<X=XQ^i,then it 

holds for all X>0. Since 

g ( ^ u ) _ g (^u) g a 0 u ) 
~ g W ~ gfl^u) "TTuT' 

we see that l im g(X*u)/g(u) =1. Iterating this, we have l im g(A,™u)/g(u)=l for 
U->oo u-*» 

all m=l,2,... Putting Uj=X^u for fixed m=l,2,..., we obtain lim g C u ^ / g ^ " 1 ^ ) 

=1, namely l im g(A,Q

mu)/g(u)=l. Hence l im g(A,™u)/g(u)=l for all integers meZ. 
u-><» U->°° 

For each fixed X>0, choose mel such that X™'l<teX™ if V>1, and V ^ t e X 1 " if 
0 0 0 ' 0 0 

XQ<1. By the monotonicity of g(u), g(Xu)/g(u) varies between gCV^uVgOO and 

gft>)/g(u). Thus l im g(\u)/g(u)=l. « 
U->oo 

Theorem 6.2. Assume (HI) and 9*0. Let a be the unique point in (0,1] such that 

p(a)=l and p'(a)<0. If then for some slowly varing function U.)>0 at 0, 
lim 1 = 7 if a = i or <|> is canonical, 
f->0+ tal(t) 

and 
Umsup LMll <l if a<l. 
t->0+ tal(t) 

Moreover, if (H2) holds, then we can take U(t)=c if p'(a)<0 and (j(t) =c\logt\ 

if p'(a)<0, for some constant c>0. 

Remark. In the case where a<l, the function t(t) can be constructed shch that 

l-tyt)<tat(t) for all sufficiently small t>0. 

Proof If (H2) holds, the result is immediate by Theorem 4.3. Assume only 

(HI) and write 
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A ft)- W> 

-x D

a

( x + y ) 

Then Da(x) - Aa(e ) . By Theorem 4.1, limsup p , • £i for some y>0. Hence 
x-y*> a' ' 

A (\t) 
limsup — s — r n - <1 for some 0<X<1. 
t-»o +

 A a { t ) 

If a= l , then A is decreasing since <j>e£. Thus A (Xt)>A (t) for 0<X<1 
IX (X (X 

and all t>0. Therefore 
A (Xt) 

Urn —TT—7TT =1 for some 0<A,<1. 
So A is slowly varing by Lemma 6.1. If a<l and 0 is canonical, then <|>(t)= cx 

V(t a ) for some fixed point \\f of T . Using the conclusion for T\ , we see that 
\X vX 

^ " Y ^ is slowly varing at 0, and so is A a . In the general case, we have 
limsup ~ logDa(x) <0 

by Corollary 4.2. Thus the function 

h(y):= max {1, D a(logy)} (y>0) 

is of order 0 in that 

So there exists a slowly varing function £Q(y) at <» such that 

limsup =1 

with h(y)< lQ(y) for all large y [see Bingham, Goldie and Teugels (1987),p.81, 

Theorem 2.3.11. But there is an error in the statement of that theorem: the 

assertion limsup f(x)/g(x)=l therein should be limsup g(x)/f(x)=l.]. Therefore 

D a 0 o g y ) 
limsup i , . £1 
y ^oo V y ; 

with D (logy) £L(y) for sufficiently large y>0. This means 
A 0 ( t ) 

l i m s u p T-mr 

with A a ( t ) ^£Q(l/t) for all small t>0. The proof is finished by taking 
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Kt)=*Q(l/t). • 

7. Iterations: convergence to fixed points 

We shall prove our main convergence theorem in this section. The method can 

be compared to that of Durrett and Liggett (1983) who introduuced an 

associated branching random walk. The treatment here is direct and elementary. 
CO 

For all sequences ce U if of positive integers, we denote by I a I its length, 
1 = 1 

and let 

( A a , r Aaa'mJ 
be independent copies of (A ,A ,...). 

For a probability measure |ie M with Laplace transform <J>, we have 

TV= distribution of £ G Z a , 

where I •= A^ A^. ^ ...A^ „ „ if O=GG...G, {Z • a =n} are independent 
1 1 2 1 2 n 

random variables with distribution \i9 which are independent of { A a : | a | ^ n } as 

well. The sum is taken over all a such that £ ^ 0 . In terms of Laplace 

transforms, the iteration formula reads 

r * ( t ) = E | a f - n 0 ( W a ) ' 

For n€W, define 

I : = m a x 
n I a | = n 0 

The following interesting result may probably be classical in the theory of 

branching random walks if we take logarithms. 

