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FLOWS IN NETWORKS AND HAUSDORFF MEASURES ASSOCIATED. 

APPLICATIONS TO FRACTAL SETS IN EUCLIDIAN SPACE 

Quansheng LIU 
IRMAR, Université de Rennes 1 

Campus de Beaulieu, 35042 Rennes, France 

Abstract 

We consider a ramdomly capacited network composed with a tree ïï generated 

by a branchiny process and a capacity X(y>0 assigned to each vertex aey, where 

X a (aey) satisfy some natural independent and self-similar properties. The main 

purpose of this paper is to find an optimal weight function so that a 

positive flow is possible through the network with modified capacities 

<|>(Xa). The problem is translated to a study of some Hausdorff measures 

associated. The function is found to be of the form t a | log log j \ & with a and 

P caculated explicitely. The results answer a question of Falconer(1987) and 

solve a conjecture of Hawkes(1981). As applications to random constructions of 

fractal sets in Euclidian space, we generalize and improve the results of 

Graf, Mauldin and Williams (1988). As a byproduct, we give also a 

generalization of a result of Kahane and Peyrière (1976). 

^Introduction 

Let y = ïï((ù) be a random tree generated by a branching process with a 

single founder member and with a family distribution N. The root of ÏÏ is 

identified to the founder member which is represented by the null sequence 0 . 

The vertices in the n-th level are represented by a n-terms sequence a = 

1980 Mathematics Subject Classification (1985 Revision): Primary 54H20, 60B05, 

60G48,90B10; Secondary 28C10. 
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(a ,a ,...,a ) of non-negative integers which correspond to the particles in 
1 2 n 

the n-th generation of the branching process. The edges of 3", noted by (a,a*j) 

(l£j£N a) are formed by joining the vertices a = (a^a^. . . ,^) to their 

descendants a*j= (cr ,a ,...,a j), where N a denotes the number of descendants 

of a in the next generation. J is then identified to a set of finite sequences 

of positive integers. 

Let y=3T(co) be the boundary set of ST, namely the set of infinite sequences i 

such that l i ne? for all n£0, where i |o=0 and i|n= (i ,i ,...,i) if i= 
1 2 n 

(i ,r ,...,i,...). y is called to be the branching set associated to 7 . 
1 2 D 

Let &=&(co) = foXG) (aey) be an associated random network formed by the 

tree 7=7(0 ) ) and a capacity X a>0 associated to each cetf. We suppose always that 

(X^) is decreasing in that 

if a*jey, where a*j= ( c F l f a 2 , . . . f a B j ) if a= (a^a ,...,a ). We suppose also 

that the network S(co) is self-similar in that for each a e 2T, the random 

vectors 

Z a : = = ( N a ; T a * r T a * 2 * T<J*N ) 

are independent and identically distributed, where 

(l<j^N a) represent the ratios of the capacites X a + j to X a . Thus VaeJ 

Wja and x 0 = x 0 „ W T a | k , 

where a|k= (a ,(*,...,<*) if a= (a .a ,...,a ) (l^k^n) and |a |=n denotes the 
1 2 k 1 2 n 

length of a. For convenience, we assume the normalization 

x 0 = 1 

a.s. Thus X G= T c | k and T.=X. (l£i<N). Also, we write T 0 for X 0 and 

Z = (N; T l f .... TN) 

for Z 0 = ( N 0 ; T t , TN), and we say that S= is a self-similar 
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network generated by Z. 

A flow or positive flow in the network &(co) is a function f^f^ J —> [0,°°) 

such that 

x» = 2 i d . i € y y a * i ) a € f ) , (n) 

0<y( i )^Xj ( i€y ) , (/2) 

0 </[0) . (/3) 

Intuitively / represents the rate of flow of a liquid through the network. 

Condition (fl) reflects the fact that the amount of liquid reacting a vertex 

of 9 equals that leaving it, (fl) ensures that the flow through each edge does 

not exceed the edge capacity, and (/3) is the positivity condition, that a 

positive amount of liquid is able to flow the system from 0 to infinity. We 

shall principally be concerned with conditions under which a positive flow 

through a network exists. 

The most important problem is to know when a flow through a network is 

possible and, more presicely, how to modify the capacities in a optimal way in 

some sense such that a flow is possible. The main general result on the 

existence of flows is the "max-flow min cut" theorem of Ford and Fulkerson 

(1962). Let 5 = ( a ' X

a ) a € y be a self-similar network generated by Z= (N; 

T ,...T )f Falconer (1986) proved that a flow through the network is possible 

with positive probability if E(X^ T\) >1 and is a.s. impossible if EfX^T.) 

<1. Here is to solve the more exact problem as follows: 

Given a self-similar network & = (a, X a ) a € y , how to modify the capacities 

in a homogeneous and optimal way in some sense such that a flow through the 

network is possible? More exactly, what is the optimal function ((>: [0,<») 

—> [0,oo) for which a positive flow through the network (o*¥R<J)aej exists? 

To solve this problem, we shall study some Hausdorff measures on the 

branching set 3" associated with the network & with a metric d defined by 

d(ij)= x . A J , 
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i/sj (called the common sequence of i and j) being the maximal sequence 

q=(q r..,q k) such that (ij,...ik)= (^....j^ =(qi»»..qk)-

First of all, we shall translate the criterion of Ford and Fulfeerson (1962) 

in terms of Hausdorff measures: 

Theorem 1. Let ^ ( ^ . X ^ ) ^ y be a self-similar network generated by Z= (N; 

T,,...T„), and <b: [0,**) -» [0,°°) a non-negative function, increasing and 
1 N 

continuous from the right. Then almost surely 

a positive flow through the network (cr,(|>(Xa)) (ere?) 'is possible 

if and only if 

H*(h > 0 

where represents the Hausdorff measure on 7 with respect to the 

dimension function <|>, y carrying the metric defined above. 

Our question is then to find an optimal dimension function (J) to measure the 

branching set y. As we may expect, our results will be havily dependent of the 

distribution of 

S(x) :=I^ = 1 T^ 

where xe[0,«>). Writing 

a= min {a€[0,oo); E[S(a)] £1} , where min 0 =+«>, 

then ct€ [0,©o] is well defined and E[S(a)]£l if a<~», as we shall see later. We 

exclude the case where N=1 a.s. Thus oc=0 if and only if E(N)^1, or if and only 

if the tree teminates a.s. or again, if and only if y=0 a.sM and a< « if and 

only if there is a M>0 sufficiently large such that E(S(M)]£1, which hapens 

quite often. Thus we suppose always that 

0<oc<oo 

if it is not specified further. We shall see that a is the least solution of 

E[S(x)]=l if there is at least a solution. Moreover, the equation has a unique 

solution if additionally 1<E(N)<°°. Usually we have E(S(a))=l, but the case 

E(S(a))<l may hapen. (see Lemma a in section 3). 
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In all the theorems stated here, we suppose always the moments conditions 

E[S(oc)2]<~ and E ( S ~ _ t T^log^)<oo. 
i 

We shall see that a is in fact the Hausdorff dimension of y. 

Theorem 2. (i) dim SYcoJ = a a.s. on * 0 . (ii) na(7) <°° a.s. if a<°o 

(Hi) (a) If E[S(a)]<l then Ha(h=0 a.s. (b) If E[S(a)]=l then 0<Ha(h<°° if 

and only if S(a) =/ a.s. Consequently, Ha(J)=0 a.s. if S(a) is not a.s. a 

constant. 

Let us write 

•b(t) = ta(loglog i ) b , 

where 0<fo<<», and 

p = min {be [0,1): S(y^) <A a.s.}, where min 0 :=19 

we shall see that (3e[0,l] is well defined and p<l if and only if S(M)£1 a.s. 

for some sufficiently large M>0, which happens usually. If E(S(a))=l, then P=0 

if and only if S(cc)=l a.s. If the equation 

ess sup S ( j ^ ) = 1 

has a solution or some solutions, then p is the least one and certainly p<l. 

For the remainder of this section we suppose always that 

E(S(oc))=l. 

If X>0 is a random variable, we write llXll= ess.sup X for the essential 

superior of X. 

Theorem 3. If llNll <«> and 0<p<l, then H h(fT) >0 a.s. on if and 

only if t£|3; / / llNlleo=oo or 0=1, then H b(7) =0 a.s. if 0<b<$. 

Let us write now 
W:= lis 

Since E[S(oc)]=l, the limit exists a.s. with E(W)£1 by the martingale 

convergence theorem. We shall denote by r ^TCW*) the radius of convergence of 
b b 

the moment generating function E ( e t W ) of Wb (0<b<«>). The following result 
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deals with the critical case where b=p. 
^ - - <J)_ -

Theorem 4. (i) If p=0 then 0<n V)<°° as. on 9*0, and, in fact, H (7)=1 
<j> _ 

as. if 7*0. (ii) If P>0, then 0< U <°° a.s. on 9*0 if and only if 

0<r(W1/B;<oo. / / nNlloo<oo and 0<p<l, the condition reduces to r(WX№)«>°, which 

holds particularly if there exists n>l such that 

oo E [S (a ) n ' |N=n] 1 / n ' 0 f L ) 

n i = 1 " a > ° » <V 
n 

ii* l i/n* 
or equivalently £°° (i-EtS(fl) ' ^ n ^ ) < «>. Moreover, we have 

i =i n 
(|) . 

Corollary 1. Let (a, X a ) a € y be a self-similar network generated by Z= 

(N;T,.„T ) . For 0<b<oo, write (|)b(t) = ta(loglog \f. Then the function 

<|)fi(t) = ta(loglog i ) B *s th e optimal weight function for the existence of 

positive flows through the network in that 

(i) if b<p, a positive flow through the network (a, ^ b ( X a ) ) a € y is a.s. 

impossible; 

(ii) if b>p a positive flow through the network (a, ^ ( X ^ J ^ y is a.s. 

possible on the event that the tree process does not terminate. Here, in the 

case where llN 11^=00 or p=l, we suppose additionally that *m>0. 

(Hi). If r i /B<°° (or more paticularly if (L )̂ holds) and <|>(t)>0 is a 

function smaller than A in that lim (J)(t)/6 (t)=0, then a positive flow 

through did network (a, ^ ( X ^ ) ) ^ ^ is a,&. impossible. 

This answers our original question. 

A subset r of ? is termed a cut-set if Viey there exists a unique n>0 such 

that ilneT. Let <|> be a non-negative function defined on [0,«>), we are 

interested to the limit behavious of cut-set sums Z ^ i - <I>(XA Put 
eel TV o 

where 
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Mk(7)= inf { S o e r <t>(Xa): T is a cut-set of J and \o\zk VosT}. 

For a self-similar network (<J,Xa) (oey) generated by Z=(N; T l t...,TN), 

after showing that M\7)=0 a.s. if (|)(t)=ta and M\J)=OO a .s. on 9*0 if <(>(t)= 
ot la. 

t (logi) a (Va>l) under some conditions on Z, Falconer (1987) demanded what 

was the exact function (j> for which 0<M^(tr)<oo a.s. on 7*0 ? The following 

result answers this question: 

Corallary 2. Let (<7,X ) (aey) be a self-similar network and suppose 

that p(S(a)>l)>0. Then Q<M \v)«*> a.s. on 7 * 0 if and only if 0<r(W1/B)<oo. If 

llNll^ and 0<p<l, the condition reduces to r(W1/B)<oo, which holds if there 
exists n>l such that ^°°^E[S(a) JN=n]— > Q Moreover, we have 

n 

* V ) = 0 - , / w a.s. 

If y carries the metric d (i j)= 2 " 1 1 A J 1 and N is of geometric 

distribution, Hawkes (1981) proved that 0<H (7)<°° a.s. The author (1992) has 

recently extended this result to the general case where N is of arbitrary 

distribution, answering a conjecture of Hawkes (1981). We remark that Theorem 
4 applies for X.=2"' i ' (Z=(N;L..,h), yielding that 

1 2 2 i. .i h~ 
Corollary 3. If y carries the metric d2(ij)= 2* | 1 A J I ) m e n 0<H (3")<~ a.s. 

on 3*0, where <(>B(t) = ta(loglogj)B with a= logE(N)/log2 and p= 

l-logE(N)/logllNlloo if either of the following conditions holds: (O i iN i i^o* (thus 
IN 

P<1); (ii) IINil =oo (thus P= l ) and there exist t >t >0 such that E(e )=«> and 
'.N ~ A.- „ 1 2 

E(e )<«». Moreover, H (9>(r,J^V a.s. 
IAD 

Our next result generalizes a theorem of Kahane and Peyrtere (1976). 
k 

Corollary 4. If llNll^oo and p<l, then Jim ^ f ^ ^ P = P; if l l N l l ^ or p=l, 

The last application is to study the Hausdorff measures of some fractal 

sets in Rm. We shall generalize or improve some of the results of S.Graf, 

R.D.Maudin and Williams (1988) and of Falconer (1986 and 1987) concerning 

file:///o/zk
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the exact Hausdorff dimension of some self-similar fractals. 

Let us indroduce the random construction of Graf, Mauldin and Williams 

(1986 and 1988). Let J be a nonempty compact subset of R m which is equal to 

the closure of its interior, 7 be a tree generated by N and 

J = (Ja)(aesr) 

be a family of random subsets of R m satisfying three properties: 

(1) For almost all co € ft, J0(co) = J and for every a€9\ Ja(<o) is 

geometrically similar to J; 

(2 ) For almost every co and for every ore7, Ja*j(co), J^^O^)*-.., J a * N (co) 
a 

is a sequence of nonoverlapping subsets of Ja(o>) (A and B nonoverlapping means 

int A n int B = 0 ); 

(3) The random vectors Z a = (N a; T * 1 , . . . ,T a + N ), a e 3\ are i.i.d., where 
G 

Ta*n(co) equals the ratio of the diameter of J a * n (^) to the diameter of Ja(co). 

Our interest centers on the asymptotic properties of the random set 
№ ) = n ,U. JJco) 

n = i I a I =n 

Given a dimension function <|>, the net measure v^(K) ofK with respect to the 

net J is defined in a analogous way as Hausdorff measures but using covers of 

sets in J : 

v*(10 = lim vj(tf), 

where vj(£)= inf {^(U.): tfdJU, diam(U.)<8 and U.€j}. 

Net measures and Hausdorff measures are closely related, see Rogers (1970) 

and Falconer (1986). We write v a for if (|>(t)=ta (a>0). The Hausdorff 

dimension of K with respect to the net J (or to the net measure) is by 

definition 

dimvA= inf{a>0: va(A)=0}= sup {a>0: va(A)=oo}. 

Mauldin and Williams (1986) and Falconer (1986) proved that the Hausdorff 
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dimension of K is a.s. a defined above if K*0. In the case where N is a 

constant, Graf, Mauldin and Williams (1988) have calculated some exact 

dimension functions. We shall establish a very general result for net 

measures, which prove very powerful to find exact dimension functions. Even in 

the case where N is bounded, our result is sharp, both in theory and in 

practice. 

Corollary 5. Let K be a random set constructed above. Suppose that for each 

aey, J a + j contains a point of K which is not contained in any 1^ (i*j). 

