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Summary. Let {Ai} be a sequence of nonnegative random variables such that N:=
o0

> l{ A0} <° almost surely. Let # be the class of all probability measures on
i=1 ‘i

[0,00). Define a transformation T on M by letting Ty be the distribution of
o0

)y AiZi, where the Zi are independent random variables with distribution W,
i=1

which are independent of {Ai} as well. In earlier work, to study invariant
measures of some infinite particle systems, Durrett and Liggett investigated
the transformation T in the special case where IINIl_:=ess.sup N <eo. More
special cases where considered by Mandelbrot, Kahane and Peyriére, and
Guivarc’h in the study of a model for turbulence of Yaglom. In this paper, we
study the transformation in general. The functional equation p=Tp then
contains as special cases the well-known basic equations in general branching
processes; these equations are closely related to the Kesten-Stigum theorem
and the Seneta-Heyde norming for Galton-Watson processes. Assuming only EN<eo
and E X Ailog'*'Ai <o, we determine exactly when T has a nontrivial fixed point

i=1
of finite or infinite mean and we prove that fixed points have some regular

~ [
variation properties. The case where EN=ee or E X Ailog"'Ai =oo js also

i=1
148

considered. If EN 1+8<oo and E( X Ai) <oo for some 8>0, we find all the fixed

i=1

points and we prove that all nontrivial fixed points have stable-like tails.
Convergence theorems are given to ensure that fixed points can be obtained by
natural iterations with some appropriate initial distributions. Other limit
theorems are also obtained when there is no nontrivial fixed point. The work
answers in particular a question of Athreya for Bellman-Harris processes and
completes a result of Biggins for branching random walks.

Key words: Smoothing transformation, Branching processes, Branching random
walks, Mandelbrot’s martingale, functional equation.
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1. Introduction and main results
Let Ai.>.0 be a sequence of random variables (r.v.) with
N:= ‘Z l{A.>0} < oo
i=1 1
almost surely (a.s.) and let N>0 be a random integer such that for all i>N,
Ai=0 a.s. We note that when Ill:Illw:= ess.sup N <o, N can be taken as a constant
sufficiently large. Let M be the class of all probability measures on [0,c0).

Define a transformation T on # by letting Ty be the distribution of Y AiZi

N i=1

=) AiZi, where the Zi are independent r.v.’s with distribution [, which are
i=1

independent of {Ai} as well. Of course T can be regarded as a (nonlinear)

transformation on the class £ of Laplace transforms ¢ of elements of A:
o0 N
(To)()= E n1¢(tAi) = E.nlq)(tAi),
1= 1=

where (and throughout) the product is taken over all the indices i such that
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Ai>0, and the empty proc‘l:ct (whi‘ch haggens v;hen ﬁI:O) is taken to be 1. We
shall write alternatively 1 or mo .Z or 'Z according to convenience for
context. ! ot e

Kahane and Peyri¢re (1976), and Guivarc’h (1990) studied the fixed points of
the transformation T in the case where N is constant and the Ai (1<isN) are
independent and identically distributed. Their works were motivated by
questions raised by Mandelbr_ot relating to a model for turbulence of Yaglom.
Holley and Liggett (1981) studied the same problem in the case where N is
constant and the Ai (1<i<N) are fixed multiples of one random variable, and
Durrett and Liggett (1983) considered the more general case where the N is
constant but the Ai have arbitrary joint distribution. Their works were
motivated by a number of problems in infinite particle systems. Closely
related results are given in Kahane (1987), Ben Nasr (1987), Holley and
Waymire (1992), Collet and Koukiou (1992), Franchi (1993) and Chauvin and
Rouault (1993), etc. .

If l1<m=EN<eo and Ai=1/m (1<i<N), then the equation ¢=T¢ reduces to the
Poincaré functional equation ¢(u)=E¢N(u/m), which arises in the Galton-Watson
process. Similar equations [which are always special cases of our equation
¢=T¢] arise in age-dependent branching processes or branching random walks.
The study of these equations has been important, since it gives the limit
behaviour of the population sizes of the associated processes. Many authors
have contributed to it, see for example Harris (1948), Kesten-Stigum (1966),
Seneta (1968, 1969 and 1974), Athreya (1971), Doney (1972 and 1973), Doney and
Bingham (1974 and 1975) and Biggins (1977).

The transfomation T, in its various forms, was also used to study some

fractal sets or flows in networks, implicitly or directly by Mauldin and

Williams (1986), Falconer (1986 and 1987) and Liu (1993). So, the greatest
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advantage of the present work is perhaps that it reveals some intimate
relations among the different subjects mentioned above: infinite particle
systems, multiplicative chaos, branching processes, fractal geometry and flows
in networks.
Let ¥ be the set of all nontrivial fixed points of T:
¥ ={ peM: Tu=p and u¢50}.
The elements B of F will be identified with their Laplace transforms ¢ as
well. We suppose throughout the paper that.
P(I:I= 0 or 1) <1 and P(Vi2l, A=0or 1) <L (HO)
Otherwise, the situation is clear:
(a) If P(I:I = 0 or 1) = 1, the equation u=TQ reduces to
z4sz

N
with S= ¥ Ai independent of Z, and, taking logarithms, we see that ¥#J if and

i=1

only S=1 as.;
(b) If P( I:I= 0 or 1) <1 and P(Vi2l, Ai= 0 or 1) =1, then the equation reads
o(t)= f(d®) (Vi20),

where f(t)= ¥ P(N=k)*. Therefore, if EN<I, then ¢(t)=1 for all £0; If EN>I,
k=0

then V20, ¢(t)=1 or g, q being the unique fixed point in [0,1) of f. Since
¢(0)=1, ¢ is continuous and decreasing, we conclude that ¢(t)=1. So in both
cases (EI:ISI or IEI:I>1), T has only the trivial fixed point ¢=1.
For xe[0,0), write
S(x):=§ A’i‘E § A’i‘, S:=S(1),

i=1 i=1
and

p(x):= ES(x),
where (and throughout) the sum is taken over all the i such that Ai>0, and the

empty sum (which happens when 1:I=0) is taken to be 0. The function p is well

defined on [0,0) with values in [0,0]. We remark that
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S(0)=N and p(0)=EN
by our notations. If } N
EN<eo and E 3, Ailog+Ai<oo, (H1)

i=1

where log+x = max(0,logx), then

N
p(x)<es and P’(x)=E X A’i‘logAi <oo

i=1

exists for all xe(0,1] (at the right point 1, p’(1) denotes the left
derivative); p is strictly convex on (0,1) since

N
p'X)= E T Allog’A, <co

i=1

exists for all xe(0,1) by (H1), and is strictly positive by ‘(HO0). Sometimes we
shall need the condition that for some >0,

. l+5

E(N l+8

)<oo and E(S ) <oo. (H2)

It will be useful to remark that this condition is equivalent to
£(5"*0)<eo, (H2')

where N
Si= ¥ max(A’i,l).

i=1

The minimal conditions were given in LIU (1994) for existence of nontrivial

fixed points with finite mean :

Theorem 0. (Existence of nontrivial solution with finite mean) Under the
condition (HI1), T has a nontrivial fixed point with finite mean if and only if
ES(1)log™ S(1) <eo, p(1)=1 and p’(1)<O.

This result reduces to the well-known Kesten-Stigum theorem in the context
of Galton-Watson processes; it is due to Athreya (1971) for Bellman-Harris
processes, to Doney for Crump-Mode processes (1972) and to Biggins (1977) for
the general case under the condition tEZAi(log"'Ai)2 <eo instead of EN<eo, It was
also obtained by Kahane and Peyriére (1976) if III:IIIN<°o and Ai are ii.d., and

by Durrett and Liggett (1983) if III:I||°°<oo. In the context of age-dependent
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branching processes or branching random walks, a harder open problem was to
know whether T has nontrivial fixed points of infinite mean in the case where
ES(I)log+S(1) =0, [see for example Athreya (1971, p.598, problem (c)(i)) for
Bellman-Harris processes.]

The following theorem solves this in a much more general setting.

Theorem 1. (Existence of nontrivial solutions of finite or infinite mean)
If EN>I and in f  p(x) <1, then 2. The converse holds subject to (HI).
xe[0,1]

We remark that for the sufficiency part, we need neither EAilog+Ai<oo‘ nor EN<ee,

For the necessary condition in the case where (H1) does not hold, the
following comparison methode will be useful:

Remark 1. If p(1)>1 and

n
EA Jog*A.<eo for all i21, and liminf €Y AjogA; <0, (H3)
! n-yoo i=1

then ¥=0. More generally, if for some constant integer n>0 and random

variables oslisAi (1<i<n),

n
IEAilog+Ai<oo for all 1<i<n, IE_Z Ai>1 and E

n
A ilogA i <0, (H4)
i=1 i=

1
then %=0.

This will be given in section 9. We remark that when IEAilog+Ai<eo, the
integral |1-:AilogAi is well defined and finite. The condition (H3) evidently

holds in the context of branching processes (cf.s2.).

By Theorem 1, assuming (H1), we obtain the minimal conditions for existence
of any nontrivial fixed points of T:
Corollary 1. Under the condition (H1), the following assertions are
equivalent:

(a) ¥#2. (b) EN>1 and inf px)<1. (c) EN>1 and for some ae(0,1], p(o)=1.
x€ [0,1}
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(d) For some 0e(0,1], p(e)=1 and p’()<0.

This follows from Theorem 1 since the conditions (b),(c) and (d) are
equivalent each other subject to the hypothesis (H1). In fact, to see that (c)
implies (d), it suffices to choose the least o for which p(a)=1, using the
convexity of p. The other implications are clear.

If Ill:Illoo<oo and IEAilog+Ai<oo (Vi), the result was shown by Durrett and Liggett
(1983,th.1). [Although Durrett and Liggett’s work assumes EA;Y<°° for some v>1,

the condition IEA'ilo'g"'Ai <eo (Vi) suffices in the proofs of their Theorem 1.).

We recall that a function &(x)20 is called slowly varing at O (or oé) if VA>0
YAu)/Y(u) »1 as u-0 (or o).

Theorem 2. (Regular variation of nontrivial fixed point) Assume (HI) and
g#D. Let o be the unique point in (0,1] such that p(a)=1 .and
p’(0)<0. If ¢ ¥, then for some slowly varing function ¥.)20 at 0,

tim L0 o1 faag
50+ t7e(t)
and

limsup %—q-’-(—tz <I if a<l.
>0+ tL(t)

Moreover, if (H2) holds, then we can take Yt)=c if p’(a)<0 and ¥t)= c|logt|
if p’(a)=0, for some constant ¢>O0.