Lemma 7.1. If P(max A.-l) </, then 

Pflimsup I =0 or 00) =7 and Pfliminf I =0 or 00) = i . 
n n n-*oo n->oo 

It is easy to check that 
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£ f = max A.i ., 
n+l ; S l 1 D,l 1 

where {I .} (i>l) are independent copies of £, which are independent of 

{A.} as well. Letting n-*» gives 

limsup I = (max A.) limsup I , 
n->oo n i ^ 1 1 n-»oo n 

where limsup I is independent of max A.. Taking logarithms, we see that 
n-»©o n i > i 1 

either P(max A.=l) =1 or P(limsup I =0 or ©o) =1. The assertion for liminf 

l > \ n-^oo 

follows similarly. • 

Lemma 7.2. If for some ae(0,oo)f p(a)<l, then 

P(lim I =0 ) =/. 
n 

Proof It is easily verified that { Y q ; F d } forms a martingale, where 

and 

F := a(A : I x k n ) . 

The martingale convergence theorem ensures that Y n converges almost surely to 

a finite random variable Y. 
If p(a)<l, the conclusion follows since 

limsup £^ < limsup X ^ = limsup Y n p(a) n =0 almost surely. 

If p(oc)=l, the same argument as above shows that limsup l a <«> almost surely. 

So by Lemma 6.1, either P(max A.=l) =1 or P(limsup I =0 ) =1. But if 
i > 1 n->«> 

P(max A=l) =1 and (HO), then p(x) is strictly decreasing on [a,«>), so we can 
i>i 1 
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choose ocxx such that p(a)<l, and then limsup l a =0 by the preceding argument. 

Therefore, in all cases, we have P(limsup i =0 ) =1. • 

The following comparison result will be frequently used. It says that 

inequalities for small t>0 can be transfered to inequalities for all t>0. 

Lemma 7.3. Suppose that for some ae(0,oo)f p(a)£l. If are such that for 

some tQ>0 and all 0<t<t0 

W ^ $ (t), 
then for all t>0, 

limsup T$(t) < limsup T$(t) 

and 
liminf 7>(7J £ liminf T*$(t). 

Proof Let t>0 be fixed. Since P(£n->0)=1 by Lemma 6.2, for arbitrary e>0, we 

can choose nQ€(N sufficiently large such that for all n>nQ, 

P(t£n >t0) <e. 
Therefore, for all n>nQ 

T-<|)(t) = E n <|>(tej 
| o | = n 

" E l < w i 5 i= n ^ ) +
 E 1^ n>y ISI^V 

| o | = n 

= T"$(t) + e. 

The conclusion then follows by letting n-*» and then e-»0. • 

The following theorem is our main convergence result. 

Theorem 7.4. Assume (HI) and 9*0. Let a be the unique point in (0,1 J such that 

p(a.)=l and p'(a)<0. If a<l, we assume additionally that either <(> is a 
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canonical fixed point or (H2) holds. If <f>ê  and rjeie are such that J-$(t) ~ 

l-y\(t) (t->0+), then 

lim TT\=§. 

Proof If (H2) holds, then by Theorem 4.3, 

liminf J ^ < $ = c a min P ^ ^ ° g f x > , 
t.O o<x<s P W -

and 
limsun l'Mc}} - ca max PHpS?**) ; X P ^ t J ^ P(x) • 

for c>0, where p e s . Since p e s , 6 ap(-log0) is strictly increasing on 

[0,oo). Therefore 

liminf lm^if} >1 if o l 

and 

limsup 1'^{c,l\ <1 if c<l. 

The last assertion holds also under the weaker assumption (HI) in the case 

where cc=l or <|> is a canonical fixed point, since we then have 

by Theorem 6.2. Using l-$(t) ~ l-r\(t) (t->0+), we have in all the given cases, 

liminf >1 if o l 

and 

limsup yy^S <1 if c<l. 

Fix 6>0 and o l . Put 

<|>(x)=<|>(ct), and $(x)=$(c't). 

Then $,<j> and for some tQ>0 and all 0<t<t0, 

$(t) <J Ti(t) <, $(t). 
By Lemma 7.3, 

//mm/ f^fe; < liminf Ti\(t) < limsup Ti\(t) < limsup FfyQ). 
„-»00 n-yX> D̂ 0O N-)0O 

Since T$=$ and T < H > , 
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$(0) f£ liminf Tx\(t) < limsup 7*T](t) < $(0). 

That is, all limit points of 1^(9) lie between <|>(c0) and ^(c^G). Since 

o l is arbitrary, l im TnTi(6) = (t>(9). • 

Corollary 7.5. Assume (HI). Suppose that for some ae(0,l], ES(a)log S(a)<oo, 

p(a)=l and p'(a)<0. Ifr\e£is such that l-i\(t) ~ cta (t-*0+) for some constant 

c>0, then T11!] converge to a nontrivial fixed point <J> with l-$(t) ~ cta (t->0+). 