Using the notations above, we have 

(i) dimYJK)= a a.s. on K*0; 
• <t> 

(ii) If p=0, then 0<v \K)«*> a.s. on K±0. In fact, v *(K)=l a.s. if X*0. 
<(> 

(iii) If P>0, then 0<v \K)<oo a .s. on K*0 if and only if 0<r <<*>. If 

l l N l l ^ o o and 0<p<l, the condition reduces to r ^ 0 0 . which holds in particular 
if there exists n>l such that ^№(a) J N = n ] — > Q Moreover, we have 

n 

This result enables us to calculate all the exact dimension functions 

of almost all the examples of Graf et al.(1988) and Falconer (1986). 

The content proceeds as follows: 

In section 2, we give some preliminaries containing the notations, 

definitions of trees and capacited networks and Hausdorff measures 

associated. We shall also gather some topological properties of the limit 

set er. 

In section 3, we establish some interesting limit theorems on tree 

processes. We shall calculate the critical value p. A necessary and 

sufficient condition will be given so that the radius of convergence r(W1/B) 
t w 1 / B 

of the momoent generating function E(e ) is positive. This generalizes a 

result of Graf et al.(1988). As a corollary, we obtain the order of growth 
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of the moments of W, which generalizes a result of Kahane and Peyrifcre (1976) 

concerning a martingale of Mandelbrot. A simple sufficient condition will be 

also given to ensure r(WlyB)<<». The argument is mainly based on a 

distributional equation of the type W s X ^ j A . W . with some independent 

properties (see the equation (3.3)). 

Section 4 is to give basic estimations on Hausdorff measures of the 

branching set y with adduced metric of the network. We establish the results 

for cut-set sums for convenience, although they hold for Hausdorff measures. 

We calculate the exact value of the lower limit value of cut-set sums of the 

type X a e p 4*B^<P* a n c*' *n P ^ 0 1 1 ^ ' w e S*ve a necessary and sufficient 

condition for the lower limit to be zero, positive or finite. 

The main results are stated in section 5. Theorem 5.1 is to translate a 

criterion of Ford and Fulkerson in terms of Hausdorff measures for existence 

of a positive flow through a network. The result holds in the deterministic 

case. Theorem 5.2 gives the Hausdorff dimension a and the oc-dimensioal 

measures. In Theorem 5.3, we calculate the exact values of Hausdorff measures 

H ( 7 ) of the limit set 7 with respect to the dimension function of the type 

<j>b(t)= t a(loglogi)b (b>0). We then establish a criterion for the Hausdorff 

measures H (J) to be zero, positive or infinite. Theorem 5.4 gives the 

critical value ¡3 and ensures the positivity of Hausdorff measures with respect 

to the critical function <|>B(t)=ta(loglogy)B. Theorem 5.5 is the most important 

and fluquently used result. It gives a criterion for <b to be an exact 
c 

dimension function. Theorem 5.6 deals with the case where S(a) is too large, 

such that the function of the form t (loglog-) is too small to measure the 

set. We shall see that Falconer's results (1986 and 1987) will be 

considerably improved. 

Section 6 is to give some applications of the main results to random 

constructions of fractal sets in Euclidian space. Theorem 6.3 will prove 
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very powerful to find exact dimension functions. 

In section 7, we give a series of examples to show how Theorem 6.3 enables 

us to caculate exact dimension functions of self-similar fractal sets. 

Examples 7.1 and 7.2 is a generization of the construction of the classical 

Cantor set. Example 7.3 is a construction of random Von-Koch curves. In 

example 7.4, we give a quite general construction of a random set of high 

connectivity. The example is taken from Falconer (1986) where the a.s. 

dimension is calculated. Here we give an exact dimension function. As a 

corollary, we obtain the exact dimension functions of Graf et al.(1988) on 

Mandelbrot's percolation Processes and their modified curdling. Examples 

7.5-7.7 give constructions where the number of descendants may be unbounded. 

Example 5.8 is about the zero set of Brownian bridge. This is taken from Graf 

et al.(1988) where the exact dimension has been given. We take it to 

illustrate how the famous function t l /2(loglogy)1/2 can be obtained very 

easily by Theorem 6.3. In example 7.9, we give a construction of a fractal for 

which the functions of the form ta(loglogy)b (Vb>0) are too small to be exact 

dimention functions. In this case, we calculate a critical function of the 

form t a(logi) a. 

2. Capadted networks and Hausdorff measures associated 

2.1 Sequences and trees 

Let IN be the set of positive integers, N k the set of all k term sequences, 

7= U^ 0 IN k the set of all finite sequences and I = N N the infinite sequences i 

= (ipi2» .-)• We make the convention that № contains the null sequence 0 . 

If i = ( i l f i , ...,in) (n<«>) is a sequence, we write | i | = n for the 

length of i, and i |k = (i,i ,...,i) (k<n; i|o=0) for the curtailement of i 
1 t» K 

after k-terms. If n<<», we write i* = (i ,i f ...4+1) € T for the sequence 

obtained by augmenting the n-th component iQ of i to 1̂+ 1. If j= (j j , 
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) is another sequence, we write i j = i* j = (i,i,,...,i, 

for the sequence obtained by juxtaposition. We partially order T by 

writing a<x or TXJ to mean that the sequence x is an extension of a, that is x 

= a*x* for some sequence x9e T. We use a similar notation if a e T and x € I. 

We remark that the null sequence 0 < i for any sequence i. If i and j are two 

sequence, we write iAJ for the common sequence of i and j , that is, the 

maximal sequence q such that q<! and q<J. 

A tree 7 is a collection of finite sequences of positive integers 

satisfing three conditions: (i) 0 e 7 ; (ii) ie7 implies Ve7 for any F<i; (Hi) 

If i€ y, then 7 if and only if l^j^N. for a positive integer N.>0 (We 

allow the possibility that N.=0, but always assume that N.<«>). The sequences i 

of 7 are called the vertices of 9\ and the couples (i,i*i) the edges of 

7, where ie7 and i*i e 7. Thus N.s #{i€N: i*i € 7} represents the number of 

outgoing edges from the vertex i in the graph of y. We write = {ieT. 

I i | =k} for the set of sequences in 7 of length k. (cf. Neveu 1986) 

Let 7 be the set of infinite sequences j such that i e J for every 

finite curtailment i < j . We may regard 7 as a topological space in a 

natural way by taking as a basis of topology {B(i)}. where 

B(i)= { J E 7 : i<j}. (2.1) 

The B(i)(i€y) will be called the balls of (J,x). The basis {B(i)} (iey) is 

countable.The topology x is that induced by the product topology of N N when 7 
IN 

is regarded as a subspace of IN , IN carrying the discrete topology. The space 
(7, x) is metrizable, and a possible choice of the metric is d (i j ) = 
.|# "I 2 

2'1 , A J 1 . We gather some topological properties of (y,x) as follows: 

Lemma 2.1. (9\x) is a metrizable and compact topological space. 

Proof. We only need to show that (9\x) is a compact topological space. To 

see this, we remark that (7,x) can be regarded as a closed subspace of the 

product topological space E ^ 0 0 E , where E={1,...,Z} carries the discrete 
1 1 n =1 n n II 



13 

Networks and Hausdorff measures 

topology, Zn= c a r d t i G ^ : | i |=n}. Since E is compact by Tychonov's theorem, the 

proof is completed. • 

7 will be called the boundary of 7. If 7 = 7(co) is a random tree generated 

by a branching process (that is, the numbers N. of outgoing edges from the 

vertexes i form a family of independent and identically distributed random 

variables), 7 is then called the branching set associated with 7 (Hawkes 

1981). 

We say that a subset r of 7 covers 7 if for every j e y there is a sequence 

i e T with i<j, or namely j I ne T for some n>0. If T covers 7, we say also that T 

is a covering of 7 or T is complete in 3", or again T is maximal in 7. A cover 

r is minimal if for every je7 there is a unique ieT with i<j. A minimal cover 

of 7 is also called a cutset of 7 or a maximal antichain in 7. 

Intuitively a cut-set seperates 0 from the "vertices at infinity". Any 

covering collection of sequences may be reduced to a finite cover using the 

compactness of (7,x). Moreover, any covering collection of sequences may be 

reduced to a minimal collection by taking {ieT: if VeT and F<i then i'=i}. 

Let £ denote the collection of all cut-sets in 7. There is an induced partial 

ordering that makes CT into a net: For Tpl^ e £, we write F^IV, (or F >r i f and 

we say that T 2 is a refinement of if for every a e 1^, there exists a 

unique x € Tj with x < c (in other words Tj seperates I^ from 0). Trivially 

the sets 7t are themselves cut-sets of 7 with 7t < 7t if k,< k~. k k1 k2 l l 

Sometimes, it is convenient to regard T as a tree with N.soo (thus T=I). For 

subsets T of T, we use the same definitions as above, but, to avoid logical 

difficulties and to ensure that the associated set T is countable, we suppose 

that sup{ I i I : i€T}<oo. For example, we term a subset T of T a cut-set or a 

minimal covering of I if for every i € I there exists a unique sequence c e 7 

such that a < i, and if there exists k such that | a | ^ k for all a e T. 

2.2. Valuations on trees and cut-set sums. Let 7 be a tree. Suppose that 
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a number X.>0 is associated to each ieJ, which may be regarded the capacity of 

i. We shall always assume that the X. are decreasing in that 

X . < X. if j > i. (2.2) 

These assumptions hold in the practical examples encountered so far. 

Let <|> = (|>(t) be a positive function defined on [0,<»), non-decreasing and 

continuous from the right. We shall be interested in the limiting properties 

of the cut-set sums of capacities <|>(Xa). Write 

= lim (2.3) 

where >K?(sr)= inf{ I <(>(XJ: T is a cut-set of 3" and | a | ^ k VaeT}. (2.4) 
k csT c 

If <|>(t)=ta (a£0) we write M\v) for x V ) and Jfyv) for M\{7). We shall 

find an exact critical function § such that 0 < jK^(y)< «> under some 

conditions on ( X a ) a € y . 

It will prove convenient to write 

T A + J = X C + J / X A (2.5) 

if ae y and a*j€ y. If ae y, we shall write X =T =0. Thus X„ and T are defined 
G O G G 

for all oeT, and 
X c = X 0 T l ! = ! T c | i (VoeT). (2.6) 

The following lemma is to give some alternatives of vM^(7). The proof is 

immediate by the compactness of (ST.x) and the remarks in section 2.1. 

Lemma 2.2. jfi(7)= inf{ X <|>(XJ: T is a cut-set of j and |a |>k Veer} 
k a € F ° 

= inf{ I <|>(XJ: T is a cut-set of J, r is finite and |a |>k VoeT} 

= inf{ Z <|>(X_): T is complete in 7 and [ o l ^ k V c t s T } 

= inf{ X <|>(X ): T is complete and finite in 7 and | a | ^k VaeT} 

= inf{ I <|)(X ): T is a cut-set of T and |a |>k VaeT}, (2.7) 

etc., where we make the convention that sums over subsets of T are taken 

over those o for which X ( y>0. 
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2.3. Networks and Hausdorff measures associated 

For our purposes a network or capacited network 5 comprises a tree 7 with 

a capacity X.>0 assigned to each i € 3", where XJ(ie7) satisfy the decreasing 

condition (2.2). We note g = (<*» x

a ) a € y Usually we have 

X. | n -> 0 if n -> * (2.8) 

if ie y. If this is the case, define functions f: 7 —> [0,«>) by f (i)=X. | , 
n n 11 n 

then {f̂ } is a sequence of continuous function on the compact space (y,x). By 

Dini's theorem convergence is uniform, so given 8>0 there exists k(8) such 

that 

X.l 8 whenever |i|£k(8) and iey. (2.8)' 

Define 

d(i J) = X. A J (2.9) 

if iey and jey . It can be easily verified that d is a metric on y and, in fact 

d is a ultra-metric in that 

d (U )£ Max {d(i,k), d(kj)} (2.10) 

for all i, j and key. Thus (y,d) is a ultra-metric space. We shall see 

that the metric topology d is in general weaker than x. 

Proposition 2.3. Suppose that (2.2) and (2.8) hold. Then any d-open ball is 

a T-open ball. The converse holds if additionally Xj is strictly decreasing in 

that 

X.>Xj if i<j and (2.11) 

Proof, (i) Let Bd(i,r)= {jey: d(ij)<r} be a d-open ball in y. We shall 

prove that Viey and Vr>0 

Bd(i,r)= B(i|k), 

where k= min{n£0: X.| n<r} (k<~ by (2.8)). In fact, if jeBd(i,r), then X.Aj<r. 

It follows that l iAjlac. Thus j> i |k, that is, jeB(i |k). Hence Bd(i,r)cB(i I k). 

Conversely, if jeB(i |k), then j> i |k , | i/vj | >k and Xj^^Xjjjj.-cr by the 

definition of k. Namely d(ij)<r. This shows B(i |k)c Bd(i,r), which ensures 
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that a d-open ball is a x-open ball 

(ii) Suppose now (2.11) holds and B(i|n) is an arbitary x-open ball, where 

ieJ and n>0. If n=0, then B(i|n)=7 is evidently a d-open ball. If n>l, by 

(2.11) we can choose r such that X. | n < r < X. |^ n ^ and we can conclude that 

B(i | n)= Bd(i,r). The proof is completed. • 

Corallary 2.3. Suppose that (2.2) and (2.8) hold. Then (i) The metric 

topology d is weaker than x in that any d-open set is x-open. The two 

topologies coincide if additionally (2.11) holds, (ii) Any x-compact set is 

d-compact; (iii) (7,d) is a ultra-metric compact topological space. 

Suppose now (E,p) is a metric space and that f is a Hausdorff dimension 

function (Rogers 1970) in that ((>(t)>0 is a positive function defined on [0,°°), 

nondecreasing and continuous from the right. The Hausdoff measure of A q E 

with respect to the dimension function f is by definition 

Hf(A) = Hm KUA) (2.12) 
8->0+ d 

where 

* £ ( A ) = inf { I7 = 1 f( |u. | ) : A c l T = 1 U , |u.|<5 }, (2.13) 

IU.| = diam (U.) representing the diameter of U.. It is not difficult to see 
f 

that the quantity H (A) remains the same if in the definition we use covers of 

just open sets or just closed sets, or again just subsets of A,see for example 

Rogers (1970). If we use covers of just balls, we obtain the spherical 

Hausdorff measure: 
\i((A) = lim \il(A) (2.12)' 

8->0+ 0 

where 
jig(A)= inf {I^=1f(|u.|): AcLT=iU., lu.kS and U. are balls}. (2.13)' 

The two measures ?/(.) and \if(.) are in general not identical (see 

Besicovitch 1928, chapter 3) but equivalent if f(2t)<cf(t) for some c>0 

(Liu, 1992). However, they coincide on a ultra-metric space: 
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Theorem 2.4. Suppose that (E,p) is a ultra-metric space, f(t)£0 is a 

positive function defined on [0,<»), non-decreasing and continuous on the 

right. Then VAcE and V8>0 

«g(A) = ^(A) and Wf(A) = nf(A) (2.14) 

Proof. Clearly ttg(A) £ Hg(A) since any 8-cover of A by balls is a 

permissible covering in the definition of Wg(A). Also, if {U.} is a 8-cover of 

A, then so is {B.}, where, for each i, B. is choosen to be some ball 

containing U. and of radius |u. |<8. In fact, any ball B.=B(x., | U. |) of a 

center x.€U. (we may suppose that U.t*0) and radius |u.| meets our needs. To 

see this, it suffices to show that | b . |< |u. |. This is so since for any x and 

y of B., we have d(x,y)< max {d(x,x.),d(x.,y)} <|u.|. Thus 

I f(|B.|) < I f(|u.|) 

and taking infima gives (ig(A) < Kg (A). Hence Wg (A)=|ig(A). Letting 8 -> 0 

gives j/(A) = |if(A). • 

Since (y,d) is a ultra-metric space, we have immidiately 

Corollary 2.4. On (3\d), the two measures #*(.) and |Xf(.) coincide, 
f 

If 0 < H (A) < ©o, we say that f is an exact dimension junction of A, or 

simply an exact dimension of A, or an exact measure function of A. If f(t) = 

t a (a>0), we write Wa(A) instead of i/(A), and we call it the a-dimensional 

Hausdorff measure of A. The Hausdorff dimension of A is defined as 

dim A = sup { a > 0 I Ka(A) = +<~ } == inf { a > 0 I Ka(A) = 0 } . 

