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FLOWS IN NETWORKS AND HAUSDORFF MEASURES ASSOCIATED.
APPLICATIONS TO FRACTAL SETS IN EUCLIDIAN SPACE

Quansheng LIU
IRMAR, Université de Rennes 1
Campus de Beaulieu, 35042 Rennes, France

Abstract

We considér a ramdomly capacited network &, composed with a tree J generated
by a branchiny process and a capacity X o>O assigned to each vertex ceJ, where
X c,,(c)'e J) satisfy some natural independent and self-similar properties. The main
purpose of this paper is to find an optimal weight function ¢ so that a
positive flow is possible through the network wi;h modified capacities
oX c)' The problem is translated to a study of some Hausdorff measures
associated. The function is found to be of the form ta|log log %I“ with a and
B caculated explicitely. The results answer a question of Falconer(1987) and
solve a conjecture of Hawkes(1981). As applications to random constructions of
fractal sets in Euclidian space, we generalize and improve the results of
Graf, Mauldin and Williams (1988). As a byproduct, we give also a
generalization of a result of Kahane and Peyritére (1976).

1.Introduction
Let ¥ = J(w) be a random tree generated by a branching process with a
single founder member and with a family distribution N. The root of J is
identified to the founder member which is represented by the null sequence @.

The vertices in the n-th level are represented by a n-terms sequence o =
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(01,62,...,0'n) of non-negative integers which correspond to the particles in
the n-th generation of the branching process. The edges of 7, noted by (6,6%j)
(ISjSNO_) are formed by joining the vertices ¢ = (0'1,0‘2,...,o'n) to their
descendants o*j= (ol,cz,...,cn,j), where Nc denotes the number of descendants
of o in the next generation. J is then identified to a set of finite sequences
of positive integers.

Let 5:5((0) be the boundary set of 7, namely the set of infinite sequences i
such that ilnes for all n20, where i|0=@ and iln= (i i,..i) if i=
(il’iz""’in"")‘ 7 is called to be the branching set associated to 7.

Let ¥=%5(®) = (0,X o) (ceJ) be an associated random network formed by the
tree I=7(w) and a capacity X c;>O associated to each oe J. We suppose always that
(Xc) is decreasing in that

X o*js Xs
if o*je9J, where o*= (cl,oz,...,on,j) if o= (61,62,...,0'“). We suppose also
that the network $(w) is self-similar in that for each ¢ € 7, the random
vectors

- TO'*N )

Z= (NG Tgy, T §

o* ”

are independent and identically distributed, where

Tor= Xov/X,
(1g§sN 0,) represent the ratios of the capacites X o*; to X - Thus Voe g

0<T_s1 and X = Xy nl‘:! Tyl

where o|k= (6,:6,40) if 0= (6,.6,...0) (I<ks<n) and lo|=n denotes the

length of ©. For convenience, we assume the normalization

x®=1
|ol

a.s. Thus X =11, _, TO'lk

and Ti=Xi (1<i€N). Also, we write TQ for XQ and

Z = (N; Tl, TN)

for ZQ = (NQ; Tl, - TN), and we say that §= §(w) is a self-similar
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network generated by Z.

A flow or positive flow in the network §(w) is a function #fmz T — [0,00)

such that
i) = X a5 g fiMD) Ge9), (2Y)
0 < fii) < X; (ie), 2)
0 < D). 3

Intuitively f represents the rate of flow of a liquid through the network.
Condition (f1) reflects the fact that the amount of liquid reacting a vertex
of ¥ equals that leaving it, (f2) ensures that the flow through each edge does
not exceed the edge capacity, and (f3) is the positivity condition, that a
positive amount of liquid is able to flow the system from & to infinity. We
shall principally be concerned with conditions under which a positive flow
through a network exists.

The most important problem is to know when a flow through a network is
possible and, more presicely, how to modify the capacities in a optimal way in
some sense such that a flow is possible. The main general result on the
existence of flows is the "max-flow min cut”" theorem of Ford and Fulkerson

(1962). Let §=(O',Xo,) be a self-similar network generated by Z= (N;

ced
Tl,...TN), Falconer (1986) proved that a flow through the network is possible -

with positive probability . if E(leTi) >1 and is a.s. impossible if E(Z?=1Ti)
<1. Here is to solve the more exact problem as follows:

Given a self-similar network § = (0, X 0') how to modify the capacities

ceJ’
X _ in a homogeneous and optimal way in some sense such that a flow through the

c
network is possible? More exactly, what is the optimal function ¢: [0,e0)
— [0,%0) for which a positive flow through the network (o, ¢(XG)) ceT exists?
To solve this problem, we shall study some Hausdorff measures on the
branching set 7 associated with the network § with a metric d defined by

d(i.j)= XiAj ’
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inj (called the common sequence of i and j) being the maximal sequence
q=(ql,...,qk) such that (il,...ik)= Gl""’jk) =(ql,...,q ).

First of all, we shall translate the criterion of Ford and Fulkerson (1962)
in terms of Hausdorff measures: .

Theorem 1. Let 5=(0.X ) c o be a self-similar network generated by Z= (N;
Tl""TN)’ and ¢: [0,0) — [0,0) a non-negative function, increasing and
continuous from the right. Then almost surely

a positive flow through the network (o,¢(X 6)) (ced) is possible
if and only if
Rq’(:‘;) >0
where 3{¢(. ) represents the Hausdorff measure on 7 with respect to the
dimension function ¢, g carrying the metric defined above.

Our question is then to find an optimal dimension function ¢ to measure the
branching set 7. As we may expect, our results will be havily dependent of the
distribution of

Sa):= X} T,
where xe [0,00). Writing
o= min {ae[0,e0): E[S(a)] < 1}, where min & =+oo,

then ae[0,0] is well defined and E[S(0)]<1 if o<es, as we shall see later. We
exclude the case where N=1 as. Thus a=0 if and only if E(N)<1, or if and only
if the tree teminates a.s. or again, if and only if 7=0 as., and o< oo if and
only if there is a M>0 sufficiently large such that E(S(M)J<1, which hapens
quite often. Thus we suppose always that

0<0i<oo
if it is not specified further. We shall see that o is the least solution of
E[S(x)]=1 if there is at least a solution. Moreover, the equation has a unique
solution if additionally 1<E(N)<e. Usually we have E(S(®))=1, but the case

E(S(x))<1 may hapen. (see Lemma o in section 3).
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In all the theorems stated here, we suppose always the moments conditions

EIS(@?l<es and EET_ Tlog)<oe.

We shall see that o is in fact the Hausdorff dimension of 7.

Theorem 2. (i) dim () = & a.s. on J(®) # D. (ii) #HT) <o a.s. if oi<oo
(iii) (a) If €[S(a)]<] then #¥™(T)=0 as. (b) If E[S(o)]=1 then O0<H™(T)<oo if
and only if S(a) =1 a.s. Consequently, Ra(§)=0 as. if S(o) is not as. a
constant. '

Let us write

6,® = t“(oglog ",
wheré 0Sb<eo, and

| B = min {be[0;1): S(l'gﬁ) <1 as.}, where min @ :=1,

we shall see that Be[0,1] is well defined and B<1 if and only if | S(M)<1 a.s.
for some sufficiently large M>0, which happens usually. If [E(S(oc))=1, then B=0
if and only if S(a)=1 a.s. If the equation | |

ess sup S(Tgs) =1
“has a solution or some solutions, then P is the least one and certainly B<1.

For the remainder of this section we suppose always that |
E(S(o))=1.

If X>0 is a random variable, we write WXli= ess.Sup X for the‘ essentigl
superior of X, |

Theorem 3. If INU__<co and 0<B<1, then J{¢b(§ ) >0 a.s. on 5#@ if and
only if b2B; If INN_=ee or B=1, then Jc¢b(?} ) =0 a.s. if 0sb<p.

Let us write now

W= 1im T g|u X
Since E[S(a)]=1, the limit exists a.s. with E(W)SI by the martingale
convergence theorem. We shall denote by rb=r(Wb) the radius of convergence of

b
the moment generating function E(e‘w) of WP (O<b<e=). The following result
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deals with the critical case where b=.

Theorem 4. (i) If P=0 then 0<3c¢“(§)<oo a.s. on T#D, and, in fact, u¢“(s})=1
as. if 9#3. (i) If B>0, then 0< # T) <eo as. on I#D if and only if
O<r(W'"®)<eo, If INUi_<o and 0<P<1, the condition reduces to r(W"®)<eo, which
holds particularly if there exists n>1 such that

o E[S(a)” |N=n]'® .0, @)

i=1 8
! n

i

a [ay_q1M
or equivalently I (1 E[S(a) BIN—H]
i=l n

) < oo, Moreover, we have

u¢“(§)= (r W as.

Corollary 1. Let §= (0, X c,) be a self-similar network generated by Z=

ced
N;T l""TN) . For (<b<eo, write ¢b(t) = ta(loglog %)b. Then the function

¢B(t) = ta(loglog %B is the optimal weight function for the existence of

positive flows through the network in that

(i) if b<P, a positive flow through the network (o, ¢b(X <3,)) is a.s.

ced
impossible;

(i) if b2 a positive flow through the network (o, ¢b(X G)) is as.

ceT
possible on the event that the tree process does not terminate, Here, in the
case where IINIl_=oo or B=1, we suppose additionally that 1, >0

(iii). If I < (or more paticularly if (Ln) holds) and ¢(t)=0 is a

function smaller than ?, in that lim ¢(t)/¢ﬂ(t)=0, then a positive flow
t-20 +

through the network (g, ¢b(X6)) is a.s. impossible.

CET
This answers our original question.
A subset T of 7 is termed a cur-set if Vied there exists a unique n20 such

that ilnel. Let ¢ be a non-negative function defined on [0,0), we are

interested to the limit behavious of cut-set sums Y, ceT X 0')' Put

10@)= lim 1),

where
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M (@)= inf {E _r &(X,): T is a cut-set of 7 and ||k Voer}.

For a self-similar network §= (0,X c) (ceT) generated by Z=(N; Tl,...,TN),
after showing that #%@)=0 as. if o®=t" and #%F)= as. on THD if P(B)=
tm(log%-)a (Va>1) under some conditions on Z, Falconer (1987) demanded what
was the exact function ¢ for which O<M¢(7)<oo a.s. on :;#@ ? The following
result answers this question:

Corallary 2. Let 5= (0,X c,) (ce9) be a self-similar network and suppose
that p(S(c)>1)>0. Then O<H *(T)<eo as. on T#J if and only if O<r(W'P)<oo, If
INI_, and 0<B<l, the condition reduces to r(W'")<es, which holds if there

E[S(c)® | N=n]"®

[
n

Mq)(?i)— (r )BW a.s.

> 0. Moreover, we have

exists n>1 such that “T—n

If 9 carries .the metric dz(l,j)= 2 I'A-’I and N is of geometric
distribution, Hawkes (1981) proved that 0<3€¢1(§)<°o a.s. The author (1992) has
recently extended this result to the general | case where N is of arbitrary
distribution, answering a conjecture of Hawkes (1981). We remark that Theorem
4 applies for X, =2" -lil (Z=(N;} - )) yielding that

Corollary 3. If :‘T carries the metric d (l,J)" I"‘Jl, then 0<3£¢ (57)<o° a.s.
on 27;&@, where q)B(t) = t (Ioglogf) with o= logeE(N)/log2 and B:

1-loge(N)/logiiNn__ if either of the following conditions holds: (i)#Ni_<ee (thus

tN
B<1); (i) NI =oo (thus B=1) and there exist t >t >0 such that IE(e )= and
t N
E(e' )<eo. Moreover, # (SI)-(r DW as.

Our next result generalizes a theorem of Kahane and Peyriére (1976).

Corollary 4. If ¥Nu_<o and B<1, then Jim 11‘.’(1151_5(%"_) B; if WNI_=eo or P=1,

logE(W ) s
then Ll)g inf Tlogk~ = 2 B.

The last application is to study the Hausdorff measures of some fractal
sets in R™. We shall generalize or improve some of the results of S.Graf,

R.D.Maudin and Williams (1988) and of Falconer (1986 and 1987) concerning
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the exact Hausdorff dimension of some self-similar fractals.
Let us indroduce the random construction of Graf, Mauldih and Williams
(1986 and 1988). Let J be a nonempty compact subset of R" which is equal to

the closure of its interior, ¥ be a tree generated by N and
J = J )(ceT)

be a family of random subsets of R™ satisfying three properties:
(1) For almost all ® € £, Jg(m) = J and for every ced, J o_(oJ) is
geometrically similar to J;

(2) For almost every ® and for every o9, J c,,.‘1((1)), J 0'*2((’))""’ J G*No_((o)

is a sequence of nonoverlapping subsets of J G((o) (A and B nonoverlapping means
int ANnintB =0 );

(3) The random vectors Z(I = (Nc; To*x""'To*No,)’ o € 9, are i.i.d., where

c*n(m) equals the ratio of the diameter of J o*n (w) to the diameter of J (0))

Our interest centers on the asymptotic properties of the random set

K) = J ((n)

n= l IO' |-n
Given a dimension function ¢, the net measure V¢(K) ofK with respect to the

net J is defined in a analogous way as Hausdorff measures but using covers of

sets in J:
V@ = 1im V{0,
3300
where Vg(K)= inf {Zi¢(Ui): KUU, diam(Ui)SS and UeJ}.

Net measures and Hausdorff measures are closely related, see Rogers (1970)
and Falconer (1986). We write V' for v¢ if ¢t)=t" (a>0). The Hausdorff
dimension of K with respect to the net J (or to the net measure) is by
definition

diva= inf{a>0: V*(A)=0}= sup {a>0: V*(A)=co}.
Mauldin and Williams (1986) and Falconer (1986) proved that the Hausdorff
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dimension of K is a.s. o defined above if K#J. In the case where N is a
constant, Graf, Mauldin and Williams (1988) have calculated some exact
dimension functions. We shall establish a very general result for net
measures, which prove very powerful to find exact dimension functions. Even in
the case where N is bounded, our result is sharp, both in theory and in
practice.

Corollary 5. Let K be a random set constructed above. Suppose that for each
ceT, J o*i contains a point of K which is not contained in any J ot (i).
Using the notations above, we have

@) dirnv(K)= o a.s. on K#J;

(i) If B=0, then 0<v¢“(1<)<oo a.s. on K#@. In fact, v¢“(1<)=1 a.s. if K#@.

(iii) -If P>0, then 0<v¢“(1<)<oo as. on K#Z if and only if O<r <eo. If
INIl_<e and O<f<l, the condition reduf:es to r, <eo, which holds in particular

E[S(a)"l | N=np'®

B
n

vq)"(K):(rl /s)BW a.s.

if there exists n>1 such that nT_l > 0. Moreover, we have

This result enables us to calculate all the exact dimension functions
of almovst all the examples of Graf et al.(1988) and Falconer (1986).

The content proceeds as follows:

In section 2, we give some preliminaries containing the notations,
definitions  of &ees and capacited networks and Hausdorff measures
associated. We shall also gather some topological properties of the limit
set 7.

In section 3, we establish some interesting limit theorems on tree
processes. We shall calculate the critical value PB. A necessary and
sufficient condition will be given so that the radius of convergence r(W 18y

18

of the momoent generating function Ee™ ) is positive. This generalizes a

result of Graf et al.(1988). As a corollary, we obtain the order of growth
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of the moments of W, which generalizes a result of Kahane and Peyriére (1976)
concerning a martingale of Mandelbrot. A simple sufficient condition will be
also given to ensure (W ®y<oo. The argument is mainly based on a
distributional equation of the type W=§:I;I=1Aiwi with some independent
properties (see the equation (3.3)).

Section 4 is to give basic estimations on Hausdorff measures of the
branching set f‘; with adduced metric of the network. We establish the results
for cut-set sums for convenience, although they hold for Hausdorff measures.
We calculate the exact value of the lower limit value of cut-set sums of the
type ZO'EF ¢B(X 0)’ and, in particular, we give a necessary and sufficient
condition for the lower limit to be zero, positive or finite.