Remark 2 In the éase where a<l, the function ¥t) can be constructed shch
that for all t>0 sufficiently small, 1-¢( 1)<®y1). | |
Corollary 2. Under the conditions of Theorem 2, if pe#, then the following
conclusions hold:

(i) p(x,00) = O(X-al(x)) (x>+00). (ii) J‘°5 xadu(x)<oo for all ae[0,0.).
(iii) §7 2 du(x)<eo & =1, p’(1)<0 and ESlog ™ S<ee.

(iv) If a=1, then J'; Wtoo)dt ~ Ux) (x>+oo) is slowly varing.
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This result was known only for Galton-Watson processes in the context of
branching processes. For the proof, see Theorem 11.2.
Theorem 3. (Convergence theorem) Suppose that 0. Let o be the unique point
in (0,1] such that p(a)=1 and p’(a)<O. Assume that either o=1 or (H2) holds.
If 0 ¥ and me £ are such that 1-§(t) ~ 1-n(t) (t50+), then

lim Tn=0.
n-co

The result means that if the behaviour of T matches that of ¢ at 0, then ¢
can be obtained by iterations of T with the initial element m. Other limit
theorems will also be given. (cf. sections 7,8 and 9).

Corollary 3. (uniqueness of nontrivial fixed points) Suppose that F#O. Let «.
be the unique point in (0,1] such that p(a)=1 and p’(0)<O. Assume that either |
o=1 or (H2) holds. If ¢1 and ¢2 are nontrivial fixed points of T such that
I-¢l(t) ~ 1-¢2(t) (t50+), then ¢IE¢2'

As a special case, if o=1 and ¢1 and ¢2 are nontrivial fixed points of T
with same finite mean, then ¢1E¢2‘

Suppose that . Let o be the unique point in (0,1] for which p(a)=1

and p’(1)<0. Let Xoc be a random variable with distribution determined by
_ 1 * o
ERX,) = p_(E)E > A ; f-logA)
*
for nonnegative Borel functions f on R, where Y denotes the summation over
all the i’s such that Ai>0. The problem is called of lattice type if there is

an s>0 such that Xoc is concentrated on the set sz={zs} (zez):

Y P(X =zs) =1,
zez &

where z={0,%1, £2,...}. Since

|

R |
P(Xa-—ZS) = p—(a)E E* A1 (-logAi=ZS)’

by the definition of X, We see that the problem is of lattice type if and

only if
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N o
plo) = E zi:* zzl Aj 1(-logAi=zs) ’

which reads also

o
E ?‘ Ay [1'1(-logAi=zs for some ze z)] =0.

Therefore, the problem is of lattice type if and only if there is an s>0
so that with probability one, each A, is an integer multiple of s if A>0.
We will always take s to be the largest possible such number and will refer to
it as the span. We set s=0 if the problem is non-lattice.

If s0 and o<l, let Boc,s be the collection of all strictly positive

infinitely differentiable functions p on R' which satisfy

(a) p(x+s)=p(x) for all xeR', and

k
®) (1) -g-é-k[eap(-loge)]SO for all k=12,..

If s=0 or o=1, let By be the set of positive constant functions on R'. The

class Bys is relatively large for o<l and s>0. For example, if a and b‘l are

'y

numbers which satisfy

s Aa2+b?) 1 [14n%(G-0)*] s1
n=1 j=0

(O<o<1) and if

px)=1+ X (ansin nx +bncos nx)
n=1

then pe B [cf. Durrett and Liggett (1983, th.5.2)].

o,27
Theorem 4. (Totality of fixed points) Suppose that F#J. Let o be the unique
point in (0,1] for which p(a)=1 and p’()<0. If (H2) holds, then there is a

natural bijective correspondence between ¢ F and pe By s which is given by

lim 2 - if p')<0
-0+ t p(-logt)

and lim 28 ;i pa=0
t+0+ ¢t p(-logt)|logt|

The result means that subject to (H2), the fixed points can be identified by
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the behaviour of their Laplace transforms at 0. When a=1 and p’(a)<0, this
just says that the fixed points are parametrized ‘by' their means.
corollary 4. Under the conditions of Theorem 4, if o<l and the problem is
nonlattice, then for all p\e M, there is a constant c¢>0 such that, as x+oo,

W(xe0) ~ cx'® if p’(o)<0,
and U(x,00) ~ cx Hogx if p’(0)=0.

2. Applications
2.1. Poincaré functional equation.
Let N20 be an integer-valued random variable with m= ENe(1,0]. Seneta (1968)
showed that if m<eo, then the Poincaré functioal equation
o(s) = EON(2)  (s20) 2.1)
has always a nontrivial solution in ¢#; he proved in sequal (see Seneta 1974 or
Athreya 1971) that for any nontrvial solution ¢e £, there is a slowly varing
function &(s) at O so that 1-¢(s) ~ s&(s) (s-0).
Let us consider a slightly more general form of (2.1): for any given
ae (0,%0),(a may be <1,=1 or >1), we consider the functionél equation
o(s) = EQ"(as) = To(s) (s20) (2.1a)
in ¢ This is the special case of our general transformation T with A=a if
1<i<N and Ai=0 if i>N. Our theorems in section 1 apply, and we have
Theorem 2.1. The Poincaré functional equation (2.1a) has a nontrivial solution
in £ if and only if aEN<I (ie., EN<e and a<l/EN); there is a nontrivial
solution with finite mean if and only if lENlog+N<oo. For any nontrvial solution
b 2, there is a slowly varing function ¥s) at 0 so that I-¢(s) ~ sis) (s-0).
Each nontrivial solution ¢ can be obtained as a limit of iterations T'y (nseo)
of T [defined in (2.1a)] with an arbitrary initial element ye ¢ satisfing
1-y(t) ~ 1-9(1) (10).

10
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Proof. We have p(x)=axlEN. If a<l, then the hypothesis (H3) holds, so by
Theorem 1 and Remark 1, the equation (2.1a) has a nontrivial solution if and
only if aEN<1. By Theorem 0, There is a nontrivial solution with finite mean
if and only if EN10g+N<oo. If a=1, then the hypothesis (HO) is not satisfied,
and the conclusion comes from the discussion following that hypothesis. If
a>1, then since EN>1, we can find a<l such that aEN>1. Thus the result follows
by Remark 1. =

Let Z (n20) be a supercritical Galton-Watson process with Z =1 and Z =N. The
well-known Kesten-Stigum Theorem says that if 1<m=|EZl<oo, the random variables
Z“/mn converge almost surely to a nondegenerate random variable W if and only
if IEleog+Z <o This result is deepened by the Seneta-Heyde Theorem which
says that, if 1<EN<eo, then there is a sequence of constants cn>0 (cn-»o) such
that the random variables Zn/cn converge almost surely to a nontrivial random
variable W whose Laplace transforms satisfies (2.1) (and c~ m" if and only if
Eleog+Zl<eo). If EN=oo, it was proved by Seneta (1969) that such a sequence
does not exist (even for convergence in distribution). We see that the last
conclusion can also be derived by Theorem 2.1, noting that if 0<cn—>oo is such
that Z“/cIl converge in distribution to some nontrivial random variable W, then

for some O<a<l, cn/cm > a (Seneta 1969,p.29) and consequently the Laplace

1
transform of W satisfies (2.1a) (easy).

2.2. Crump-Mode process.

We consider a general branching process {Z(t):t20}_ in the sense _of Crump
and Mode (1968-69) with a single ancestor Z(0)=1. Each individual reproduces
independently; for any given parent individual the instants of birth of
offspring are represented by the jumps of a counting process {N(1):t20} with
N(0)=0 and N(e)<eo which increases by one at the instants of birth of

offspring; this process and the life time L of the parent may be dependent. We

11
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assume throughout that either 1<EN(ec)<eo, in which case there exists a unique

positive o with
oo -OX
Ef, ¢ dN(x) =1,

or EN(=)= and 3 a positive o (necessarily unique) satisfing the preceding

identity. It was proved by Dohey (1972) that the limit (in distribution)

4. Z@)
W:= lim EZ(D) 2.2)
: t-y00 EZ(t
exists, and satisfies the functional equation
¢(s) = Eexp{s; log(se *X)AN(x)} (s20), (23)

where ¢(s)=lEe'ws. Writing N=N(e) for the total number of offspring of a given
parent, t,t ...t for the successive instants of their births, and

-0t
A =e !, (ISiSN) 2.4)

we see that (2.3) can be reformulated as
N
®s)=E 1 1¢(SAi) = To(s). 2.3y
1=

Doney (1972) proved that (2.3) has a nontrivial solution ¢ in £ with 1-¢(s) ~s
(s»0) if and only if EYlog"Y <eo, where
N
Y= 47 e®dN) = T A (2.5)

i=1

Our Theorems in section 1 complete this as follows:
Theorem 2.2. The functional equation (2.3) has always a nontrivial solution in
¢. For any nontrivial solution ¢, there is a slowly varing function {s) at
0 such that 1-¢(s) ~ sYs) (s»0). For any given slowly varing function ¥s)
at 0, there is at most one solution ¢ in £ satisfing 1-§(s) ~ s¥s) (s-0).
Any solution ¢ can be obtained as a limit of iterations Ty (ns=) of T
(defined in (2.3)°) with an arbitrary initial element ye$¢ satisfing 1-y(t) ~
1-0(t) (0).

Of course, the uniqueness in the above theorem can also be reformulated in

the following way: if ¢l,¢2 €% are solutions satisfiny 1-¢l(s) ~1-¢2(s) (s-0),

12
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then ¢1=¢2'

The Bellman-Harris process is the particular case of a Crump-Mode process
with

NO=, i 1.
where the offspring distribution N and the lifetime L are mutually
independent. In this case, the functional equation (2.3) or (2.3)’ reduces to
o)= E¢se L) =To(s), 2.6)

where o is the unique number in (0,e0) satisfing IENe'aL=1 (We suppose that
EN>1). Athreya (1971) proved that (2.6) has a nontrivial solution ¢ in £ with
1-¢(s)~s (s-0) if and only if lENlog+N <eo, and demanded whether it had always a

nontrivial solution in £ if IENlog+N=°°. Our Theorem 2.1 answers this question

in a more general setting.