Proof Under the given conditions, T has a nontrivial fixed point <|> with 

l-ty(t) ~ cta (t->0+). It follows by Theorem 7.4 that l im T^i = <J>. • 
n->°o 

Theorem 7.4. deals with the case where £*0. In section 9, we shall treat the 

case where ?=0 . 

8. Limit theorems: an extention of the Kesten-Stigum theorem. 

In this section, we suppose that p(l)=l. The following result was proved in 

Liu (1994). 

Lemma 8.0. Assume (HI) and p(l)-L Then T"8 converge to a fixed point v with 

finite mean, and v*8Q if and only if 

ESlog*S<oo and p'flJKO. (8.1) 

We shall generalize this to the case where the 8 1 is replaced by any 

elements of M with finite mean. 

We say that a probability measure e on [-<»,«>] is stochastically inferior to 

another r\ and we denote by 

e « T| if Vt€R l , e(t,oo] < r|(t,oo]. 

This condition is equivalent to the existence of random variables X and Y of 

distributions e and T| respectively satisfying X<Y. It follows immediately that 

Te « Tr| if e « r| (8.2) 

by the definition of T. 
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For a number oce(0,l] and two probability measures £ and r\ on [0,oo], we 

denote by d (e,T|) the (largest) lower bound of the integrals /1 x-y | ad6(x,y), 
IX 

where 0 is a probability measure on R2 with projections e and r\. We write d 

for d . If e and r| have moments of order a, d defines a distance. Clearly d„ 
1 CX (X 

is the lower bound of E | X - Y | a , where X and Y are random variables with 

distributions e and r| respectively. Finally, the lower bound which defines d„ 
(X 

can be attained and, if F £ and F^ denote the distribution functions of £ and 

r|, we have 

dM) = j7lF £(x)-F^(x)|dx. 

(Fortet et Mourier 1953; see also Royer 1984 or Guivarc'h 1990, pp.270-271.) 

The following result shows that the smoothing transformation T is a 

contraction in some sense. 

Proposition 8.1. Let ae(0,l] and pfocj<oo. 

(i) If egM is of finite moment of order a, then so is Tz. More precisely, if 

Sxadz(x)<oo, then 

Sxad(Tz)(x) < p(a) SxadE(x). (8.3) 

If additionally a<l, then the equality in (8.3) happens only if £=8Q. 

(ii) If B,E*eM have finite moments of order a, then 

da(TE,K) < p(a)dafaE9). (8.4) 

Moreover, if either 

(a) a<l or 

(b) c c = i with p(a)=l and Sxdefx) = Sxdz'(x), 

then the equality in (8.4) happens only //£=£'. 

Proof (i). Let {Z.} be independent random variables with distribution £, 

which are independent of {A.} as well. Then Z:= £ A.Z. has distribution T£. 

Since ae(0 , l ] , 
Z a < I A^ Z<*. (8.5) 
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By (HO), the inequality is strict with positive probability if a< l and 

P(Z>0)>0. Taking expectations gives the conclusion of part (i). 

For part (ii), we choose two random variables Z and Z' with 

distributions e and e \ which are independent of {A.}, such that 

d a ( e , e > E-lz-rl" 

Let {(Z.,Z!)} be independent copies of (Z,Z') which are also independent of 

{A.}, and put 

Z = I AZ, and Z' = X A.Z.\ 
1 1 1 1 

then Z and Z ' have distributions Te and Te\ Since 

d a(Te,Te') < E I Z - Z ' T , 

Z - Z ' = £ A.(Z.-Z. ' ) , 
1 1 I 

and 
IX A . ( z . - z / ) | a <; x A a | z . - z / | a , (8.6) 

1 1 1 1 1 1 

where [again by hy p othesis (HO)] the inequality is strict with positive 

probability if a<l and P( | Z-Z'| >0)>0, the conclusion for the case where a<l 

follows by taking expectations in (8.6). If a=l , the conclusion was proved in 

Liu (1994). m 

Theorem 8.2. Assume (HI) and p(l)^l. // \ieM is of finite mean with p,*8tf then 

7*|l converge to a fixed point v with finite mean, and V^8Q // and only if 

(8.1) holds. 

Proof. If (8.1) holds, then T has a fixed point ve& with finite mean. By a 

scale change, we can suppose that v has the same mean as |i. Thus T n |i -> v by 

Theorem 7.4. It remains to prove that if (8.1) does not hold then Tnji -» 8Q. 