The main results are stated in section 5. Theorem 5.1 is to translate a
criterion of Ford and Fulkerson in terms of Hausdorff measures for existence
of a positive flow through a network. The result holds in the deterministic
case. Theorem 5.2 gives the Hausdorff dimension o and the o-dimensioal
measures. In Theorem 5.3, we calculate the exact values of Hausdorff measures
1 b(f;) of the limit set :; with respect to the dimension function of the type

¢b(t)= ta(loglog%-)b (b=0). We then establish a criterion for the Hausdorff

measures b(.:7) to be zero, positive or infinite. Theorem 5.4 gives the
critical value B and ensures the positivity of Hausdorff measures with respect
to the critical function ¢B(t)=ta(loglog%)8. Theorem 5.5 is the most important
and fluquently used result. It gives a criterion for ¢B to be an exact
dimension function. Theorem 5.6 deals with the case where S(ot) is too large,
such that the function of the form ta(loglog%-)b is too small to measure the
set. We shall see that Falconer’s results (1986 and 1987) will be
considerably improved.
Section 6 is to give some applications of the main results to random

constructions of fractal sets in Euclidian space. Theorem 6.3 will prove

10
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very powerful to find exact dimension functions.

In section 7, we give a series of examples to show how Theorem 6.3 enables
us to caculate exact dimension functions of self-similar fractal sets.
Examples 7.1 and 7.2 is a generization of the construction of the classical
Cantor set. Example 7.3 is a construction of random Von-Koch curves. In
exarhple 7.4, we give a quite general construction of a random set of high
connectivity. The example is taken from Falconer (1986) where the a.s.
dimension is calculated. Here we give an exact dimension function. As a
corollary, we obtain the exact dimension functions of Graf et al.(1988) on
Mandelbrot’s percolation Processes and their modified curdling. Examples
7.5-1.7 give constructions where the number of descendants may be unbounded.
Example 5.8 is about. the zero set of Brownian bridge. This is taken from Graf
et al.(1988) where the exact dimension has been given. We take it to
illustrate how the famous function tm(loglog%-)m can be obtained very
easily by Theorem 6.3. In example 7.9, we give a construction of a fractal for
which the functions of the form tm(loglog%)b (Vb>0) are too small to be exact
dimention functions. In this case, we «calculate a critical function of the

form t*(log)"

2. Capacited networks and Hausdorff measures associated

2.1 Sequences and trees

Let N be the set of positive integers, N the set of all k term sequences,
T= U‘:’gom" the set of all finite sequences and I = NY the infinite sequences i
= (il’iz' ...). We make the convention that n® contains the null sequence &.

If i = (il’iz’ ...,in) (n<e) is a sequence, we write Ill = n for the
length of i, and ilk = (ii,..i) (ken; il0=@) for the curtailement of i
after k-terms. If n<e, we write i* = (i l,i2, ...,in+1) € T for the sequence

obtained by augmenting the n-th component ill of i to in+ 1. If j= (ix’jz’

11
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...,jm) is another sequence, we write ij = i*j = (ix’iz""’in’ jx’jz’
...,jm) for the sequence obtained by juxtaposition. We partially order T by
writing 6<t or T>0 to mean that the sequence T is an extension of o, that is T
= o*1’ for some sequence 7€ 7. We use a similar notation if c € Tand T € L
We remark that the null sequence & < i for any sequence i. If i and j are two .
sequence, we write iAj for the common sequence of i and j, that is, the '
maximal sequence q such that q<i and q<j.

A tree 7 is a collection of finite sequences of positive integers
satisfing three conditions: (i) QeJ; (ii)) ieT implies i’eT for any i'<i; (iii)
If ieg, then i*jeJ if and only if ISjSNi for a positive integer NiZ() (We
allow the possibility that Ni=0’ but always assume that Ni<oo). The sequences i
of J are called the vertices of 7, and the couples (i,i*i) the edges of
9, where ie7 and i*i € 7. Thus Nis #{ieN: i*i € T} represents the number of
outgoing edges from the vertex i in the graph of J. We write I = {ieT:
|i |=k} for the set of sequences in 7 of length k. (cf. Neveu 1986)

Let 7 be the set of infinite sequences j such that i € J for every
finite curtailment i < j. We may regard ?} as a topological space in a
natural way by taking as a basis of topology {B(i)}i e where

B(i)= {je7: i<j}. 2.1)
The B(@i)(c7) will be called the balls of (?~T,‘c). The basis {B(i)} (i€e7) is
countable.The topology T is that induced by the product topology of N when 5'
is regarded as a subspace of |N'N, N carrying the discrete topology. The space
(S}, T) is metrizable, and a  possible choice of the metric is dz(i,j) =
2 Ii'\j l . We gather some topological properties of (S.T,'r) as follows:
Lemma 2.1.'(55) is a metrizable and compact topological space.
Proof. We only need to show that (?-T,'c) is a compact topological space. To
seec this, we remark that (5.7 ,t) can be regarded as a closed subspace of the

product topological space E=n°:=1En’ where En={1,...,Zn} carries the discrete

12
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topology, Zn= card{ie J: |i|=n}. Since E is compact by Tychonov’s theorem, the
proof is completed. o

7 will be called the boundary of 7. If 7 = 7(w) is a random tree generated
by a branching process (that is, the numbers Ni of outgoing edges from the
vertexes i form a family of independent and identically distributed random
variables), 5 is then called the branching set associated with J (Hawkes
1981).

We say that a subset I' of 7 covers 7 if for every je§ there is a sequence

iel” with i<j, or namely jlnel“ for some n>0. If T" covers :‘}, we say also that T’
is a covering of 7 or T is complete in 7, or again T" is maximal in J. A cover
I" is minimal if for every jef} there is a unique iel" with i<j. A minimal cover
of 7 is also called a curset of 9 or a maximal antichain in 9.
Intuitively a cut-set seperates & from - the ‘"vertices at infinity". Any
covering collection of sequences may be reduced to a finite cover using the
comp'actness of (?~I,':). Moreover, any covering collection of sequences may be

£

reduced to a minimal collection by taking {iel: if i’eI’ and i’<i then i’=i}.

Let € denote the collection of all cut-sets in J. There is an induced partial
ordering that makes € into a net: For T';,T, € €, we write I'<l, (or T 5T, and
we say that 1"2 is a refinement of I“l) if for every ¢ € l"2, there exists a
unique T € I“1 with 1T < o (in other words Fl seperates F2 from @). Trivially

the sets tTk are themselves cut-sets of 7 with :Yk < ?k if k1< k2
1 2

Sometimes, it is convenient to regard T as a tree with NiEoo (thus ’;'=I). For
subsets T of T, we use the same definitions as above, but, to avoid logical
difficulties and to ensure that the associated set I' is countable, we suppose
that sup( |i|: ie'}<eo. For example, we term a subset I' of T a cut-set or a
minimal covering of 1 if for every i € I there exists a unique sequence ¢ € J
such that 6 < i, and if there exists k such that |o|< k for all 6 € T.

2.2. Valuations on trees and cut-set sums. Let 7 be a tree. Suppose that

13
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a number Xi>0 is associated to each i€ 7, which may be regarded the capacity of
i. We shall always assume that the X, are decreasing in that
Xj <X if j > i. 2.2)
These assumptions hold in the practical examples encountered so far.
Let ¢ = ¢(t) be a positive function defined on [0,e2), non-decreasing and
continuous from the rightt We shall be interested in the limiting properties

of the cut-set sums of capacities $(X 0,). Write

#@) = 1im %) 2.3)
koo
where m‘f(v): inf{ ¥ _0(X,): T is a cut-set of 7 and |o|2k Voer). (2.4)

oel’
If §0)=t" (220) we write #'(3) for #%9) and #Z(@) for #%(3). We shall

find an exact critical function ¢ such that 0 < M¢(.°7)< c under some

conditions on (X G) Ged -

It will prove convenient to write

To*j= XG*J/XG (2'5)

if oe T and o*e 7. If 6¢J, we shall write X 0'=T0'=0' Thus X G and TO, are defined
for all ceT, and

X = X n!f! Ty|; (VoeD. f (2.6)

The following lemma is to give some alternatives of. Mi)(ﬂ). The proof is
immediate by the compactness of (::I ,T) and the remarks in section 2.1.

Lemma 2.2. #%(7)= inf( 21.4’("0)‘ T is a cutset of 7 and |o|2k Voer)
oel
inf{ T ¢(X): T is a cut-set of 9, T is finite and |o|2k VoeT}
cel’

= inf{ X ¢(X0,): I" is complete in 7 and |-0'|2k VoeT'}
cel’

inf{ zr¢(x6); T is complete and finite in 7 and |o|>k VoeT)
ce

= inf{ 2F¢(xc): T is a cut-set of T and |o|>k VoeT}, Q.7
oe

etc., where we make the convention that sums over subsets of T are taken

over those o for which X 0>0

14
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2.3. Networks and Hausdorff measures associated
For our purposes a network or capacited network § comprises a tree J with
a capacity Xi>0 assigned to each i € 7, where Xi(ie J) satisfy the decreasing

condition (2.2). We note ¥ = (0,X o) Usually we have

ceT

Xiln-—> 0 ifn— o0 ‘ (2.8)
if ieg. If this is the case, define functions fn: g — [0,¢) by fn(i)= iln’
then {fn} is a sequence of continuous function on the compact space (5,1). By

Dini’s theorem convergence is uniform, so given &>0 there exists k(3) such

that
X< 8 whenever li|2k(5) and ie7. (2.8)
Define
dGid) = X @9

if ie:} and je ?~T It can be easily verified that d is a metric on 5 and, in fact
d is a ultra-metric in that
d(i,j)s Max {d(i,k), d(k.j)} (2.10)
for all i, j and ke S; Thus (5,d) is a ultra-metric space. We shall see
that the metric topology d is in general weaker than 7.
Proposition 2.3. Suppose that (2.2) and (2.8) hold. Then any d-open ball is
a t-open ball. The converse holds if additionally Xi is strictly decreasing in
that
X.> ; if i<j and i#j. v (2.11)
Proof. (i) Let B d(i,r)= {je7: d(i,j)<r} be a d-open ball in . We shall
prove that VieT and Vr>0
B (.= BGlK),
where k= min{n=0: Xi|n<r} (k<o by (2.8)). In fact, if jeBd(i,r), then Xi Aj<r.
It follows that |iajl2k. Thus j> ilk, that is, jeBG|K). Hence B G.r)cBG k).
Conversely, - if jeB(@i|k), then j> ilk, |iajl2k and XX [ <r by the

definition of k. Namely d(i,j)<r. This shows B(i |k): B d(i,r), which ensures

15
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that a d-open ball is a T-open ball.

(ii)) Suppose now (2.11) holds and B(iln) is an arbitary T-open ball, where
jeg and n20. If n=0, then B(i|n)=7 is evidently a d-open ball. If n>l, by
(2.11) we can choose r such that X, [n< < Xi| (n-1) and we can conclude that
B(iln): B d(i,r). The proof is completed. o

Corallary 2.3. Suppose that (2.2) and (2.8) hold. Then (i) The metric
topology d is weaker than T in that any d-open set is t-open. The two
topologies coincide if additionally (2.11) holds. (ii) Any 7-compact set is
d-compact; (iii) (S},d) is a ultra-metric compact topological space.

Suppose now (E,p) is a metric space and that f is a Hausdorff dimension
function (Rogers 1970) in that ¢(t)=0 is a positive function defined on [0,00),
nondecreasing and continuous from the right. The Hausdoff measure of ACE

with respect to the dimension function f is by definition

#(A) = 1im #k(a) 2.12)
-0+
where
xeA) = inf { T7_flub: AU U, Ulss ), (2.13)
|Ui| = diam (Ui) representing the diameter of Ui. It is not difficult to see

that the quantity Rf(A) remains the same if in the definition we use covers of
just open sets or just closed sets, or again just subsets of A,see for example
Rogers (1970). If we use covers of just balls, we obtain the spherical

Hausdorff measure:

£ . f
R(A) = lim pg(A) (2.12y
-0+ 5
where
u§(A)= inf {Z°i°=xf(|Ui|): AcYT_U, |U|<8 and U, are balls}. (2.13)°

The two  measures H‘(.) and uf(.) are in general not identical (see
Besicovitch 1928, chapter 3) but equivalent if f(2t)<cf(t) for some c¢>0

(Liu,1992). However, they coincide on a ultra-metric space:

16
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Theorem 2.4. Suppose that (E,p) is a ultra-metric space, f(t)=0 is a
positive function defined on [0,.¢), non-decreasing and continuous on the
right. Then VACE and V3>0

H5(A) = pg(A) and #'(A) = pi(A) (2.14)

Proof. Clearly Hg(A) < ué(A) since any &-cover of A by balls is a
permissible covering in the definition of }cé(A). Also, if {Ui} is a &-cover of
A, then so is {Bi}, where, for each i, Bi is choosen to be some ball
containing U, and of radius |U|<S. In fact, any ball B=B(x,|U]) of a
center x.€ Ui (we may suppose that Ui;&@) and radius |Ui| meets our needs. To
see this, it suffices to show that IBiIS IUiI. This is so since for any x and
y of B, we have d(x,y)s max {d(x,x),d(x,y)} <|U.|. Thus

I8 <z lul)
and taking infima gives ué(A) < Hg (A). Hence J{é (A)=ug(A). Letting 6 > 0
gives #(A) = 1f(A). o
‘ Since (é,d) is a ultra-metric space, we have immidiately

Corollary 2.4. On (7,d), the two measures #(.) and p(.) coincide.

If 0 < ch(A) < oo, we say that f is an exact dimension function of A, or
simply an exact dimension of A, or an exact measure function of A. If f(t) =
¢? (a>0), we write ?ca(A) instead of }ff(A), and we call it the a-dimensional
Hausdorff measure of A. The Hausdorff dimension of A is defined as

dimA=sup{a>0] #A) =40} =inf {a>0 ] #*A)=01}.
Then #*(A) = + if a < dim A and #%(A) = 0 if a > dim A.

The following result gives an alternative for u¢(.) on (S.T ,d).

Proposition 2.5. Soppose that (2.2) and (2.8) hold, and ¢ is a Hausdorff
dimension function. Then VA(;‘}

kPaA) = lim p0a) 2.12)"
k-00

where

'u‘f(A)= inf {%; (4(|B.): Acl_[B(), Ty and lil>k if ieT}.  (2.13)"

17
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Proof. By (2.8)’, V&>0, 3 k(8) sufficiently large such that XiSS whenever
ie7 and Ii |2k(8). Noting that diam(B(i)):Xi, any cover in the definition of
u‘f (8)(A) is an admissable covering in the definition of ug(A), SO

l»lg(A) S”?(S)’ , (2.14)y

leading to %) < 1im p¥a).
k->00

Conversely, V8>0, suppose that {B(i)}(ieI'(d)) is a 3-cover of A by

balls such that |B()|<6 VieI'(§) and

1@ < 5 o1 < nfaws. @.15)
Writing

k(8)=min{ |il: ieT ()},
then VieI'(8) |i|2k(8) and consequently
15 < Zirg, oIBD. (2.16)

We claim that k(6) is not bounded. Otherwise, there would exist some k0 such

that sup k(d)<k, Write a= min {X; ie7 and |il=k}, then 2>0. Choose
>0

i(8)eI'(5) such that |i(8)|=k(5). Thus
O<a = min{X;: ie7 and |i|=k0} < min{X;: ie7 and li]| =k(3))< X; (S8

for all 6>0, which is impossible. Hence gup k(8) =oo. Take & 50 and k(8 )»eo.
>O n n

From (2.15) and (2.16) we have
u‘l’(sn)(A) < ugn(A)+ 5.