Then Wa(A) = +oo if a < dim A and Ka(A) = 0 if a > dim A. 

The following result gives an alternative for on (y,d). 

Proposition 2.5. Soppose that (2.2) and (2.8) hold, and <(> is a Hausdorff 

dimension function. Then VAcJ 

^(A) = Hm nJ(A) (2.12)" 
k->oo 

where 
*iJ(A)= inf { I ^ j ^ d B . I ) : AcU i €pB(i), TQ7 and \i\zk if ieT}. (2.13)" 

file:///i/zk
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Proof. By (2.8)', V5>0, 3 k(8) sufficiently large such that X.<8 whenever 

iey and |i|^k(8). Noting that diam(B(i))=X., any cover in the definition of 

Ix^g^A) is an admissable covering in the definition of H^(A), so 

^ ( A ) < ^ ( 5 ) , (2.14)' 

leading to |^(A) <, lim fi^(A). 

Conversely, V8>0, suppose that {B(i)}(ier(8)) is a 8-cover of A by 

balls such that I B(i) | Vier(S) and 

| i J (A ) < S . 6 r ( 5 ) <KIB. | ) £ H|(A)+8. (2.15) 

Writing 

k(8)=min{|i|: ier(8)}, 

then Vier(8) |i |^k(8) and consequently 

^ t ( 8 ) ( A ) ^ S i e n S ) * ' 8 ^ - ( 2 ' 1 6 ) 

We claim that k(8) is not bounded. Otherwise, there would exist some kQ such 

that sup k(8)<k. Write a= min {X.: iey and | i |=k} , then a>0. Choose 
8>0 0 1 0 

i(8)er(8) such that |i(8)|=k(8). Thus 

0<a = min{X.: ie7 and |i|=k 0) < min{X.: ie7 and |i|=k(S)}< X . ^ < 8 

for all 8>0, which is impossible. Hence sup k(8) =<». Take 8 -»0 and k(8 )->«>. 
S>0 

From (2.15) and (2.16) we have 

< 8 )<A> * 4 < A > + K-
n n 

Letting n-**, it gives lim |i^(A)< ^(A). The proof is then completed. • 
k-»oo 

Remarking that any cover {B(i)}.€p of 7 by balls means that T is complete 

in J, and that |B(i)|=X., (2.4), Lemma 2.2 and (2.13)' give 

Lemma 2.6. For any dimension function (J> and any k€(N, we have 

*J(J) = lifih and JC*(J) = (2.17) 
Combining Corollary 2.4, Proposition 2.5 and Lemma 2.6, we obtain 

Theorem 2.7. If (2.2) and (2.8) hold, and <}> is a Hausdorff dimension 

function, then 
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jAST ) = A ? ) = \^(h. (2.18) 

2.4. Self-similar networks and tree processes 

We now examine a model for random networks based on a Galton-Watson 

branching process, see Falconer (1986). Let Q be a set and let &(©) be a 

network formed by a tree y(co) and capacities X.(co) (iey) for each coeQ. We 

obtain an increasing sequence of a-fields of subsets of fit. Let F t = a(N0;X.: 

l^i^N0), and given F f c define 

F k + 1 = c ( F k ; N(i):i e 7 k; X. . : 1^+ 1<N.) 
k+r 

Let F = [f£ F k , and assume that p is a probability measure on the sets in 

F , making (Q, F , p) into a probability space. 

We term &(co) a self-similar network if for each ie y the random elements 

Z. = (N.; T.JJÊ , TJ^J^ ), 

are independent and identically distributed, where 

= X.^j/Xj (j=l,...,N.) 

For convenience we shall always assume the nomalization 

X 0 = 1, 

so that 

x i = n ] i ! T i i j 

and in particular Xj= Vie in. We also assume that the decreasing condition 

(2.8) holds a.s„ thus 0 < T. < 1 a.s. We may regard T., rather than X., as 

the definig random variables of the network & = &(co). Thus the random 

capacited tree 7 is generated by the random element 

Z ss Z 0 = (N; T r . . ,T N ) , 

writing N = N 0 as we frequently shall. Note that we do not require that the Tj 

to be independent each other or to have the same distribution, as occurs in 

some applications. Let q be the unique quantity in [0,1) satisfying 

q = I p(N=k)qk. 
k = 0 
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Then q is the extinction probability of the Galton-Watson process underlying 

the network obtained by attaching an individual to the vertices of y. 

As in the preceding, it will prove convenient to write 

X. = T. = 0 if i « y . 

Thus X. and T. are defined for all ieT, and (X a) (aeT) is a non-negative 

self-similar tree prosess with respect to the c-fields (F f c )(k€lN) in that the 

Xa are F | a J -measurable, X^> 0, and the random vectors 

are independent and identically distributed for each ceT (Falconer 

1987). 

Suppose a > 0 is such that E (Z .~ T.01) < 1, Then (X^) is a tree 

supermartingale in that 

and 

W:= lim I X a 

exists a.s. with 0 £ E(W)< E(X0). The supermartingale becomes a martingale if 

E[I* = 1 T<*)=1. 

3. Limit theorems on tree processes 

We shall need some limit theorems on self-similar tree processes which 

themselves are interesting. We suppose that ( X a ) a € j * is a self-similar tree 

process defined as in section 2.4, which is identified to the self-similar 

network 9 = ff(fl>) = (a, X a ) G € y generated by Z = (N; T f T2, ...,TN). 

Let 

S(x):= I^=1 T*, (3.1) 

where xe[0,oo) and I 0:=O. Thus S(x)=0 if N=0. 

Lemma S. (i) S(x) is a.s. decreasing and continuous on [0,«»); S(0)=N and 

S(x) is strictly decreasing if and only if N>0 and 31<i<N such that 0<T.<1. 
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(ii) E(S(x)) is decreasing and continuous from the right; E(S(0))=E(N). 

(iii) If E(S(xQ))<oo for some xQ>0, then E(S(x)) is dicreasing and continuous 

on [xQ,<»). Moreover E(S(x)) is strictly decreasing on [xQ,«>) if and only if 

p(T =T2=...=TN=1 I N>0) <1. (3.2) 

(iv) If E(N)<oo then E(S(x)) is dicreasing and continuous on [0,«>). Moreover 

E(S(x)) is strictly decreasing on [0,oo) if and only if (3.2) holds. 

(v) The function \j/(x):=ess sup S(x) is decreasing on [0,«>) . 

Proof, (i) is evident, (ii) holds by the monotone convergence theorem. The 

first conclusion in (iii) follows by the same reason. If E(S(x)) is strictly 

decreasing on [xo,«0, then (3.2) holds immediatly since otherwise S(x)sN. 

Suppose now that (3.2) is satisfied and that E(S(x))= E(S(y)), where x>y£xQ. 

Since the function S(.) is decreasing we have S(x)=S(y) a.s., that is, T*=T* 

Vl£i<N a.s. Choosing 0<T.<1 implies x=y. This completes the proof of (iii). 

(iv) is a particular case of (iii). (v) holds since S(x) is decreasing. • 

Remark. It will be useful to note that the condition (3.2) is equivalent to 

E [ I* = 1 T % g | )>0, or to a^(E[S(x)])lx=a<0. 
i 

Let us write now 

a= inf {ae[0,oo): E[S(a)] < 1}, where inf 0 =+<*>. (a)Q 

Thus 0<oc<oo and, if a<oo, then E[S(a)]<l since E[S(x)] is decreasing and 

continuous from the right. Therefore we can write 

a - min {ae[0,«0: EfS(a)] £ 1}, where min 0 =+<». (a) 

Lemma a. (i) a=0 if and only if E(N)£1 if and only if the tree process 

terminates a.s., or again, if and only if 7 = 0 a.s.; 

(ii) oc<<» if and only if there exists a>0 such that E(S(a))^l; 

(iii) If a<oo then E(S(a))<l. If addtionally E(N)>1 then (3.2) holds. 

(iv) a is the least solution of the equation 

E(S(a))=l (Eoc) 

((KaoO if there is (at least) a solution. 
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(v) Suppose that 1<E(N)<°° and E(S(y))£l for some y>0, then a is the 

unique solution in (0,y] of the equation E(S(x))= 1. 

proof, (i) and (ii) are clear, (iii) E(S(a))<l by (a). If (3.2) does not 

hold, then S(x)sN, so E(S(x)) =E(N)>1 Vx£0. Consequently a=~. Hence a<~ 

implies (3.2). To prove (iv), write 

a = inf{ae[0,~): E[S(a)] = 1}. ( a ) Q 

If (Ea) has a solution then ote is well defined and OL<<*>. If an is a decreasing 

sequence such that a-> a and E[S(a)] = 1, then E[S(a)] = 1 since E[S(x)] 
n e n e 

is continuous from the right. Hence the least solution exists and we can write 

cc= min{a€[0,°o): E[S(a)] = 1}. ( a ) 

We prove now cx=aQ. Clearly cx<ao. Conversely, Va<aQ E[S(a)] * 1 by the 

definition of aQ. Thus E[S(a)] > 1 since E[S(x)] is decreasing. Therefore a<cc 

by the definition of a. Letting a->aQ gives ccQ<a. This ends the proof of (iv). 

We now prove (v). Since 1<E(N)<«> and a<«>, (3.2) holds by (iii) above. Thus 

E(S(x)) is strictly decreasing. As E(N)<°°, E(S(x)) is continuous on [0,«). 

Noting that E(S(0))>1 and E(S(y))<l, there exists a unique oc€(0,y] such that 

E[S(a)]=l. The proof is then completed. • 

We shall suppose always that 0<a<<» if it is not specified further.We define 

p = inf {be [0,1): SCj^g) ^1 a.s.}, where inf. 0 :=1. (|3)o 

Thus 0<p^l. If P<1, then S(y^) <1 a.s. Vb>P, so S(j^p) <1 a.s. Hence we can 

write 

p = min (b€[0,l): S ^ ) <1 a.s.}, where min 0 :=1. (P) 

Lemma p. (i) P<1 if and only if S(a)<l a,s. 

for some sufficiently large a>0. 

(ii) p=0 if and only if S(oc)<l a.s. 

If E(S(a))=l, then 

p=0 if and only if S(oc)=l a.s. 

(iii) Suppose that p(S(cc)>l)>0. If the equation 
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ess sup S ^ ) = 1 (EP) 

(0£b<l) has at least a solution, then p is the least one and certainly p<l. 

Proof. (i) Clearly by the definition of p. (ii) The first conclusion 

comes directly from the expression (p). The second conclusion holds since, if 

E(S(a))=l, then S(a)<l a.s. if and only if S(oc)=l a.s. (Hi) Write 

pc= inf{b€[0,l): ess sup S C ^ ) = 1}. (Pe)0 

If (Ep) has a solution, p <1 is well defined. If b is a decreasing 
C D 

sequenece such that l>bn-> Pe (n-*») and ess sup S ( y ^ ) = i f then S ( y ^ ) á 1 
n n 

a.s. Letting n-*» gives S(j^j e) £ 1 a.s. On the other hand, since ess sup S(x) 

is a decreasing function of x, we have ess sup S(JTTJ) > ess sup S ( j ^ ) =1. 

Thus ess sup S(TTTT)=1- So we can write 

pe= rain{be[0,l): ess sup S(^) = 1}. (p\) 

We shall prove that P=P. Clearly (5<|3. Conversely, for each b<|3, 

ess sup S íy^) * 1 by the definition of p̂ . Thus ess sup SCj-^) > 1 since 

ess sup S(x) is decreasing. Hence b<p by the definition of p. Letting b-»P 
c 

gives P <p. This completes the proof of (iii). d 

Put 

cetf u 

Since E[S(a)]<l, (Zk,Ffc) (Ffc is the a-algebra generated by all the T. such 

that I i I <k) is a non-negative supermartingale and 

W:= lim Z 
t-*oo k 

exists a.s. with 0 ^ W < + « and E(W) < 1 by the martingale convegence theorem. 

It will prove very useful to note that 

W = li^jT^Wj f (3.3) 

where j ^ 
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(l<i<N) are independent of each other and of (N; T ,...,TN), having the same 

distribution as W. If E(S(a))<l, then W=0 a.s. For the remainder of this 

section, We suppose always that 

0<a<oo and E(S(oc))=l. 

The conclusion (i) of the following lemma was established in Falconer 

(1987) without proof and condition. But it seems to me that a moment condition 

such as (3.4) below is necessary, although it may be probably weakened. The 

'if part of the conclusion (ii) of the Lemma was proved by Mauldin and 

Williams (1986, Th.2.1), but we prefer here to give a simpler proof since 

their method is very complicated. 

Lemma 3.1. Suppose that 

E[S(a)2] < +co. (3.4) 

(i) With probability q we have X a = 0 for all a € T with I a I > k for some k 

e IN, and with probability 1-q we have W > 0. Moreover, E(W)=1 and E(W 2)<oo. 

(ii) For each integer k>l, E(Wk)<«> if and only if E(S k (a))<oo. Moreover, for 

each real p>l, E(W p)<oo implies E(Sp(oc))<°°. 

Proof, (i) We shall see that the martingale (Zfc, Ffc) is L2-bounded when 

E(S2) < +oo. For simplicity, we write here S for S(oc). We have 

«zJJ 9 = E k i ^ xa«? Uk] = E [ ( ^ x / i t ^ f ! g 
= I k X« X« E [( Z T « + i I T" ) I Fk] 

= Z X« X ? E2(S) + I X 2 0 C E(S2) 

= ( £ . X<* ) 2 + S X 2 a (E(S 2 ) - l ) 
aeiN ae(N 

= Z 2 + (E(S2)-1) S X 2 a , 

and consequently 
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sup E(Z?) £ (E(S2)-1) I e [ £ Xi a l + 1 

= 1 + (E(S2)-1)/ [1- E( I T? a)] < + oo 

oo 

since E( S T J a ) < 1 (we recall that E[S(x)] is strictly decreasing on [a,«>)). 

Thus the martingale is L2-bounded and E(W) = ^im E(ZFC) = 1 by the martingale 

convergence theorem. It follows that p(W=0) <1. 

On the other hand, by the recursive relation (3.3) and the fact that T̂  > 0 

a.s., we obtain 

p(W=0) = X n" 0p(W=0|N=n) p(N=n) 

= p(N=0) + I n ^ 1 p ( W i = 0 for i=l,...,n) p(N=n) 

= lnZ0 p(W=0)np(N=n). 

Therefore p(W=0) = q . 

Since with probability q the adduced branching process terminates,i.e. 

the cardinalities #(y) vanishes for k sufficiently large, and X X £ #(9.)> 

thus X a=0 if \a\ is sufficiently large. This ends the proof of (i). 