Suppose that (8.1) does not hold. If \i is of compact support contained in 

[0,b], then |i « 8 b and TV « T n 5 b -> 8Q by Lemma 8.0. 

If |i is not of campact support, it can be approximated as near as we want by 

measures of compact support, in the sense of d. If \i9 is such an 
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approximation, we have 

d(TV,TV) < d(wif) 

from which we obtain clearly that 

lim TV = 8 . • 
n->oo 

9. Limit theorems: case where Inf p(x) >1. 
X€[0,1] 

For simplicity, we shall mainly consider the case where p'(l)<0 (suppose that 

it exists) and p(l)>l. Thus I g ^ {]pM =p(l)<l. We recall that for any |I€JK, 

T n|i= distribution of £ a Z a , 

where { Z a : | a | = n } are independent random variables with distribution \i9 which 

are independent of { A a : | a | < n } as well (cf. Section 7). For convenience, let 

us write 

z<
n> . z ( n ) 0 O := . S . laZa. (9.1) 

I a I =n u 

As usual, let q be the unique fixed point in [0,1) of the function 

yW= I P(N=k)tk. (9.2) 
k=0 

Then q is the extinction probability of the Galton-Watson process given by 

attaching an individual to the vertices a for which ¿ ^ 0 . Hence 

P(£^=0 if | CT | is sufficiently large) =q. (9.3) 

It follows that 

P( l im Z ( n ) fti) =0 ) > q. (9.4) 

As an immediate consequence, for all e>0, 

liminf TV [0,e] > q. (9.5) 

Let c|) be the Laplace transform of |i, then (9.5) implies that, for all t>0, 

liminf T>(t) >q. (9.6) 

n->°o 
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This follows from ( 9 . 5 ) since 

T>(t) = E[exp(-Z ( n )t)] > e" E tP(Z ( n )<e), 

letting n-**> and then e-»0 gives ( 9 .6 ) . 

If p.=8, it is easily seen that Z^nVp(l)n is a martingale. If the limit of 

this martingale is not degenerate, then = Z ^ ( 8 ) -> «> with probability 

1-q (since p(l)>l), and consequently for all x>0, 

liminf rg (x ,oo) > l - q . ( 9 . 7 ) 

By ( 9 . 5 ) and ( 9 . 7 ) , we see that for all e>0, 

l im r a j C e ] = q. ( 9 . 8 ) 

This discussion introduces us to the following 

Theorem 9.1. Assume (HI), p(l)>l and p'(l)<0. In the case where p'(l)=Q, we 

assume additionally that ESlog*S<oo. If^\ieM, then 

lim 7 > = 8 Q e o , (9.9) 

where &QoJ0} =q and §0oJ°°} =l-q> q being the unique fixed point in [0,1) of 
oo 

the Junction f(t)= I P(N=k)tk. 
k=0 

Of course, we can restate the result in terms of Laplace transforms: 

Theorem 9.1*. Under the hypothesis of Theorem 9.1, if l*§e!£, then for all t>0, 

lim T$(t) = q (9.9*) 

Proof of Theorem 9.1. For simplicity, we assume q=0. The general case follows 

from similar lines (see also the discussion preceding Theorem 9 . 1 ) . We should 

then prove that 

lim T)i = 8 ^ . ( 9 . 1 0 ) 

We distinguish several cases: 

(a) ESlog+S<oo and |Li is of compact support. Write A= A/p(l) and define T 

and p in terms of {A.} just as T and p were defined in terms of {A.}. Then T= 
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T/p(l). Since p(l)=l and 

p.( l ) = E l ^ l o g = -logp(l) <0, 

TV converge to some veM with v{0} =q=0 by Theorem 8.2. Since p(l)>l, this 

gives (9.10). 

(b) ESlog+S<«> and JLX is stochastically superior to some \i9*$0 of compact 

support. Since T preserves stochastic inequalities, (9.10) holds also. 

(c) ESlog+S=oo and p'(l)<0. For M=l,2,..., write A.(M) =A. if i<M and A.(M)=0 

if i>M. Define T M and p M in terms of {A.(M)} just as T and p were defined in 

terms of {A.}. Choose M sufficiently large such that p w ( l )>l and :p*O)<0. Thus 
i M M 

T n Li -» 8 . Since T|i » T 11, T*V -> 8 . • 

By the method of the proof, we have in fact the following comparison result 

which may apply when (HI) does not hold or p'(l)>0, or even p'(l) does not 

exist 

Corollary 9.2. Assume that for some N<N and A.<A. (l<i<N) such that either 
N N N 

E#<oo, E X A.log+A.<oot E X A>1 and E X A.logA.<0, (9.11a) 
1=1 1 = 1 1 = 1 

or 
pN -i , r N 1 N N 

E#<°°, E | X A.jfog | X A]<00> E ^ A i > 7 a n d E ^ AJogA=0, (9.11b) 

then (9.9) holds for all | l € M-{hJ. 