2.3. Branching random walks

A branching random walk on the real line R' can be described in the following
way. An initial ancestor, who forms the zeroth generation, is created at the
origin. His children form the first generation and their positions on the real
line are described by the point process Z' on R. Thus Z' is a random locally
finite counting measure. The people in the nth generatidn give birth
independently of one another and of the preceding generations to form the
(n+1)th generation. The point process describing the displacements of the
children of a person from that person’s position has the same distribution as
Z'. Let {z':} be an enumeration of the positions of the people in the nth
generation, and Z" be the point process with the atoms {z':}. Define

m@:= E T exp(-6z)) = E [ e Oz,
r

We assume m(0)>1 and m(B8)<ee for some fixed 8. The generation size Z"(-e0,00) in

the branching random walk form a supercritical Galton-Watson process. It is

known (see Biggins 1977) that

13
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W'(©):= m(®)" X exp(-ez’:)
r

is a martingale with respect the o-field F generated by the births in the

first n generations, and the limit

W(8):= lim W"()
n-)eo
satisfies the functional equation
0(s)= E [ 0A) = To(s) | 2.7)
r

-sW(0)

with ¢(s)=Ee and

Ar = m(e)'lexp(-ez:).
(Therefore EY A‘=1). We consider the equation (2.7). If 6=0, it reduces to the
Poicaré functional equation (2.1). So we assume 0#0. Biggins (1977) obtained
sufficient conditions for this equation to have nontrivial solutions of
finite mean. Our results in section 1 will be applied to complete Biggins’
theorem. We notice that if
m(O)<oo and E% lzilexp(-ezi)oo , 2.8)

then

m(x)<ee and m’(x)= -E X, z:exp(-xz:) € (-o0,00) exists
r

for all xe(0,8] if 6>0 and for all xe[0,0) if 6<0; Also (H1) holds since
p(0)=EN=m(0) and EZA |logA |< Om(®)'E T exp(-ez:)lzﬂ +|1logm(®) |;
r
Finally for all xe (0,1],

pX)=E X A’: = m(0x)/[m(0)]* (2.9)
r

and
p’(x)= [6m’(Bx) - m(6x)logm(B)] /[m(6)]". (2.10)

Therefore, by Corollary 1, Theorem 2 and Remark 2, and Theorem 3 and
Remark 3, we obtain ’
Theorem 2.3. Assume m(0)>1 and m(6)<eo for some fixed 0+0. Then the functional

equation (2.7) has always a nontrivial solution in ¢ Assume additionally

14
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(2.8) and let o. be the unique number in (0,1] such that
m(00) = [m(©)]* and Om’(Oar) - m(Oc)logm(©) <O. (2.11)
Then:

(a) For any nontrivial solution ¢, there is a slowly varing function ¥s) at
0 such that 1-¢(s) ~ sUs) (s-0+) if o=1 and 1-¢(s) < sal(s) for all
sufficiently small s>0 if o<l;

(b) For any given slowly varing function Ys) at 0, there is at most one
solution ¢ in ¢ satisfing 1-0(s) ~ s&(s) (s30);

(c) Any solution ¢ can be obtained as a limit of iterations T'Y (nso) of T
(defined in (2.7)) with an arbitrary initial element ye £ satisfing 1-y(s) ~
1-¢(s) (s0);

(d) All solutions are of finite moments of order strictly inferior to o;
their o-th moments are finite if and only if

E W(0)log* W'(6) <o and 6m’(6)-m(6)logm(6) <0 (2.12)
(so a=1). In particular,. there is a solution of finite (first) moment if and

only if (2.12) holds.

3. Sufficient conditions
We first determine the extinction probability p{o} of any fixed point peg.
We remark that p{o}=d(e) if ¢ is the Laplace transform of L.
Theorem 3.1. If ¥#0, then (a) EN>1, and (b) for any ne¥, W{0} is the unique
fixed point in [0,1) of the function f{t) :=k§01’()‘7=k)tk ElEtﬁ.

Proof. Let{Zi} be independent random variables with distribution M, which
are independent of {Ai} as well. Then the extinction probability q:=u{0}
€[0,1) satisfies

q= P(Z=0) = P( 5 AZ=0) = P(Vi Z=0 if A>0) = kz P(N=k)q".
i=1 =0

So f has a fixed point in [0,1). Since f is convex, f1)=1 and f(1)=EN, it
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follows that EN>1 or ft)=t for all t. In the latter case N=1 as., which is
excluded by our hypothesis (H0). So EI:I>1, and f has a unique fixed point in
[0,1), which proves both parts of the theorem. ]

We then remove the moment condition IEA;Y<°° (y>1, i=1,2,...) of a result of

Durrett and Liggett (1983, Theorem 1).

Lemma 3.2. Suppose that INI_<eo. If p(0)>1 and inf  p(x)<1, then F#2.
x€[0,1]

Proof. Since ||I\7|l°°<oo, N can be taken as a constant. If for some y>1 and all
i=1,2,... EA'iY<oo, then (H1) holds and the given conditions are equivalent to
p(o)=1 and p’(a)<0 for some oe(0,1]. So the conclusion follows by Theorem 1 of
Durrett and Liggett (1983).
To prove the result in the general case, we define
KE(M)= A™M = min(A M)
for all M>0 and i1, and let P and TM be the corresponding function and
srhoothing transformation defined in terms of {Ai(M)} just as p and T were
defined in terms of {A). Then p,(0)= p(0) >1. Since

inf pM(x)S inf p(x)<l,
x€[0,1] x€[0,1]

TM has a nontrivial fixed point Ny by the preceding conclusion, and
nM(oo)=qc-: [0,1) is independent of M by Theorem 3.1 since the function f(t)
defined therein does not depend on M. Choose ¢>0 such that nM(c)=(q+1)/2. This
is possible since m (0)=1 and 7, (-)=q. So TM has a fixed point ¢ (t):=n (ct)

with
¢, (D=(q+1)/2.
By the selection and continuity theorem, we can choose a sequence Mn"°° so that

¢,, converge to a limit ¢ which is the Laplace transform of a possibly

defective distribution p (see for example Feller 1971, pp.267 and 431). Since

N
0,(0= E 1 6, ((ADD),
1=
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evaluating this at M=M‘l and passing to limit as n-ses, we obtain by the

dominated convergence theorem that

6()= Eii‘l"’(mi)‘
Letting 0 we see that  ¢(O0+H)=A¢(0+)), where f(t)=lEt§. Since
0(0+)2¢(1)=(q+1)/2 € (q,1), it follows that ¢(0+)=1 and ¢(ee)<¢(1)<1l. Thus p is
not defective and u#So. Consequently ¢e¥. =

We now prove our main theorem for existence of nontrivial fixed points.

Theorem 3.3. If p(0)>1 and inf  p(x)<1, then F=J.
x€10,1]

Proof. The argument is similar to that used in the proof of Lemma 3.2. For
M=1.2,..., define A=A if i<M and Ki=0 if i>M. Let TM be the corresponding

smoothing transformation defined in terms of {A} and put
MAN '
p0=E T Al (x20),

i=1
where MAN:= min(M,N). Then pM(x) increases to p(x) for all x>0 as M increases
to e. Choose M sufficiently large such that p(0)>1. Since
inf pM(x)S inf  p(x)<1,
x€10,1) x€[0,1)
TM has a nontrivial fixed poixit My with qM:='nM(oo)e [0,1) by Lemma 4.2. Note
that q,, is the extinction probability of a | supercritical Galton-Watson process
with offspring distribution
S MAN
= liaso
which increases with M, we see that q, decreases as M increases. Thus the
limit
q:= lim q,, exists with g<l.
PELS

Choose ¢>0 such that m (c)= (q,+1)/2. So TM has a fixed point ¢, (t):=n, (ct)
with
B (D) =(q+1)2

By the selection and continuity theorems for distributions and Laplace

17
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transforms, we can choose a sequence M eo so that ¢,, converge to a limit ¢
n

which is the Laplace transform of a possibly defective distribution H. Since

¢,, is a fixed point of T,p
MAN

0,0= E_T1 00A).
Evaluating this at M=Mn and passing to limit as nseo, we obtain by the
dominated convergence theorem that
o= Eiﬁlmmi).
Letting t-0 we see that ¢(0+)=f(¢(0+)), where ﬂt)::tEtﬁ. Since
6(0+) 20(1) =lim ¢, () = lim (@, +1/2 = @+1)2 € @.D),

it follows that ¢(0+)=1 and ¢()$ §(1)<l. Thus W is not defective and 3
Consequently ¢ ¥. =

We remark that we can prove in fact that q also verifies q=!EqN by passing to

N
limit in q, =Eq "' as Moo, So g=¢(e).

4. Necessary conditions. Basic properties of fixed points.
Throughout this section, we assume (H1). Let o be a point in (0,1] and ch

a random variable with distribution determined by
EAX ) = ——E 3 A% f-logA.) 4.1)
o = plo) j J\I08A, :
for nonnegative Borel functions f on R, where Z* denotes the summation over
all the i’s such that Ai>0. This is possible since the right hand side of
(4.1) is a positive linear functional with unit norm. Given ¢eg with ¢=l,
define Da(x) and Ga(x) by
D, (x)= e™*[1-9(™)] and
N N : 4.2)
G (x)= %X E{ m o xAi) -1+ X [1-¢(e xAi)]}-
i=1 i=1

For ¢ ¢, we define Doc and Ga analogously in terms of §.
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Lemma 4.0. (i) If $=T9, then Da(x)= p(oz)lEDa(x+Xa) -Ga(x).
(ii) e'a‘xGa(x) 20 is a decreasing function of xe R
(iii) If $=0, then GaSGa.
N
(iv) G (%)< eaxlEF(min{N,SDa(x)e'ax}), where §= %, max(A;1) and Flu)=e™*-1+u.
Gy (%) =
(v lim =0.
xo Dof*)
Proof. With some slight modifications, the argument is the same as those in

the proofs of lemmas 2.3,2.4 and 2.6 of Durrett and Liggett (1983,pp.282-284).

In fact, part (i) holds since
N N
D)= e®*[1-(E™)] = ™ [I-E_nlrb(e'xAi)] =™ E,zl_[l-«e"‘Ai)]-Ga(x)
1= 1=

N
= E.ZIA?Da(x-logAina(x) = P(@ED (x+X ) -G (x).