(ii) The proof above shows that ( Z y F ^ ) is an L2-bounded martingale if 

E(S2(a))<oo. Thus ZF C=E(W | F k ) . Jensen's inequality gives then,for all reals p>l, 

E[Sp(a)] = E[Z P] = e ^ O V I f j ) ] <E[E(W P |E I ) ] =E(W P) 

Thus E(WP)<«> implies E(Sp(a))<«>. It then suffices to prove that 

E[Sk(cc)]<o° implies E(WK)<«> 

for all integers k>l. In fact, by the recursive relation (3.3), we have 
v N vn v N k.a k. 

W K = I T f V * + 1 y. . n ( T i W ; ). 
i=l 1 1 k i + k + . . . + k=k V"'KN i=l 1 

1 

where y - , k ! . Thus 
V"'KN K r--- K n-
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V i N kn k N k . a N k. 
E [W k | F l = I Tf a E[W k ] + 1 y n

 T i n E t w 1-
i = l k l ' " ' k N i = l 1 1=1 

idem 
k. k./(k-l) 

Since E(W ')£ [E(Wk~l)] 1 for all (Kk.^k-1, we have 

E[W k| F 1 < S T^EtW1*] + [ Z Y . n ] ( E [ W W ] ) W ) . 
i = l k r - ' k N i=l 1 

idem 
It follows that 

E[Wk] <£ E( I T^a)E[Wk] + E( I v v n T^*) (tfW^])" 0 '" 0. 
i = l 1 . . V"' k N i=l 1 

idem 

= E( Z T^a)E[Wk] + E[( Z T A ) K - S T^ICEEW"]) 1^-". 
i=i 1 L i , ! 1 i=i 1 J 

Noting that (ELW*" 1 ] )^" 1 ^^] , we obtain eventually 

(E[Wk])1/k < (EtS^D^CEtW^ 1]) 1^' 0. 

In particular, E[Sk(a)]<oo and EtW1""1]^ imply E[Wk]<oo. Since E(W)<oo, by 

induction on k we know that E[Sk(a)]<«> implies E[Wk]<oo. The proof is then 

finished, o 

As a direct consequence of the fact E[Sp(a)]^E[Wp] (all real p>l), we have 

Corollary 3.1. Let b€(0,«>). Denote by r(Wb) the radius of convergence of 

the moment generating function E(e 1^ ) of Wb, and r(Sb) that of Sb(oc). Then 

r(Wb) £ KS5). 

In particular, r(Sb)<oo implies r(Wb)<<». 

This result will prove useful to ensure r(Wb)<°°, in the case where llNll^soo. 

The following result generalizes a result of Graf et al.(1988, Theorem 

2.5,p.l4). 

Theorem 3.2. Let be (0,1) and denote by r(Wb) the radius of convergence of 

tWb b 

the moment generating function E(e ) of W . 

(a) If llNll <oo, then 
r(W1/b)>0 (3.5) 
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if and only if 

«J 1 a .s. (3.6) 

(b) If IINII^oo, then (3.5) implies (3.6) or, equivalently, p(S(y^)>l) >0 

implies r(W1/b)=0. 

Proof, (i) We first prove that (3.6) implies (3.5), if llNii^» . We shall 

denote by E(X| N = n) the expectation of X conditioned on N = n. By (3.3) we 

have 

E [ W k | N=n] = E(S T^ 0 1 I N=n)E[Wk] 
l ? } r n k.a -i n k. 

+ S k T r V r E . n j i 1 I N=n nHW '] (3.7) 
k , +k +.. .+k =k K r • • -Kn ' 4=1 1 J i=l 
o ! <i.^k-? 

(l-b)k. 

Since the function (y,»y2»—.yB) —» n°_i V j ' w * t n ^"-iVi ^ * ^ 5 ^ 

(l^tén) attains its maximum at (kj/k, k2/k, k/k), where k =kt+ k2+...+ 

k , we obtain 
n 

n k.a n / n M (l-b)k. n k. (l-b)k. 
n t . 1 = n [ T f ^W] 1 * u <f> (3-8) 

i=l 1 i=l 1 i = l K 

Thus (3.7) gives 

E [ W k | N=n] < E ( I T^a I N=n)E[Wk] 
i=l 1 

r n k (l-b)k -, n k. 
+ S E r h f T ^ .n/F^ 1 N = n ^ E [ W ] 

k +k+...+k=k l * " V *• i=l J i=l 

Taking expectation on N implies 

E[W k] [1- E ( I "rf" )] 
i=l 1 

H v . n k. (l-b)k. k. - . x 

k +k+...+k=k ^ ' - " V i=l k JJ 
1 

namely 

$ Ù . P * * ^ [ i I ; ^ I n . ] } , a,) 

k V L k +k+...+k=k 1=1 l J ' 

o ^ l . S k - T 
1 



28 

Q.S.LIU 
N . 

where с = E[ I T ? a ]. Writing 
k i = l 1 

t _ E[W k ] k(l-b)k 

From (3.9) we have 

t £ -L e £ jj t (Vk>2), (3.9)' 
1-C. к , +k+...+k =k i=l i 

N 
Since X n t is an increasing function of N, we have, for n=liNll , 

idem i=l i 

t £ с I П t № 2 ) , (3.10) 
к +k +.. .+k =k i=l i 

I 

1 1/k where с = sup T — > 0. As a consequence of (3.10) we have lim sup t < «> 
k>2 A " c k k->oo k 

(see Graf, Mauldin and Williams 1988, Lemma 2.6). That is 

« > lim sup Й ? Ь k ^ * / * = lim sup = l i m s u p « И Й * 

Now for each k>0, choose KelN such that kb<K<kb+l, thus 

HZsup(ЩТГ)1/к* k ! T u p ^ ^ K ^ ^ s u p ( к - [ Т т ь е ) 

= lim sup eb f E I W ^ ] 1 / K ) b < oo. 
k-»oo I k > 

Namely r(W1/b) > 0. 

(ii) We now prove that (3.5) implies (3.6) or namely, if 

P(S(^) >1)>0, (3.11) 

then r(W1/b)=0. We remark that the latter holds if 

{lminfs k

1 / k = + o o , (3.12) 

where 

s = ! ! i ^ ) (Vk>0). (3.13) 
k ( k ! ) b 

We shall prove that (3.11) implies (3.12), without the assumption llNli^oo. From 

(3.7) we have 



29 

Networks and Hausdorff measures 

E [ W k ] [ l - E ( l f t 
i=l 1 

kt r n k i a i i N V = E" 1 kTrhrr E k T i I N = n .n E[W »] , (3.14) 
k , + k + . . . + k - k " I " " V 4=1 •» i=l 

1 

Suppose that s.̂ r* for some r>0 and all j<k, we shall see that sk^rk if k is 

sufficiently large. In fact, from (3.14), 

1 

= E . E | I - 1 1 r jT j 1 N=n]-r k 

= E ] E S f—- n T: 1 N=n I rkk!b 

1 ^ d e m ^ l ' - V - 1 1 J 1 J J 

^ E- E Z — n T i N=n A l b , 

1 L l idem k l ! - V 1 = 1 J ' JJ 
where the last step holds since X x . l b > (Z x.)l'b. Now we remark that 

i i 

I *' „ T k i a / ( 1 " b ) = (X" T'?/(1-b))k -r i ^ / O - b ) . 

idem k l ! " V i = 1 ' 

As (x-y) , b£ x1*6 - y l b if x>y>0, the above equality gives 

r n k.a/(l-b) , 1-b 
1 k^.- .k ! i=l 1 ) idem 1 n 

> Ta/(l-b)^k(l-b) ^ j-n yka/Cl-b^l-b 

Hence E[W k](l-c k) > E j - | £ N^ T a / ( l -b) jk( l -b) _ | s R ^ a / ( l - b ) j 1 - b J ^ 

or 

k ! b 1-c 
k 

If (3.6) does not hold, then p(S(y^) >1)>0 and we can choose a>l such that 

c:= P( S ^ ) >a )>0. 
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It follows that 

Choose kQ sufficiently large such that cak(1"b)>l if k>kQ. Put rQ= 0 § jn k s|Ä 

(>0), then (3.15) implies s^rQ for all k>kQ. Thus Jnninf s f c

l / k>0. Namely 

Jminf >0. Since we can choose b'>b such that p(S(^~,)>l)>0 also, 

we have in fact ^gunf | E ^ J j =<», applying the result for b \ This ends 

meantime the proof of (a) and (b). • 

Corollary 3.2, p(S(y^) >1)>0 implies 

fc*- { k j b J 

Proof. This is shown in the proof of Theorem 3.2. • 

Theorem 3.3. (i) If llNli^oo and 0<ß<l, then r(W1/b)>0 if and only if b£ß; 

(ii) If llNll^oo or ß=l, then r(W , /b)=0 V0<b<ß. 

Proof, (a) If llNll^oo and l>b>ß, then S ( ^ ) <, 1 a.s. Theorem 3.2. shows 

then r(W , /b)>0 for all be[ß,l) and then for all b£ß. (b) If 0<b<ß, then 

p(S(ytt^)>l)>0. Theorem 3.2 applies again, showing that r(W1/b)=0. This ends at 

the meanwhile the proof of (i) and (ii). • 

The following Theorem generalizes a result of Kahane and Peyriere 

(1976,Theoreme 3). In Kahane and Peyriere's case, N=c>2 is a constant, and T 

(l<i^c) are independent and identically distributed. 

Theorem 3.4. (i) If iiNll^«» and ß<l, then 

lim Log E(W k) _ ß . 
/ i m k Log k " P' 

(ii) If llNll =oo or ß=l, then 

Proof. If llNll <oo and l>b>ß, then S(T^T-)<1 a.s. Thus r(W1/b)>0 by Theorem 
r E r w k / b n l / k D 

(3.2). That is lim sup M J < ~. Stirling's Theorem gives lim 
k->~ v k ! > k->~ 
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/^rwk/b^l/k . r w k/b- .xb /k 
S U p v - i ^— <». Consequently there exists a M>0 such that K=^- \f— <> M 

k / e ( k / e ) b 

for all k>0. Noting that [E(W*)]1/x is an increasing function of x and k/b >k, 
k k k 

we obtain ( E [ W ]> <, M (Vk>l), which gives 1 im sup L P g , > <£ b. Letting b-> 
(k / e) b k-+~ k L o g k 

P, we see that 

If p=0, The proof is then finished. Suppose that p>0. Then V0<b<p we have 

pCSC^) >1)>0. 

T t a » l i m -

k 

by Corollary 3.2. Using Stirling's Theorem again,it gives lim inf t ^ i j J i ^ L ^ > b . 

Letting b-$ gives 

which ends in the meantime the proof of (i) and (ii). • 

To ensure r(W1/B)<«>, in the case where N is a constant, Graf et al.(1988) 

have given a "corner" condition and some conditions associated (see their 

Theorem 2.11 and corollaries 2.12-14, pp.30-37). But it seems to me that their 

conditions are not ideal. Here, in the genaral setting, we give a simple 

result which covers almost all the examples of Graf et al.(1988) and of 

Falconer (1986). 

Theorem 3.5. Suppose that p>0. If there exists n>l such that 

n T „ E [ S ( a ) " ? N = n l ' m ' > 0, (3.16) 

or> equivalently, 

S~ ( 1 . E [ S ( a ) n V n r ; < ^ ( 3 1 6 ) , 
i =i nB 

then r(W l /B)<~. 

Proof. Again from the recursive relation (3.3), we have 



32 

Q.S.LIU 

E [ W k | N=n] = E(I T^ 0 1 | N=n)E[W k] 
1 = 1 let r n k i a i 1 n k i 

+ s k I k i El n T i I N = n I n « W 1 
k +k+...+k=k k i L - k n ! k=l 1 J i = i o'^l.^k-? 

N J 
£ E(E T^" ) E [ W k ] 

i=l 1 

n k. k l r n k.a , 
+ inf n E t W 1 ] I k i k i E n T i l N = n • 

i=l kl+k„+...-k=k K i ! " V U=l 1 J 
o'^l.Sk-? 

i 

where the inferior is taken over all the (kj,k2,...,kn) such that kj+ 1^+...+ 

k n= k and that 0 < kj ^ k-1. If k = nk, it is ( E [ W k ) n . Hence 

E t W 1 * ! N=n] > E(S T^a I N=n)E[Wn k] 
i=l 1 

+ ( E [ W k ] ) n | E [ ( I i T ^ t ) k | N ^ [ | l f I N=n] j 

S>(E[W k]) nE£( I T ? ) n K | N=nj. 

Consequently 

E t W 1 * ] > p n(E[W k]) nE[(S(a)) B k | N=n], 

where pn=p(N=n)>0. Therefore 

4 - Log E t W 1 * ] £ 4 - Log {p E [S(a ) n K | N=n]} + I Log E [ W k ] 
nk nk k 

= 4 Log p + 4 - Log E [S(a ) n K | N=n]} + I Log E [ W k ] . 
nk n nk k 

Choosing k = n r i (0<reIN) and using this inequality repeatedly, we see that 

- i - Log E [ W n ' ] > (Log p ) I 4 + £ 4 Log E[S(oc)nJ| N=n] 
n r 0 j = i n J j = i n J 

For k € N sufficiently large, choose r e N such that 
r I* I 1. 

n ^ k/p < n . Using Stirling's formular gives then 
, ( w k / p \ . l / k r w n r , .l/Cn'P) 

lim sup E<™, j > lim sup ^ » 
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e C ( n ) / p r j n j 
£ lim sup - — — r \ exp{ I - ± - Log E[S(cc)n | N=n]}, 

r̂ oo n r + V e j=i n J p 

0 0 1 
where C(n)= (Log p ) X —r >-°°. Thus 

n j = i n J 

lim sup E ( r , J > lim sup ^ — , n E[S(a) n | N=n]} 1 / ( n B ) 

k->~ { k l ) r-** n

r + 1 / e j - i 

r->oo n/e [j = i n 

Thus (3.16) implies that r <©o. Since the equivalence of (3.16) and 

(3.16)' is evident, the proof is completed. • 
k I 1/k 

Let us now investigate the condition (3.16). Since lim {E[S(cc) |N=n]} 

=llS(a)l 1 1 ^ , where 1 1 X 1 1 ^ : = ess sup X , a necessary condition for (3.16) to hold 

is B=B , where 
n 

p n = logliSCcx)!^!!^/ log n (n>l). (pn) 
Proposition 3.6. A necessary and sufficient condition for (3.16) to hold is 

that there exists n>l such that B=B and 

v « E [ S ( a ) n l |N=n] l / n " ^ n ™ 
1 . nS(a)l 11 > < ° ° ' ( 3 - 1 6 ) 

1 =1 N = n 0 0 

The proof is simple, thus omitted. • 

Remark 3.6. (3,16)" holds usually. It holds for example if 

p(S(a)=nS(a)lN=niloo; N=n)>0, 

or more particularly, if conditioned on N=n, T.(l<i<n) take only finitely 

many values. 

In fact, if c:=p(S(a)=liS(oc)l 11 ; N=n)>0, then 
N=n 0 0 

EtSk(a)|N=„] >. c»S(a,lN j;, « f^ ' 1 *?'V. 
v N = n 0 0 

«> n* I l/n* 
and consequently -log n

 E [ ^ ? a H < c ° ' w h i c h i m p l i e s ( 3- 1 6)"-
i = 1 ^ N = n 0 0 
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The result holds also in most cases where S(cc) is of continuous 

distribution, as we shall see later. 