Letting n-eo, it gives‘ lim u(f(A)s u¢(A). The proof is then completed. o
k-0

Remarking that any cover {B(i)}i eT of 7 by balls means that T is complete
in 7, and that |B(i)|=Xi, (2.4), Lemma 2.2 and (2.13)’ give
Lemma 2.6. For any dimension function ¢ and any ke N, we have
w@) =@ ad 1) = n¥o. @.17)
Combining Corollary 2.4, Proposition 2.5 and Lemma 2.6, we obtain
Theorem 2.7. If (2.2) and (2.8) hold, and ¢ is a Hausdorff dimension

function, then

18
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1@ = %) = @), (2.18)
2.4. Self-similar networks and tree processes
We now examine a model for random networks based on a Galton-Watson
branching process, see Falconer (1986). Let Q be a set and let ¥(w) be a
network formed by a tree J(w) and capacities Xi(a)) (ie7) for each we2. We
obtain an increasing sequence of o-fields of subsets of £2. Let F, = G(Ng;xi:
ISiSNg), and given F, define

L = O‘(IFk; N(i):ie T Xi,,g(i ): 1Sik+l.<_Ni)

F
k+ kel

Let F = ‘U‘:’=l \u»'k , and assume that p is a probability measure on the sets in
F, making (€, F, p) into a probability space.
We term $(®) a self-similar network if for each ieJ the random elements
Zi = (Ni; Ti*l, seey Ti*Ni),
are independent and identically distributed, where
For convenience we shall always assume the nomalization

X@ = 1,
so that

Xi = mj=1 Til;

J
and in particular X.= T, VieN. We also assume that the decreasing . condition
(2.8) holds a.s., thus 0 < Ti < 1 as. We may regard Ti’ rather than Xi’ as
the definig random variables of the network § = %(w). Thus the random
capacited tree J is generated by the random element
Z=Zy=(N; T,..T),

writing N = Ng as we frequently shall. Note that we do not require that the Ti
to be independent each other or to have the same distribution, as occurs in
some applications. Let q be the unique quantity in [0,1) satisfying

a =3 pN=odt

k=0

19
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Then q is the extinction probability of the Galton-Watson process underlying
the network ¥, obtained by attaching an individual to the vertices of 7.
As in the preceding, it will prove convenient to write
Xi=Ti=Oifi¢.?I.
Thus Xi and Ti are defined for all ie7, and (Xo) (ceT) is a non-negative
self&imilar tree prosess with respect to the o-fields (Fk)(ke N) in that the
X G e F | Gl~measurable, X 0_2 0, and the random vectors
( T c g )
are independent and idenucally distributed for each o©eT (Falconer
1987).
Suppose a > 0 is such that u»:(Zl T %)y < 1, Then (Xg) is a tree
supermartingale in that
€T _XTul Fl;) S XT GeD,
and

W:=lim X x ®
koo 0N °

exists a.s. with 0 £ E(W)< IE(XQ). The supermartingale becomes a martingale if
gzl TH=1.

3. Limit theorems on tree processes
We shall need some limit theorems on self-similar tree processes which

themselves are interesting. We suppose that (X)) is a self-similar  tree

c'oceT
process defihed as in section 2.4, which is identi.fied to the self-similar
network § = §(w) = (0, X ) JocT generated by Z = (N; T T N)
Let
| Sx:= X T, 3.1)
where xe[0.) and X:=0. Thus S(0=0 if N=0.
Lemma S. (1) S(x) is a.s. decreasing and continuous on [0,%); S(0)=N and

S(x) is strictly decreasing if and only if N>0 and 31<i<N such that O<Ti<1.
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(ii) E(S(x)) is decreasing and continuous from the right; E(S(0))=E(N).
(i) If E(S(xo))<oo for some x 020, then E(S(x)) is dicreasing and continuous
on [xo,e.o). Moreover E(S(x)) is strictly decreasing on [xo,oo) if and only if

p(T =T,=.=T,=1 | N>0) <I. (3.2)
(iv) If E(N)<ee then E(S(x)) is dicreasing and continuous on [0,). Moreover
E(S(x)) is strictly decreasing on [0,00) if and only if (3.2) holds.
(v) The function wy(x):=ess sup S(x) is decreasing on [0,») .

Proof. (i) is evident. (ii) holds by the monotone convergence theorem. The
first conclusion in (iii) follows by the same reason. If E(S(x)) is strictly
decreasing on [xo,oo), then (3.2) holds immediatly since otherwise S(x)=N.
Suppose now that (3.2) is satisfied and that E(S(x))= E(S(y)), where x.>.y2x0.
Since the function S(.) is decreasing we have S(x)=S(y) a.s., that is, ’I‘?:Tf
V1<isN a.s. Choosing 0<T<1 implies x=y. This completes the proof of (ii).
(iv) is a particular case of (iii). (v) holds since S(x) is decreasing. o

Remark. It will be useful to note that the condition (3.2) is equivalent to

E[Z | T%log . )>0, or to gi(IE[S(x)])lx=a<O. .

Let us write now
o= inf {ae[0,%0): E[S(a)] < 1}, where inf @& =+oo, (@),
Thus 0so<e and, if a<ee, then E[S(0)]<] since E[S(x)] is decreasing and
continuous from the right. Therefore we can write
o= min {a€[0,0): E[S(a)] £ 1}, where min & =+oo, (o).
Lemma o. (i) a=0 if and only if E(N)1 if and only if the tree process
terminates a.s., or again, if and only if 7=0 a.s.;
(ii) a<ee if and only if there exists a20 such that E(S(a))<1;
(iii) If o<eo then E(S(a))<1. If addtionally E(N)>1 then (3.2) holds.
(iv) o is the least solution of the equation
E(S(a))=1 (Ea)

(0<a<eo) if there is (at least) a solution.

21



Q.S.LI1U

(v) Suppose that 1<E(N)<e and E(S(y))Sl for some y>0, then o is the
unique solution in (0,y] of the equation E(S(x))= 1.
proof. (i) and (ii) are clear. (iii) E(S(a))<1 by (o). If (3.2) does not
hold, then S(x)=N, so E(S(x)) =E(N)>1 Vx=0. Consequently o=co. Hence 0i<oo
implies (3.2). To prove (iv), write
o = inf{ae [0,e): E[S(a)] = 1}. (@),
If (Ea) has a solution then o is well defined and 0 <oo. If a is a decreasing
sequence such that a-> a and E[S(an)] = 1, then E[S(ae)] = 1 since E[S(x)]
is continuous from the right. Hence the least solution exists and we can write
o= min{ae [0,o): E[S(a)] = 1}. (ae)
We prove now =0, . Clearly aSoco. Conversely, Va<oc0 E[S(a)] # 1 by the
definition of . Thus E[S(a)] > 1 since E[S(x)] is decreasing. Therefore a<a
by the definition of o. Letting a»o  gives o <c. This ends the proof of (iv). .
We now prove (v). Since 1<E(N)<eo and oi<eo, (3.2) holds by (iii) above. Thus
E(S(x)) is strictly decreasing. As E(N)<eo, E(S(x)) is continuous on [0,e0).
Noting that E(S(0))>1 and E(S(y))<1, there exists a unique ae(0,y] such that
E[S(a)]=1. The proof is then completed. o
We shall suppose always that O<o<eo if it is not specified further.We define
B = inf {be[0,1): S(;2p) <I as.}, where inf & :=1. ®),
Thus 0<B<1. If B<1, then S(l—?—tﬁ) <1 as. Vb>B, so S(Igﬁ) <1 a.s. Hence we can
write _
B = min {be[0,1): S(;2p) <1 as.}, where min @ :=1. B)
Lemma f. (i) B<1 if and only if S(a)<l as.
for some sufficiently large a>0.
(ii) B=0 if and only if S(x)<1 as.
If E(S(a))=1, then
B=0 if and only if S(x)=1 a.s.
(iii) Suppose that p(S(a)>1)>0. If the equation
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ess sup S(T?-B) =1 (EB)
(0<b<1) has at least a solution, then B is the least one and certainly B<1.

Proof. (i) Clearly by the definition of P. (ii) The first conclusion
comes directly from the expression (). The second conclusion holds since, if
E(S(a))=1, then S()<1 a.s. if and only if S(a)=1 a.s. (iii) Write

Be= inf{be [0,1): ess sup S(T(-EB) = 1}. ([Se)0

If (EB) has a solution, Be<1 is well defined. If b is a decreasing

sequenece such that 1>b » Be (n»<) and ess sup S(I%E) = 1, then S(]gs) <1
n n
a.s. Letting nseo gives S(I—(_iﬂe) < 1 as. On the other hand, since ess sup S(x)
is a decreasing function of x, we have ess sup S(TQ-EB) 2 ess sup S(I%E) =]1.
Thus ess sup S(I—Ba )=1. So we can write
B [

B,= min{be [0,1): ess sup S(;op) = 1}. )
We shall prove that B=Be. Clearly ﬁSBe‘ Conversely, for each b<ﬁe,

ess sup S(lgs) # 1 by the definition of ﬂe. Thus ess sup S(Igﬁ) > 1 since
ess sup S(x) is decreasing. Hence b<P by the definition of P. Letting bof

gives BgSB. This completes the proof of (iii). o
Put
z= ¥ X%
k gepnt O

Since E[S(o)]<1, (Zk,u-'k) (IFk is the o-algebra generated by all the Ti such
that [i ISk) is a non-negative supermartingale and
W= lim Z
exists a.s. with 0 £ W < +ee and E(W) < 1 by the martingale convegence theorem.
It will prove very useful to note that
_ +vN
W= I TIW; . 3.3)

where
<l
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(1<isN) are independent of each other and of (N; Tl,...,TN), having the same
distribution as W. If E(S(a))<l, then W=0 a.s. For the remainder of this
section, We suppose always that

O<o<ee and E(S(o))=1.

The conclusion (i) of the following lemma was established in Falconer
(1987) without proof and condition. But it seems to me that a moment condition
such as (3.4) below is necessary, although it may be probably weakened. The
’if” part of the conclusion (ii) ‘of the Lemma was proved by Mauldin and
Williams (1986, Th.2.1), but we prefer here to give a simpler proof since
their method is very complicated.

Lemma 3.1. Suppose that

E[S(2)?] < +oe. (3.4)

(i) With probability q we have X = 0 for all 6 € T with || 2 k for some k
€ N, and with probability 1-q we have W > 0. Moreover, E(W)=1 and |E(W2)<oo.

(i) For each integer k>1, IE(Wk)<oo if and only if [E(Sk(a))<oo. Moreover, for
each real p>1, E(WP)<eo implies E(SP(0r))<oo.

Proof. (i) We shall see that the martingale (Zk, le) is Lz-bounded when

IE(Sz) < +oo, For simplicity, we write here S for S(a). We have

ez | ) =el( X X1 FI=€((Z X*TT® | F
oe N (O'EINk G o o*i) d

=z  x¥ x“:s[(z T ZT“*) | £
G,TEN j=1

=3 x°‘ x“ EXS) + z, x’“ E(S?)
8¢%GN GEN

=(Z X3P+ X, X2HES1)
GEN GEN

= z + (E(SH-1) 3 x
GGN

and consequently
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E( Z)S(E(Sz)-l)EE Y X% 41
oo % Zel 2%

=1 + (ESH-1) [1- & E Tga)] < + o0

i=1

since E( X .Iaia) < 1 (we recall that E[S(x)] is strictly decreasing on [a,o0)).

Thus the martingale is L:-bounded and E(W) = l_l.gg E(Zk) = 1 by the martingale
convergence theorem. It follows that p(W=0) <1.

On the other hand, by the recursive relation (3.3) and the fact that Ti >0

a.s., we obtain
p(W=0) = 3 % p(W=0|N=n) p(N=n)
= p(N=0) + X7 ,p( W,=0 for i=l,....n) p(N=n)
= X,=, P(W=0)"p(N=n).
Therefore p(W=0) = q .
Since with probability q the adduced branching process terminates,i.e.

the cardinalities #(7k) vanishes for k sufficiently large, and ¥ X_ < #3),
cent .

thus X_=0 if || is sufficiently large. This ends the proof of (i).
(ii) The proof above shows that (Zk,IFk) is an Lz-bounded martingale if
E(Sz(a))<oo. Thus Zk=tE(W lle). Jensen’s inequality gives then,for all reals p>1,
EIS"(@)] = E(Z]] = E[E"(W |F )] <E[ECW® |F )] =£(WP)
Thus E(WP)<ee implies £(SP(0t))<oo. It then suffices to prove that
E[S"(cr)]<ee implies E(W*)<oo
for all integers k>1. In fact, by the recursive relation (3.3), we have

K N o k N ko k.
W= §1Tll( wi+ )y L n(Til Wil)’

= geeey °=
i= k| +kﬁ+...+kN— 1 N i=1
0 < iSk-l

k!
where ¥, = . Thus
Kk peensly El r.. .En!
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N koc N k
W] £ = ):Tk%[wnz Y nT T EW i
idem N =1
k, k/G-1)
Since E(W )< [g(W¥D)]' for all Osksk-1, we have
N ka
EwWX| F) < ): Tk%[wk] $0Z 0y, T 1 EWED

idem N =

It follows that

N k
. I Ti ) Ewepee,
kpeeey =1

IE[VV]SIE(ZTka)lE[W]+IE(Z Y,

idem

( Z Tka)lE[W ]+ IE[( Z Ta) - Z Tka](ﬂwk D,

i=1
Noting that (E[Wk'l])”(k'l)SlE[Wk], we obtain eventually

EWD™* < @IS* (o) M@ W'D,

In particular, E[S¥(a)]<ee and E[W*']<eo imply E[W¥]<ee. Since E(W)<ee, by
induction on k we know that E[Sk(a)]<oo implies E[Wk]<oo. The proof is then
finished. o
As a direct consequence of the fact E[SP(0)]ISE[WP] (all real p>1), we have
Corollary 3.1. Let be(0,¢). Denote by r(W" the radius of convergence of
the moment generatingb function E(etwb) of Wb, and r(Sb) that of Sb(a). Then
H(W) < (s,
In particular, r(Sb)<oo implies r(Wb)<oo.
This result will prove useful to ensure r(Wb)<§o, in the case where NN =oo.
The following result generalizes a result of Graf et al.(1988, Theorem
2.5,p.14).

Theorem 3.2. Let be(0,1) and denote by r(Wb) the radius of convergence of

b
the moment generating function E(etw ) of wo,

(a) If INH__<oo, then
(W0 (3.5)
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if and only if
S(r>y) < 1 as. (3.6)
(b) If uNui_=oo, then (3.5) implies (3.6) or, equivalently, p(S(l(—}E)>1) >0
implies (W l"’)=O.
Proof. (i) We first prove that (3.6) implies (3.5), if WNu_<eo . We shall

denote by E(Xl N = n) the expectation of X conditioned on N = n. By (3.3) we

have
n
W] Nenl = &5 T{* | Nemerw"]
3 k—,-E—,:'l AT N ] W @)
+ E[ T, N=n] E[W 1] 7
kK +k +.. +k~k 1'°""n’ igl 1 igl
0 <ﬁ <kl

(1-b)k.
Since the function (y,y,...y) — "?:1 y, ' with Z‘,'i'=lyi < 1 and y20

(1<i<n) attains its maximum at (kllk, kzlk, vees kn/k), where k =k1+ k2+...+

kn, we obtain
n ka n (1-b)k. n k (1-bk
T-l — [Ta/(l b)] 1 < 1) 1 (38)
ARE I S
Thus (3.7) gives
n
E[W*| N=n] < :ngITJi‘“ | N=merw¥]
1=
k! n k (1- b)k n ki
+ 3 T ( | N=n E[W ]
k+k++k-k1"n [nk_ ]igl
0 <ﬁ <kt
Taking expectation on N implies
N
ETWX] [1- EQ:IT‘;“ )
1=
k! n k (1-b)k k.
<elel{ = e 1@ EW T Nen
{[{ k +k+.ak=k 1’ n 1E k ]}
01<Ei<k?
namely y
n i, (1-b)k.
e Lol s E L ) o9
k. +k +.. +k =k i= i
0 Sﬁ <k!
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where c= e[ Z Tka J. Writing
i=1
_ ELWN) bk
k k!
From (3.9) we have
N
< Llgls | (ve22), (3.9y
1-¢ |k +k+. .4k =k 1-1

k ol<ﬁiSkN

Since Y n t is an increasing function of N, we have, for n=iNI_,

idem i=1"i
n
tsc ) (Vk22), (3.10)
k| kot +k-k1“1|
0°< ﬁ, <k
where ¢ = sup 1-1— > 0. As a consequence of (3.10) we have 1im sup tllk oo
k>2 koo
(see Graf, Mauldin and Williams 1988, Lemma 2.6). That is
k 1/k k,1/k k. 1k
oo > lim sup [g:l[(_\"v_] k(l'b)k] = lim sup E[W ] k(1 b _ lim sup eEEV/Vb]
koo ’ ko0 koo k
Now for each k>0, choose KeN such that kb<K<kb+1, thus
k/b, 1/k K b/K K,b/K
- E[W™ "] ; E[W™] : E[W ]
lim sup (F——) < lim sup —x7e— S lim sup ~
1/K\b
= lim sup eb[[vlv,l ] < oo,
koo K

Namely r(W'®) > 0.
(i) We now prove that (3.5) implies (3.6) or namely, if
pS(r2p) >1>0, @3.11)
then r(W 1't’)=(). We remark that the latter holds if

liminf s ' = 4o, (3.12)
where
k
s= EW) (v, (3.13)
(k!)