1=

Parts (ii) and (iii) follow from the fact that

N N N N
nu-1+ XQuw)2 v -1+ X
i=1" i=1 " i=1" i=

i=

(1-vi) if Osusv<l.
1 i i

-(1-u)

For part (iv), use the inequality u< e to obtain

N N
G,(x) < eaxE{ exp [-_Z [1-¢(e'xAi)]] 1+ 3 [1-¢(e'xAi)]}.

i=1 i=1

Since ¢e &£, l;%’_(_‘l) is decreasing and 1-¢(u) is increasing in u. Therefore
1-4(e™A) < max(Ap1) [1-0(™)).
Part (iv) now follows from the monotonicity of F on [0,.0) and the fact that

>"; [1-¢(e'xAi)] < min{N,3[1-6(™)]} = min{N,SDa(x)e'wc}.

i=1

For part (v), note that since lim Doc(x)e:'mx = lim [1-¢(e'x)] =0, it suffices,

X000 X-0c0
by changing variables t= Da(x)e'ax, to show that

lim EFGH ES‘) =0,

t» 0
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But this follows from the dominated convergence theorem since E@ is bounded
on (0,00) and tends to zero as u-0+, and since S has a finite first moment by
(H1). =
The proof of the following lemma follows that of Lemma (2.11) of Durrett
and Liggett (1983,p.285). However, we shall give the details which are not
only for the convenience of readers but will also be used later.
Lemma 4.1. (a) Fix o€(0,1] and let 4. be the set of all functions g on R
which satisfy
(i) glo)=1,
(ii) g(y)e'ay is decreasing in y, and
(iii) g(y)e'(l'a)y is increasing in y. Then &, is uniformly bounded and
equicontinuous on bounded sets, and, for all ge 4, and all ye R,
Min (%, e-(]-oz)y} < gly) < Max {eay, e-(I-oc)y}. (4.3a)
If additionally g'(y) exists, then
-(1-0)g(y) < g°(y) < agl(y). (4.3b)
(b) Assume the problem is non-lattice and let B, be the set of all functions
g in 4 which satisfy

80y) = p(ER(y+X,),  VyeR. (4.4)

Then B, is the set of all convex combinations of gB(.y) = e(Ol-B)y fJor the

(at most two) B’s which satisfy 0SB and p(B)=1.

Proof. (a) Fix ye R'. By properties (ii) and (iii), if Ay>0, then
ay+ay)e ) <o) ™ and gyray)elmDIAY) 5g()e(1-00Y,

That is,
gy IO < syiay) <a1)e®™Y if Ay>0. (4.52)

Similarly,

g)e®Y < gly+Ay) <g(y)e (1O

We remark that (4.5) can be rewritten as

if Ay<0. (4.5b)
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g(y,) Min{e®Y e (1-04Y) < 8(y,)< g(y,) Max{e™4Y o"(1-®)Ay) (4.62)
for all (yl,yz)e R’, where Ay=y,-y,. Taking y=1, (4.6a) gives (4.32). As a
consequence of (4.3a), 4, is uniformly bounded on bounded sets. Again by
(4.6a),
g(y)) Min(e®-1,6 08 1) < g(y 35y
< g(y,) Max{e®Y-1,(1-0AY 1y (4.6b)
Combing this with (4.3a), we see that ada is equicontinuous on bounded sets.
Dividing (4.6a) by Ay and lettihg Ay-0 give (4.3b).
(b) It is easy to check that ge B, if and only if 0<B<1 and p(B)=1. Thus
the conclusion is immediate if B,=. Assume then that B, is not empty. By (a)

and Ascoli’s theorem, 8_ 1is a relatively compact subset of C(lRl) with ihe

o
topology of uniform convergence on bounded sets of R'. We claim that B, is
also closed. Let g€ Ba be such that gn(y) + g(y) (n»ee) uniformly on bounded
sets for some ge C(R"). Then it is easily seen that ged,. Since
8,+X ) S exp{a(+X )} + exp{-(1-0)(+X ) [by (43,
Eexp{(xxa} =p(0)/p(1)<e and Eexp{-(]-oc)Xa} =p(1)/p(a)<ee, 4.7
by the dominated convergence theorem, we see that Vye R,

1ir°n° Egn(y+Xa) = |Eg(y+Xa). 4.8)

n-?

Thus we can pass to the limit in gn(y) = p(o) Egn(y+Xa) to obtain (4.4). Hence

ge8_, and so B, is closed. Thus fBa is a compact convex subset of C(Rl) (the

a’
convexity is easy). Therefore 8, is the closed convex hull of its extreme

points by the Krein-Milman theorem.
Suppose that g is an extreme point of By, and let
g o) = &Y
By (4.4) and the fact that Eg(Xa) =1/p(0L),
Egu+Xy) ST, 2, (Ne(w)P[X edu]

- 00

)= =
T ERX ) re . g@PX e du]
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Since g €38, for each u and g is extremal, this implies that g=8 for all u in
the support of the distribution of Xa' Therefore
glu+y)=g(u)g(y) 4.9)

for all y and all u in the support of Xa' Let |

u={ueRr": VyeR, guty)=g)z®)}. |
Then U is a sub-grqup of (IR',+) since (i) if uey, then taking y=-u in (4.9)
gives g(—u)=1/g(u); and consequently, for all ye R,

gl-u+y)=g(u+(-u+y)l/g(u) =g(-wg(y).
Thus -uev; (ii) if uEv and u,eU, then u+u,eu because Vye lRl,

g(u +u,+y)=g(u )g(u,+y)= g(u g )e(y) = g(u +u )g(y).

Therefore U is either dense in R' or of the form az for some a>0. In fact,
writing a=inf{ueu: u>0}, we can easily verify that U is dense in R' if a=0,
and u=az if a>0. lSince U contains the support of Xoc and the problem is

nonlattice, we conclude that U is dense in IR', and so U=R' as g is continuous.

It follows that g=g, for some P. This completes the proof of the lemma. =

Theorem 4.2. Assume (H1) and $#O. Then (a) there is an o€ [0,1] so that p(o)=1,

and (b) if ¢ F and 0e(0,1] is such that p(a)=1 and p’(x)<0, then
y Da(x+y) <1 ¥ p'(0)<0
imsup <1 if p'(a)<
X500 I oci x)

and
Da(x+y)

Lim D (%) =1 if p'(a)=0,

X500
where y>0 is any multiple of s if the problem is of lattice type of span s,
and arbitrary otherwise.
Proof. The argument follows that of the proof of Theorem 2.12 of

Durrett-Liggett (1983,p.286). Fix an ae(0,1] and put

8,(y) = D (x+y) /D (x).
By Lemma 4.0,
Da(x)= p(a)[EDa(x+Xa) -Ga(x).
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Evaluating this at (x+y) and dividing by Da(x) gives

G a( x+y)

B) = POJER,(+Xy) - b2y 8.0 (4.10)

Since ¢e &, Da(y)e'ay =1-9e™) s decreasing in y and Dm(y)e(l'o‘)y is
increasing in y. Hence gE4, for all xeR', where 4, is defined in Lemma 4.1.

By that lemma, the collection { gx(.),xe lR'} is uniformly bounded and
eqicontinuous on bounded subsets of R', and hence is relatively comjjact in the

topology of uniform convergence on bounded sets. Suppose X oo and gy (y)~g(y)

uniformly on bounded sets of R' for some ge C(lRl). As in the proof of (4.8), it

is easily seen that limEg (y+X ) = Eg(y+X_ ). Thus we may pass to the limit
X o o

n->o00

in (4.10) to obtain (4.4), using Lemma 4.0(v). Assume from now on that the
problem is nonlattice. The lattice case is similar. Since ge B, by Lemma 4.1,
there is a PBe[0,1] for which p(B)=1. This proves part (a) of the theorem. For
part (b), suppose now that p(a)=1 and p’(a)<0O. Again by Lemma 4.1,

g = A + (-0 PO (4.11)
for some Ae[0,1], Be[0,1] with p(B)=1, and all ye R'. Since p(.) is convex, we
have B2o if p’(0)<0 and P=o if p’(a)=0. It follows from (4.11) that g(y)<1 if
~y>0 when p’(a)<0 and g(y)=1 when p’(a)=0. Since this is true for all limit

points of gx(y) as x»oo, the proof of the theorem is complete. ]

Corollary 4.2. Suppose that ¢e¥%, oe(01], p(o)=1, p'(®t)<0, then

(a) limsup -Ii logDa(x) <0, and
X-y0

(b) Ga(x) is directly Riemann integrable on R' if IESI+8<oo for some &>0.

Proof. Part (a) follows from Theorem 4.5 and the monotonicity of e'axGa(x). To

. D o (x+y0)
see this, let y0>0 be such that )l(ixzsup—w <1. Ve>0, Elx0=x0(y0,e) such

that Vxeo, Da(x+yo)_<. (1+e)Da(x). Iterating this gives that for all m=1,2,...

logD a(x 0-|~my0)s mlog(1+€) +logDa(x 0).
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For all y>0, choose meN such that x0+my05y <xo+(m+1)y0. Thus

-0u(x_+y) -o(x +my )

0
D 0‘(x 0+y)e < Da(x°+myo)e .

and

)1, logD (x +y) S { logD (x +my0) + a(y-myo) }

< mlog( 1+¢€)

1
X_+my, *3 { logD,(x) + a(y-my) }.

Letting y»= gives limsup 31,- logD x +y) log(1+€). Thus (a) holds.
y-y00

For part (b), again since e'axGa(x) is decreasing in x, it suffices to show
that Ga(x) is integrable on R' (see the proof of Corollary 2.17 of
Durrett-Liggett 1983,p.287). By Lemma 4.0(iv),

G, x)< e“XEF(min{N,SDa(x)e'“"}) < e eF(N)<e* N,

where F(u)= e%-1+u. It follows that f(_)oo Ga(x)dx <o, To deal with

integrability at +o, for all €>0 so small that O< &/(a-¢) <min(1,8), choose X,

so that for x2x , D (x)Seex Again by Lemma 4.0(iv),

5 G X < 17 “XEF(SD x)e"%)dx
0

J‘°° axlEF(Se‘(a'e)x)dx = a}t: J‘ﬁ 'EFSE) du,

X0 u
where a=exp{-(a-&)x } and P=e/(o-€). Since O<P<min(1,8) and the last integral

is finite if (and only if) ES"*%<es (see for example Bingham and Doney 1974,

p.718, Theorem B),we see that J‘: Ga(x)dx <o, which ends the proof of (b). =
0

The following result is the key to identifing the elements of ¥.
Theorem 4.3. Assume (H2) and F+#J. Let o. be the unique point in (0,1] for
which p(a)=1 and p’(0)<0. If ¢ %, then there is a pe B, S0 that

lim 1298 _; if p'()<0
t+0+ t p( logt)

and lim 1-9(1) =l if p'(o)=0.
10+ t p( logt)llogtl
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Proof. With some obvious modifications, the proof is the same as that of
Theorem 2.18 of Durrett and Liggett (1983, pp.288-292), where the crux is
their Lemma 2.3, Theorem 2.12(b) and Corollary 2.17, which correépond our
Lemma 4.0, Theorem 4.2(b) and Cdrollary 4.2(b) respectively. However, since
the argument is very interesting and not evident, we present it as follows for
the convenience of readers. Let S be the random walk with § =0 whose
increments have distribution X Since p(a)=1 and ¢e ¥, Lemma 4.0 gives

D (x)= EDa(jc+Xa) -G (x). (4.12)
Let us begin with the transient case where EXa=—EZ*A?logAi=-p’(a)>O. Iterating

(4.12) and passing to the limit, we see that

Da(x)= lim lEDa(x+Sn) -2 IEGa(x+Sk). (4.13)

noo k=0

Here the sum is finite and tends to O as x-+c by Corollary (4.2) and the

renewal théorem, while the limit

p(x):=lim tEDa(x+Sn) ZDa(x)>0

ndoo

exists because IEDa(x+Sn) in increasing in n by (4.12). Since DOL()()({O‘x is

-(1-0)x

decreasing in x and Da(x)e is increasing in x, the function p(x)/p(0)

is in Aa (defined in Lemma 4.1), and so p(x) in continuous on R'. Since
p(x)= Ep(x+X ),
px)/p(0) is of the form (4.11) with some Ae[0,1] and Be[c,1} in the

nonlattice case and is s-periodic in the lattice case (cf.Lemma 4.1(b) or

Choquet’s theorem for harmonic functions). Since Da(x)s e, limsup p(x) <ee.

x> - 00

Therefore p(x)/p(0)=1 (i.e.p(x) is constant) in the nonlattice case and p(x)
is s-periodic in the lattice case. Putting 6=¢™ and recalling the

definition of Doc’ it follows from (4.13) that
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lim _E.I._-j?_(_e)__ =].
6-0+ 0p(-logb)

To check that in the lattice case that

k
D" £ 16%(log)]<0
de

for all k=1,2,...and 6>0, use the periodicity of p to write
Gap(-loge) =9°‘p(-log9+ns)

=0 [ p( -log9+ns)] [1-¢(6e’"s)].