Practical examples show that if llNll^oo, we have often P=P_, where n=llNlloo. 

This is so for almost all the examples of Graf, Mauldin and Williams (1988) 

and Falconer (1986). In general, we have 

Proposition 3.7. P > B:= sup p , 
n>0 " 

where Pft=P,=0 and P = logilS(ct)l ll / log n (n_i2). (p) 
0 1 D N—-D ®^ II 

Moreover (3= ess sup [logS(a)AogN], where logS(ayiogN :=0 if N=0 or 1. 

Lemma 3.8. If Xn t 0 ^ 1 " 1 ^ , where new, 0<a<oo, 0<b<l and t>0 Vi, then i=i i i 

b _ log(l" = 1t") Лogn, where logO^t" ) Лogn :=0 if n=0 or 1. 

Proof. We suppose that n>l. Write с=^_^ and consider the function 

f ( V . . , x ) = I n 'х^Ь-Ь), 
1 П 1 = 1 1 

where x,,...,x £0 and Xn x.= c. The minimum of f (with the constraint) is 
I n 1 =1 1 

attained at x ^ x ^ . ^ x ^ c/n. Thus l>f(t^,,..,t^)> f(c/n,...,c/n) 

=n(c/n) 1 / ( b b ), giving the result desired. .• 

Remark. The proof above shows that if S n t^l^=U then b > 
i=i i 

log(S n AAogn and the equality holds if and only if t =...=t (n>l). 
i = 1 i I n 

Proof of Proposition 3.7. Since T ^ 1 " ^ a.s. by the definition of p, 

Lemma 3.8 gives immediately p> ess sup [logS(a)AogN] with the convension in 
the proposition. Since it is easily seen that (3= ess sup [logS(oc)/logN], the 

proof is completed. • 

Corollary 3.10. If N=n (n>2) is a.s.a constant and P=Pn:= logllSCa).!^/ logn, 

then a suffisiant condition for r(W1/B)<«> is 

n7=i | l S ( a ) " / llSCaJii^O 
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or, equivalently, (l-nS(a)l! J llS(a)ll ) < «>, (3.17) 
0 oo 

i =1 

where « • = [ E ( | x | p ) ] 1 / p (p>0). 

This Corollary enables us to calculate the exact dimension functions of 

almost all the examples of Graf, Mauldin and Williams (1988), in a very simple 

way, see section 7 below. Besides, the condition (3.17) is in some way sharp. 

To see this, let us take the counter-example of Graf et al.(1988, p. 104, 

example 6.10). In this example, n=2, T =T = i(U,U), where U has distribution 

¿1 on [0,1] and E(Uk) - e "
k d / ( l o 8 k ) . It is easily seen that (3.17) holds if 

and only if Y>1. In fact, we have r(W1/B)<<» if y>l and r(W1 / B)=oo if 0<y<l, as 

was shown by Graf et al.(1988). 

Remarks, (i) The condition (3.16)" means that, conditioned on N=n, the rate 

of convergence of the L p norm llS(ot)llpn to the norm llS(cx)ll̂  ^ (p-*») is 

sufficiently large, where llS(oc)ll := (E[(S(a)) p | N=n])1/p. As we shall see in 
p,n 

section 7, the condition is usually satisfied and easily verified. It holds 

for almost all the examples of Graf, Mauldin and Williams (1988). It seems to 

me that this kind of condition is more natural then the "corner" condition of 

Graf et al. (1988). 

(ii) All the results in this section are based on the equation (3.3) with 

the independent properties cited therein, where the distribution of W is 

unknown and the T.'s and N are given. Thus the conclusions hold whenever the 

equation is satisfied. Kahane and Peyrtere (1976) have considered such a 

equation in a special case for a study of a martingale of Mandelbrot. Many 

interesting results concerning this equation with N=n a constant and T̂  

i.i.d. may be found in Yves GUIVARCH (1990). 
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4. Est imat ions on cut-set sums 

4.1. Construct ion of a random measure (X^ on 

Let ^ ( G ) ) = ( ^ x

a ) a € y be a self-similar network, and Q^a)ae j be the associated 

tree process, where X a = 0 if G£7. We shall regard the ratios C^a)aef as 

defining elements, where T a = 0 if G€J (see section 2). 

Let a be difined as in the preceding. Throughout this section, we suppose 

always that 
0<cc<oo, E(S(a))=l, E(W)=1 

and 
p(T =...=T=1 | N>0) <1. (4.0) 

1 N 

For a € y, define | x | 
W == lim. £ n T2*^rl^ (4.1) 

a | x | = k n = l 
where XQ = 1 and T^ .= X ^ / XC by our notations. Then W 0 = W and each W a 

is of the same distribution as W. Moreover W a is independent of W^ if neither 

a<c nor x<a, and W a is independent of X^ and of unless a<x. If <ye T \y, we 

choose W a as an independent copy of W such that W a (ae T \ 7 ) are independent 

each other and, as a family, independent of W a (ae y). 

Given ceT, let F a denote the a-field generated by {(T( a j^*pT^ a j j^, . . . ) ; 

0 <£ i < |CT|-1>: 

F a= a < ( T (a| i)*r T (a| i)*2-> ;
 0 * 1 * I*'"1)-

Then W^ is independent of F ^ unless T < a . It is easily verified that 

X S W o = r . ^ i ^ i <4'2> 
I I 

almost surely (note that X a = jj 1 a 1 T 0 1 n ) . So if T e y is a cut-set then 

W o = l i m J r J | 1

1 5 . ( t | « ) w o . t < 4 - 3 ) 

a.s.for each a e 7. Let 

B(a)={t| € wN: r| > a } (4.4) 

(<j€ 7) be a in INN associated with a and define 
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liJB(a)) = X^(co) Wc(a»). (4.5) 

By (4.2) is well defined. It can be uniquely extended to a Borel measure 

on IN" which will be called \i again. 

tW 1 / b 

Proposition 4.1 (i) If E(e ) < 0 0 , then with probability 1 

u . sup mih^i i 
n-^oo Logn 

and 

lim sup ' W Q ! n ) 1 / b

s l 

n->~ Logl o g v j 
X ( i | n ) 

for ix^ almost all i e I. 

(ii) If E (W , + 1 / b ) < oo for some 0<b<oo, then Ve>0 we have, with probability 1 

l i m s u p W ( i j . ) 1 / b

s ! 
X\-^oo n 

and 
l i m - p W ( t l n { 1 / b ^ 1 < m 

n-x- ( l o g x

 A , ) 1 + e E(2 T a l o g | ) 
X ( i | n ) 1 Ai 

for ji^- a.e. is I. 

Proof, (i) Let (ft,p) denote the underlying probability space and consider 

the product space I x CI with the product a-field with probability law Q 

defined by 

Q(A) = E J 1A(©4) d iy i ) . (4.6) 
Then V E > 0 Vt'<t 

Q ( e«-(wal„))'\ n i + E ) s _ i _ E ( E F W A L N ) ' * , . _ i _ E ( W E . - W ' * 

n ^ n 
The Borel-Cantelli lemma ensures that 

Q-almost surely. Hence the first inequlity follows. Note that the random 

variables 

TK(T|,co):= T^i^co) (4.7) 

on I x Q are independent and identically distributed, the theorem of large 
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numbers gives 

lim (log *-)/n = lim [log 1/ n!UTi|kJ/n 

=E Q [log (1/ f) ] = E d ^ T ? l 0 8 T) ^ ( 4 8 ) 

where the last step holds since p(T =...=T =1 I N>0)<1. Consequently the 
I N 

second inequlity follows from the first. 

(ii) The approach is almost the same as above by means of the 

Borel-Cantelli Lemma, noting that 

Q((W(i|n) 1 / b)> n 1 + e ) < - J — E Q ( W ( i | n 1 / b ) = E(W W 1 / b ) . • 
n n 

Remark 4.1. The same idea can be applied to prove the following: 

If E ( W 1 + 1 / b ) < oo , then with probability 1 

l imsup J ^ l k ^ i and l im sup W Q l n ) 1 ^ 
n^oo h(n) n-*» h ( l o g v ; ) 

X ( i | n ) 

for \ia almost all i e I ( s i f t , where h(t) = t 1 + e , t(logt) 1 + e, 

t(logt)(loglogt)1+e, etc. (Ve>0). 

4.2. The lower bound. 

Proposition 4.2 For 0<p<°o, let 

•B(t) = ta(LogLog I) f i. (4.9) 

rW 1 / B 

(i) If E(e ) < oo for some r > 0, then 
M B ( J ) > A v (4.10) 

almost surely. 

(ii) If E(W 1 + 1 / B) < oo, then 

MV(V) = +oo a .s . on W>0, 

where 

V ( t ) = t V g j ) ^ ^ 

etc., Ve>0. 
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Proof, (i) We first note that = W(co). By Proposition 4.1, for each 

e > 0 we can choose a compact subset y' of 9" such that > W-e and 

W . | n < (1+e) ( I LogLog j ^ - l — )B 

for all i € T and all n _> NQs N0(co) (Proposition 4.1(i) ensures that this can 

be done almost surely). 

For each ce 7 with | a | >NQ, let us consider 

U a=B(a)nr 

such that U a * 0 . Take an arbitrary i eU a , then iey* and i | ( |a | )=a. Thus 

U a =B(i | ( |a | ) )ny c B ( i | ( | a | ) ) 

and consequently 

^ ^ B(il(la |)) ) = X ? | ( | a | ) W . | ( | a | ) 

= ( l + ^ B ( X i | ( | a | ) ) / r B = ( 1 + e > W / A 

Thus ^ ( U ^ <(l+e)<|)B(X0)/rB whenever oey and |a |_N Q . 

It is evident that it holds also if U =0. 

Let T be any cut-set of 3" with min{ lohaeT} _ NQ. Then 

?Q U a e r B(c), r__ U a e r (B(a)nr), 

iKar) <; Z 0 6 r lx(Ua), 

thus 

W -e £ »i(J') <. (1+e) X VX_)/rB. 

This implies that 
<j) . 

* N V ) * ^ r V - E ) 
° <l> 

almost surely. Letting e -» 0, it gives ^(SO-Av, and then the result 
o 

desired. 

(ii) The same argument as above. Take for example \p(t)= V f l + e (0 = 

^(logl) 6* 8. Vt|>0, choose a compact subset 5" of J such that 2. W- t i and 
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W. i £ (U>g for all ier and n>N , i |n A . | n o 

using Proposition 4.2 (ii). Thus 

p. (B(<y)ny) ^ V(X0) whenever a e s r and | a | ^ N Q . 

Hence 

W-Ti <; u(gr') <, I V(XJ, 
aeT ° 

T being any cover set in J with min{ I a \: ore H^N 0- Thus W-T| < and so W £ 
V ° 

jMv(y), X v(y)>0 a.s. on W>0, where V=V_ „. Since ^ ^ ( y ) >0 also a.s. on 
Y n , p 

W>0, we have M (9") = oo a.s. on W>0. For the function y(t) = 

^(logjAloglogY)6*8, etc. the proof is similar, using Remark 4.1. d 

4.3. The upper bound. 

Proposition 4.3. (i) Suppose that E [ Z ~ = 1 T%g y ] < « and E [ e r W ] = 
i 

+<» for some (P,r) e (0,«) 2. Then 
<\> 

M fl(7)<oo 
<)> 

almost surely. In fact E(M B(y)) £ r°. 

(ii) If E [W W B ] = +oo for some pe (0 ,~) , then 

M * * ( y ) = 0 a.s. Ve>0, 

where w P (0 = t a(log j) B " e . Moreover 
B" fc 1 \j, 

M B ( y ) < oo a .s. 

if 

lim s u p / I pf W 1 / B> v l - p Logk ]• > - o o . 
k-yo I v=[Logk] L J J 

The proof relies on the following 

r W 1 / B 

Lemma 4.4. (i) Suppose that E [e ] = +~ for some (P,r) € (0,~) 2. For 

t > 0, write 
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B k s KfM = {° e ^1 w ( a | v ) * ( 0 ) ) < ( T L °S L °S ) B 

for all v = [Logk],[Logk]+l,...,k.j, (4.11) 

where 

il* = ( t l 1 . T l 2 . - . i l n . 1 , i l n + l ) if 11 = (Tl1,H2.-.1n)» ( 4 ' 1 2 ) 

and 

*k • f ^ *Xa ( L °S L °S XTa) ) B dP • ( 4 ' 1 3 ) 

Then for all t > r we have 

lim inf I* = 0 (4.14) 
k->~ 

if 

E [ I ~ = 1 T%g | ] < (4.15) 
i 

(ii) For P e (O.oo), write 

B k s B > " {" € * l W(o|v)*<°» < ^ X^tvT )B 

for all v = [Logk],[Logk]+l,...,k.|, (4.11)' 

and 

C 4 ( P ) = [ l . X« (Log ^ d p . (4.13)' 

Then 

lim sup / I p[ W 1 / B £ vl - p Logk 1 > -~ (4.16) 
k-*» I v=[Logk] L J J 

implies 

lim inf I*(P) < oo. (4.17) 
k^oo 

In particular we have 

lim inf if(p-e) = 0 Ve>0 (4.18) 
k->~ K 

i f E ( W 1 / B ) = oo. 

Remark 4.4. The condition (4.15) is implied by 

E(N) < ». 
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In fact, VO<e<oc, 3C>0 sufficiently large such that logx < Cx e (Vx>l). Thus 

E [ E ~ = 1 T%g | ] < E [ I 7 = 1 T<* C (^) e ] = C E [X~ = 1 T ^ e ] <, C E(N). 
i i 

For the proof of Lemma 4.4, we shall need the following simple result 

of analyse in Liu [1992, Lemma 4.3] : 

Lemma 4.5. Suppose that a function g: R -> [0,1] is non-increasing 
r°° 

such that g(t)dt = +«> and that j : IN -> R is a function satisfing 
0 

lim sup < 1 
k->°° k 

then V e > 0, 

lim sup f k l / ( ! / n + p N g(t)t£ dt - k ^ 1 ^ = +~ 

for each £ with 0 < e < e . 

Proof of lemma 4.4. (i) Since W ^ a | y ^ (v = [Logk],...,k.) are 

independent each other and as a family independent of (the a-algebra 

generated by (T^ a | i ) * p T ( a | i)*2»-)»° * 1 * M - U . where |a |=k, we have 
* f P 

l k = I xa[ L o s ^ S - x - ) d P 

~ * V K | V ) . < (I LogLog > ]Pl 
v=[Logk] I l a | v ' l l A (a |v )J J 

(conditioned on F^ firstly) 

I P 
Xjjf LogLog-*- ] dp n

k p{ W < (I LogLog —V ) 
w o Q 1 a J v=[Logk] I l l X ( o | v ) J / 

- I 1 + I 2 
xk + Ak ' 

where 

^ = 1 [ X « ( L o g L o g 4 - ] P d p n

k p{w< (I LogLog ^J-L—IP}, (4.19) 

[ X«f L o g L o g 4 - ) P d p n

k p{w < flLogLogx-L—jP}, (4.20) 
o e > JQ 1 v=[Logk] I l l X (a |v )J / 

2 

with 
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Q = Q ( a , k ) = n

k [co:Xf I c v ] , (4.21) 
1 1 v=[logk] ^ c | v ; 

Q s Q ( a , k ) = & [co :X, . .< c v ] , (4.22) 
2 2 v=[logk] ( a | v ; 

where c>0 is arbitrary at the moment. For 

c > max{ E ( I " 1 T < * + 1 ) , 1/e}, (4.23) 
we shall see that 

l iminfli = 0, (4.24) 
k-oo 

and 
l i m l 2 = 0 . (4.25) 
k-»~ 

In fact, 

( P 
X«( LogLog-L ) dp n

k p{ W < [\ LogLog - U P ) , 
Q i

 1 c k J v=[Logk] I l l c v J / 

-dog k)B E ( S X? ) N

K P{ W < ( i Log v]P } 
aew" a v=[Logk] I ^ > i 

if c > 1/e. Thus 

(log k)Bexp {- v 5 j L O G K ] P [ W * ( I L ° g V ) P ] } 

= exp ( - I k p f e t W l / B _ t v 1 + p LogLog k \ . (4.26) 
v v=[Logk] L J J 

We then note that 
r v + l 

X k p f e ^ v l * Z k - !