We shall prove that (3.11) implies (3.12), without the assumption INIi__<eo. From
(3.7) we have
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N
!E[Wk][l-E(_ZlT‘i‘a)]
1=

n ko N k.
=z{ ) Erexr E[n T | Nen | 7 eV ‘]}. (3.14)
. B

k| +kot. ok =k 1""""n" L=l
0 SEiSk-T

Suppose that sJ_Zri for some r>0 and all j<k, we shall see that sk2rk if k is

sufficiently large. In fact, from (3.14),

k k! n ko X b
EWSI(1c)2 E{ X . - E[n T | N=n] i Lk 1)
k| kb 4k =k 1" "N L=l
0 SEiSk-l

n k.o
= E{ IE[ 2 K Tl Til N=n ]}rk

kK +k+.ak =k (ko!...k )7i=1
olsﬁiSk-'l' 1 n

’ n k.o/(1-b),1-b -
{ 3 (K g1 )] N }rkkgb
idem )

.1
kl!...kn! i=1

> E{ J(z 7 ™)) Nen ]}rkkgb,

idem Kq!-- k! EL
where the last step holds since Y, xi'-'b 2 X xi)H’. Now we remark that

kit  h ko) /(1ob)k n Ko/ (1-b)
T s B T :
idem "1°"""n°

As (x-y)"’2 xM -y'® if x2y20, the above equality gives

k. ! .k ! 'HlTi ]
--Xq° 1=

idem "1
n ~0/(1-b)k(1-b n o/ (1-b)\1-b
z 5 1/ (ONID) gn @/ (OH1D,

i=1 1
Hence E[Wk](l-ck) > E[[ZilT?/(l-b)]k(l-b) _[Ebi:‘:l.llica/(l-b)) l-b] Kitb,

or

o \qk(1-6))_
IE[W"]> E[[S(TTB)] ] % x (3.15)

K!1® 1-¢ i
) k

If (3.6) does not hold, then p(S(l-gb-) >1)>0 and we can choose a>1 such that

c:= p( S(lgb-) >a )>0.
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It follows that
[[S( )]k(l b)] > cakl®.

. k(1-b) e M
Choose k_ sufficiently large such that ca™ >1 if k2k . Put r = og}gkosi

(>0), then (3.15) implies sm‘2r for all ka . Thus liminf s V550, Namely

1
Exmmf [IE[W ]] >0. Since we can choose b’>b such that p(S(—)>l)>O also,
k!

we have in fact {iminf [___IE[W]
> k!®

meantime the proof of (a) and (b). o

1%
] =co, applying the result for b’. This ends

Corollary 3.2. p(S(l-f_.EB) >1)>0 implies
kqy 1K
im [E[W ]] =
Proof. This is shown in the proof of Theorem 3.2. o

Theorem 3.3. (i) If UNu_<e and 0<fi<l, then r(W'>0 if and only if b2B;
(i) If INu_=oo or =1, then r(W'")=0 VO<b<f.

Proof. (a) If INU_<e and 1>b2f, then S(;=p) < 1 as. Theorem 3.2. shows
then r(W'™>0 for all be[P,1) and then for all b2P. (b) If O<b<P, then
p(S(]—?T)>1)>O. Theorem 3.2 applies again, showing that r(WM’)=O. This ends at
the meanwhile the proof of (i) and (ii). o

The following Theorem generalizes a result of Kahane and Peyriere
(1976, Théoreme 3). In Kahane and Peyritre’s case, N=c22 is a constant, and T,
(1<i<c) are independent and identically distributed.

Theorem 3.4. (i) If INI_<e and B<1, then
lim LoE ECWS) _ o
ko400 08 ’
(ii) If WNu_=e or B=1, then

K
. Log E(WK)
iim inf “p*rog € 2P

Proof. If INil_<eo and 15b>f, then S(;2p)s! as. Thus r(W')>0 by Theorem

(3.2). That is lim sup (EELW___]) < oo, Stirling’s Theorem gives lim
k—)°° k' k-)oo
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k/b, 1/k ([E[Wk/b b/k

sup(ﬁ—u—— <o, Consequently there exists a M>0 such that 1) <M

k/e (k/e)®
for all k>0. Noting that [II-:(W")]“’l is an increasing function of x and k/b >k,

kq\k k
we obtain (J(:LW-% < M (Vk>1), which gives lim sup EI‘Z_gLJ%W_E) < b. Letting b»
k/e ko+oo

B, we see that

k
. Log E(W")
1 <B
koo | K LOg E P

If B=0, The proof is then finished. Suppose that B>0. Then V0<b<B we have
p(S(1=p) >1)>0.

kqy 1K
Thus lim [ELV_V_]] oo
k
. ey C e .. 0 Log E(W)
by Coroll 32. U tirl Th it 1 f 2b.
y Corollary sing sg ing’s Theorem again,it gives k-n’r:mm '"EB'EEE_IE
Letting b->P gives
k
s Log E(W7) S
Jim inf “°rog ¥ 2P
which ends in the meantime the proof of (i) and (ii). o

To ensure r(Wm)<oo, in the case where N is a constant, Graf et al.(1988)
have given a ‘"corner" condition and some conditions associated (see their
Theorem 2.11 and corollaries 2.12-14, pp.30-37). But it seems to me that their
conditions are not ideal. Here, in the genaral setting, we give a simple
result which covers almost all the examples of Graf et al.(1988) and of

Falconer (1986).

Theorem 3.5. Suppose that $>0. If there exists n>1 such that

by atm
e 8@ B|N—n] >0, (3.16)
1= n
or, equivalently,
ni - lmi
5% (1 ES(@) BlN—n] ) < oo, (3.16)
i=l n

then r(W l'B)<o<>.

Proof. Again from the recursive relation (3.3), we have
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n
E(WX| Nen] = mgle‘i“" | Nemerw*|
1=

+ 3 . - E[I]'l[ Tli(ial N=n] p —_
l(;l;k +$:k?=k 1'""""n° L=l i=1
1
> Eg)lflT‘i‘“ ) E[WK]
+inf . S E[; % Ne ]
i=1 k_ +k+.+k=k 1°°°"n’ =1 !

ol< Ei <k-1
where the inferior is taken over all the (kl’kZ’;"’kn) such that k1+ k2+...+
k =k and that 0 < k; < k-L If k = nk, it is E[W")". Hence

; . :
W™ | Nen] 2 u:g):l'r‘i“" | Nenmerw™]
i=

+(E[Wk])n{IE [élT? | N=n] £ [élﬂi‘“ l Nzn]}
€WK [(Z 1% 71 ],
iz

Consequently

E[W™) 2 p (ETWEDEL(S@)™ | Nen),

where pn=p(N=n)>0. Therefore
L Log eW™) > L Log {p EIS(@)™ | N=n]} + 1 Log E[W¥]
nk nk n k

= L rogp +-L Log 5™ | N=n]} + 1 Log e[WX).
nk " nk k
Choosing k = n™! (O<ren) and using this inequality repeatedly, we see that
T T r j
L Log EW" 12 (ogp) T —+ 3 L Log E[S@)™ | N=n]
n' “j=1n' j=1n’ '
For k € N sufficiently large, choose r € N such that

n'< kB < nr+l. Using Stirling’s formular gives then

lim sup
koo

K/B.. I/k nf, . /(n®
(%V‘TE)'] 2 1im sup E[Wk/e]:) ke
: k00
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2 lim sup __l___e exp{ Z —— Log E[S(a) I N=n]},
00 n't/e j=1 n [3

where C(n)= (Log p) Z — > Thus
j=1 n

k/ C( )M r j
[ (W B)] >1lim sup ..—:I_I;.E— m E[S((X)n I N:n]}l/(n"ﬂ)

r>o0 =1

lim sup
koo

= lim sup

8
r-o0 n/e

C(n)/p []'1 lE[S(a)nJ I N=n]}1"’] 18 -
j=1 n
Thus (3.16) implies that r'®<ee. Since the equivalence of (3.16) and
(3.16)’ is evident, the proof is completed. o

Let us now investigate the condition (3.16). Since Ll)g {lI;'[S(c:t)“IN:n]}”k
=||S(a)1N=nII°°, where IXn_:= ess sup X, a necessary condition for (3.16) to hold
is B=Bn, where

B, = lognS(e)l,_11_/ log n (u>1). | ®)

n

Proposition 3.6. A necessary and sufficient condition for (3.16) to hold is

that there exists n>1 such that B=B_ and

- o E(S(0)" |N=n]"® - "
D N O ) < (3.16)
The proof is simple, thus omitted. a

Remark 3.6. (3.16)" holds usually. It holds for example if
p(S(a)=IIS(0L)1N=nII°°; N=n)>0,
or more particularilly, if conditioned on N=n, Ti(ISiSn) take only finitely

many values.

In fact, if c:=p(S(a)=l|S(oa)1N=n||°°; N=n)>0, then

1/n
E[S%(0) | N=n] 2 cnS(@)1_u¥, E[ﬁg%&)llN“l}] Sclft

OO

__,un’
and consequently -log n E[%% &)1 IN'E] <eo, which implies (3.16)".
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The result holds also in most cases where S(o) is of continuous
distribution, as we shall see later.

Practical examples show that if INIl_<ee, we have often B=Bn, where n=IN1__.
This is so for almost all the examples of Graf, Mauldin and Williams (1988)
and Falconer (1986). In general, we have

Proposition 3.7. B=pP:=supf,
n>0 °
where B0=B1=0 and Bn = logllS(oc)lN=n|l°°/ log n (n22). (B..)

Moreover B= ess sup [logS(a)/logN], where logS(a)/logN :=0 if N=0 or 1.
Lemma 3.8. If Z‘i’:lt?/(l'b)Sl, where neN, 0<oi<es, 0<b<1 and t20 Vi, then
b2 log(Z?ﬂt?) Mlogn, where log(Z?ﬂt?) Nlogn :=0 if n=0 or 1.
Proof. We suppose that n>1. Write c=2?= lt? and consider the function
f(xl,...,xn) =Z?=lxgl(l'b),
where xl,...,xnzo and Z?ﬂxi: ¢. The minimum of f (with the constraint) is

attained at X =X_=..=X = c/n. Thus lﬂ(t?,...,t?)z f(c/n,...,c/n)

1/(1-b)

=n(c/n) , giving the result desired. .0

Remark. The proof above shows that if ZIL ltc:(/(l'b)=1, then b 2
log(let?)/logn and the equality holds if and only if t=...=t (n>1).

Proof of Proposition 3.7. Since leT?j(l'B)Sl a.s. by the definition of B,

Lemma 3.8 gives immediately B> ess sup [logS(a)/logN] with the convension in
the proposition. Since it is easily seen that B= ess sup [logS(c)/logN], the

proof is completed. o
Corollary 3.10. If N=n (n22) is a.s.a constant and B=Bn:= loguS(o)n_/ logn,

then a suffisiant condition for r(W 1/B)<m is

m, ., "SI/ uS()n_>0
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or, equivalently, p A (1-||S(0L)llni/ IS(E1l ) < oo, (3.17)

i=l

where 1X1 = (E(IX )" (p>0).

This Corollary enables us to calculate the exact dimension functions of
almost all the examples of Graf, Mauldin and Williams (1988), in a very simple
way, see section 7 below. Besides, the condition (3.17) is in some way sharp.
To see this, let us take the counter-example of Graf et al.(1988, p.104,
example 6.1;0). In this example, n=2, T:=T2= %(U,U), where U has distribution
p oon [0,1] and EQU¥ - Y It is easily seen that (3.17) holds if
and only if y>1. In fact, we have r(W'®)<eo if y>1 and r(W'®)=e if O<y<1, as
was shown by Graf et al.(1988).

Remarks. (i) The condition (3.16)" means that, conditioned on N=n, the rate
of convergence of the Lp norm HIS(o) llp,n to the L norm llS(oc) llm’ll (peo) is
sufficiently large, where uS(c)1_:= E[S(@)’]| N=n])'P. As we shall see in
section 7, the condition is wusually satisfied and easily verified. It holds
for almost all the examples of Graf, Mauldin and Williams (1988). It seems to
me that this kind of condition is more natural then the "corner" condition of
Graf et al. (1988).

(i) All the results in this section are based on the equation (3.3) with
the independent properties cited therein, where the distribution of W is
unknown and the Ti’s and N are given. Thus the conclusions hold whenever the
equation is satisfied. Kahane and Peyriere (1976) have considered such a
equation in a special case for a study of a martingale of Mandelbrot. Many
interesting results concerning this equation with N=n a constant and Ti

ii.d. may be found in Yves GUIVARC’H (1990).
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4, Estimations on cut-set sums

4.1. Construction of a random measure He, ON I(EINN).

be the associated

Let s(@)=(0,X ) be a self-similar network, and (X )

ceJ ceT
tree process, where XO,=O if ogg. We shall regard the ratios (To) oeT %
defining elements, where TG=O if ogJ (see section 2).

Let o be difined as in the preceding. Throughout this section, we suppose

always that
O<o<eo, E(S(a))=1, E(W)=1
and
p(T=.=T,=1 | N>0) <l. (4.0)
For 6 € 7, define |1|
T o
W= hmh:)l‘,=k nngG*("ln) 4.1)

¢]
is of the same distribution as W. Moreover W p is independent of W,t if neither

where Tp= X = land T o= Xg* /X - by our notations. Then WQE W and each W

0<1T nor 1<0, and Wo_ is independent of X - and of Xt unless o<t. If ce T \7, we
choose WG as an independent copy of W such that Wo (oe T \7) are independent
each other and, as a family, independent of Wc(ce 7).

Given ceT, let Fs denote the o-field generated by {(T(Gli)*l’T(O'li)*Z’"');
0s<is |ol1):

Fo= O ( Ty T |iyro) 0 S 1 S lol-1).

Then W‘t is independent of F . unless t<o. It is easily verified that

o _ pee O
X5 W= i=1x6*i W 4 4.2)
almost surely (note that X0'= nlc' To.l ). Soif ' € 7 is a cut-set then
=1 n
. M o
W0'= lim tgl" nEITG*(Tln)WG*T (4.3)
a.s.for each 6 € T. Let
Bo)={n e N:n >0} 4.4)

(ceT) be a ball in N associated with ¢ and define
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1, B(O) = X (@) W (o). 4.5)
By (4.2) He is well defined. It can be uniquely extended to a Borel measure

on N which will be called He again.

1/b
Proposition 4.1 (i) If EE'™ ) < o, then with probability 1
1im sup Mb
N0 Logn
and
lim sup W | n)llb 1

n-oo Loglog X—l_
for He almost all i € ‘I.

(ii) If E(W"'®) < o for some O<b<eo, then Ve>0 we have, with probability 1

. 1/b
. Wi In)
lim sup — 15 <1
n-yo0 n'*e
and
. 1/b
lim sup W(xlnz T S é < °°
N (IOgX'(TI—)') E(Y T logr)
iln i

for Moo 2 iel
Proof. (i) Let (2,p) denote the underlying probability space and consider
the product space I x Q  with the product o-field with probability law Q
defined by
QA) = E j 1,0 dyu (). (4.6)
Then V e >0 Vt'<t

+€

, . 1 s . 1 w16
ot (WG ln)™ 1ve) ;%__ IEQ(etW(nln) )=ﬁ_+.€.g(wetw )

The Borel-Cantelli lemma ensures that

im sup El%%)x_—s (1+8)

Q-almost surely. Hence the first inequlity follows. Note that the random
variables

A

T, (n,0):= Tn (@) 4.7)

on I x Q are independent and identically distributed, the theorem of large
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numbers gives

lim (log y-n = lim [log 1 p_ T;|,Vn

n-oo i l n n-o0

=£yllog (I Y1 =62 1% log ,}.i) >0, (4.8)

i=1"1
where the last step holds since p(T1=...=TN=1 | N>0)<1. Consequently the
second inequlity follows from the first.
(ii) The approach is almost the same as above by means of the

Borel-Cantelli Lemma, noting that

WGl Pz nl*e ) < L e Wln 1/
n

llb)

TI;EE(WW ). @
n

Remark 4.1. The same idea can be applied to prove the following:

If E(W™''?) < e, then with probability 1

. |.11/b . 1/b
lim sup —Mﬂ)—— <1 and lim sup W(llnz <1
Noo h(n) n-yoo h(logX———I ))
(iln

for g, oalmost all i e I (=), where h(® = "% tlog)™",

t(logt)(loglogt)'*€, etc. (Ve>0).