1-9(6e™%)

Therefore 6%p(-log8) = lim e"**[1-0(8e™)]. Since ¢eg, it follows that the
s o_ . . 1-6(0) .

derivatives of 0 p(-logB) have the correct signs. Note that since —— is

monotone, if o=1 then p is both monotone and periodic, and hence constant.
Turning now to the recurrent case lEXa=-p’(a)=O. Let T be the first time that
Sn enters (0,o), so that S’t is the strict ascending ladder variable associated

with Xoc' Since XasO, T<eo a.s. By (4.12),
n-1
D, (x+8 ) - EoGa(HS“)
is a martingale. By the martingale stopping theorem,
TAn -1

ED (x+S, )- E Eo G (x+S) =D (x). (4.14)
By (4.7) and (3.6a) of Chap.XII of Feller (1971),
as,
Ee ¢ <oo. (4.15)

Therefore, since Da(x)Seax and SnSST for n<t, we may pass to the limit in

(4.14) to obtain

T-1 oo
IEDa(x+S,c)-Da(x) = Rx):=E k§0 Ga(x+Sk) = kEOEGa()HTk), (4.16)

where Tk is the random walk whose increments have the distribution of the weak
descending ladder variable for the original random walk S, and the last

equality holds by the duality lemma of SectXIL2 of Feller (1971).
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By the renewal theorem and Corollary 4.2(b), there is a strictly positive
continuous function p(x) which is constant in the nonlattice case and periodic
of period s in the lattice case so that
lim [R(x)-p(x)]=0 (4.17a)
in the nonlattice case and
.l.-isg [R(x-+ns)-p(x)]=0 (4.17b)
in the lattice case. Consider now the nonlattice case only, since the lattice
case is handled similarly with derivatives and integrals being replaced by
diferences and sums respectively. Integrating (4.16) and using (4.3), (4.15)

and Fubini’s theorem, we obtain

S

S
£ R(@)dz = 53 [€5," D} (z+y)dyldz = €5 * [} D, (z+y)dz]dy

S
E IOT D (x+y)dy -, (4.18)

S
where c=EJ OT Da(y)dy= I:P(STZy)Da(y)dy@o. Since Dm(x)e'mx is decreasing in x,

Da(x+y)/Da(x) <™ for y20 (cf.also (4.3)). Therefore, dividing (4.18) by

Da(x) and using (4.15), Theorem 4.2 (b) and the dominated convergence theorem,

we see that
. J’(’; R (z)dz+c
HE oo T B
which is positive and finite. Therefore, by (4.17),
D_(x)
lim —%5— = g5 1l 5, P @19

exists and 1is positive and finite. In the lattice case, the corresponding
conclusion is that

D _ (x+ns)
o _ p(x)
n!»[--!l X+ns ES T (4.20)

for each xeR'. By the monotonicity and (4.19), Da(x)/x is bounded at +o-. Hence

by (4.3b)(with g(')=D(x(')/Da(0))’ Da(x)/x has a uniformly bounded derivative
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at +o0, Hence the family of the functions un(x)=Da(x+ns)/(x+ns) (n21) is
equicontinuous on [0,s], so pointwise convergence implies uniform convergence.

Therefore (4.20) implies

i e 1 4.21)
2300 X p(X) lESt' )

Part (b) of the theorem now follows from (4.19) or (4.20) with p(x) replaced
by p(x)/ESt, by putting 8=e¢’X. The verification that p(x)e B, s is the same as

in the transient case, which was dealt with earlier in this proof. n

5. Stable transformation. Canonical fixed points.
The idea of stable transformation plays an essential role for the study of
smoothing transformation. It is due independently to Durrett and Liggett
(1983) and Guivarc’h (1990) with some different points of view. The formalism
here is slightly different from theirs. |

For ae(0,1), define a transformation Sa: £ -+ 2 by

(SD®= (%) (Ve 2).
To see that Soc¢ € %, it suffices to note that if Y and Z are independent random
variables with Laplace transforms e'ta and ¢ respectively, then YZ'*  has
Laplace transform Satb. For convenience, if o=l, Sct is naturally taken to be
the identical transformation.
Definition 5.1. The transformation S o defined above is called a stable
transformation.

For oc>0,1§t Ta be the transformation analogous to T obtained by replacing Ai
with A?. The importance of the stable transformation is due to the following
interesting  conjugate  relation.

Theorem 5.2. (Conjugate relation) For all ae(0,1),

IS o = N U.Ta'
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Proof. For any ¢e £,
N ; N '

(TSoHO= EN (S0(A) = £ 607AD =Tod)1™) = ST HO
Corollary 5.3. For ae(0,1), if ¢ £ is a fixed point of T&, then saq; is a ﬁxecf
point of T.
Proof. By theorem 4.1, if ¢=T 0, then T(S )= (T $)=S 9. =
Corollary 5.4. Suppose that EN<eo. If for some ae(0,1], ES(ci)log™S(a) <eo,
p(a)=1 and y'(0)<0, then for ‘al‘l" constant ¢>0, T has a fixed point ¢ with
1-4(1) = ™ (150).
Proof. Under the given conditions, ihe trdhéformation Toc has a fixed point ¢oc
with mean 1 by Theorem 0. So T has a fixed point ¢:= Socq)a with 1-¢(t) ~ P
(t50) by Corollary 5.3 Since for all constant c¢>0, 6(t):=¢(ct) is a fixed
point whenever ¢ is, the proof is finished. ]

To make clear the "totzility of fixed points of T, let us introduce after
Guivarc’h (1990) the notion of canonical fixed points of T:

Definition 5.5. A nontrivial fixed point ¢ of T is termed canonical if it can
be expressed in the form ¢=Sa\|l for some fixed point y of T where ae(0,1] is
the unique point such that p(a)=1 and p’(a)<0.

Thus if o<1, the canonical fixed points of T are exactly all those which can
be obtained from the fixed points of Ta by - the stable‘ transfomation. So the
study of canonical fixed points (and only those) in the case where o<l can be
transfered to the study for the case where oa=1. If a=1, all fixed points of T
are called canonical.

A natural question is to ask, for the case where o<1, whether there are
fixed points which are not canonical. Our theorem of totality of fixed points

will show that the answer is positive in the lattice case, and negative in the

non—latiice case (cf.Sect.10).
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6. Regular variation of fixed points under first moment conditions
We shall use the following simple result on slowly varing functions.
Lemma 6.1. If g(u)ZO is monotone, then lim g(Au)/g(u)=1 for some O<A#l if and
only if it holds for all A>0 (that is, g(u) is slowly varing).
Proof. 1t suffices to prove that if lim g(Au)/g(u)=1 for some 0<7L=3\0¢1 ,then it
holds for all A>0. Since

g(Alw) g(Ajw) g(A )
glu) ~ gAw) glu)”’
we see that lim g(Xiu)/g(u) =1. Iterating this, we have lim g(k’é‘u)/g(u):l for
' U-yo0 ' ' U-yoo

all m=1,2,... Putting u1=)\,'(')'u for fixed m=1,2,.., we obtain lim g(ul)/g()\,(')"‘ul)
v u o0
1

=1, namely lim g(k&"'u)/g(u):l. Hence lim g(?\,'gu)/g(u)=1 for all integers mez.
U-»oo U-00

For each fixed A>0, choose meZ such that 7&':'1<?»_<JJ(')' if lo>1, and k’:’%?&zk’(’)‘ if
lo<1. By the monotonicity of g_(u);_, ”g»(lu)/g(u) varies between g(?»':lu)/g(u) and

g(k'(';u)/g(u). Thus lim g(lu)/g(u):i. =
U0 - -

Theorem 6.2. Assume (H1) and $#J. Let o be the unigue point in (0,1] such that

p(o)=1 and p’(0)<0. If ¢ F, then for some slowly varing function ¥.)20 at 0,

lim %M =1 if =1 or ¢ is canonical, -
50+ t7L(1)
and ' : "

limsup g&_¢(_q <l if o<l.
0+ tLt)

Moreover, if (H2) holds, then we can take ¥t)=c if p’(a)<0 and Y1) =c|logt|*
if p'(®)<0, for some constant ¢>O0.

Remark. In the case where a<lI, the function {t) can be constructed shch that
1-¢(t)$t°‘lu(t) for all sufﬁciemly small t>0.
Proof. If (H2) holds, the result is immediate by Theorem 4.3. Assume only

(H1) and write
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. 1-9(1)
A ft):= ‘1’“ .

D (x+y)
Then D (x) = A (e ). By Theorem 4.1, limsup -7)——(—)— <1 for some y>0. Hence

X500
Al At)
limsup TTT <l for some O<A<l.

t>0+
If o=1, then Aa is decreasing since ¢e£. Thus Aa(?»t)ZAa(t) for O<A<l

and all 0. Therefore

Aa(w i -
lim —A 0 =] for some Q<A<l.
>0+ o t

So Aa is slowly varing by Lemma 6.1. If o<l and ¢ is canonical, then ¢(t)=
\y(ta) for some fixed point y of Ta' Using the conclusion for T(x’ we see that
1-'—";& is slowly varing at 0, and so is Aa' In the general éasé, we have

. 1

limsup z logDa(x) <0

b aad
by Corollary 4.2. Thus the function

h(y):= max {1, D (logy)} (y>0)

is of order O in that

logh(y)
)l’lm Togy =0.