 P [ e t W l ^ x l d x 
v=[Logk] L J v=[Logk] Jv L J 

= [k PpW^xldx 
J[Logk] L J 

f k l / ( l+e ) t w I / B 

1+e 
(x=y ), where e > 0 is chosen such that t/(l+e) > r . Write 

t w I / B 
f(y) = P [ e r a J i y ] , (4.28) 

then 

J ^ f ( y ) d y = E [ e r a ] = +oo 
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by the hypothesis. Lemma 4.5 gives then r
, l/(l+e) t w i / e 

Hence 
lim sup / I p[ e t W l / B £ v l - p Log Logk )• = +°°, (4.29) 
k̂ oo lv=[Logk] L J ) 

and consequently liminf \\ - 0. 
k-oo 

We now prove that |im l£ = 0. We shall use the random variables 

*k ( i ' m ) = T i | k ( 0 ) ) ' K M = TV=1 s X i | k ( 0 ) ) 

on I x Q. For each k>0 are Q-independent and identically distributed. We 

note the common distribution by 1X1,0)). 

Let p and p' be two positive numbers such that 

p > max(l,l/p) and 1/p + 1/p' = 1. 

Using Holder's inequality we have 

S ^ [ l o g k] [s ^ ' " S 1 Q ) ' " ' ( Q ( V C : V ) ) ' * - < 4 - 3 0 > 
k 

Since the function (log x)B p is concave for x sufficiently large, Jensen's 

inequality gives 

X (loglog l - ) B p dQ = EQ[(log log l - ) B p ] 

k k 

*(log EQ(log i - ) ] B p + C = [log (k EQ[log I ] ] B p + C, (4.31) 
k 

where C > 0 is a constant independent of k and E q denotes the expectation 

with respect to Q. On the other hand, by Markov's inequality we have 

Q ( ^ < c v) £ E Q ( ^ ) / c v = ( E Q ( t ) / c ) v . 

Therefore 

"fc S C , S v=[log k] (•»! * \ ] ] ' »<jC*y 

S C [log (K EQDog I ] ]V Q ( tV cf^'ld- I EQ(t)) (4.32) 
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for some constant C>0 independent of k, where 

EQ[log I ] = E d ' j T ? log ^ ) <oo and EQ(f) = E(S .~T^ + 1 )<C (4.33) 

using (4.15) and (4.23). Thus lim Ir = 0, and consequently lim inf L = 0, 
k->oo K k»oo K 

which ends the proof of the first part of the lemma, 

(ii) A similar argument as in (i) shows that 

j > •
 + K • 

where 

V, C „ O 1 ° J v=[Logk] I I V l v y J 

*k = I f X S ( ^ S - X - f d P n k PJW < ( i L o g x l (4.34) 
o e l ^ J Q 1 o J v=[Logk] I l l X ( o | v ) r / 

2 

with ii, and Q defined in (i): Q = n

k [X r_| vy> cv],Q = [X, > v,<c v]. 
1 2 1 v=[logk] l a | V J 2 v=[logk] ^ a | V > 

Instead of (4.26), (4.30), (4.31) and (4.32) we have respectively 

if £ exp ( - I k p f W 1 / B £ v 1 + p Log k \ , (4.26)' 
k I v=[Logk] L J ) 

ll * ^=[log k] ' <l0S ^ ^ V ^ ) d Q 

* ^ t i o g k] ( ' < l os ^ > B P d Q ) 1 / P ( Q * v < » v ) ) < 4 - 3 0 ) ' 
k 

j - d o g ^ D Q = a - % [ ( l o g ^ ] *(]og E q C ^ o * + C 
k k k 

= a'B p[log (k E Q ( | a ) ) B p + C = [a*1log(kEN)]Bp4€, (4.31)' 

£ * C , £ v=[log k] («WkEN)] ) 6 (EqCtV c) v *' 

£ C'|a*1log(kEN)]jfl (E Q(t)/ c) D o g k l y pV(l-EQ(f)/c) (4.32)' 

where pp£l, l/p+l/p'=l, c > max(l/e, Eq(f)), C and C are some positive 

constants independent of k. Here we have used the fact that 

EqCT*) = E ( I ~ / r ^ ), a+^>0. 

Hence by (4.32)' we have lim I2 = 0, and by (4.26)' we see that (4.16) 
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implies lim inf 1 < +«>. Hence (4.16) implies lim inf I < -h» and the proof is 

then finished if we note that (4.16) holds with p replaced by p-£ (Ve>0) if 

E(W1/B) = oo. (see liu 1992) o 

We are now in a position to prove Proposition 4.3. 
* 

Proof of proposition 4.3. (i) Let t > r and be defined as in lemmma 4.4: 

B k - { « e * l W (o |v)'«») < < T L o « u * X(fftvj )° 
for all v = [Logk],[Logk]+l,...,k. j . 

For a € N k-B* , let k(a) be the smallest v > [Logk] such that 

W(a|v)*«°> * < T L°e L°g Xtkfrj >*• <4'47> 
Then [logk] < k(a) £ k. Set 

f(k)= | a|k(a): a € N k -B*j. (4.48) 

k * 

It is easy to check that I\k) is an antichain with T(k) < IN - B f c. Since T(k)U 
* 

B f c is complete in r, we can choose a cut-set T(k) of T (that is T(k) is a 

maximal antichain in T) with 

f(k) c r(k) c T(k) U B*. (4.49) 

By the definition of B f c and T(k), we obtain 
£ X^lloglogl | f i = I - X^lloglogl P + S ,X<*|loglogl |* 

c<=r(k) a A a a<=r(k) a x a a e B k

 a x a 
< t 6 I ~ X<* W_*(co) + I * X" | log log * | B . (4.50) 

a€T(k) a a c e B

k

 a 

By Lemma 4.4, we can choose a sequence (k.) of integers increasing to ° o 

such that I -> 0 Hence 
k, 

i 

E [liminf X X ^ l l o g l o g i |B1 

<, liminf E [ X X^llog log i |B1 
k ^ o o LCT€r(k) a A a J 

< tBliminf E [ X ~ X" W^Cco)! + Hm I* 
i-»oo L aer(k.) CT CT J i-,00 k i 
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= tBliminf e [ Z - X" W_+(o>) 1 (4.51) 

First conditioned on F k , the c-algebra generated by X a ( | o | £ kj), we obtain 

that 

e [ Z - X " W +(u» 1= e [ Z ~ X<* ] = e [ Z - X« W _ (g» 1 (4.52) 
L o e r ( k . ) ° ° J L aerOcp ° J «• oer(k.) ° c J 

since E ( W C ) = 1 for all oeT. Thus 

E [ liminf Z X^llog log * lBl 
Lk-oo oeT(k) c A c J 

<S Aiminf e [ Z - X" W ra)l 
i-oo L a e r ( k . ) a J 

< t°liminf e [ Z X" W J o ) ) ! =tB liminf E(W), (4.53) 
i-.oo L aer (k . ) a a J i^oo 

where the last step holds as 

W = Z X<% 

for any maximal antichain T. Consequently 

E [ liminf Z x " | l og log i |B1 £ tB (4.54) 
L k-»oo aer (k ) ° A o J 

for all t > r. Letting t-»r gives the result desired, if we note that 

M\?) < Z <|>D(XJ and M \ ? ) = lim M\?) =lim inf M \ V ) . 
k aeT(k) B ° k->~ k k->~ k 

(ii) By Lemma 4.4(H), it suffices to prove that (4.16) implies M B ( 7 ) < °o 

* 
a.s. Since Ĥm inf I f e < <», the proof is very similar to the above: we replace 

• • • * 

B k and I k by F k and I respectively. • 

4.4. The fundemental results 

Combining propositions 4.2 and 4.3, we obtain the exact value of 

the lower limit of cut-set sums: 

Theorem 4.6. (The fundamental theorem) Let ( a > x

a ) a e y be a self similar 

network generated by (N; T ,...,T ) with 

E(S(oc)2)<oo (L2) 
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and E ( I ^ = 1 T % g j - ) < e o . (Tlog|) 

For be(0,oo), we write d>.(t) = ta(log log | ) b and denote by r =^0^) the radius 
b l b 

b 

of convergence of the moment generating function E ( e t W ) of Wb. Then 
<\> 

M b(y)= (r, j V a.s. (4.55) 
1/b 

where we make the convention that °°.0=0 if r =°° and W=0. Consequently 
Ф l /D 

X (7) is zero, positive and finite, or infinite 

almost surely on W > 0 if and only if 

r is zero, positive and finite, or infinite. 

respectively. 
rW 1 / b 

Proof. If r = 0, then E(e )=«> for all r > 0. Proposition 4.3 shows 
that E [M\?)] <, r b (Vr>0). Thus E(M\V))) = 0, and so M\?)=0 a.s. 

If 0 < r, <oo, Propositions 4.2 and 4.3 ensure that M b(7) £ 0\ J^V and 
0 1 / b <f> <|> 1 / b 

E[M V ) ] £ (r i / b)
b. Thus E L M b(y)-(r1/b)

b]=0 and M V ) ] = ( r j V a.s., 
noting that E(W )=1 . 

<|> 

If r(W1/b) = oo, Proposition 4.2 implies M b(y) 2> r V for all r > 0. Thus 
^b 

M °(?) = +oo if W > 0. This shows that (4.55) holds a.s. on W>0. On the other 

hand, by Lemma 3.1, we have X =0 if \a\ is suffciently large, almost surely on 

W=0. Thus M b(y)=0 a.s. if W=0. So (4.55) holds also a.s. on W=0 by the 

convention. d 

Theorem 4.7. Let ( a ^ a ) a € y be a self similar network generated by (N; 

T I " " , T N ^ F O R my P e (0 ,oo), we have 

(i) If E[W 1 + 1 / B ] < oo, then ¿№(7) = +oo a.s. on W>0, where xKO^flogl)8^, 

tVgj^Goglogl)^, t^loglAloglog^dogloglogl)^, ... (Ve>0). 

(ii) If E [ W 1 / B ] =oo, then = 0 a.s. where \|/B_£(t) = t a(log 
V 

Moreover M B(y) < oo a.s.if 
lim sup / I p[ W , / 6 £ v] - P Logk \ > -oo. 
k-^oo I v=[Logk] L J J 

Proof. This is a mere combination of propositions 4.2(H) and 4.3(H). • 
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5. The main results 

5.1. flows from self-similar networks and Hausdorff measures associated 

As introduced in section 2.2, for our purposes a network or capacited 

network & comprises a tree 7 with a capacity X.>0 assigned to each i e 7. We 

regard X. as the maximum allowable flow through the edge of the directed gragh 

7 joining the vertices i^...^ x and i^..^ = i. We recall that A flow 

or positive flow in the network & is a function / . 7 —» [0,oo) such that 

fli) = Z i : i * i e y 0€J), (A) 

0<fli)<X.den (fl) 

0 < fl0). (/3) 

Intuitively / represents the rate of flow of a liquid through the network. 

Condition (fl) reflects the fact that the amount of liquid reacting a vertex 

of & equals that leaving it, (fl) ensures that the flow through each edge does 

not exceed the edge capacity, and (/3) is the positivity condition, that a 

positive amount of liquid is able to flow through the system from 0 to 

infinity. We shall principally be concerned with conditions under which a 

positive flow through a network exists. 

The main general result on the existence of flows is the "max-flow min 

cut" theorem of Ford and Fulkerson (1962). Here, this stimulates that the 

maximum value of /(0), given that / satisfies (/l)-(/3), is 

MVS) := inf { £. r X5: T is a cut-set of 7 }. 

0 pi 1€ 1 1 

The obvious criterion for the existence of a positive flow is 

MQV§) > 0. 

It was remarked by Falconer (1986) that this criterion is equivalent to 

M(7) >0, 

where M(7):= lim MCJ), 
M(J)= inf {!• r X,: T is a cut-set of 7 and | i |^k VieT}, 

k jp 1€: 1 1 
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We recall that J denotes the boundary of the tree 7 (i.e., all the infinite 

descendants of the members of y), and A subset F of 7 is termed a cut-set 

if Vie y there exists a unique n>0 such that i I ne T. 

Let & = ( a » X a ) a € y be a self-similar network generated by Z=(N; T l f...,TN). 

Falconer (1986) proved that a flow through the network is possible with 

positive probability if E(L T) >1 and is a.s. impossible if E(X T) <1. Here 

is a more precise problem: 

Given a self-similar network & = (a, ^C)C€^ > how to modify the 

capacities X a in a homogeneous and optimal way in some sense such that a 

positive flow through the network is possible? More exactly, 

what is the optimal (in a way) weight function <)>: [0,«>) -»[0,<») for which a 

positive flow through the network (a, ^P^^)Gey exists? 

To solve this problem, we study some Hausdorff measures on the branching 

set y associated with the network 5 . We recall that 7 carries a metric d 

defined by 

Let S(x), a, P and W be difined as before, that is 

S(x)= 2^_j.T? , where S0:=O and xe[0,«>), (S) 

a=min{ae[0,«>): E[S(a)]<l}, where min 0:=°°, (a) 

P=min{be[0,l): S C j ^ ^ l a.s.}, where min 0:=1, (p) 
W : = i 4 S X | < y j = k x « <w) 

Since E(N)<1 y=0 a.s. <=> a=0 (we exclude the degenerate case where N=1 a.s.), 

the only interesting case is E(N)>1 or equvalently, cc>0. We shall always 

assume that 

N<<» a.s., 0<a<«> (N) 

and E[S 2(a)]<oo (L2) 

if it is not specified further. Then 

P(W=0) =p(y=0) =q, 
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q being the extinction probability of the associated branching process, 

which is the unique solution in [0,1) of the equation 

E[qN] =1. 

Moreover 

p(T =...=TN=1 | N>0)< 1, (p) 

E[S(a)]£l, E[S(x)] is continuous and strictly decreasing on [a,°°), and the 

same holds on [0,oo) if additionally E(N)<oo (Lemma S and Lemma a in section 3). 

We shall now collect our main results. For a Hausdorff dimension function 

(that is, <J> is defined on [0,°°), non-negative, increasing and continuous on 

the right), we denote by H^(7)9 fifyjj, and M^(7) the Hausdorff measures, the 

sherical Hausdorff measures and the lower limit of cut-set sums of 7 

respectively. 