4.2. The lower bound.
Proposition 4.2 For 0<B<eo, let
6,0 = t*(LogLog D" 4.9)

l_wllB

(i) If E(e ) < o for some r > 0, then

M¢B(ST) > i*'w (4.10)

almost surely.
(i) If E(W™™) < o, then
MW(.“T) = +o0 a.s. on W>0,

where
w©="(1og™*,*(log] loglogh)™.1*(log*loglogl)logloglog )*¢,

etc., Ve>0.
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Proof. (i) We first note that um(:‘f) W(w). By Proposition 4.1, for each

€ > 0 we can choose a compact subset T of 7 such that u(ST’) = W-¢g and

Wiln (1+€) ( + LogLog X_l_ )
iln

for all i € .‘; > and all n 2 NOE No(m) (Proposition 4.1(i) ensures that this can
be done almost surely).
For each oe 7 with IO‘IZNO, let us consider
U_=B(0)n’
such that Uaat@. Take an arbitrary ie Uc’ then ie :} > and i|(|c|)=0'. Thus
Ug=Bal(lalnns < Balclaly
and consequently

. v
kU <k Bal(laly ) =X° |(|c|)w'|(|c|)

< X, |(|Gl)(l+e){ loglogx—————]
=(1+&:)<]>B(Xi l ( lo | ))/r =(1+e)} B(X G)/r .
Thus um(U 0_) S(l+£)¢B(X o,)/rB whenever o€ 7 and IGIZN o
It is evident that it holds also if UG=Z.

Let T be any cut-set of 7 with min{|o|:0eT'} 2 N . Then

7C Ug 1 B(O), 7'C Uy (BONT),
M@ S S WU,
thus
W-e < W(T") < (148) T ¢, (X )",
ocel’

This implies that
6,
HST) 2 L T (W-9)
Mo

almost surely. Letting € » 0, it gives MNB(?)ZrBW, and then the result
0

desired.
) =
ta(log%)a‘“e. Vn>0, choose a compact subset ?;’ of :‘} such that u(f;") > W-n and

(ii) The same argument as above. Take for example ()= Wy Vese
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Wil S (Logy——)" for all i7" and n2N,,

1
iln

using Proposition 4.2 (ii). Thus
1, (BONT) < W(X,) whenever ce7 and |o|2N,,

Hence
WS s T Xy,
cel’

T" being any cover set in J with min{ lo|: oe I‘}ZNO. Thus W-n £ M‘If(ﬂ) and so W <
0

. \ 4
MW(S‘T), MW(3)>O a.s. on W>0, where V=Y, e Since M mea(fr) >0 also a.s. on
\ 4
W>0, we have M B+e(‘3‘7) = o as. on W>0. For the function w(t) =

ta(log%)ﬂ(loglog%)s*e, etc. the proof is similar, using Remark 4.1. o

4.3. The upper bound.

oo o 1 rwl/®
Proposition 4.3. (i) Suppose that E[2i= . Tilog T] <o and E [e ]
i

+oo for some (B,r) € (0,00)2. Then
%
M (T)<eo

\J
almost surely. In fact E(# B(:‘T)) <A

(i) If E [W''®] = 4o for some Pe(0,), then
M\VB'S(:’T) =0 as. Ve>0,

1.8-¢

7

where \ys_a(t) = ta(log . Moreover

Vs
M (T) < o as.

if
. k v
llmsup{ z p[W B2v]-l3Logk}>-eo.
| ST v=[Logk]
The proof relies on the following
w8
Lemma 4.4. (i) Suppose that E [e ] = +oo for some (B,r) € (O,oo)z. For
t > 0, write
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Bl = BP0 = {5 & W] Wig|)u(@) < (1 Loglog g

for all v = [Logk],[Logk]+1,...,k.}, 4.11)
where
n* = M Ngemy N+ E 1= MyMy,en ), (4.12)
and
LaLB)=| 3 ,X®*@Loglog wiz)?d 4.13)
k kWP = * Ay gLog X(%) p . .
Q C€ Bk
Then for all t > r we have
lim inf I, = 0 (4.14)
koo
if
E[E™_, T%og 11 < o=. (4.15)
(ii) For B € (0,00), write |
* ko 1 8
By = B(B) = {c & 0| Wig| @ < (Log grotyy)
for all v = [Logk],[Logk]+l,...,k.}, (4.11y
and
* ok
I =L.® = J ozB* X3 (Log X%E))de . (4.13y
Q %€
Then
k 1/
lim sup{ 5 p[W "2v] -BLogk}>-oo (4.16)
K->eo v=[Logk]
implies
lim inf E(B) < e. (4.17)
koo
In particular we have
lim inf L(B-€) = 0 Ve>0 (4.18)
k00
if EW'®) = o,
Remark 4.4. The condition (4.15) is implied by
E(N) < oo,
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In fact, V0<e<a, 3C>0 sufficiently large such that logx < Cxt (vx21). Thus
ke 1 oo 1 0o o-¢
E[ZT_, T log Ti] <SEET_ TYC (Ti)e] = CEEZ™_ T%% < C EM).

For the proof of Lemma 4.4, we shall need the following simple result
of analyse in Liu [1992, Lemma 4.3] :

Lemma 4.5. Suppose that a function g: R - [0,1] is non-increasing

such that J g(t)dt = +eo and that j: N > R is a function satisfing
0

lim supj(ﬁ<l

koo k
then V ¢ > 0,
1/(1+¢) -
lim sup |” 1/(14€) g(t)t8 dt -kG/(l'*'e) = 4o
k-eo j(k)

for each e with 0 <€ <e.

Proof of lemma 4.4. (i) Since w(clv)* (v = [Logkl],....k.) are
independent each other and as a family independent of Fo_ (the o-algebra

generated by (T(cl i)*l’T(cli)*Z"")’O i< Iol-l.), where |o|=k, we have

* p
I = Zwk J ; Xg[ LogLogjltc-,— ] dp
ce k { [1 1
w < {+ LogLog ] }
Oetogiq U clvr= L X(slv)
(conditioned on F p firstly)
B x 1
= Xa[ LogLog ! ] dp 1 p{ W < [— LogLog X——-——l ]B }
szk '[Q ¢ —X; v=[Logk] t (olv)
1, 42
= Ik + Ik ,

where

o

1 B
L1 ek o ol < ot 2

oo Jg v=[Logk] (clv)
1
i B
2 = Xa[ LogLog 1 ) dp nk p{W < [lLogLog 1 ][3}, (4.20)
k Gezwk lg © X v=[Logk] t Xlv)
2
with
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k \Y
Q=Q(ck) = [o:X > ¢}, 4.21)
1 1 vg[logk] (le)
Q=0Q@k = K [eX _|.<c], (4.22)
) v=[logk] (clv)
where ¢>0 is arbitrary at the moment. For
¢ > max{ EE™ T, 1/}, (4.23)
we shall see that
1iminf Iﬁ =0, (4.24)
and
lim 112( = 0. (4.25)
k-)oo
In fact,
p
< ¥ xg[ LogLog—L ) d p{ W < [l LogLog L]ﬁ } :
k = [Logk] t oV
oen Q ¢ v=[Log :
SQog P E (X, X%) p{ W < [% Log v]B }
ceN v=[Logk]
if ¢ > 1l/e. Thus
IS (log K)exp { >k p[W > [ ! Log v] B] }
v=[Logk]
k th/B
=exp{-2 p[e 2v]+BLogLogk}. (4.26)
v=[Logk]
We then note that
v+1
18 1/8
3k p[etWZV]Z yk-1 J p[e‘w Zx]dx
v=[ Logk] v={Logk] Jv
1/8
= r P[etw > x] dx
[Logk]
1/(1+¢) Tt— wi/8
= 1 +E £
=13 [ 1 g 149 P[e > y]y de 4.27)

(x=y1+e), where € > 0 is chosen such that t/(1+€) > r . Write
t 178

f(y) = P [emw > y] , (4.28)

then

t 1
W
[ ] =

j:f(y)dy - E
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by the hypothesis. Lemma 4.5 gives then
1/(1+¢)

1/8
lim sup p
Kosoo ELogk] 1/(1+¢)

t
W .
[em 2 y] yede e

Hence
o k th/B
lim sup { ) p[ ] B Log Logk } 4oo, (4.29)
koo v=[ Logk]

and consequently liminf Ili = 0.

kooo

We now prove that lim 2 =0. We shall use the random variables
Tdw =T, [k, X G0) = "v 1 1 NEOED AN
on I x Q. For each k>0 ’f‘k are Q-independent and identically distributed. We
note the common distribution by T(i,m).
Let p and p’ be two positive numbers such that
p > max(1,1/B) and 1lp + l/p’ =
Using Holder’s inequality we have

E<¥ k[log g f Coglog 18 g <o 9Q
k

< }:V‘;[lo ¢ ] [J‘ (loglog X_)"P dQ)”"(Q(Xv« )] 1’ (4.30)
k

Since the function (log x)® is concave for x sufficiently large, Jensen’s
inequality gives

1 .8 1 \8p
l ~ )P = —_—
J (loglog k) dQ EQ [(log log k) ]

1 \1g 1,)s8
S(log E~(log __)] P, C= [1og (k E[log - ]] e} (4.31)
Q gk Qe %
where C > 0 is a constant independent of k and EQ denotes the expectation
with respect to Q. On the other hand, by Markov’s inequality we have
\ v _ \%
QR < ") < EQ(XV)/ ¢’ = ( EQ(T)/ c ).
Therefore

I < C’ZV§[1 og k] [log (k Eqlog -% ]]“ (EQ(T)/ VP’
<C [log ( Eqliog 1] ey cylesde’yp_ 1 Q(T)) 4.32)
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for some constant C’>0 independent of k, where

Qliog 1= EETTS log 1) <= and Eq(h) = 6E7 1%, 433

using (4.15) and (4.23). Thus lim 112( = 0, and consequently lim inf I; = 0,

koo kooo
which ends the proof of the first part of the lemma.
(i) A similar argument as in (i) shows that |
* a1l 2
1L = Ik + Ik ,
where
=7 [ x“( Log—. ]de T p{W < [Log 1 ]B} (4.33)
ke lo ol 7 Xg v=[Logk] Xslv)
- B 1
= x“[ Log—. ] ip p{W < [lLogX____] B}, 4.34)
k GEZINkJQZ ¢ X5 v=[Logk] t (clv)
with Q and Q_ defined in G): Q= (F  [X |2 c'10= U  [X, <]
1 2 AN (c|v)= ¢ 14 (c|lw<¢ F

v=[logk] v=[logk]
Instead of (4.26), (4.30), (4.31) and (4.32) we have respectively

1! Sexp{-Zk p [w”"z\z] +|3Logk}, (4.26)
v=[Logk]
< %Ko 1 I Co8 %‘)B g <% 9Q
k
k 1 .8 / v\ 15’ ,
S 2ySog 1 (7 Gog 1 Q)7 (aky <) (4:30)
5 kK
mog%_)“" dQ = o™ [(1og_51@_)“*’] S[log IEQ(%&—)) BB 4 C
k k k _
= a"‘P[log (k IEQ(%-a)]Bp + C = [ og(kEN)IP+C, @431y

IS CZ K0 i (a“log(knzN)]]“ RTINS
<C [a“log(kEN)]]“ N c)""g"""’/(l-EQ('i‘)/c) (4.32)
where fp21, l/p+l/p’=1, ¢ > max(l/e, IEQ(T)), C and C’ are some positive

constants independent of k. Here we have used the fact that
EQ(Té) = E(Zi:T?J'g ), 0+E20.
Hence by (4.32)’ we have B}gg Ii = 0, and by (4.26) we see that (4.16)
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implies lim inf IL < +eo. Hence (4.16) implies Jim inf I: < +oo and the proof is
then finished if we note that (4.16) holds with B replaced by B-e (Ve>0) if
EW'™) = o, (see liu 1992) o
We are now in a position to prove Proposition 4.3.
Proof of proposition 4.3. (i) Let t > r and Bl: be defined as in lemmma 4.4:
* k 1 1 8
By = { 6 & M| W |+ < ( § Loglog ygratyy)
for all v = [Logk],[Logk]+1,...,k.}.
For 6 € N“B, , let k(0) be the smallest v > [Logk] such that
1 1 8
W(le)*(w) 2 ( T LogLog m ). 4.47)
Then [logk] < k(o) < k. Set
(= { olko): o e N"-B:}. (4.48)
It is easy to check that f‘(k) is an antichain with I:(k) < Nk- B:. Since I:(k)U

*
B ‘ is complete in T, we can choose a cut-set I'(k) of T (that is I'(k) is a

maximal antichain in 7) with

- ~ *

'k)cTk) cI'k) UB,. (4.49)
By the definition of B’ and T'(k), we obtain

)y X("|loglog1 =3 . X(xlloglog1 By ¥ Xm|loglog1 |8
oceI'(k) ¢ Xc cel'(k) G Xo ce B: c Xo
<Y . XOW @+ % . X%|10g log L |8 (4.50)
ol © © oeB © X5

By Lemma 4.4, we can choose a sequence (ki) of integers increasing to e

such that I: » 0 (i»=<). Hence
i

. . 1 8
E [lxmmf Y Xa|log log | ]
k0o Oel'(k) © Xs

< liminf E[ T X%|log log ¢ I“]
koo ceI'(k) (o]

< Pliminf :s[ T . x® Wo_*(o))] +lim T
joo oel(k) jreo K
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Beoe . o
= liminf E[Z . x%w ((o)] (4.51)
jaoo celk) ©

First conditioned on F.: the o-algebra generated by Xo,(|0'| < ki), we obtain
i

that

L setoge Yo I Ber ™o | = L Beggo Vo ] 4

since E(W 0')=1 for all oeT. Thus

E [liminf > Xghog log )1( IB]
kv cel'(k) ‘ (4]

< liminf zz[ Yy . x%w (co)]

jsoo oel(k) G ©
< liminf IE[ z  x%w 0,(03)] = liminf E(W), (4.53)
jece oeT(k) j200

where the last step holds as

w= Y Xx%*w
oel"cc

for any maximal antichain I". Consequently

.. 1 s B
E [llmlnf Y X%1og log & | ] < ¢ (4.54)
koo gel(k) © Xs

for all t > r. Letting t-r gives the result desired, if we note that

¢B ¢B . ¢B . . ¢B
M@ < X ¢X ) and 4 °(9)= lim M _"(9) =lim inf 4 (7).
k cel'k) © © kseo ko0

¢
(ii) By Lemma 4.4(ii), it suffices to prove that (4.16) implies M B(ET) < oo
a.s. Since Bo“} inf I: < oo, the proof is very similar to the above: we replace

* * * * .
B ‘ and Ik by Bk and 1'k respectively. o

4.4. The fundemental results
Combining propositions 4.2 and 4.3, we obtain the exact value of

the lower limit of cut-set sums:

Theorem 4.6. (The fundamental theorem) Let (6,X 6) be a self similar

ced
network generated by (N; Tl,...,TN) with

E(S(er)*)<eo Ly
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and £ T%o0g )< (Tlog)

For be(0=), we write ¢.(t) = t*(log log D) and denote by r,=r(W") the radius
of convergence of the moment generating function Ee™ ) of W°. Then
,u¢"(y)= r, )W as. (4.55)
where we make the convention that c.0=0 if r,=° and W=0. Consequently
# °(7) is zero, positive and finite, or infinite
almost surely on W > 0 if and only if
r., is zero, positive and finite, or infinite.
respectively.

Proof. If I .= 0, then lE(eerb)=oo for all r > 0. Proposition 4.3 shows
that E [/n¢"(7)] < 1 (¥r>0). Thus E(M¢b(?7))) = 0, and so ,n¢"(v)=0 as.

g‘ 0 < I <o Propositions 4<i>2 and 4.3 ensure that¢ M¢b( g) 2 (r1 ,b)bW and
EM @] S ()" Thus E[# °(9)-(r,)1=0 and #°(®)] = ()W as,
noting that E(W)=1.

If r(W”b) = oo, Proposition 4.2 implies M¢b(.‘7) > "W for all r > 0. Thus
M¢b( J) = +eo if W > 0. This shows that (4.55) holds a.s. on W>0. On the other
hand, by Lemma 3.1, we have X 0,=O if |ol is suffciently large, almost surely on
W=O. Thus M¢b(7)=0 as. if W=0. So (4.55) holds also as. on W=0 by the
convention. o

Theorem 4.7. Let (0, X 0') be a self similar network generated by (N;

oceJd
Tl,...,TN). For any Be (0,0), we have

(i) If E[W""] < oo, then #¥Y(F) = + as. on W>0, where \|l(t)=ta(log%)8+8,
t*(logd)"loglog D™, t*(log7)* loglogp) (logloglog D™, ... (Ve0).
v
@) If E[W' "] =, then 4 *%(9) = 0 as. where y_(® = *(log %)“‘8.
Vs .
Moreover # (J) < oo as.if

11(;2 sup { v=%Logk]p[ wi/E> v] - B Logk } > -oo,

Proof. This is a mere combination of propositions 4.2(ii) and 4.3(ii). o
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5. The main results

5.1. flows from self-similar networks and Hausdorff measures associated
As introduced in section 2.2, for our purposes a network or capacited
network § comprises a tree J with a capacity Xi>0 assigned to each i € 7. We

regard X, as the maximum allowable flow through the edge of the directed gragh

g joining the vertices ili2"'ik-1 and il...ik_lik = i We recall that A flow
or positive flow in the network § is a function £ § — [0,0¢) such that

D) = L jiuie g S04 Ge9), %)

0 < fi) < X, (ie9), 2

0 < D). 3

Intuitively f represents the rate of flow of a liquid through the network.
Condition (f1) reflects the fact that the amount of liquid reacting a vertex
of ¥ equals that leaving it, (f2) ensures that the flow through each edge does
not exceed the edge capacity, and (f3) is the positivity condition, that a
positive amount of liquid is able to flow through the system from & to
infinity. We shall principally be concerned with conditions under which a
positive flow through a network exists.