In particular, we have 

Corollary 9.3. If for some constant integer n>0 and random variables 0<A.̂ A., 
n n 

Er\.log A.<oo far all l<i<n, E X A.>1 and E X AJogA. <0t (9.12) 
i = i 1 i=l 1 1 

then (9.9) holds for all 

We remark that the condition (9.12) holds for some new and A=A. (l<i<n) if 
, n 

EAlog +A<oo for all i>l, p(l)>l and liminf E X A.logA. <0. (9.13) 
* 1 i""l i 

The result applies for example in the context of branching processes with 
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EN=°O. The following result gives a neccessary condition for 9*0 which applies 

when (HI) does not hold. 

Corollary 9.4. If p(l)>l and (9A3) holds, then 2=0. More generally, if for 

some N^N and AM. (№<N) such that eithe (9.11a) or (9.11b) holds, then 9=0. 

10. Totality of fixed points; more on convergences 

Theorem 10.1. Suppose that (H2) holds, that p(a)=l and p'(a)<0 for some 

ae(0,l]. If p e s a s , then there is a unique tye$ so that 

lim = ; if p'(a)<0 (10.1a) 
t*0+ tp(-logt) 

and lim ——tMll =i if p'(a)=0. (10.1b) 
t*0+ tap(-logt)\logt\ 

Proof. The uniqueness comes from Theorem 7.4. If the problem is non-lattice or 

cc=l, then B consists only of constants, so this result follows from 

Theorems 3.3 and 4.3. If a<l and s>0, the argument is the same as that of the 

proof of Theorem 5.1 of Durrett and Liggett (1983,pp.297-298), by using again 

our Theorems 3.3 and 4.3 instead of their Theorems 3.1,3.5 and 2.18. It 
g 

proceeds as follows. Let g(9)=e" if p'(oc)<0 and 
2 °° e * 6 x 

g(e)=± S-^—-dx, 
n o 1+x 2 

which is asymptotic to 1-G | logG | as 0->O+, if p'(a)=0. Then by criterion 2 of 

Sect. XIII.4 of Feller (1971), since p e s , it follows that the function \\t 

defined by 

\|/(0)= g[8ap(-loge)] if p'(a)<0 and \j/(6)= g[eap(-log0)/a] if p'(ot)<0 

is in £. It is easy to check the property (10.1) holds for \\f (instead of .ty 

therein). By Theorem 3.3, we can take ye SF, and by Theorem 4.3, the property 

(10.1) holds for \j> and some p e s (instead of <|> and p). Since Oap(-log0) is 

strictly increasing on (0,«>) and tends to 0 or oo as 0 tends to 0 or oo 
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respectively, the equation 

u ap(-logu) = eap(-log8) 

defines a function u=u(9). By the periodicity of p and p, u(8e s)=u(9)e s. Hence 

u(9A.)=u(9)A. (because logA=ns for some n€Z) and i)(9)/9 is bounded away from 

0 and oo on (0,©°). Therefore, if we define 0(9)=\pr[u(9)], then <|> satisfies T(|>=(|> 

and (10.1). It remains to show that Since (10.1) holds for both <|> and y , 

1-(|>(9) ~ 1-V(9) as 9-»0+. The proof of Theorem 7.4 shows that lim T"V=0» thus 

completing the proof since \\fe£. • 

Let us now come back to the problem of convergence. 

Theorem 10.2. Suppose that (H2) holds, that p(a)=l and p'(a)<0 for some 

ae (0,1]. If ye£ is such that for some peS . (10.1) holds with <|> being 

replaced by then 7*\\f converge to some <|>e!F which also satisics (10.1). In 

particular, if for some \|/€ie and constant c>0, 

l-y(t) ~ cta (t->0) ifp'(a)<0 
and 

l-y(t) ~ cta\logt\ (uO) ifp'(a)=0. 

then 7*V converge to a canonical fixed point §e 9 which satisfies 

1-tyt) ~ cta (t*0) ifp'(a)<0 (10.2a) 
and 

1-tyt) ~ cta\logt\ (t*0) ifp'(a)=0. (10.2b) 

The canonical fixed points are exactly those (j) in $ which satisfies (10.2). 

If the problem is nonlattice, all fixed points are canonical. 