So there exists a slowly varing function ¢ (y) at o such that
limsup h(y) =]
y00 oV

with h(y)s £() for all large y [see Bingham, Goldie and Teugels (1987),p.81,
Theorem 2.3.11. But there is an error in the statement of that theorem: the

assertion limsup f(x)/g(x)=1 therein should be / irﬁsup g(x)/f(x)=1.). Therefore
x-)00 v x-)00 o
| D, (logy)

limsup T <1

y->oo 0
with Da(logy) Szo(y) for sufficiently large y>0. This means

with Aa(t) Szo(llt) for all small ©0. The proof is finished by taking
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7. Iterations: convergence to fixed points
We shall prove our main convergence theorem in this section. The method can
be compared to that of Durrett and Liggett (19.83) who introduuced an

associated branching random walk. The treatment here is direct and elementary.

o

For all sequences ce U N of positive integers, . we denote by lo| its length,
i=1

and let

(AC,I' AG,z"'.')

be independent copies of (An’Az”")'

For a probability measure pe M with Laplace transform ¢, we have

T'u= distribution of Y, ¢.Z _,
Io. I =n g0

where ¢ = AolexozmAcx 0,0, if 0=00,...0, {Zo,:|o'|=n} are independent
random variables with distribution W, which are independent of {A6:|0'|Sn} as

well. The sum is taken over all ¢ such that ,to>0. In terms of Laplace

transforms, the iteration formula reads
T'() = E o(te ).
lol=n' ©

For neN, define
£:= max €.
o oT=n G
The following interesting result may probably be classical in the theory of
branching random walks if we take logarithms.
Lemma 7.1, If P(max A=1) <1, then
iz

P(limsup & =0 or =) =1 and P(liminf ¢ =0 or =) =1.
n-)yoo ? n-)o0 "

Proof. Tt is easy to check that
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eH = max Aien ”
i1 !

where {tll i} (i21) are independent copies of ¢, which are independent of

{Ai} as well. Letting nseo gives

limsup ¢ d (max A) limsup ¢ ,
n-»0° . i21 ! 00 .

where limsup ¢ is independent of max Ai. Taking logarithms, we see that
n-)oo i 21

either P(max Ai=1) =1 or P(limsup en =0 or ) =1. The assertion for liminf
i21 100

follows similarly. =

Lemma 7.2. If for some 0 (0,00), p(a)<1, then

P(lim¢ =0) =1
n-)o2 "

Proof. It is easily verified that {Y iF } forms a martingale, where
Y:=p™ 3T &,
n | p I =n (o)

and
F = . <&
F: c(AT. |1:|_n). |
The martingale convergence theorem ensures that Yn converges almost surely to

a finite random variable Y.

If p(a)<i, the conclusion follows since

limsup Ec:' < limsup X & = limsup an(a)n =0 almost surely.

n-)oo° n-yoo l c I =n o n-)co

If p(a)=1, the same argument as above shows that limsup e? <oo almost surely.

n-ce

So by Lemma 6.1, either P(max A=1) =1 or P(limsup ¢ =0 ) =1. But if
i ! ' n-300

P(max Ai=1) =1 and (HO), then p(x) is strictly decreasing on [0,), SO we can
i21
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~

choose &>a such that p(&)<1, and then limsup e? =0 by the preceding argument.
n-»c0

Therefore, in all cases, we have P(limsup en =)=l =
n-yoo

The following comparison result will be frequently used. It says that
inequalities for small t>0 can be transfered to inequalities for all t>0.

Lemma 7.3. Suppose that for some o€ (0,), p(a)SI. If ¢,de £ are such that for

some t0>0 and all 0<5t0
o) < (1),
then for all t>0,
limsup T'¢(t) < limsup T"4(t)
13 13

00 00
and

Liminf T°§(t) < liminf T°%(1).

00 -0
Proof. Let t>0 be fixed. Since P(en->0)=l by Lemma 6.2, for arbitrary £>0, we

can choose nen sufficiently large such that for all n2n,

P(te,l >t0) <e.
Therefore, for all n=2n )

T = E (te)
) |clil=n¢ S
=[E l{wnSto} |g|=n¢(t£c) + E l{wn>to} Ig|=n¢(wo)
<E lmngo} Igl=n¢(w°) + P@e >t)
¢(tec) + &

E
|18]=n

T"$(t) + &

The conclusion then follows by letting nseo and then €-0. ]
The following theorem is our main convergence result.
Theorem 7.4. Assume (H1) and F#0. Let o be the unique point in (0,1] such that

p(o)=1 and p’()<0. If a<l, we assume additionally that either ¢ is a
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canonical fixed point or (H2) holds. If ¢ F and ne £ are such that 1-¢(t) ~
1-n(t) (150+), then
lim T'n=9.

n-yo
Proof. If (H2) holds, then by Theorem 4.3,

..o 1-0(ct) _ (-loge+x)

Yiminf T30 = c min P———(-&)——

t-0 -t 0S5xSs pix
and

limsup qu—)é-%%)- max p( logc+x)

t-0 05xSs pix

for ¢>0, where pe By ¢ Since pe By o 0 p(-loge) is strictly increasing on
[0,00). Therefore

1-¢(ct)
liminf >1 if c>1
=0 190
and

limsup lr%(;%% <1 if c<l.

The last a;sertion holds also under the weaker assumption (H1) in the case
where a=1 or ¢ is a canonical fixed point, since we then have

li—%%g- > ¢®  (1504),
by Theorem 6.2. Using 1-¢(t) = I-n(t) (t-0+), we have in all the given cases,

1::(1)141_nf ljj%%g- >1 if c>1
and

- 1-¢(ct)
limsup TR0 <1 if c<1.
t-0+ nit

Fix >0 and c>1. Put
¢()=d(ct), and Bx)=H(c"t).

Then ¢, €¥ and for some ¢ >0 and all O<tst,

o) < 1 < d).

By Lemma 7.3,
liminf T'$(6) < liminf T'n(¢) < limsup T'n(t) < limsup T'H(6).
n->eo0 n->0 n-)eo n-yoo

Since T¢=¢ and Td=9,
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0(8) < liminf T°n(t) < limsup T"n(1) < $(6).

oo -0
That is, all limit points of T™Mm(08) lie between ¢(c6) and ¢(c'16). Since

c>1 is arbitrary, lim T"n(6) = ¢(0). =
n-yeo

Corollary 7.5. Assume (HI). Suppose that for some 0.(0,1], IES((x)log+S((x)<oo,
p(a)=1 and p’(0)<0. If ne ¥ is such that I-n(t) ~ c® (150+) for some constant
c>0, then T'n converge to a nontrivial fixed point ¢ with 1-¢(1) ~ o™ (10+).

Proof. Under the given conditions, T has a nontrivial fixed point ¢ with

1-¢(t) = cf® (t50+). It follows by Theorem 7.4 that lim T'n = ¢. n
n-oo

Theorem 7.4. deals with the case where 2. In section 9, we shall treat the

case where F=0.

8. Limit theorems: an extention of the Kesten-Stigum theorem.
In this section, we suppose that p(1)=1. The following result was proved in
Liu (1994). _ _
Lemma 8.0. Assume (HI) and p(1)=1. Then T"éil converge to a fixed point v with
finite mean, and v¢80 if and only if
ESlogt S<ee and p’(1)<0. (8.1)
We shall generalize this to the case where the 8l is replaced by any
elements of M with finite mean.
We say that a probability measure € on [-ee,.0] is stochastically inferior to
another | and we denote by
g << if VtélR', g(t,e0] < M(t,o0].
This condition is equivalent to the existence of random variables X and Y of
distributions € and m respectively satisfing X<Y. It follows immediately that
Te << T if € << 1) 8.2)
by the definition of T. |
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For a number oe(0,1] and two probability measures € and m on [0,], we
denote by da(e,n) the (largest) lower bound of the integrals J‘Ix-y|ad6(x,y),
where © is a probability measure on R® with projections € and 1. We write d
for dl. If ¢ and n have moments of order a, da defines a distance. Clearly da
is the lower bound of E|X-Y|% where X and Y are random variables with
distributions & and m respectively. Finally, the lower bound which defines doc
can be attained and, if Fe and F,n denote the distribution functions of €& and
1, we have

den) = 15 1B 00-F 0l ax.
(Fortet et Mourier 1953; see also Royer 1984 or Guivarc’h 1990, pp.270-271.)

The following result shows that the smoothing transformation T is a
contraction in some sense.

Proposition 8.1. Let ae(0,1] and p(ot)<eo.

(i) If eeM is of finite moment of order o, then so is Te. More precisely, if
Ix%de(x)<oo, then .

5d(Te)x) < p(or) x%de(x). (8.3)
If additionally o<1, then the equality in (8.3) happens only if 8=50.
(ii) If €,€’e M have finite moments of order 0, then
da(Te,Te’) < p(a)da(e,s’). _ (8.4)
Moreover, if either

(a) a<l or

(b) o=1 with p(o)=1 and Sxde(x) = [xd€’(x),
then the equality in (8.4) hdppens onvl;ylif e=¢’.

Proof. (i). Let {Zi} be independeﬁt random variables with distribution &,
which are independent of {Ai} as wéll. Then Z:= Z AiZi has distribution Te.
Since ae (0,1],

2% <3 A% 2%, (8.5)
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By (HO0), the inequality is strict with positive probability if o<l and
P(Z>0)>0. Taking expectations gives the conclusion of part (i).
For part (ii), we choose two random variables Z and Z’ with
distributions € and €’, which are independent of {Ai}, such that
d (ee)= ]z |%
Let { (Zi,Z;)} be independent copies of (Z,Z’) which are also independent of
{Ai), and put
Z=3AZ, ad Z' =3 AZ/,
then Z and Z’ have distributions Te and Te’. Since
dy(TeTe’) < €lZ-2|%,
ZZ = ¥ A(Z-Z),
and
Iz Az-z)|* <3 A%lz-2°|%, 8.6)
where [again by hy pothesis (HO)] the inequality is strict with positive
probability if o<l and P(IZ-Z’ |>0)>O, the conclusion for the case where o<l
follows by taking expectations in (8.6). If a=1, the conclusion was proved in

Liu (1994). : ]

Theorem 8.2. Assume (H1) and p(1)=1. If e M is of finite mean with u¢80, then
T'W converge to a fixed point v with finite mean, and v¢80 if and only if
(8.1) holds.
Proof. If (8.1) holds, then T has a fixed point ve¥ with finite mean. By’\a
scale change, we can suppose that v has the same mean as L. Thus T'u > v by
Theorem 7.4. It remains to prove that if (8.1) does not hold then T"y > 80.
Suppose that (8.1) does not hold. If p is of compact support contained in
[0,b], then p << Sb and T << T“8b > 80 by Lemma 8.0.