The main general result on the existence of flows is the "max-flow min
cut”" theorem of Ford and Fulkerson (1962). Here, this stimulates that the
maximum value of {J), given that f satisfies (f1)-(f3), is

M (8) = ilrlf { Zi er X I is a cut-set of 7 }.

The obvious criterion for the existence of a positive flow is
H(s) > 0.
It was remarked by Falconer (1986) that this criterion is equivalent to
M(7) >0,

where M(T)= lim Mk(ff ),
koo

H ()= i?_f (S, X; T is a cut-set of 7 and lil=k VieT}.

49



Q.S.LIU

We recall that 9 denotes the boundary of the tree 7 (i.e., all the infinite
descendants of the members of 7), and A subset I' of 7 is termed a cut-set
if VieJ there exists a unique n=0 such that ilnerl. |

Let §=(0,X 6) be a self-similar network generated by Z=(N; Tl,...,TN).

ceT
Falconer (1986) proved that a flow through the network is possible with
positive probability if EC T) >l and is a.s. impossible if E(Z T) <1. Here
is a more precise problem:

Given a self-similar networkk § = (o, X o) ceg ° khow to modify the
capacities Xo in a homogeneous and optimal way in some sense such that a
positive flow through the network is possible? More exactly,
what is the optimal (in a way) weight function ¢: [0,0) -[0,0) for which a
positive flow through the network (o, ¢(X c)) ced exists?

To solve this problem, we study some Hausdorff measures on the branching

set 7 associated with the ne;work g. We recall that 7 carries a metric d

defined by
d(i.j)= Xi Af

Let S(x), o, B and W be difined as before, that is
S(x)= Zil T, , where ¥ 5=0 and xe[0,0), S
o=min{ae [0,e): E[S(a)]Sl}, where min @:=oo, (o)
B=min{be [0,1): S(l—(_)—cE)Sl a.s.}, where min J:=1, B

= 1i o
We=lim X 4|, Xor W)

Since E(N)<1 & 5:@ a.s. & o=0 (we exclude the degenerate case where N=1 a.s.),
the only interesting case is E(N)>1 or equvalently, o>0. We shall always
assume that
N<oo a5, 0<0i<oo N)
and E[S*(0)]<eo (%9
if it is not specified further. Then
PW=0) =p(7=2) =,
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q being the extinction probability of the associated branching process,
which is the unique solution in [0,1) of the equation
Elq"] =1.
Moreover
p(T=.=T =1 | N>0)< 1, ®)

E[S(o)]<1, E[S(x)] is continuous and strictly decreasing on [o,e0), and the
same holds on [0,e) if additionally E(W)<eo (Lemma S and Lemma o in section 3).

We shall now collect our main results. For a Hausdorff dimension function ¢
(that is, ¢ is defined on [0,), non-negative, increasing and continuous on
the right), we denote by }c¢(f; ) u¢(f-7 ), and M¢(9 ) the Hausdorff measures, the»
sherical Hausdorff measures and the lower limit of cut-set sums of .".r
- respectively.

First of all, we translate the criterion of Ford and Fulkerson (1962) in
terms of Hausdorff measures on ::T (see Theorem 1 in the introduction):

Theorem 5.1. Let §=(0',Xo_) be a self-similar network generated by Z= (N,

ceJ
Tl""TN)’ and ¢: [0,0) — [0,0) a non-negative function, increasing and
continuous from the right. Then almost surely
a positive flow through the network (0,0(X 0')) (0€J) is possible
if and only if
#¥7) > 0

where ?fq’(. ) represents the Hausdorff measure on :‘; associated with the
dimension function ¢, 7 carrying the metric defined above.

Proof. Falconer (1986, Lemma 3.1) observed that a positive flow through
(c,q)(Xo,)) exists if and only if M¢(F} )>0. By Theorem 2.7, we see that

| 1¥@)=u¥a)= n¥3)
if Xi->0 as |1|->oo (Vie 7). It then suffices to show that
Xi->0 as Ill—)°° (Vie 7) almost surely.

Since E[S(c)]<1 and E[S(x)] is strictly decreasing on [o,e0) we can choose t>O.
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such that E[S(t)]<1. Writing
MO=Z ;| X
we see that E[Mk(t)l F, l] = !E[S(t)]Mk_l(t). Thus {(E[S(t)])'kMk(t), I!-‘k} is

a positive supermartingale. The martingale convergence theorem applies,

yielding that M >0 as. and then the result desired. o
Corollary 5.1. If (N) holds, then

@) Xi—>0 a.s. whenever |i|-oo.

(i) 1#%3)=1%7)= #%@) as.
Proof. This is shown in the proof above. o

Remark 5.1. We have proved in fact that the result holds in the
deterministic case. That is, if G= (6,C (o) is a network with C50 (|o]0),
then a positive flow is possible through the network ¢(G):= (0,(C c’,))(cs'e 7)
if and only if the Hausdorff measure Hq’( g ) of the limit set ?} is positive.
Thus in particular, a positive flow is possible through the network G=
(o,(C o,)(O'E g) if and only if the lineér Hausdorff measure ?cl(.‘} ) of the limit
set T is positive.

Our question is then to find a best dimension function ¢ to measure the
branching set 7. As we may expect, our results will be havily dependent of the
distribution of S(x) defined above.

We shall see that o is in fact the Hausdorff dimension of 7. The
following result is esiablished as Theorem 2 in section 1.

Theorem 5.2. Suppose that IE(S((Z)Z) < oo, then
(i) dim T(0) = o as. on I(w) # B. (i) #HT) <o as. if O<ai<os,

(iii) (a) If E[S(a)]<] then #™(3)=0 as. (b) If E[S(0)]=1 then O0<H™(T)<eo if
and only if S(o) =1 a.s. Consequently, Ra(.‘})=0 as. if S(a) is not as. a
constant.

Proof. Since E[S(x)]<1 and E[S*()]<e, Theorem 4.7 applies, yielding

\V B ~
that # "(F)=w as. on W>0, where ,=t"(ogD)’" Vb>1. Thus #'(7)= #'(7) =eo
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a.s. on 5#@ Va>a, giving that dim 5(0)) <o a.s. Conversely, as is shown in the
proof of Theorem 5.1, {(E[S(a)])"‘Mk(a), Fk} is a non-negative
supermartingale, where Mk(oc)= Zlil___k X?. Since E[S()]<1, Mk(oz) is a.s.
bounded by martingale convergence theorem. Note that M?(ﬂ)SMk(a), letting k-eo
gives Ma(:‘f)<°o a.s. Then ?ta(?;)<eo and dim ?.I 200 a.s. This ends the proof of (i)
and (ii).

We now prove (iii). If E(S(o)<l, then M@= X|;|y X] — O since
E[S(a)])"‘Mk(a) converges. This gives that u“(§)=0 as. If E(S(a))=1, then
(Xc)oeT»is a tree martigale. By Falconer’s lemma (1987, p.342, Lemma 4.4),
Ma("J')=0 a.s. if S(o) is not a.s. a constant. So Ra(;r)=0 a.s. Thus 0<“oc(7'y)<°°
implies S(a)=1 as. Conversly, if S(a)=1 as., then it is easy to verify that
#%(T)=1 as. on 9#2. Thus Ha(é}):l as. on 943. o

Remark 5.2. The dimension result dim 7 =a holds even if 0=0 or e, In fact,
if 0=0, then (@) = & as, the result is evident If a=o, then Va>0
E[S(a)]>1. Thus a positive flow through the network (o, ‘XC‘I)O'ev exists a.s. on
.°~I(o)) # & by Falconer’s result (1986, p.568, Theorem 6.3). Hence Ra(?})>0 a.s.
on 5(0)) # & by Theorem 5.1. Thus dim 5(0)) > aas. on f}((o) # & Va>0. Therefore
dim 7(w) =e as. on T(@) # B.

For be[0,e0], let us write

¢b(t)‘ = ta(log log %)b, where ¢__(t):= +eo. (d)b)

We shall denote by rb=r(Wb) the radius of convergence of the moment

generating function E(e‘wb) of W° (O<b<e<). Since now, we suppose always that
E(S(a))=1.

Theorem 5.3. (The fundamental theorem: a necessary and sufficient condition
for ?{(bb( 5 ) to be zero, positive and finite or infinite) Let (o'xc)oeg be a
self similar network generated by (N; Tl,...,TN) with

N 0, 1 1
uz(Zi ; lT : log.ri)<oo. (TlogT)

Then for all be (0,0), we have
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o) a3 )W as. @)
where, if r =% We make the convention that e.0=0 and suppose addtionally
E(S(0)?)<ee. w?
Consequently, whenever (Tlog-}') holds,
nY 5) is zero, positive(and finite) or infinite
almost surely on W>0 if and only if
. I, is zero, positive(and finite) or infinite
respectively.
Proof. We first note that #%(7)=p®@)= #%9) as. by Corollary 5.1. The
result then follows by Theorem 4.6 and Lemma 3.1. o

Remark 5.3. The condition (Tlog%) is implied by E(S(xo))<oo for some OSxo<a.
In particular, it holds if E(N)<ee.

As a direct conseq;xence of Theorem 5.3 we have

Corollary 5.3. (critical value of B) Suppose that the conditions (L2) and
(Tlog1) hold, and put

B*= sup(b>0: rWP)=0} = inf(b>0: rW/P)=seo}!.

*
Then 0 £ B < +oo and
*
0 if b<p
. *
+oo  if b>P
almost surely on the event that the tree process does not terminate. Moreover

@)= {

0<H® ) <o as.onT #J

if and only if 0 < r(W"®") < w, provided that 0<B’ <o,

Proof. By Theorem 5.3, it suffices to prove that almost surely W>0 if and

It can be easily verified that

sup{B>0: rWB)=0) = inf(>0: r(W/Py=too}.

By convention we write sup J = 0 and inf @ = +oo,
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only if S; # (J. But this is so by Lemma 3.1 under the condition (Lz). o

Using Theorem 3.3, we see that B =B if WNI_<eo and B<l, and P*2B if

llNIi;=oo or B=1. The following result is stated in the introduction (Theorem 3).
Theorem 5.4. Suppose that (L*) and (Tlog1) hold.

(i) If B=0, then n¢“(§) = #%9) =1 as. on T#D;

(ii) If INI_<oo and 0<B<1, then x¢"(§) >0 a.s. on 943 if and only if b2p.

(iii) If INu__=co or B=1, then R¢b(:’-7) =0 a.s. on T#2 if 0sb<p.

Proof. The results follow directly from theorems 3.3, 5.2 and 5.3, noting
that almost surely W>0 if and only if 5 # @ under the assumption E(S(a)z) < oo
(Lemma 3.1). o

The Theorem below will prove very powerful to find exact dimension
functions of random fractal sets in Eclidian space. The result has been stated

as Theorem 4 in the introduction.
Theorem 5.5. Suppose that E(S(0)?) < oo,
o - -
(i) If B=0 then # %) =1 a.s. on I#D;

o - -

(ii) If B>0 and (Tlog.%.) hold, then 0< # B(.‘I) < a.s. on XD if and only

if 0<HW")<eo, If additionally UNu_<eo and 0<P<l, the condition reduces to
r(W'®)<eo, which holds if there exists n>1 such that

o E[S(a)" |N=n}'M >0

. , (L)
i=l nB n
ni - 1/ni
or equivalently > E[S(a) BIN-n] ) < oo, (Ln)’
i=l n

Proof. This is a combination of Theorem 5.3, Lemma 3.1, Theorem 3.3 and
Theorem 3.5. o

Remark 5.5. To calculate oo and B, we note that o is the least solution
of the equation E(S(a))=1 and B is that of ess sup S(I-gﬁ)=1 if there

are solutions.
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We give now a series of corollaries which answer some questions of several
authors, improve or generalize some of their results.

Corollary 5.5.1. Let 6= (0, X 0_) be a self-similar network generated by

oeJ
Z= (N;T,,..T.). Put 0,.(0) = *(oglog 1)’ where Ob<w , and suppose that the
conditions (L?) and (Tlogy) hold. Then the function ¢,(t) = t*(loglog he s
the optimal weight function for the existence of positive flows through the
network in ‘that

(i) if b<B, a positive flow through the network (0, ¢, (X )sc 4 is a.s.
impossible;

(ii) if | b2B a positive flow through the network (o, ¢b(X o)) e g is a.s.
possible on the event that the tree process does not terminate. Here, in the
case where INIl_=co or B=1, we suppose additionally that r >0

CUG) I ¢(t)20 is a function smaller then ¢B in that !3)131 ¢(t)/¢B(t)=O.
then a positive flow through the network (0,¢(X 0‘)) (0e ) is a.s.impossible, if
additionally r g<° Or more particularly, if (L ) holds.

Proof. The first two parts comes directly from Theorems 5.1 and 5.4. The
last part comes from Theorem 5.5, noting that if # B('3; ) <oo then H¢(?~I) =0 for
all ¢ such that %1,‘5" ¢(t)/¢B(t)=O. o

This answers our original question.

If ¢ is a non-negative function defined on [0,), we shall study
limit behavious of cut-set sums Zoel“ ¢(X c)' We recall that

#@:= lim 4,3,
where Mk(:'T)= inf {ZceI‘ ¢(XG): I is a cut-set of 7 and |0'|2k VoeT').

For a self-similar network §= (0,X 0') (o€ 7), after showing that M¢(:‘I)=O a.s.
if ¢(t)=ta and M¢(ff)=oo a.s. on 5’#@ if o(t)= tm(log%-)a (Va>1) under some
conditions on Z (see Remark 5.5.2 below), Falconer (1987) suggested the
question that what is the exact function ¢ for which 0<M¢(?T)<°o a.s. on ;T;#@ ?

The following result answers this question:

56



Networks and Hausdorff measures

Corallary 5.5.2. Let &= (O’,Xo,) (ceJ) be a self-similar network. Then -
¢ - , ,
O<H ®(T)<eo as. on I#D if and only if O<r(W'®)<eo. If UNH_<oo and <1, the
condition reduces to r(W lm)<m, which holds if there exists n>1 such that

ot _ m' o 0 ,
T=1E[S(a) BIN—n] > 0. Moreover, we have M B(57)= (rm)“w a.s.

n

Proof. Directly from Theorems 5.1 and 5.5. o
Remark 5.5.2. Falconer (1987, Corallary 5.3) has proved that if S(a)
is not a.s. a constant, E[(S(a))?]<e~ and

TiS"y for some y<1, VI<i<N, (5.1

then MW'(ﬂ)mo as. on I#D (5.2)
for all a>1, where Wy (D)= ta(log%)a. Corollary 5.5.2 implies in fact that
(5.2) holds for all a>0 whenever

S(M)<I ass. for some M>0 53)
and S.(oc) is not as. a >cor;stant, since in this case O<B<1 and M B(:7)>O a.s. on
72D,

If 5 carries the metric dz(i,j)= 2‘“'\jl and° N is of geometric
distribution, Hawkes (1981) proved that # l(:’~I)=W a.s. The author (1992) has
recently extended this result to the general case whete N i; of arbitrary
distribution, solving a conjecture of Hawkes. We remark thaf Theorem 4 applies
for X;=2" il z-qv, L) yielding that |

Corollary 553. If ¥ carries the metric d (ij)= 2 linil hen 0<;c¢“(§)<m
a.s. 5#@, where ¢ = toz(loglog%)B with o= loge(N)/log2 and f=
1-loge(N)/logiiNn__ if either of the following conditions holds:

(i) "Nu__<oo (thus P<1);

(i) UNn_=oo (thus B=1), EE™N)< for sufficiently small t>0 and EEe™N)=o0
for sufficiently large t>0.

Moreover, we have X B(§)= (rl /B)BW a.s.