Proof. By Theorem 10.1, we can find <|>€̂  such that (10.1) holds. Thus l-y(t) ~ 

l-(|>(t) (t->0+). By Theorem 7.4, lim Xn\j/=c}>. By Theorem 4.3, under the condition 

(H2), a canonical fixed point <|) satisfies (10.2). By the uniqueness in Theorem 

10.1, for each constant c>0, there is only one fixed point which satisfies 

(10.2). So any fixed point satisfying (10.2) is canonical. If the problem is 

nonlattice, S consists only of constants, thus completing the proof of the oc,s 
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theorem. • 

We now consider another natural question: if the initial element \|f€£ does 

not satisfy (10.1), what can we say about the iterations T * V ? Let us consider 

some regular cases to get some ideas on this question. We distinguish the 

cases according as p*(a)<0 or p'(a)=0. We recall that q is the unique fixed 

point in [0,1) of the function f(t)= I P(N=k)tk. 
k=0 

Theorem 10.3. Assume (HI) and, for some ae(0,l], p(a)=l and p'(a)<0. Let \|/€£ 

(a) If for some ae(0,a), c>0, tQ>0 and all t<t^ 

l-y(t) > cta, (10.3) 
then \/t>0, 

lim r\\f(t) = q. (10.4) 

(b) If for some be(a,°o)f c>0, tQ>0 and all t<tQ, 

l-y(t) < ctb

9 (10.5) 
then Vf>0, 

lim Ty(t) = 1. (10.6) 

(c) In the case where pY<x)=0, (10.6) also holds under the weaker condition 

that for some c>0, tQ>0 and all t<t^ 

l-y(t) < cta. (10.7) 

In particular, if l-y(t) ~ ct (t->0+) for some c>0, then lim T\y(t) = 1. 
n-»oo 

Proof, (a) Let de(a,a). Then p(d)>l and p'(b)<0. By the conjugate relation 

TS=S T , we have 
d d d 

T n S d = S d T " - < 1 0- 8> 
Since p(d)>l and p'(d)<0, by Theorem 9.1', 

lim Tn<(>o(t) = q 

for all t>0, where <J>0(t) = e _ t . Writing 
-td 

¥ d (0= e , 
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by (10.8) we see that 

lim T> d ( t ) =q 
n-»oo 

for all t>0. Since 

1-Vd(0 ~ t d (UO), 

by (10.3) we can choose tQ>0 sufficiently small such that, for all 0<t<tQ, 

1-Vd(t) £ 1-V(0. 

Hence by Lemma 7.3, for all t>0, 

limsup T>(t) < limsup T> d ( t ) =q. 
n->oo n->oo 

Since we have always liminf Tn\|/(0 >q [see (9.6)], (10.4) follows. 

(b) If p'(a)=0, the conclusion follows from part (c) of the theorem. So we 

only consider the case p'(a)<0 for the moment. If a=l , the condition (10.5) 

can happen only if \|/sl, since \|/ then corresponds to a measure with mean O.Thus 

we can suppose that oc<l. Let de(oc,bAl) be sufficiently near to a such that 

p(d)<l. This is possible since p(a)=l and p'(oc)<0. Note that [p(a)" 1T d] n8 1 

converge to some \LGM and p(d)<l, T^S^S^ So by (10.8), 

lim T V =1, 
a 

n-»°° 

where vd(t)= e 1 . By (10.5), 

1-Vd(t) > l-\|/(t) 

for t>0 sufficiently small. So by Lemma 7.3, 

liminf T>(t) £ liminf T> d ( t )=l . 
„-»oo n-><» 

Therefore lim T"v(t)=l. 

(c) We shall use again the conjugate relation T S a = S a T a . Since p(a)=l 

and p'(a)=0» by Theorem 8.2, 

lim T{J<|>0(t) = 1 

-t - t a 

for all t>0, where <J>0(t) = e . Writing V a(t)= e and using 
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T n S a = S X w e o b t a i n 

lim T > a ( t ) =1 
n->oo 

for all t>0. By a scale change, we see that for all constant c>0 and 

and all t>0, 
lim Tnv(t) =1, 

where \j/(t)=\(/rY(ct). Since 

l-vj/(t) - Zata (t-£), 

by (10.7) we can choose c sufficiently large and tQ>0 sufficiently small such 

that, for all 0<t<to, 

l-\j/(t) > l-\|/(t). 

Hence by Lemma 7.3, for all t>0, 

liminf T>(t) > liminf Tn\j/(t) =1. 
n-»°o n-*oo 

This gives (10.6). • 

Corollary 10.6. Assume (HI) and for some ae(0,l], p(a)=l and p'(a)<0. Let v s j M . 