If p is not of campact support, it can be approximated as near as we want by

measures of compact support, in the sense of d. If P’ is such an
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approximation, we have
d(T", T'W") < d(up)
from which we obtain clearly that

lim Ty = 50. .

n-)oo

9. Limit theorems: case where Inf p(x) >1.
xe[0,1]

For simplicity, we shall mainly consider the case where p’(1)<O (suppose that
it exists) and p(1)>1. Thus lgfo l]p(x) =p(1)<l. We recall that for any pe 4,

T'u= distribution of | Y,, £¢.Z_,
|6]=n © ©

where {Zo: |o|=n} are independent random variables with distribution p, which
are independent of {AG:|0'|Sn} as well (cf. Section 7). For convenience, let

us write

() _ »(n), \ ._
Z® =70y = ¥ ez 9.1)
" |0'|=n°Z° (

As usual, let q be the unique fixed point in [0,1) of the function
=3 P(N=kF. 9.2)
k=0

Then q 1is the extinction probability of the Galton-Watson process given by

attaching an individual to the vertices ¢ for which ¢ 0>O Hence

P(e,=0 if lo| is sufficiently large) =q. (9.3)
It follows that
P( 1im Z™@) =0 ) 2 q. 9.4)
nyoo

As an immediate consequence, for all £>0,

liminf T4 [0.€] 2 q. (9.5)
n-yo0

Let ¢ be the Laplace transform of W, then (9.5) implies that, for all t>0,

liminf T"¢(t) 2q. 9.6)
n-oo
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This follows from (9.5) since
T0(0) = Elexp-z™y)] = e TPz Wse),
letting ne> and then €50 gives (9.6).
If pu=93 P it is easily seen that Z(“)/p(l)ll is a martingale. If the limit of
this martingale is not degenerate, then Z(n) = Z(n)(Sl) - oo with probability

1-q (since p(1)>1), and consequently for all x>0,

liminf T“Sl(x,oo) 2 1-q. .7
n-oeo
By (9.5) and (9.7), we see that for all €>0,
lim T"Sl[O,e] = q. (9.8)
N0

This discussion introduces us to the following
Theorem 9.1. Assume (HI), p(1)>1 and p’(1)S0. In the case where p’(1)=0, we
assume additionally that ESlog ™t S<eo. If 80¢ue M, then

lim T =8, (9.9)
n-yeo '

where 80 {0} =q and 80 of®} =1-q, q being the unique fixed point in [0,1) of
. -y
the function fit)= Y P(N=k)t".
k=0

Of course, we can restate the result in terms of Laplace transforms:
Theorem 9.1, Under the hypothesis of Theorem 9.1, if 1z¢e ¢, then for all >0,
lim T'¢(1) = q (9.9°)

n-)oo

Proof of Theorem 9.1. For simplicity, we assume g=0. The general case follows
from similar lines (see also the discussion preceding Theorem 9.1). We should
then prove that

lim Ty = §_, (9.10)

n->e°

We distinguish several cases:
(a) lESlog+S<°° and p is of compact support. Write Ai= Ai/p(l) and define T

and p in terms of {Ai} just as T and p were defined in terms of {Ai}. Then T=
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T/p(1). Since p(1)=1 and

5 A e N p(D)
P(D) = EZ 5Tmloe 5T = Ty Toee(h) <0,

'I‘nu converge to some ve M with v{0} =q=0 by Theorem 8.2. Since p(1)>1, this
gives (9.10).

(b) lESlog+S<oo and p is stochastically superior to some u’#So of compact
support. Since T preserves stochastic inequalities, (9.10) holds also.

(©) ESlog+S=oo and p’(1)<0. For M=1,2,..., write A(M) =A. if i<M and AM)=0
if i>M. Define TM and Py in terms of {Ai(M)} just as T and p were defined in
terms of {Ai}. Choose M sufficiently large such that pM(1)>1 and p];l(l)<0. Thus
Tﬁu > 8. Since Tu >> T, p, T8 . m

By the method of the proof, we have in fact the following comparison result
which may apply when (H1) does not hold or p’(1)20, or even p’(1) does not
exist.

Corollary 9.2. Assume that for some N<N and AiSAi (I<i<N) such that either

N N N
EN<w, EX Alog A <ee, € T A>I and E 3 AlogA <0, (9.11a)

i=1 i=1 i=1
or

N + N N N
EN<oo, ELZ Ai] log LZ Ai] <oo, E 2, Ai>1 and E 3, AilogAi=0, (9.11b)
i=1 i=1

i=1 i=1
then (9.9) holds for all pe M-{SO].
In particular, we have

Corollary 9.3. If for some constant integer n>0 and random variables OSAiSAi,

n n
€A Jog*A <o for all ISisn, €Y A;>1 and €. Ajlogh; <0, (9.12)
i i i=1 i=1

then (9.9) holds for all pe M-{SO}.

We remark that the condition (9.12) holds for some neN and Ai=Ai (1<i<n) if

n
Y AlogA <0.  (9.13)

lEAilog+Ai<oo for all i1, p(1)>1 and liminf E
i=1

The result applies for example in the context of branching processes with
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Eﬁ:w. The following result gives a neccessary condition for $#J which applies
when (H1) does not hold.

Corollary 9.4. If p(1)>1 and (9.13) holds, theﬁ F=0. More generally, if for
some NSN and AiSAi (I<i<N) such that eithe (9.11a) or (9.11b) holds, then F=0.

10. Totality of fixed points; more on convergences
Theorem 10.1. Suppose that (H2) holds, that p(a)=1 and p’(o)<O for some

ae(0,1]. If pe B, ¢ then there is a unique Q€ F so that

lim L0 if p'(0)<0 (10.1a)
t»-0+ t p(-logt)

and T — LY =1 if p'(o)=0. (10.1b)
10+ ¢t p(-logt)llogtl

Proof. The uniqueness comes from Theorem 7.4. If the problem is non-lattice or
o=1, then fBoc,s consists only of constants, so this result follows from
Theorems 3.3 and 4.3. If o<l and s>0, the argument is the same as that of the
proof of Theorem 5.1 of Durrett and Liggett (1983,pp.297-298), by using again
our Theorems 3.3 and 4.3 instead of their Theorems 3.1,35 and 2.18. It

proceeds as follows. Let g(8)=¢ if p’(a)<0 and
o -0x
0o 1+x

which is asymptotic to l—OllogGI as 0-0+, if p’(a)=0. Then by criterion 2 of
Sect. XIIL4 of Feller (1971), since pe Boc,s’ it follows that the function
defined by

y(8)= g[6%p(-logh)] if p’(c)<0 and y(8)= gl6%p(-logh)/al] if p’(C)<0
is in £ It is easy to check the property (10.1) holds for y (instead of ¢
therein). By Theorem 3.3, we can take e %, and by Theorem 4.3, the property
(10.1) holds for ¥ and some pe By s (instead of ¢ and p). Since 8%p(-logd) is

strictly increasing on (0,) and tends to O or « as O tends to 0 or e
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respectively, the equation
u%p(-logu) = 6%p(-logh)

defines a function u=u(B). By the periodicity of p and p, u(ees)zu(B)eS. Hence
u(G)Ai)=u(6)Ai (because logAi=ns for some nez) and v(0)/0 is bounded away from
0 and e on (0,%). Therefore, if we define ¢(0)=y[u(0)], then ¢ satisfies Td=¢
and (10.1). It remains to show that ¢e £. Since (10.1) holds for both ¢ and v,
1-6(0) ~ 1-y(0) as 0-0+. The proof of Theorem 7.4 shows that llllg T y=¢, thus
completing the proof since ye £. =

Let us now come back to the problem of convergence.
Theorem 10.2. Suppose that (H2) holds, that p(a)=I1 and p’(a)SO for some
oe(0,1]. If ye £ is such that for some pe fBa‘ g (10.1) holds with ¢ being
replaced by \, then Ty converge to some ¢e¥F which also satisies (10.1). In
particular, if for some ye £ and constant ¢>0,

1-y(t) = o (10)  if p'(e)<0
and
1-y(t) ~ c®|logt] (£50) if p’(o)=0,

then Ty converge to a canonical fixed point ¢e F which satisfies

1-01) =~ o™ (150)  if p'(a)<0 (10.2a)
and
1-0(1) = ct®|logt| (150) if p’(o)=0. (10.2b)

The canonical fixed points are exactly those ¢ in F which satisfies (10.2).
If the problem is nonlattice, all fixed points are canonical.

Proof. By Theorem 10.1, we can find ¢c ¥ such that (10.1) holds. Thus 1-y(t) ~
1-¢(t) (t-0+). By Theorem 7.4, ll& T"w=¢. By Theorem 4.3, under the condition
(H2), a canonical fixed point ¢ satisfies (10.2). By the uniqueness in Theorem
10.1, for each constant ¢>0, there is only one fixed point which satisfies
(10.2). So any fixed point satisfying (10.2) is canonical. If the problem is

nonlattice, By s consists only of constants, thus completing the proof of the
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theorem. m

We now consider another natural question: if the initial element ye £ does
not satisfy (10.1), what can we say about the iterations Tn\y? Let us consider
some regular cases to get some ideas on this question. We distinguish the
cases according as p’(a)<0 or p’(a)=0. We recall that q is the unique fixed

point in [0,1) of the function fiy)= 3, P(N=k).
k=0

Theorem 10.3. Assume (H1) and, for some ae(0,1], p(a)=1 and p’(a)<0. Let ye £.

(a) If for some ac(0,0), ¢>0, t0>0 and all 1<t

I-y(1) 2 o, | (10.3)
then Vt>0, '
lim T'y(t) = q. C (10.9)
n-»°o

(b) If for some be(q,=), c>0, t0>0 and all 1<t

1) < e, (10.5)
then Vt>0,
lim T(t) = 1. (10.6)
n-)00

(c) In the case where p’(0)=0, (10.6) also holds under the weaker condition

that for some c>0, t0>0 and all 1<t
1y(1) < o™ (10.7)

In particular, if 1-y(t) ~ e (t-0+) for some c>0, then lim T'y(t) = 1. A
n-)°0

Proof. (a) Let de(a,a). Then p(d)>1 and p’(b)<0. By the conjugate relation
TS=S,T, we have
TS, = ST . (10.8)
Since p(d)>1 and p’(d)<0, by Theorem 9.1°,
lim TN0,0 = g

for all t>0, where ¢ (1) = &', Writing

d
ym=e",
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by (10.8) we see that
lim T"\yd(t) =q

>
for all t>0. Since
Ly, "t (0,
by (10.3) we can choose t0>() sufficiently small such that, for all 0<t<t0,
1-\|1d(t) < 1-y(t).
Hence by Lemma 7.3, for all t>0,
limsup T'y(t) € limsup T'y (O =qg.

n-3c0 n-»oo
Since we have always liminf T"y(t) 2q [see (9.6)], (10.4) follows.
-y

(b) If p’(a)=0, the conclusion follows from part (c) of the theorem. So we
only consider the case p’(c)<0 for the moment. If o=1, the condition (10.5)
can happen only if y=1, since Wy then corresponds to a measure with mean 0.Thus
we can suppose that o<l. Let de(a,b?l) be sufficiently near to o such that
p(d)<l. This is possible since p(a)=1 and p’(a)<0. Note that [p(oc)'le]'“ES1
converge to some pe M and p(d)<l, T381->80. So by (10.8),

lim T"\|Jd =1,
n->co
d
where \ud(t)= et By (10.5),
Ly () 2 -y
for t>0 sufficiently small. So by Lemma 7.3,
liminf T"y(t) 2 liminf T“\yd(t)=1.

n>oo >0

Therefore lim T"y(t)=1.