First of all, we translate the criterion of Ford and Fulkerson (1962) in 

terms of Hausdorff measures on 7 (see Theorem 1 in the introduction): 

Theorem 5.1. Let ^ = ( a » x

a ) a € y be a self-similar network generated by Z= (N; 

T i V..TN), and <j>: [0,°°) —» [0,oo) a non-negative function, increasing and 

continuous from the right Then almost surely 

a positive flow through the network (a,(j)(Xa)) (aeJ) is possible 

if and only if 

H^(h > 0 

where represents the Hausdorff measure on y associated with the 

dimension function <)>, J carrying the metric defined above. 

Proof. Falconer (1986, Lemma 3.1) observed that a positive flow through 

(a,<t>(Xa)) exists if and only if M^(7)>0. By Theorem 2.7, we see that 

if X.->0 as I i | (Vie 7). It then suffices to show that 

X.->0 as (V igSO almost surely. 

Since E[S(oc)]<l and E[S(x)] is strictly decreasing on [a,«0 we can choose t>oc 
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such that E[S(t)]<l. Writing 
M k ( t ) = E | , | = k x ; , 

we see that E[M k(t)| F k J = E[S(t)]Mk ^t). Thus {(E[S(t)])"kMk(t), FkJ is 

a positive supermartingale. The martingale convergence theorem applies, 

yielding that Mk->0 a.s. and then the result desired. • 

Corollary 5.1. If (N) holds, then 

(i) X.-̂ O a.s. whenever 

(ii) H*(J)=\fi(h= M*{3) a.s. 

Proof. This is shown in the proof above. • 

Remark 5.1. We have proved in fact that the result holds in the 

deterministic case. That is, if G= (a,C a)(<7€ 9") is a network with Cc^O ( I a I ->°o), 

then a positive flow is possible through the network <|>(G):= (a,(|)(Ca))(ae y) 

if and only if the Hausdorff measure H^(7) of the limit set J is positive. 

Thus in particular, a positive flow is possible through the network G= 

(a,(Ca)(<J€ y) if and only if the linear Hausdorff measure Hl(7) of the limit 

set ? is positive. 

Our question is then to find a best dimension function 0 to measure the 

branching set y. As we may expect, our results will be havily dependent of the 

distribution of S(x) defined above. 

We shall see that a is in fact the Hausdorff dimension of 9 \ The 

following result is established as Theorem 2 in section 1. 

Theorem 5.2. Suppose that E(S(a) ) < °°, then 

(i) dim J(G)) = a as. on SYco) * 0 . (ii) Ha(V) <«> a.s. if 0<a<°o. 

(Hi) (a) If E[S(a)]<l then Ha(h=0 a.s. (b) If E[S(a)]=l then 0<Xa(<7)<°° if 

and only if S(a) =i a.s. Consequently, Ha(V)=0 a.s. if S(a) is not a.s. a 

constant. 

Proof. Since E[S(a)]<l and E[S2(oc)]<~, Theorem 4.7 applies, yielding 
¥ I -

that M V)=°° a.s. on W>0, where y b=t a(logi) b Vb>l. Thus ^(7)= M\V) =~ 
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a.s. on 7*0 Va>a, giving that dim 7(cn) <a a.s. Conversely, as is shown in the 

proof of Theorem 5.1, {(E[S(a)])"kMk(oc), F k J is a non-negative 

supermartingale, where Mk(oc)= 21J • J X^. Since E [S (a)]<l , Mfc(a) is a.s. 

bounded by martingale convergence theorem. Note that jK^(y)£M (a), letting k-*» 

gives X a ( y ) < o o a.s. Then H a ( y ) < ° ° and dim 7 £cc a.s. This ends the proof of (i) 

and (ii). 

We now prove (iii). If E(S(a))<l, then M f c (a )= ^ | f |.—^ x ? —> 0 s i n c e 

E[S(a)])"kMk(a) converges. This gives that H a ( y ) = 0 a.s. If E(S(a))=l, then 

( X a ) a € ^ is a tree martigale. By Falconer's lemma (1987, p.342, Lemma 4.4), 

X a ( y ) = 0 a.s. if S(cc) is not a.s, a constant. So Ha(7)=Q a.s. Thus 0<Ha(7)<oo 

implies S(cc)=l a.s. Conversly, if S(oc)=l a.s., then it is easy to verify that 

Ma(7)=l a.s. on y * 0 . Thus Ha(7)=l a.s. on 7*0. • 

Remark 5.2. The dimension result dim 7 =oc holds even if oc=0 or oo. In fact, 

if oc=0, then 7(a) = 0 a.s., the result is evident If ct=oo, then Va>0 

E[S(a)]>l. Thus a positive flow through the network (a, X ^ ) a € y exists a.s. on 

7(a) * 0 by Falconer's result (1986, p.568, Theorem 6.3). Hence H\7)>0 a.s. 

on y(co) * 0 by Theorem 5.1. Thus dim 7(a)) > a a.s. on 7(d)) * 0 Va>0. Therefore 

dim 7((&) =«> a.s. on y(G)) * 0 . 

For be[0,«>], let us write 

• b(t) = t a(log log I) b , where ^(1):= +~. 

We shall denote by rb=r(Wb) the radius of convergence of the moment 
b 

generating function E ( e t W ) of Wb (0<b<«>). Since now, we suppose always that 

E(S(a))=l. 

Theorem 5.3. (The fundamental theorem: a necessary and sufficient condition 

for H h(7) to be zero, positive and finite or infinite) Let foXa)a€y be a 

self similar network generated by (N; T^—.T ) with 

E a ^ T ^ l o g j -Xoo . (Tlogjr) 
i 

Then for all b€(0,°o), we have 
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<t> - 4> 

H b (3> M b(7)= (r^fW a.s. (H) 

where, if r,=<*>, we make the convention that ».0=0 and suppose addtionally 
1/b 

E(S(0t) 2)<oo. (L2) 

Consequently, whenever (Tlogy) holds, 

H b(7) is zero, positive(and finite) or infinite 

almost surely on W>0 if and only if 

r is zero, positive(and finite) or infinite 
1/b 

respectively. 

Proof. We first note that lft(7fofi(J)= M^(7) a.s. by Corollary 5.1. The 

result then follows by Theorem 4.6 and Lemma 3.1. a 
Remark 5.3. The condition (Tlog^) is implied by E(S(xQ))<oo for some 0£x0<oc. 

In particular, it holds if E(N)<°°. 

As a direct consequence of Theorem 5.3 we have 

Corollary 5.3. (critical value of P) Suppose that the conditions (L2) and 

(Tlogy) hold, and put 

p*= sup{b>0: r(W1 / b)=0} * inf{b>0: rCW^V+^J1-

Then 0 < p* ^ +oo and 

«V>= {° » K 
Woo if b>p 

almost surely on the event that the tree process does not terminate. Moreover 
<[> . 

0 < H b(sr) < oo a .s. on tr * 0 

if and only if 0 < r(W1/B*) < <*>, provided that 0<p*<<». 
Proof. By Theorem 5.3, it suffices to prove that almost surely W>0 if and 

*It can be easily verified that 

sup{p>0: r(W17P)=0} s inf{P>0: r(W17P)=+oo}. 

By convention we write sup 0 = 0 and inf 0 = +<». 
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only if 7 * 0 . But this is so by Lemma 3.1 under the condition (L2). • 

Using Theorem 3.3, we see that P*=p if llNll^oo and p<l, and p*£p if 

llNiî soo or p=l. The following result is stated in the introduction (Theorem 3). 

2 1 Theorem 5.4. Suppose that (L ) and (Tlog.jO hold. 
(J) _ 

(i) If p=0, then H *(7) m na(7) =1 a.s. on 7*0; 
(J) _ 

(ii) If llNll <» and 0<P<7, then H h(7) >0 a.s. on 7*0 if and only if b£p. 
§ _ 

(iii) If llNll^soo or P=i, then H b(7) =0 a.s. on 7*0 i/0<b<p. 

Proof. The results follow directly from theorems 3.3, 5.2 and 5.3, noting 

that almost surely W>0 if and only if 7 # 0 under the assumption E(S(oc) ) < °° 

(Lemma 3.1). • 

The Theorem below will prove very powerful to find exact dimension 

functions of random fractal sets in Eclidian space. The result has been stated 

as Theorem 4 in the introduction. 
Theorem 5.5. Suppose that E(S(oc) ) < °°. 

_ 
(i) If p=0 then M *(7) =1 a.s. on 7*0; 

(ii) If P>0 and (Jlogj) hold, then 0< H &(7) <<*> a.s. on 7*0 if and only 

if 0<r(Wm)<<*>. If additionally llNll^oo and 0<P<1, the condition reduces to 

r(WllB)<«*>, which holds if there exists n>l such that 

n 

or equivalently !~ ( ^ ( a ) " |N=n3 1 / n

} < ^ ( L y 

i=i n n 

Proof. This is a combination of Theorem 5.3, Lemma 3.1, Theorem 3.3 and 

Theorem 3.5. • 

Remark 5.5. To calculate a and P, we note that a is the least solution 

of the equation E(S(a))=l and p is that of ess sup S ( j^)=l if there 

are solutions. 
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We give now a series of corollaries which answer some questions of several 

authors, improve or generalize some of their results. 

Corollary 5.5.1. Let (a, X a ) a € y be a self-similar network generated by 

Z= (N;T r...TN). Put (|>b(t) = ta(loglog I ) b , where 0<b<oo , and suppose that the 

conditions (L2) and (Tlog^) hold. Then the function <|>fl(t) = ta(loglog jf is 

the optimal weight function for the existence of positive flows through the 

network in that 

(i) if b<P, a positive flow through the network (a, 4>bG ĵ)) y *s a s -

impossible; 

(ii) if b^p a positive flow through the network (a, ^bP^c))ae j is a.s. 

possible on the event that the tree process does not terminate. Here, in the 

case where nNli^soo or p=l, we suppose additionally that **1/B>0; 

(Hi) If 4>(t)>0 is a function smaller then 0f i in that Hip <t>(t)/(()B(t)=0, 

then a positive flow through the network (a,(|>(Xa)) (<*€ y) is a.s.impossible, if 

additionally r

1/B<°°> or more particularly, if (L )̂ holds. 

Proof. The first two parts comes directly from Theorems 5.1 and 5.4. The 

last part comes from Theorem 5.5, noting that if H < ° o then iv(7) =0 for 

all <(> such that lhy <t>(t)/(t>B(t)=0. o 

This answers our original question. 

If <|> is a non-negative function defined on [0,«>), we shall study 

limit behavious of cut-set sums S G € p <KXa). We recall that 

* • ( * ) : = j£m Mk(n 

where >tk(y)= inf { X a € p <|>(Xa): T is a cut-set of y and | a | ^k Va€T}. 

For a self-similar network (a,X a) (ae y), after showing that Afi(V)=0 a.s. 

if <))(t)=ta and J C * ( y ) = ~ a.s. on y*0 if <|>(t)= t a (logi) a (Va>l) under some 

conditions on Z (see Remark 5.5.2 below), Falconer (1987) suggested the 

question that what is the exact function $ for which 0<jK^(y)<°° a.s. on y*0 ? 

The following result answers this question: 
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Corallary 5.5.2. Let (cr,X,J (as y) be a self-similar network. Then 
(J) _ a 

0<M fi(y)<~ a.s. on 3 * 0 if and only if 0<r(W1/B)<~. If iiNir.coo and P<1, the 

condition reduces to rOV 1^)^, which holds if there exists n > l such that 

_~^E [S (ot) n J N=n] > a M o r e o v e r > w e h a v e M 6 ( y ) = (r^fw a.s. 
n 

Proof. Directly from Theorems 5.1 and 5.5. • 

Remark 5.5.2. Falconer (1987, Corallary 5.3) has proved that if S(cc) 

is not a.s. a constant, E[<S(a))2]<oo and 

T.^Y for some Y<1, Vl^i^N, (5.1) 

V 

then M * ( 3 > ~ a.s. on 7 * 0 (5.2) 

for all a > l , where Va(t)= ^ ( l o g ^ . Corollary 5.5.2 implies in fact that 

(5.2) holds for all a>0 whenever 

S(M)<U a.s. for some M>0 (5.3) 

and S(a) is not a.s. a constant, since in this case 0 < p < l and M (7)>0 a.s. on 

7*0. 

If y carries the metric d,(ij)= 2 ~ ^ A ^ and N is of geometric 

distribution, Hawkes (1981) proved that H (y)=W a.s. The author (1992) has 

recently extended this result to the general case where N is of arbitrary 

distribution, solving a conjecture of Hawkes. We remark that Theorem 4 applies 

for X.=2"' i ' (Z=(N; i,...,i) yielding that 
1 2 } I. .1 <|> -

Corollary 5.5.3. If y carries the metric d2(ij)= 2 " | , A J I , then 0O< fl(y)<°° 
a.s. y?t0, where (J>fl(t) = ta(loglogi)B with a= logE(N)/log2 and p= 
l-logE(N)AogllNlioo if either of the following conditions holds: 

(i) I I N I I ^ o o (thus P<1); 

(ii) IINII^—*. (thus P= l ) , E(etN)<«» for sufficiently small t>0 and E(elN)=oo 

for sufficiently large t>0. 

Moreover, we have X B(7)= O",^)^ a.s. 

Proof, (i) The equations E(S(a))=l and ess sup S( j^p )=l give 

a= logE(N)/log2 and p=l-logE(N)/logllNlloo. 
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It then suffices to prove that (Ln) holds with n=llNiioo. In fact E(S(a)k| N=n)= 

(^) a k n k , [E(S(a)k| N=n)]1/k=(2)an =nB, thus (Ln) holds evidently, 

(ii) The caculation of a is the same as above. Since llS(x> 11^=00 Vx^O, then P=l. 

The proof will be completed if 0<r(W)<°°. But this is the case under the given 

condition on N by Lemma 3.1 in LIU (1992). • 

If W is very large, EtW) = «> for p>0 sufficiently large, say, 

then r(W1/b) = 0 Vb>0, so H b(j) = 0 a.s. by Theorem 5.5. Hence the function 

<j> is too small to meet our needs. The following result is to deal with this 
b 

case. The result improves also that of Falconer (1987). 

Theorem 5.6. Suppose that the condition (L2) holds. Put 

V (0 = t a(log|) a (5.4) 
A L 

(Va>0) and 

X = sup {p>0: E(SP(CC))<«»}, X = sup {p>0: EWP<~} (5.5) 

then 2<, [A, ]<A£X £~ and 
(i) H *(3> 0 a.s. if a< 

(ii) H a(7)=~ a.s. on 7 * 0 if a>l/(X-l); 
i|( » . 

(iii) Suppose that 0<A<°°, then H (7)<» a.s. if 

lim sup / I p[ vl - i Logk \ > -«>. (5.6) 
k-»oo I v=[Logk] L J

 K i 
Proof. First of all, by Lemma 3.1(H), we have 2£ [X]£X<A,G. If G<K<<x>, the 

V -

results come from Proposition 4.7. If X=«>, the results mean H \7) =0 Va<0. 

This is immediate since H a ( y ) < o o a.s. d 

Remark 5.6. We have in fact that W^(y)=°° a.s. on 7*0, where y(t)= 

t a | l o g t | \ t a | logt | 1 / A , ( logl ( log | t | ) | ) \ etc Va>l/X. The proof is similar as in 

the above, using Proposition 4.2(H). 