(a) If v is such that for some ae(0,a), c>0, xQ>0 and all x>x^ 

v(x,oo) > cxa, (10.9) 
then 

lim T\ = 8 n . (10.10) 
0 oo 

(b) If oc<l and v is such that for some be(a,oo)t c>0, xQ>0 and all x>x^ 

v(x,oo) < cxh, (10.11) 
then 

lim 7*v = 8 0 . (10.12) 

(c) In the case where <x<7 and pYoc)=0, (10.12) also holds under the weaker 

condition that for some c>0, xQ>0 and all x>x^ 

V(x,oo) < Cx~a. (10.13) 

In particular, if v(x,oo) ~Cx" (x-*<*>) for some c>0t then lim 7*v =8 . 
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Proof. This follows immediately from Theorem 10.5 and Lemma 11.1 in the next 

section. • 

11. Moments and Tails 

The following Tauberian Theorem has been used in the Sect. 10, and will also be 

used later. 

Lemma 11.1. Let \ieM and § be its Laplace transform. Then 

(a) for all t>0, 

l-tyt) > (l-e'1) \L(xt<*>) with x=l/t. 

(b) For all ae[0,l) and any slowly varing function t(x)>0 at <*>, 

T(l-a) liminf < liminf l ^ ( t ) 

x+oo x'al(x) t*0 ri(Ut) 

< Umsup I'M** < T(l-a) limsup . 
t*0 rt(l/t) x*oo x'al(x) 

Proof For part (a), it suffices to note that for all t and x >0, 

1-<K0 = t j ~ e'^fKy.oo) dy 

> t j j e" lV(y>-)dy => |i(x,~)tjj e'^dy 

= |i(x,~) ( l- e * l X ) . 

For part (b), let us write 

S f->0 i n f tal(l/t) } x * ~ l n f x " a £ ( x ) 

We first prove that T(l-a)b <a. By the definition of b, for all b<b, there is 

some x >0 such that for all x>x. 
b b 

H(x,OQ) > bx"a£(x). 

Thus 

1-4*0 = tT~ e" t yn(y,~) dy 

£ bt f~ e ' ^ K y J d y = b t a e 'V a £(x/t)dx. 
X b 1 b 

Since for all fixed x>0, £(x/t)/£(l/t) -»1 as t-»0, the dominated convergence 
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theorem gives 

Uminf > b r(l-cc). 
t*0 ri(l/t) 

Letting b-»b, we obtain that a > br(l-a). We now prove that a<6r(l-a). We can 

suppose that 6<°o since otherwise there is nothing to prove. For all b'>6, 

there is some x b >>0 such that for all x^x^, , 

H(x,oo) <, b'x" a£(x). 

Therefore 

H(t) = t /~ e_ t yji(y,oo)dy £txb,+ b't J~ e" t yy" a£(y)dy 
b* 

= txL, + b ' t a j ~ e"V a £(x/ t )dx. b IX 
b 

Since t/ta£(l/t)-*0 as t->0, the same argument as above shows that a£bT(l-a) 

and then a<6r(l-a). This ends the proof of the Lemma. • 

Theorem 11.2. Assume (HI) and for some ae(0,l], p(a)=l and p'(l)<0. If \ie&9 

then 

(i) \i(x,oo) = 0(xal(x)) (x*+oo); 

(ii) xad[i(x)<oo far all ae[0,a); 

(Hi) If oc=7, then xd\x(x)=oo if and only if ESlog*S=oo o r p'(l)=0; 

If a<l, then xad[i(x)=oo. 

(iv) If a=7, then \i(t,oo)dt ~ Kx) (x->+oo) is slowly varing. 

Proof Part (i) follows from Theorem 6.2 and Lemma 11.1. Part (ii) follows 

from part (i) since Ĵ J xad\i(x) = aS°^ xa'^[i(x9oo)dx. For part (iii), the 

conclusion for a=l comes from Theorem 0; The conclusion for a<l follows by 

Proposition 8.1, since the equality in (8.3) holds with e=ji. Part (iv) follows 

from Theorem 6.2 and the general Tauberian theorem. • 

Of course, in the case where a<l , Theorem 6.2 can be applied to obtain tail 

behaviour of a fixed point For example, it is easily seen that we have 
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Theorem 11.3. Assume (H2). Suppose that for some ae(0,l), p(a)=l and pf(a)=0. 

If the problem is nonlattice, then for all there is a constant c>0 such 

that, as x^oo, 

li(x,oo) ~ cx'a ifp'(a)<0 

and li(x,°o) ~ cx~alogx if p'(a)=0. 

Some similar results can also be derived in the lattice case. 