Proof. (i) The equations E(S(0))=1 and ess sup S(lif‘-B)=1 give

o= logE(N)/log2 and B=1-loge(N)/logiNu_.
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It then sufﬁcés to prove that (Ln) holds with n=INu__. In fact E(S(cx)k| N=n)=

B %, [ES*] N=n)]"*=)% =n’, thus (L) holds evidenty.

(i) The caculation of o is the same as above. Since llS(x) I =o° Vx20, then B=1.
The proof will be completed if O<r(W)<e., But this is the casec under the given

condition on N by Lemma 3.1 in LIU (1992). o
If W is very large, E(WF) = o for p>0 sufficiently large, say,

then r(W l"’) = 0 Vb>0, so u¢"(s-r) = 0 a.s. by Theorem 5.5. Hence the function
¢b is too small to meet our needs. The following result is to deal with this
case. The result improves also that of Falconer (1987).
Theorem 5.6. Suppose that the condition (L® holds. Put
v,0 = *ogy)’ (5.4)

(Va>0) and

A = sup {p>0: E(SPon)<eo}, A = sup {p>0: EWP<oo} (5.5)
then 2< [JLS]QLSXS <oo and

v -~ .
@) # “(7)= 0 as. if a< 1/A;
v, - -
(i) # %(J)= as. on T # D if a>1/(\-1);

_ V. -
(iii) Suppose that O<A<co, then # ”’”(ﬂ)«o a.s. if

11(:1: sup { v=%Logk]p[ W}‘Z v] - )1: Logk } > -oo, (5.6)

Proof. First of all, by Lemma 3.1(ii), we have 2< [ls]slsls. If O<A<eo, the
results come from Proposition 4.7. If A=eo, the results mean HW‘(Q) =0 Va<0.
This is immediate since Ra(§)<oo a.s. o

Remark 5.6. We have in fact that 3{“’(5):& a.s. on 5#@, where y(t)=
tallogtl‘, tallogtlllx(logl(logltl)l)‘, etc Va>l/A. The proof is similar as in
the above, using Proposition 4.2(ii).

The following corollary shows that Falconer’s result (5.2) can be
extended to a>1/2 even if the assumption (5.1) is completly removed.

v . ~
Corollary 5.6. (i) If E(S(ct)*)<s, then # *(F) = = as. on T # & Va>1/2.
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— v . -
(i) If E(S(0t))<eo for all keN, then # *(J) = o as. on T # & Va>0.
The next application is to the study of Hausdorff measures of some fractal

sets in Euclidian space, which we state in the following section.

6. Application to a random construction of fractal sets in R™.

The results above will prove powerful to find exact dimension functions

of some fractal sets in Euclidian space.

6.1. Net fractals

This section vde‘scribes the construction and Dbasic "properties of a class
of fractais 'k((‘ri(')t as yet random) obtained by geh'erizing‘. the classical
construction of the ’middle third® Cantor set. Such séts, which occur
frequeiitly in thebfy and in practice, will be termed néi fractals, following
Falconer (1986, 7). It is high time that this class of sets had a name, and
this has been chodSén because of the closely related net measures (see
Falconer (1985, chapter 5) or Rogers (1970, §2.7)). The model is quite similar
to that of Maudin and Williams (1986), see also Graf, Mauldin and
Williams (1988), bﬁi here we emphasize the net measures.

Let 7 be a tree and let 7 be the associated set of infinite sequences
(see section 2). Let |

| | J= {I; i)

be a collection of compact subsets of R™, partially ordered by inclusion and
indexed by g, so that Ii,c‘i Ii whenever i<i’. In particular, them is a set I@
with Ll s for all ie9. (We do not at this juncture demand that I, and L, be
disjoint if i and i’ are incomparable under <.)

Write || for the diameter of subsets of R™. We always assume that |Ii|>0
if i€ 7. Usually we have

|1ii iI —0 as r oo if i=iii. €T (6.1)
1727
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If this is the case, the convergence is uniform for i by Dini’s theorem. So
given 8>0 there exists k(8) such that
L] <8 whenever il 2 k(d). (6.2)
Moreover nT:in l r is a single point of R™ for each ie;f and the mapping
g7 - R gl) = r\°:’=lIi| ]
is continuous on (?},’t). The compact set

I

oo
i
k k

K= g(.‘;') =N, _Mieg
is termed a net fractal constructed on the tree 7 with the sets {Ii: ie7}.
(For the identity in the above, see Falconer 1986, Lemma 7.1). In general
such a set will be a fractal by any reasonable definition. Observe that a
given net fractal X may be constructed on many different trees and with many
different collections of sets {Ii}' Net fractals are almost invariably
obtained from such nest of sets. '

We say that J and {Ii: ieg7} provide a proper construction for the net
fractal K if K u°; e implies that I' is a complete collection of sequences
(Falconer 1986). Equiyalently, this is the case if for any minimal set
(cut-set) of sequenceé I, each set of the collection (Ii: iel'} contains a
point of K that lies in no other set of the collection, or again
equivalently, if this holds for I‘=ka, k=1,2,... We shall say that K is a
proper net fractal, without reference to the underlying sets, when it is clear
what construction is being used.

Given a net J and a Hausdorff dimension function ¢, the net measure v¢(F)

of a subset FCK is defined by

vE) = Lim V3@, (63)
where
vg(F) =inf {3 o(L|): Fc U L, and |1,|<5 if ieT). (6.4)
T el jel
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By a similar proof as in Proposition2.5, if (6.1) holds, we have

V@ = fim Vi@, 63y
where
Ve - 1lrlf{2r¢(|1 l): Fe U 1, and li |2k1fiel"} 64y

Then v¢ is an out measure of Hausdorff type on subsets of K and the Borel sets
are v¢ measurable, see for ex_ample Rogers (1970). If ¢(§)=t ) (s20), we write
v® for v¢_,and vs(F) for v¢(F); We call VS(F) the s-dxmenswnal het measure of
F. The Hausdorff dimension of F with respect to the net J 1s by deﬁnition the
quantity

dim F = inf {s0: vs(F)fo} = sup {s20: V3 (F)=0). (6.5)
Recall that the ordinary Haus;dorff measure u¢(F) of F with respect

to the measure function ¢ is defined by » |
#E) = 1im 1Y(P) - (6HH

' 3-+0

where
ng(F)_mf{ch(lUI) Fc UU |U|58V120} (6.4H

i=1
and the Hausdorff dimension dim F is given by
dim F = inf {£20: #'(F)=0) = sup {s20: #3(F)=0}, (6.5)H
#3(F) being the s-dimensional Hausdorff measure of F. '
By (6.2) any covering ‘in the 'definition of v‘l"’(s)(F) is an admissable
covering in the definition f*'of"??(g(F)‘, S0
- d® < 5@,
leading to
#E) < vOE) (6.6)
for FcK. Thus |
dim F < dimVF. (6.7)
We shall need some assuptions to allow inequalities (6.6) and (6.7) to be
reserved. First, Assume that
Ii = ﬁl—t—I; (ie7) (6.8)

(the bar denoting closure in R"), and also that the open sets
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{int L: e g} form a net, (6.9)
that is int I O int L, if i<’, but int [ A int L, = @ if neither i<i’ nor
i’<. Next we require a condition to. ensure that L do not become small too
rapidly. Assume that there is a constant a>0 such that

| alyl < Il < Iyl if dies. (6.10)
Finally assume that there are 11>0 and %21, independent of i, such that
inradius @) 2 nlg X deo. ©.11)
Very often we can take x=1, so that (
inradius (1) 2 n15| Ge9), 6.12)
but it is useful to allow the possibility of x>l enabling estimates of
dimension to be madé in ’non-linear’ cases.

If K is a net fractal constructed from sets {I.: ie7} Satisfying (6.1)
and (6.8)-(6.11), we say that conditions (CN ) hold, following Falconer
(1986) It was proved by Falconer (1986) that under the conditions (CN ) there
is a constant ¢>0 such that

N vStUDmE) < 8@ < viE) (6.13)
for any FcK, and so T ' ' )
dim K-(v-Dm < dim K < dim K. (6.14)

A slight change in the proof of Falconer can imply the following
Lemma 6.1. Let X be a net fractal constructed from a collection of sets
satisfying (CNX)’ and L=L(t) be a non-decreasing positive function, then there
is a constant c>0 such that
(@) < #¥F) < VP (6.15)
for any FcK, where h=h(®=t"%" DMLy and  wo=rL().
Let § be the network formed by the tree J and capacities Xi=|1i|’ ieg.
Note that if K is proper, then (6.4)° gives v
V) = inf (T o(l1; : K2 U 1 and [il2k if e,

1;_1‘f { Zr(b(ll I) I" is complete in 7 and l |2k if ieT'}. 6.4)"
ie
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Therefore v¢(K)—M¢(ST) by Lemma 2.2, and consequently

Lemma 6.2. Let K is a proper net fractal constructed from sets {Ii;ie g} and
5=, |L;|) (ie7) be the associated network. If (6.1) holds, then
V= 1= 1%). 6.16)

Thus the results on Hausdorff measures of the limit set 7 apply well

for the proper net fractal K.

6. 2 Random constructton

We now randomize the construction. Let 7=7(w) (we Q) be a random tree
generated by N. Fix IQ. Suppose J= (Ii(a)):ie J(w)} provide a proper
constrﬁetion for a net fractal K(w) for each we(. We’ obtain then a natural
random network &(®w) formed by the random tree 7 and the capacities xi=IIi l,
iey. The construction  is ‘rermed self-similar if so 1is the correspondirrg
network.

By Lemma 6.2, all the results in section 5 on Hausdorff measures of the
branching set g apply ‘well for net measures of proper net fractals formed by

the construction above. For example, using Theorem 5.5 and Lemma 6.1 we have

Theorem 6.3. Let K((o)”‘ }bev a proper fractal generated by a self-similar
construction {H: i€e 7} and write
Z =N TG*I""’TO‘*NG)’ where T_.= |1 |/l1 | (sisN),
the defining elements of the assosiated network. We write Z for Zg.

Let S(x), o, B, W and ¢, be difined as before, that is

Sa)=Z T, where £ :=0 and xe[0,), (S)

o=min{ae [0,00): E[S(a)]<1}, where min :=oo, (o)

B=min{be [0,1): S(1—5)<1 a.s.}, where min @:=1, B®)
. lo] o

W= Ll)g} Z|G|=k My T |1 W)

6,00 = *(loglogh". CY)

(i) If E(S(a)?)<eo, then dim, K(w)=0. a.s. on K#D.
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(ii) If additionally O<ci<es and E(EY_T%logy)<e, then
i
(a) v¢"(1<)>o ‘a.s. on K#@ if and only if bB, provided that INi_<eo and

¢ .
0<B<l1. In the case where INIl_=so or P=1, we have v "(K)=0 a.s. VOSb<f.
)
(b) If B=0, then O<v B(K)<o as.on K#J if and only if E(S(a))=1; In the

case where E(S(dj)=1, V¢B(I()Eva(K)=1 a.s.on K#D.

/ S :
(c) If B>0 and E(S(a))=1, then O<v B(K)<oo a.son K#J if and only if
O<r(W"®)<co, When INI_<eo and 0<B<1, the condition reduces to r(W'®)<eo, which
holds if there exists n>1 such that

o E[S(a)" |N=n]'® >0

i =1 B S
! n

(L)

!E[S(a)"; |N=ml'™ @y
’ n

or equivalently ¥
=1

Moreover, we have
V¢B(K) = (rl IB)BW a.s.
(iii) If the . construction satisfies the conditions (6.8)-(6.10) and (6.12)
for all i and for all realizations of the process, then all the ‘conclusions

above hold for the the ordinary Hausdorff measures ﬂ¢(K)._

Remark 6.3. (i) To calculate oo and B, we note that o is the least solution
of the equation E(S(a))=1 and P that of ess sup S(lP_EB) =1, if there are
solutions.

(i) In practice, the conditions on o and B (such as O<oa<es and B<1) can
be verified automatically in the calculation.

(iii) If the construction satisfies the conditions of the model of Mauldin
and Williams (1986), that is, if in addition iﬁﬂl’@':lg, I - is geometrically
similar to Ig, Int(1 c*i)ﬂ Int(I o*j)'_'z (i#,0eJ) for all realisations of the
process, then summing volums we have S(m)<l1 as., so O<o<m and 0<B51-% if
I<E(N)<ee and S(ot) is not as. a constant. This proves C'orollary 5 in the

introduction.
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(iv) The condition (Ln) holds if B=Bn:= lognS(o)u_/logn and

i -
e E[S(0)" [N=n]'" _ .
S T YO ’
S(o) N =n Voo
which is satisfied usually. The last condition means that, conditioned on N=n,
the rate of convergence of  the Lk norm of S(a) to the L norm is sufficiently
large. It holds for - example if p(S(a)=llS(a)1N=nl|°°; N=n)>0, or more
particularly if on N=n, Ti takes only finitely many values, see Remark 3.6.
(v) In the spacial case where N=n>2 a constant, the condition (Ln)

becomes very simple:

- ES@" 1! o
=S

In the next section we shall see that Theorem 6.3 can be applied to find
the exact Hausdorff dimension functions of the most classical constructions of
self-similar random fractals. The following theorem is to deal with the case

where HINIl_=co and S(a) is very large. It comes from Theorem 5.6.

Theorem 6.4. Let K(w) be a proper fractal formed by a self-similar

construction {Ii: ie7} and §=(0,Xo) the corresponding network generated by

ceJ
Z=(N; T ...,T\), where T= |L|/|15] (1<),
Suppose that O<ai<es, E(S%(0))<ee and put
A = sup{p>0: E(SP(0))<ee}, A= sup{p>0: E(WF)<eo}.
Then ZS[ls]SA.SX'Sm and
dim XK =0
v, i . v, ] -
v Y(K)=0 if a<l/A and v “(K)=o if a>1/(A-1)
a.s. on K#J, where v ()= *(log %)“ (Va>0). Moreover,
.
Y l’)“(K)<m a.s.
. e . k JA 1 o
if E(WM=eo and Jim sup { SE Wi M logk} >, '
The conclusions hold also for ordinary Hausdorff measures p K if the

conditions (CN ; ) hold.
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7. Examples

In this section, we give a series of examples to show how Theorem 6.3
enables us to caculate exact dimension functions of self-similar fractal sets.
Examples 7.1 and 7.2 are generizations of the construction of classical Cantor
sets. Example 7.3 is a construction of random Von-Koch curves. In example 7.4,
we give a quite general construction of a random set of high connectivity. The
example is taken from Falconer (1986) where the as. dimension is calculated.
Here we give a exact dimension function. As a corollary, we obtain the exact
dimension functions of Graf et al.(1988) on Mandelbrot’s percolation Processes
and their modified curdling. Examples 7.5-1.7 give constructions where the
number of descendants may be unbounded. Example 7.8 is about the zero set of
Brownian bridge. This is taken from Graf et al.(1988) where the exact
dimension has been given. We take it .to illustrate how the famous function
t""’(loglog%—)"2 can ‘be obtained very easily by Theorem 6.3. In example 7.9,
we give a fractal for which the functions of the type ta(loglog-{-)b (Vb>0) are
too small to be eiact dimension functions. In this case, Theorem 6.4 applies,

and we calculate a critical function of the type ta(log%)“.

7.1. Random Cantor set » B
Let 2sM and 0<NsM be integers with some random distribution. Divide the
unit interval into M equal intervals and select N of these. Repeat this
independently for each of the selected squares and continue, to get a fandom
fractal K. The probability of the process becoming extinct is determined by
the distribution of N. If E(N)<1, then K=(J a.s. Suppose that 1<E(N)<eo. We have
Z=(N; pppp: SG)= NM™,

ae(0,1] is the unique solution of
EONM %)=1.

Suppose that M is independent of N and Mii<ee. Then IS(x)n_=uNu_ 1™,
Be[0,1) is found to be
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B=1+ ozloguM'1

I /logiNn_=B , where n=iNu_.
If B=0, the exact dimension function is ¢0(t)=ta since E(S(a))#-l. If B>0, we
note that Ti=1/M takes only finitely many values, by Remark 6.3, the
condition (Ln) in Theorem 6.3 holds with n=INU_. Thus in any case, Theorem

6.3 implies o
0 <v %K) < = as. on K#@.

Besides, the conditions (6.8), (6.9) and (6.12) hold evidently (we note that
Ti=llM 2 1/uMu_). Hence we have also

0 < R¢“(K) < o as. on K#@.
where (1) = (*(loglog)®, with & and B defined in the above.