D00

(c) We shall use again the conjugate relation Tsa=SaToc' Since p(o)=1
and p’(c)=0, by Theorem 8.2,
. n —
lim Ta¢o(t) =1
n-c0

o
for all >0, where ¢ (1) = et Writing Woc(t)= et and using
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T“sa=saTg, we obtain

lim Ty, (1) =1

n->c0

for all t0. By a scale change, we see that for all constant ¢>0 and

and all t>0,
lim T%() =1,

n-oc0

where \'i}(t)=\|!a('5t). Since
1-9@) ~ e*4* (1-0),
by (10.7) we can choose ¢ sufficiently large and t0>0 sufficiently small such
that, for all O<t<t,
1-y(t) 2 1-y(v).
Hence by Lemma 7.3, for all t>0,

liminf T"y(t) 2 liminf T§() =1.

n-300 n-y00

This gives (10.6). ]

Corollary 10.6. Assume (HI1) and for some 0€(0,1], p(o)=1 and p’(0)<0. Let ve M.

(a) If v is such that for some ac(0,0), ¢>0, x0>0 and all x>x

o
V(xee) 2 ex'?, (10.9)
then
lim T = § (10.10)
n->0°
(b) If o<l and Vv is such that for some be(a,), ¢>0, x0>0 and all xX>x,
V(x,) < cx”, (10.11)
then
lim TV = 80 . (10.12)
n-00

(c) In the case where o<l and p’(a)=0, (10.12) also holds under the weaker

condition that for some ¢>0, x0>0 and all x>x

(ig
V(xeo) < ex'® (10.13)

In particular, if v(x,) ~ex & (x00) for some c>0, then lim T"v =80.
-0

46



Smoothing Transformation

Proof. This follows immediately from Theorem 10.5 and Lemma 11.1 in the next

section. =

11. Moments and Tails
The following Tauberian Theorem has been used in the Sect.10, and will also be
used later.
Lemma 11.1. Let pe M and ¢ be its Laplace transform. Then
(a) for all t>0,
1-0(1) = (1)) p(xeo) with x=1.
(b) For all ae[0,1) and any slowly varing function Ux)20 at ee,

T(1-0) liminf L%%2) < 1imins 1-0C0
xs00 x Ux) 20 te(1/t)

< limsup (Ix-¢(t) I'(1-o) lzmsup u(x,oo)
t+0 t°e(1/t) X=00 e(x)

Proof. For part (a), it suffices to note that for all t and x >0,
1-0(t) = 15 & Via(y,e=) dy
) e Vlyeddy 2 pxeoltsy ¢ Vdy

v

B(x,0) (1-e7%).
For part (b), let us write

sup 1-¢(t) b

a - sup M (x,0)
= lim; and lim;
37 00 Opa) T R xaeed ™ y(x)

We first prove that I'(1-a)b <a. By the definition of b, for all b<b, there is
some x >0 such that for all x2x,

p(x,00) 2 bx %ex).
Thus

1-0(t) = Uy ¢ Vhly.e) dy
2 bt §% N Wy uydy = bi* T, €*x axydx.
b
Since for all fixed x>0, «x/m)e(l/t)y -1 as t+0, the dominated convergence
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theorem gives

liminf 120 > b T(1-00.
0 (%4 1/t)

Letting b-b, we obtain that a = bI'(1-a). We now prove that a<bI'(1-a). We can
suppose that b<eo since otherwise there is nothing to prove. For all b’>b,
there is some xb,>0 such that for all x_>.xb, ,

n(x,00) < b'x %e(x).

Therefore

1-00) = U ¢ Vuyedy Stx+ Bt ST Yy Cuy)dy
.

- y O 00 =X_ -0
=tx, + b't” f txb,e X x/t)dx.
Since t/tae(llt)-»O as t-0, the same argument as above shows that asb’T'(1-or)

and then a<bI'(1-o). This ends the proof of the Lemma. .

Theorem 11.2. Assume (H1) and for some 0e(0,1], p(a)=1 and p’(1)<0. If pe %,
then
(i) Wxe) = O(x”XUx)) (x+e0);

(ii) 5% x%du(x)<ee for all ae[0,0);
(iii) If o=, then S xdy(x)=co if and only if ESlog™ S=co or p’(1)=0;
If o<1, then J’°0° xadp(x)=oo.

(iv) If o=1, then J’z W(teo)dt = Yx) (x>+e0) is slowly varing.

Proof. Part (i) follows from Theorem 6.2 and Lemma 11.1. Part (ii) follows

from part ) since S x%du(x) = af x*'p(xee)dx. For part (iii), the

conclusion for a=1 comes from Theorem 0; The conclusion for a<l follows by

Proposition 8.1, since the equality in (8.3) holds with e=u. Part (iv) follows

from Theorem 6.2 and the general Tauberian theorem. n
Of course, in the case where a<l, Theorem 6.2 can be applied to obtain tail

behaviour of a fixed point pe . For example, it is easily seen that we have
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Theorem 11.3. Assume (H2). Suppose that for some o€ (0,1), p(a)=1 and p’(o)=0.
If the problem is nonlattice, then for all ue¥, there is a constant ¢>0 such
that, as x-eo,

U(x,00) ~ ox ™ if p’(o)<0
and H(xe0) = cx Hogx if p’(o)=0.

Some similar results can also be derived in the lattice case.

In the case where p(1)=1 and p’(1)<0, we need further informations about
moments of order greater than 1. The following result was given in Liu (1994):
Theorem 11.4. Assume (H1). Suppose that p(1)=1 and p’(1)<0. Let Z20 be a
solution of (E). Then for all a>1,

EZ'<os if and only if ES*<es and p(a)<l,
provided that one of the following conditions holds:

(a) 1<a<2; (b) a=23,..; (c) WMax Al <eo; (d) INU_<oo.

Put

o = sup{a=l: p(a)<l},

and
B = sup{a21: ES'<eo}.

Since E [Max Ai]a < p(a), IMax A< [p(@)]™® (where I.1_ denotes the norm
in L7, letting a+oo we see that
o = if and only if IMax Al <L

By Theorem 11.4, at least at the case where WMax ANl <eo or ll&ltw<w, the
number 0AB(Se0) is the critical value for existence of moments of pe %:
Iy du(x)<eo if a<O”P,
and
f; Adp(x)=eo if a>a"P.
Of course, the tail behavior of pe# differs according as OB <eo or =e. In the

first case, the situation differs also according as o> or asf.
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Case 1: 1<f<a. We have then B<ee and p(B)<l. Following Bingham and Doney
(1975), we obtain the following comparison result:
Theorem 11.5. Suppose that p(1)=1, p’(1)<0, 1<B<a, and llM?x Aillw <oo, Let 720
be the unique fixed point of T satisfing EZ=1. Then for all slowly varing
function Yx) at oo, the following assertions hold:
(i) If B>1 is not an integer, then
(a): P(S>x) =~ x%Yx) (x900) & P(Z>x) = xUx)/[1-p(B)] (x30),
and (b): ES°YS) <o & EZYZ) <oo,
(ii) If B>1 is an integer, then

(a): ES' jger)” UX) (x5) & EZ'1 70 ™ UXVII-p(B)] (x2c)

provided that lim Y x)=eco;

X->00
(b): ES'T g nf U (x5m) & €21 70 7 Ux)1-p(B)] (x02)

provided that ES <oo; and

(c): ESL(S) <o & EZ%2'(Z) <oo,
where e*(x).'= J‘: eg—t)dt.

(iii) If for each 1<a<b<es, limsup B*(b“)/e*(a“)<oo, then

X300

ESE (S) <0 & EZL(Z) <o

(iv) In particular.for all a>0, taking e(x)=loga'1x Jor x>1 in (i-iii),we have

ES®(logtS)? <o & EZYlogtZ)? <o,
where B>1 (is integer or not), and

ES(log*$)!*% <o & EZlogTZ)? <oo.
Proof. With some slight changes, the arguments of Bingham and Doney (1975) for
the proof of their Theorem 2 applies in the present setting. The point is
that, their proof is based on their functional equation (**) (Bingham and
Doney 1975, p.70), which corresponds to our functional equation ¢=T¢ with

M?XAiSI' A check of the details of their proof shows that the condition that
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M§xAiSM for some constant M>0 suffices. =

Case 2: 1<0<P and O<eo. The following result was given by Guivarc’h (1990):
Theorem 11.6. (Guivarc’h 1990) Suppose that p(1)=1, p’(1)<0, n.'=||1.\'lll<>° <oo, and
A(I<i<n) are independent and identically distributed. If the problem is
nonlattice dnd p(x)=1 for some y>1, then for all ueF, there is a constant c>0
such that

p(x,00) ~ ex X (x300).

The case where 0”f<ee is composed of the cases 1 and 2. It remains the case
where 0AB=eo, or egivalently 0t=p=co.

Case 3: 0=P=cc. We have then Mgx A<1 almost surely. This case was studied
in Liu (1993 and 1994b). For example, we have
Theorem 11.7.(Liu 1993 and 1994a) Suppose that M(izx AiSI almost surely, p(1)=1
and p’(1)<0. Let

Y=inflae [0,1): WS(7N S 1),
where inf @ =1. If III'\-/ll‘ao <oo, O<y<l, and Z20 is the unique solution of (E)
loglEZk

08

with €EZ=1, then (a) lim = v; and (b) for some constant A>0 and all £>0,

koo
exp( -x(”Y) +£) SP(Z>x) < exp( -AxI/Y)

for all x>0 sufficiently large.

Liu (1993 and 1994a) gave also sufficient conditions under which for some

constant A1>O and all x>0 sufficiently large,

exp(-A x7) <P(Z>x).
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