In the case where p(l)=l and p'(l)<0, we need further informations about 

moments of order greater than 1. The following result was given in Liu (1994): 

Theorem 11.4. Assume (HI). Suppose that p(l)=l and p'(l)<0. Let Z>0 be a 

solution of (E). Then for all a>l, 

E Z a < o o if and only if ES*<oo and p(a)<l, 

provided that one of the following conditions holds: 

(a) l<a<2; (b) a=2,3,...; (с) Шах A . l l ^ < < » ; (d) l l A r i i o o < o o . 

Put 
a = sup{a>l: p(a)<l}, 

and 

P = sup{a>l: ES a <oo}. 

Since E [Max A.]a < p(a), Шах All < [p(a)] 1 / a (where II.II denotes the norm 

1 1 L I D л 

in L a), letting a-»«> we see that 

a =oo if and only if Шах А.н <1. 
By Theorem 11.4, at least at the case where Шах A.ll <«> or nJVll <«>, the 

I I 00 00 
number алр(<<») is the critical value for existence of moments of \xe T. 

xadii(x)<°° if a<a Ap, 

and 
J~ xad\i(x)=oo if а > а л р . 

Of course, the tail behavior of \ie$ differs according as а л р <«> or =». In the 

first case, the situation differs also according as a>(3 or a<|3. 
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Case h l < P < a . We have then P < « > and p(P)<l . Following Bingham and Doney 

(1975), we obtain the following comparison result: 

Theorem 11.5- Suppose that p(l)=l, p'(7)<0> i < P < a , and llMaxA.ll^ <«>. Let Z>0 

be the unique fixed point of T satisfing EZ=1. Then for all slowly varing 

function t(x) at oof the following assertions hold: 

(i) If p > i is not an integer, then 

(a): P(S>x) ~ x'*Kx) (x*oo) <=» P(Z>x) ~ x*Hx)/[l(x**>), 

and (b): ESfySJ <°O <=> E Z f y z j «*>. 

(H) If P > ^ is an integer, then 

(a): E^J{S<xf H x ) (x^°} ^fZSxf 

provided that lim e(x)=°o; 
X->oo 

(b): ES?l{s>x}~ «x) (x^>o) *2l(z>xf KMt-PW (x*°) 

provided that Ef?<°°; and 

(c): E^l*(S) <=> *£i{Z) <«>, 

where l(x):= s\ ^jUt. 
* n * n 

(Hi) If for each l<a<b<oof limsup i (b )/t (a )<**>, then 
x->°° 

ESl (S) < o o <=> EZt (Z) <oo. 

(iv) In particular,for all a>0, taking t{x)=loga~^x for x>l in (Nii),we have 

E^(log+S)a <oo » E2?(bg+Z)a 

where p>7 (is integer or not), and 

ES(log+S)1+a <oo <=> EZ(log+Z)a <oo. 

Proof With some slight changes, the arguments of Bingham and Doney (1975) for 

the proof of their Theorem 2 applies in the present setting. The point is 

that, their proof is based on their functional equation (**) (Bingham and 

Doney 1975, p.70), which corresponds to our functional equation (|>=T(|> with 

MaxA.<l. A check of the details of their proof shows that the condition that 
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MaxA<M for some constant M>0 suffices. • i i 

Case 2: l<a<(3 and a<oo. The following result was given by Guivarc'h (1990): 

Theorem 11.6. (Guivarc'h 1990) Suppose that p(l)=l, p'(l)<0, /i:=lliVlloo <<», and 

A.(kl<i<n) are independent and identically distributed. If the problem is 

nonlattice and p(%)-l for some %>1, then for all [Le$, there is a constant c>0 

such that 

li(x,oo) ~ cx~% (X^oo). 

The case where aAp<°° is composed of the cases 1 and 2. It remains the case 

where aAP=°°, or eqivalently 6c=P=«>. 

Case 3: 6c=B=©°. We have then Max A <1 almost surely. This case was studied 

in Liu (1993 and 1994b). For example, we have 

Theorem 11.7.(Liu 1993 and 1994a) Suppose that Max A£l almost surely, p(l)=l 

and p'(l)<0. Let 

y:=inf{ae[0,l): t S ^ i ^ < 1}, 

where inf 0 =7. If WNW^ <°°, 0<y<l, and Z>0 is the unique solution of (E) 

with EZ=1, then (a) lim f ? ^ E ? = y; and (b) for some constant A>0 and all t>0, 

expiJW**) <P(Z>x) < expl-Ax1*1) 

for all x>0 sufficiently large. 

Liu (1993 and 1994a) gave also sufficient conditions under which for some 

constant and all x>0 sufficiently large, 

expf-A^) <P(Z>x). 
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