The classical Cantor set corresponds to the case where N=2 and M=3 a.s.
Thus o= log2/log3 and B=0.

Here is a more explicite example of Falconer (1986, example 11.2): divide
the unit interval into three equal parts and retain each part independently
with probability p. Repeat this with the parts that remain, and so on. In this
case, we have

M=3 a.s; p(N=k)=()p"(1-p)"*, k=0,1,2,3.
The extinction probability of the branching process is 1 if p<1/3 and is the
solution of (l-p+pu)’=u lying between 0 and 1 if p>1/3; this is the
probability that K=. Otherwise the exact dimension function for net measures
and Hausdorff measures is the function ¢B defined above, with
o=log(3p)/log3 = 1+logp/log3 and P=1+alog(1/3)/log3=1-ar.
The number o has been calculated by Falconer (1986).

7.2. Remove from the  unit interval a central portion so that the
remaining parts have lengths 1/3 < T =T, < 1/2 distributed according to the
probability density function f. From each of this parts remove a propotion
distrbuted in the same way, etc. This time extinction cannot occur.

Since
E(T‘1"+T‘;‘) =2 ,r:g u®f(u)du,
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equating this to 1 gives the almost dimension of the resulting fractal K.
In the case where f(u) is uniformly distributed over (1/3, 1/2), o is the

solution of
ol = 1227 (0D 3@+

O<o<l1, and P=1-a (=[32) since IS(x) ||°°=21'x. We now verify the condition (Ln)
with n=2. We have
ky_ o2 Ok _ 256 o (Olkel) o-(Okel) 3 -0k
E(S(0) )= Jin (2u)'6du = Ek_ﬂ'(z -3 >4 TGKFT 2

ok+1)
Thus [ES@9'™ 5 [ 3 [ES@™
28

1k it
sraien) R Ry

£t

so the condition (Ln) holds with n=2. Theorem 6.3 gives then

0< v¢(K) < oo a.s.

where ¢(t) = ta(loglog%)"a. As the conditions (CNl) hold evidently, we have
also 0< 3{¢(K) < oo a8,

7.3. Random von Koch curve

Let T be a random variable taking valus in (;, ;) with probability
density function f. Let F be a line segment in ® and Ig be the equilateral
triangle based on F. Let Fl and F4 be (random) subintervals of lengths T
obtained by removing a central portion F_from F, and let E, and F, be the
other two sides of the equilateral triangle based on Fc, always on the same
side of F. Define Ii as the equilateral triangles based on Fi (1<i<4). Ii may
be regarded as images of IQ with respect to the similarities Si that map F
onto Fi. Repeat this process on each segment Fi(ISiS4), we obtain a random von

Koch curve K. The polygonal curves Pk:= F_ converge to a realization of

U
lo|=x ©
the random fractal K in the Hausdorff metric and K is a.s. an unrectifiable
Jordan curve (see Falconer 1986,p.581.). In this case N=4 a.s., Tl=T4=T and
T,=T,=1-2T. The number o. is determined by

E(S(@) = 512 fiw)u*+2(1-20)%)du = 1.
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If T is uniformly distributed on (;,’ ;), then a=1,444 is determined by

_a_g_r(z'a_3'(a+1))=l'
Since 1S()_=2sup{t*+(1-20": te(, ;)}=4()", we have PB= l-o log3/logd =B,

As  ES)Y= .r:Z 6[(2q°‘+2(1-2u)°‘)]“du z;ig 6[4(1-2u)*1*du =(§a)k/(ak+1),

[E(S(01"*_ [E(S(a)“)]"“>[ 1)
4® N 1 = lok+I] °

it is clear that the condition (Ln) holds with n=4 (see the calculation in
7.2 above). As the conditions (CN l) hold evidently, Theorem 6.3 shows that
0<vOK) <= and 0 < #P&K) < o us.

where o 21.444 and ¢(t) = ta(loglog%)l'wm”"“.

7.4. A random set of high ¢onnectivity

Let 2<M and 0SNSM? be integers With some random distribution. Divide the
unit  square vin'to M? equal sqéres and select N of these. Repeat this
independently for' each of the seiected squares and continue, to get a random
fractal K. The probability of the process becoming extinct is determined by
the distribution of N. By sélecting squares in an approprite way we can

arrange for the sequeneces of homology groups of the sets Ui e Ii to be
k .

strictly increasing, so that the limiting set K has infinite connectivity.
(see Falconer 1986, p.581.)

In this case, we have
Z=(N; pppp» SK)= NM™.

Thus the calculation is exactly the same as in section 7.1, and we  obtain
that, if M is independent of N, then ae(0,2] is the unique solution of
ENM %=1,

B=1+ aloguM'l||°°/10g||N||°°=Bn, where n=UNIl__,

Pe[0,1), and
| 0, %
O<v (K) <o and 0 <# (K) < oo

a.s. on K#J, where ¢B(t) = ta(loglog%)s with o and B defined above.
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As special cases of the model, we obtain the exact dimension functions of
Graf, Mauldin and Williams (1988) for Mandelbrot’s Percolation Process and
Modified Curdling. We note that they were obtained quite difficultly.

Special case 1: Mandelbrot's Percolation Process (Graf et al. 1988, example
6.2) In 1974, Mandelbrot introduced a process in [0,1]2 which he called
"canonical curdling". Fix a positive integer n and a positive p<l. Partition
the unit square into n’ congruent subsquares: Bi,j= [G-1)/n, i/n] x [G-1)/n,
j/m]; 1<i, j<n. Each subsquare Bi,j "survives" independent of the others with
probability p. For each subsquare which survives, rescal and apply the same
procedure.

The construction is a special case of the example above with

2 2
M=n and p(N=k)= () p* (1-p)"

Clearly E(N) = n’p, so K(w) is non-empty with positive probability if
and only if p>1/n2. Otherwise, using the result above, the a.s. dimension o of
K is determined by EQNn'®)=1, that is

o = logE(N)/logn = log(nzp)/logn = 2+logp/logn,
and the number B is determined by

B = 1+alog||M°1||°°/log|lN||°° = l+olog(n )log(n?) = 1-o0/2.

Our conclusion above ensures that

0<vP(K) < and 0 < #%K) < o a2 on K=,

where ¢(t)= ta(loglog% 1002 ohd o = 2+logp/logn.

Special case 2: Modified curdling (Graf et al. 1988, example 6.12)
Fix a positive integer n and a probability measure T on the power set of

{1, .., n%}. Let Jl, ves J2 be a labelling of the partition of [0,1] X
n

[0,1] into congruent subsquares. Let I®=[O,1] x [0,1]. If the square Io. has
ieA

been constructed, then choose Ac {1, ..., nz} according to T and let Ic*i

be the subsquares of IG obtained by scaling Ji’ ieA into I G via the natural
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map.
Let £ be the cardinality map from the power set P:=P({1,..,n°}) into
{1,...n%}: £(A)= card(A) if Ac P({1,..n’}). Example 7.4 applies with M=n
and N the random variable distributed according to the image of v by £, namely
p(N=k)= v{Ae P: £(A)=k}.
Thus, using the preceding result we have

o = logE(N)/logn,

1

B =1+ aloghM u_flogiNi_ =1 +alog(n”)logiNi_,

= 1- alogn/logiNu_ = 1- log(N)/logiNu_,

and the exact dimension function for net measures and Hausdorff measures is
ta(loglog%-)ﬂ, with oo and B defined above. We remak that Graf et al.(1988) had
to use their rather complicated result (their Theorem 5.2, p.78. See also
pp-117-118) to obtain this function.

7.5. Let N21 be a random variable taking values in N, p(N=k)=pk OSpk. p1<1

and £ p=l. Let I=[0,1] and a>I. If N=k, we choose k equal intervals I

such that T:=|L|/|1x]= 1K and In(NIntI)=@ if i#j. Repeat this
independently for each of the selected intervals, and continue, to get a
fractal K. In this case S(x)= NN™=N'™ For x=1/a, E(S(x))=1. Thus a=l/a is

the a.s. dimension of K. Since S(a)=1 a.s., P=0. The exact dimension function .

l/a

for net measures is then t ™, that is

0 < Vv*K) <o as.

The same result holds for the ordinary Hausdorff measure #"™K) if N <oo

since TiZI/llN [
7.6. Let N be an integer with some random distribution, p(N=k)=p , p 20 and

T p=l Let I=[0,1] and O<a<e™ =0.6922.. (The last condition is to

ensure that sup ka’<1). If N=k, we choose k equal intervals I such that
k20 !

T:=|1]/]15l= 2 and In(I)NInt(I)= if i#j. Repeat this independenty for

71



Q.S.LIU -

each of the seclected intervals, and continue, to get a fractal K. We have then
S(x)= Na™. If Z':' _kp,s1, then K=& a.s. Otherwise & is the unique solution in
(0,1] of the eqution

z"01:;1 kakapk =L,
that is o= logr/loga,
where r is the unique solution in (0,1) of the equation

P()= 1 with Pe= I px
and in fact €'®= 0.6922.<r<l. o is the as. dimension of K if K#@.
Besides, since 1S(x) Ileo=sup{kakx: pk>0}, then
B=1-aloga/logs =1-logr/logs,

where O<s<r is the solution of the equation

sup{ksk: pk>0} =1.
A simple study on the function y — ys’ shows that s is the solution of the
equation

1 1
stlo_gm] [1-@17;"1] } =1

1 1
max{ Iz - logrstle

]+1. A numerical calculation gives

. I 1
if p,>0, where k=lo17els Ii55175

s=0.69336... if p,>0.
Theorem 6.3 implies

) ¢
# °(K)= v "(K)=0 if b<p
a.s., where ¢b(t)=ta(loglog%)b, with a and B defined above. If NI __<eo,

then, a.s. on K#J,

;e¢"(K)>0 and v¢"(K)>0 if b>p,
since TiZa", where n=INI_. We remark an interesting fact that B=1-logr/logs
depends only on the distribution of N, but not on a.
Let us take for example the case where N is of geometric distribution:

p,=p"*'(1-p), k21. Then P(x)=5"_ xp"'(1-p) = (1-p)x/(1-px) and
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2
r= 1"?‘2"1’2'21"39 , s=0.69336...

p
(s<r<l). A numerical calculation shows that if a=p=1/2, then r=0.7639...,

0=0.3885..., B=0.2646 and, if a=1/2 and p=1/3, then r=0.8038..., «=0.3151...
and P=0.4036..., etc.
7.7. We take a construction similar to the above, but, if N=k, we choose

k intervals I,..1 in I such that T:=|Ll/|Ty|=d, where 0<as1/2 is a

k
given number. If E(N)<1, then K= a.s. Suppose that E(N)>1. We have
Sx)=X]_a', S(0)=N and S(x)=a’(1-a"W(1-a") if x>0.
o is then given by
a=logr/loga,
where r is the unique solution in (0,1) of the equation
EG™)=2-11r.
Since S(x)u_=t(1-t"*)/(1-t), where n=INi_sSeo, we have
B=1-aloga/logs =1-10grllogs,'
where s is the unique solution in (0,1) of the equation

sts’+..45"=1, where n=1INIl_<oo.

If n=co, then s=1/2. Theorem 6.3 shows again

\/ ¢
# °(K)= v "(K)=0 if b<p,
and, if UNIl_<eo, then
¢, ® :
# '(K)>0 and v °(K)>0 if b2P
as. on K#J, where ¢b(t)=ta(loglog%-)b, with o and P defined above. The

conslution holds for. H l’(K) since TiZan (Vi), where n=iN 0. Again, we note
that B=1-logr/logs depends only on the distribution of N.
If p(N=k) =p*!(1-p) (k21 and O<p<l), then r=1/(1+p), s=1/2,
o=log(1+p)/log(1/a) and P=1-log(1+p)/log2.
7.8. The zero set of Brownian bridge

Graf, Mauldin and Williams (1988, example 6.1) calculate the Hausdorff
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dimension function of the zero set of Brownian bridge, here we shall see

that how we can easily calculate the exact dimension function with respect

to the net measures. Let (B;) >0 be one -dimensional Brownian motion starting
0 _n . 0 . i )

at zero. Let Bt = Bt tB . Then (B()os‘slxs called the Brownian bridge.

Define

«}
il

sup {t<1/2: B = 0}
and

)
Set IQ = [0,1], Il=[0,'cl] and Iz=[1:2,1]. Continue this process by rescaling to

inf {121/2: B = 0}.

each of the intervals already obtained. Due to the scaling and invariance
propertiecs of Brownian bridge the random set K obtained by this recursive
construction is the zero-set of Brownian bridge.

Note that we have Tx'_"tx and T2=1-1:2. As is shown by Graf, Mouldin and
Williams (1988), it is not difficult to know that the distribution of (TI’TZ)
has the density function

PV = g L oo oLvICLv-t) T
and E(S(1/2))=1. Thus o=1/2. Besides
ISGO_= (%)’%(%)x = 2lx
so B= 1l-a = 172 (=B2). Moreover

ES©)9= 5, M p(v.dvdt 2 2—1' , VN v P dvdt
[0,12) [o, lfl]

2%-,[‘ ) ¥ vty dvdt -
[0,172] " M\[v)

1 o(1-o)k
Zr(ak+172Z)(ak+I) ’

SO

[m(S(a) N ES@* )1 [ 1 1
28 INCAI 2 | ZR(CEFITZ)(GkT ] '

It is then clear that the condition (Ln) holds with n=2, that is

T i[nz(s(c;c)“)]"';o_
k=2 2

1=

Theorem 6.3 applies, yielding that
0< v¢(K) <oo  A.8.
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where ¢(t) = t! (loglog—)m Graf et al. (1988) calculate this function for
ordinary Hausdorff measures.

7.9. Let N21 be a random variable taking values in N, p(N=k)=pk OSpk. pl<1
and X7_p=1. If N=k, divide the unit interval into k equal parts, and, in
each part, remove independently from the right a subinterval of propotion
according to the uniform distribution on [0,1]. For each part | that remains,
repeat independently the precedure and continnue, to get a random fractal K.

In this case, Ti= Ui/N (i=1....,N), {Ui}lf=l are independent and identically
distributed random variables, each having the uniform distribution U on [0,1].
Thus S(x)= ZLIN”‘U’;. The a.s. dimension a of K is determined by

E(Nl'a)=1+oc,
where O<o<l. Since HS(X)1_=INu_" if O<x<l, we have
B=1-o. if UINN_<co and =1 if UNU_=co.
For all neN with P, >0,
e[S"0) | N=nl= e[ln " UHY 2 En @ U“)"“)]

™ It follows that

since % Z?ﬂxi 2 (ni=lxi)
E[S¥0)| N=n] 2 n® % [gU™M® = o OXp(ok/n)+1]™

So

_ koo
-log 1, = [EES Ea&)l N=n] * . Y nlog(om 141) <o
5(_ ) n i=1 n

whenever n>1 and pn>0‘. Therefore, if INHl_ <o, then the condition (Ln) holds for
all n>1 with pn>0. Since TiZIIIlNlloo, the conditions (CNx) hold. Thus Theorem
6.3 gives

O< v¢(K) <o and 0O< uq’(K) <oo

R PP

a.s.whenever INN_ <o, where ¢(t)= ta(loglog%)l'a, O<a<l1 satisfing E(N

Suppose now that

p(N=2"=p"(1-p), k=1,2,3,... O<p<l.

1 ats  (1p2'Tt Jogl oo
Thus E(S(x)) = mE(N )= (1+x)(1-p2"") if x> llog§/10g2 and E(S(x))
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. 1 . _ (1-p2"% _
if xSl-log-ﬁ/logZ. The number o is the solution in (0,1) of =],

(1+a)(1-p2' %)

that is

Zl'a(1+ap)=1+a, O<ox1.
If p=3/v2-2= 0.1213... then a=1/2; if p>3/v2-2, then a>1/2, etc. Besides

S0l EEY_ NOU s ENCPY =57 20 MpH(1p) <o

if k< l}—a-logéllogl and

e(S5(0)]= =7 _E(S"(@) [N=nllp, 2 =7_n""®*[(aksm)+11™p,

=3 24 (k2T pH(1-p) ==

if IQI—}alog%/logZ In particular,

E[S*(0)]<ee if 3A3-2<p<1/2.

Let
A= sup{p>0: E(WP)<eo},
then [l—}alog%/logZ] <A< T}—&log%/logl where [x] denotes the integral part

of x. If 3/v2-2<p<1/2, then 2<A and, by Theorem 6.4,
A4 A4
v K)=0 if a<l/A and v *(K)=co if a>1/(A-1)

as., where v (0=%(log))"
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