The following corollary shows that Falconer's result (5.2) can be 

extended to a>l/2 even if the assumption (5.1) is completly removed. 

Corollary 5.6. (i) If E(S(oc)2)<oo, then H "(7) = ~ a.s. on 7 * 0 Va>l/2. 
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(ii) If E(S(oc)k)<o° for all k€N, then H a(y) = ~ a .s. on y * 0 Va>0. 

The next application is to the study of Hausdorff measures of some fractal 

sets in Euclidian space, which we state in the following section. 

6. Application to a random construction of fractal sets in DRm. 

The results above will prove powerful to find exact dimension functions 

of some fractal sets in Euclidian space. 

6.1. Net fractals 

This section describes the construction and basic properties of a class 

of fractals (not as yet random) obtained by generizing the classical 

construction of the 'middle third' Cantor set. Such sets, which occur 

frequently in theory and in practice, will be termed net fractals, following 

Falconer (1986, 57). It is high time that this class of sets had a name, and 

this has been choosen because of the closely related net measures (see 

Falconer (1985, chapter 5) or Rogers (1970, «2.7)). The model is quite similar 

to that of Maudin and Williams (1986), see also Graf, Mauldin and 

Williams (1988), but here we emphasize the net measures. 

Let y be a tree and let y be the associated set of infinite sequences 

(see section 2). Let 

J= {I.: icy} 

be a collection of compact subsets of R m , partially ordered by inclusion and 

indexed by y, so that I¡,c I. whenever i<i\ In particular, there is a set 

with I¡cl0 for all iey. (We do not at this juncture demand that I. and I., be 

disjoint if i and F are incomparable under <.) 

Write I I for the diameter of subsets of R m . We always assume that | l . |>0 

if iey. Usually we have 

11: : • !.••—» 0 as r —» oo. if i=i , i v . .4 , . . . € • y (6.1) 
2**" t * 
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If this is the case, the convergence is uniform for i by Dini's theorem. So 

given 5>0 there exists k(8) such that 

lljl £ 8 whenever | i | ^ k ( 5 ) . (6.2) 

Moreover | r is a single point of R m for each ie y and the mapping 

g : y - > R m ; g(i) = n7=1I.|r 

is continuous on (2T,t). The compact set 

g ( ^ n ^ u . 6 I. 
k 

is termed a net fractal constructed on the tree J with the sets {I.: iear}. 

(For the identity in the above, see Falconer 1986, Lemma 7.1). In general 

such a set will be a fractal by any reasonable definition. Observe that a 

given net fractal K may be constructed on many different trees and with many 

different collections of sets {I.}. Net fractals are almost invariably 

obtained from such nest of sets. 

We say that J and {I.: iey} provide a proper construction for the net 

fractal K if K c u ~ plj implies that T is a complete collection of sequences 

(Falconer 1986). Equivalently, this is the case if for any minimal set 

(cut-set) of sequences T, each set of the collection {L: ieT] contains a 

point of K that lies in no other set of the collection, or again 

equivalently, if this holds for r=STk, k=l,2,... We shall say that K is a 

proper net fractal, without reference to the underlying sets, when it is clear 

what construction is being used. 

Given a net J and a Hausdorff dimension function <|>, the net measure v^(JF) 

of a subset FcJC is defined by 

v V ) = Hm vJ(F), (6.3) 

where 

vJ(F) = inf { I <t>(|l. I ) : F £ U L, and 11.1 ̂ 5 if ier}. (6.4) 
0 r isT 1 i e T 1 1 
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By a similar proof as in Proposition2.5, if (6,1) holds, we have 

v V ) = vJ(F), (6.3)* 
where 

vf(F) = inf { X <Kll.1): Fc U L, and | i |2k if ieT}. (6.4)* 
k r ier 1 i e F 1 

Then is an out measure of Hausdorff type on subsets of K and the Borel sets 

are measurable, see for example Rogers (1970). If <|>(t)=ts (s^O), we write 

v s for and vs(F) for vfyF). We call vs(F) the s-dimensional net measure of 

F. The Hausdorff dimension of F with respect to the net J is by definition the 

quantity 

dimyF = inf {s£0: vs(F)=0} = sup {s£0: vs(F)=0}. (6.5) 

Recall that the ordinary Hausdorff measure n^(F) of F with respect 

to the measure function <|> is defined by 

j A f ) = lim (6.3)H 

where 
oo oo 

H$(F) = inf { I (KIu.I): F c U U., ItJ.k 8 Vfc>0}, (6.4)H 
6 i=l 1 i = l 1 

and the Hausdorff dimension dim F is given by 

dim F = inf {s>0: Ks(F)=0} = sup {s>0: Hs(F)=0}, (6.5)H 

KS(F) being the s-dimensional Hausdorff measure of F. 

By (6.2) any covering iii the definition of vJgjf lF) is an admissable 

covering in the definition of k | ( F ) , so 

4(F)^v* { 5 ) (F), 

leading to 

A f ) £ v V ) (6.6) 

for FcJC. Thus 

dim F <; dimvF. (6.7) 

We shall need some assuptions to allow inequalities (6.6) and (6.7) to be 

reserved. First, Assume that 

I. = ffiTTJ (iey) (6.8) 

(the bar denoting closure in R n ) , and also that the open sets 
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{int I.: ieJ] form a net, (6.9) 

that is int I. z> int I., if i<i\ but int I. n int I., = 0 if neither i<T nor 

F<L Next we require a condition to ensure that I. do not become small too 

rapidly. Assume that there is a constant a>0 such that 

all.I _ | l M l < | l . | if i,iey. (6.10) 

Finally assume that there are t|>0 and y£\> independent of i, such that 

inradius (I.) > ti 11.1x (i€ y). (6.11) 

Very often we can take %=1, so that 

inradius (L) > rill. | (tey), (6.12) 

but it is useful to allow the possibility of %>l enabling estimates of 

dimension to be made in ' non-linear * cases. 

If K is a net fractal constructed from sets {I.: ieV) satisfying (6.1) 

and (6.8)-(6.11), we say that conditions (CW ) hold, following Falconer 

(1986). It was proved by Falconer (1986) that under the conditions (CN) there 

is a constant c>0 such that 
c v s + ( x - l ) m ( p ) < M s ( F ) y s ( F ) ( 6 1 3 ) 

for any FcJT, and so 

dimv^-(v-l)m < dim K _ din^K. (6.14) 

A slight change in the proof of Falconer can imply the following 

Lemma 6.1. Let K be a net fractal constructed from a collection of sets 

satisfying (CN )9 and L=L(t) be a non-decreasing positive function, then there 
At 

is a constant c>0 such that 

cvh(F) < H^(F) < vh(F) (6.15) 

for any FcX, where h=h(t)=t s + ( x" 1 ) mL(t) and ^ ( 1 ) ^ ( 0 . 

Let & be the network formed by the tree J and capacities X.= | l . |, iey. 
Note that if K is proper, then (6.4)' gives 

vj(£) = inf { I 0(|1.1): / _ U I,, and if ieT}. 
k r ieT 1 ieT 1 

= inf { I <|>(|1.1): T is complete in y and |i |_k if ier}. (6.4)" 
T ier 1 
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Therefore v^(K)=M^(7) by Lemma 2.2, and consequently 

Lemma 6.2. Let K is a proper net fractal constructed from sets {L;ie7} and 

S = ( i , | l . | ) ( i € j ) be the associated network. If (6.1) holds, then 

v*(io= K*(af). (6.16) 

Thus the results on Hausdorff measures of the limit set y apply well 

for the proper net fractal K. 

6.2. Random construction 

We now randomize the construction. Let y=y (co ) (coe CI) be a random tree 

generated by N. Fix l^. Suppose J = {I.(CD):i€y(a))} provide a proper 

construction for a net fractal J£(co) for each coe IX We obtain then a natural 

random network &(co) formed by the random tree y and the capacities Xj=|l.I, 

i e y . The construction is termed self-similar if so is the corresponding 

network. 

By Lemma 6.2, all the results in section 5 on Hausdorff measures of the 

branching set y apply well for net measures of proper net fractals formed by 

the construction above. For example, using Theorem 5.5 and Lemma 6.1 we have 

Theorem 6.3. Let K((ti) be a proper fractal generated by a self-similar 

construction {I.: l e y } and write 

Z 0 =(N C ; T o V . . . , T 0 . N ), where T ^ - ( I S A Y . 
G 

the defining elements of the assosiated network. We write Z for Z^. 

Let S(x), a, P, W and <j>b be difined as before, that is 

S(x)= t j , where Z0:=O and x€[0,~), (S) 

a=min{a€[0,<»): E[S(a)]£l}, where min 0:=»», (a) 

P=min{be[0,l): S ( ^ ) £ l a.s.}, where min 0:=1, (P) 
W s - H » 2 | a U n ] ! ! ' T S | i . CW) 

• b(t) = ta(loglogI)b. 

(i) If E(S(a)2)<», then d im^co^a a.s. on K¥0. 
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(ii) If additionally 0<a<«o and E(Z^ fflogy )<<*>, then 

(a) v b(JO>0.a.s. on K*0 if and only if b£p, provided that i lNl l^ - and 

0<B<l. In the case where llNil =°° or p=l, we have v b(K)=0 a.s. VO£b<p. 
<J) 

(b) If P=0, then 0<v \K)<oo a.s.on if and only if E(S(cc))=l; In the 

case where E(S(a))=l, v a(K)^a(K)=l a.s.on K*Z>. 

(c) If p>0 and E(S(a))=l, then 0<v \K)«*> a.s.on K*0 if and only if 

0<r(W l /B)<°o. When I INII^oo and 0<p<l, the condition reduces to r(Wl/B)<«>, which 

holds if there exists n>l such that 
n o o E [ S ( a ) n , | N = n ] l / n ' ^ Q ( L ) 

or equivalently X~ ( i .E [ S ( a ) B |N=n] l / n

} < ^ ( L y 

i=i n * 

Moreover, we have 
<l> 

v \K) = (rjPw a.s. 
(iii) If the construction satisfies the conditions (6.8)-(6.l0) and (6.12) 

for all i and for all realizations of the process, then all the conclusions 

above hold for the the ordinary Hausdorff measures X^(K). 

Remark 6.3. (i) To calculate a and P, we note that a is the least solution 

of the equation E(S(a))=l and p that of ess sup S(y^_) =1, if there are 

solutions. 

(ii) In practice, the conditions on a and P (such as 0<a<°° and P<1) can 

be verified automatically in the calculation. 

(iii) If the construction satisfies the conditions of the model of Mauldin 

and Williams (1986), that is, if in addition int(l0)=l0, I a is geometrically 

similar to I 0 , Int(I a + i)f| Int(I o +j)=0 (i*j,aey) for all realisations of the 

process, then summing volums we have S(m)£l a.s., so 0<oc<m and 0<p^l-^ if 

1<E(N)<°° and S(a) is not a.s. a constant. This proves Corollary 5 in the 

introduction. 
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(iv) The condition (Ln) holds if 0=0:* logiiS(a)lioo/logn and 

oo E [ S ( a ) n l l N = n ] 1 / n ' > Q 

1 = 1 llS(cc)l 11̂  

which is satisfied usually. The last condition means that, conditioned on N=n, 

the rate of convergence of the Lfc norm of S(a) to the norm is sufficiently 

large. It holds for example if p(S(a)=liS(a)l II ; N=n)>0, or more 

particularly if on N=n, T. takes only finitely many values, see Remark 3.6. 

(v) In the spacial case where N=n>:2 a constant, the condition (L )̂ 

becomes very simple: 

~ E [ S ( a ) - ' l " " ' > 0 

1 = 1 US (a) 

In the next section we shall see that Theorem 6.3 can be applied to find 

the exact Hausdorff dimension functions of the most classical constructions of 

self-similar random fractals. The following theorem is to deal with the case 

where llNll^©* and S(oc) is very large. It comes from Theorem 5.6. 

Theorem 6.4. Let K((o) be a proper fractal formed by a self-similar 

construction {I.: ieJ] and &=(a,X ) _ the corresponding network generated by 

Z=(N; Tx,...,\\ where T= | l . | / | l 0 | (h&SN). 

Suppose that 0<a<<», E(S2(OC))<«> and put 

X= sup{p>0: E(Sp(cc))<oo}, X= sup{p>0: ^ ( W V 0 0 ) -

Then 2£[X]£teX£°o and 

dim K =oc 
V V 

v \K)=0 if a<l/X and v *(K)=~ if a>l/(A-l) 

a.s. on K¥0, where \|/(t)= t a(log i ) a (Va>0). Moreover, 
ft lr 

v m(K)<oo a .s. 

if EOV^oo and sup { l" = 0 o g k ]p[W^i 1 / X] - ^ g k } >-~-

The conclusions hold also for ordinary Hausdorff measures |i \K) if the 

conditions (CN) hold. 
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7. Examples 

In this section, we give a series of examples to show how Theorem 6.3 

enables us to caculate exact dimension functions of self-similar fractal sets. 

Examples 7.1 and 7.2 are generizations of the construction of classical Cantor 

sets. Example 7.3 is a construction of random Von-Koch curves. In example 7.4, 

we give a quite general construction of a random set of high connectivity. The 

example is taken from Falconer (1986) where the a.s. dimension is calculated. 

Here we give a exact dimension function. As a corollary, we obtain the exact 

dimension functions of Graf et al.(1988) on Mandelbrot's percolation Processes 

and their modified curdling. Examples 7.5-7.7 give constructions where the 

number of descendants may be unbounded. Example 7.8 is about the zero set of 

Brownian bridge. This is taken from Graf et al.(1988) where the exact 

dimension has been given. We take it to illustrate how the famous function 

t1/2(loglogy)1/2 can be obtained very easily by Theorem 6.3. In example 7.9, 

we give a fractal for which the functions of the type t a(loglogi)b (Vb>0) are 

too small to be exact dimension functions. In this case, Theorem 6.4 applies, 

and we calculate a critical function of the type ta(log~)a. 

7.1. Random Cantor set 

Let 2<M and 0<N^M be integers with some random distribution. Divide the 

unit interval into M equal intervals and select N of these. Repeat this 

independently for each of the selected squares and continue, to get a random 

fractal K. The probability of the process becoming extinct is determined by 

the distribution of N. If E(N)<1, then K=0 a.s. Suppose that l < E ( N ) < ° o . We have 

Z=(N; ^ , . . . , ^ ) , S(x)= NM"X. 

oce(0,l] is the unique solution of 
E(NM a )=l. 

Suppose that M is independent of N and l l M l K o o . Then liS(x)ll =llNll l lM" 1 ! ! * . 
oo oo 

pe [0,1) is found to be 



67 

Networks and Hausdorff measures 

p=l+ ologllM"1 lloo/IogHNtloo=pn, where n=ilNl(„. 

If p=0, the exact dimension function is <t>0(t)=ta since E(S(a))=l. If p>0, we 

note that T.=l/M takes only finitely many values, by Remark 6.3, the 

condition (L) in Theorem 6.3 holds with n=«Nll . Thus in any case, Theorem 
n oo 

6.3 implies ^ 

0 < v *(K) < oo a .s. on K*0. 

Besides, the conditions (6.8), (6.9) and (6.12) hold evidently (we note that 

T.=l/M >r 1/llMll ). Hence we have also 

0 < H *(K) < oo a .s. on K*0. 

where <J>B(t) = ta(loglogi)B, with a and p defined in the above. 

The classical Cantor set corresponds to the case where N=2 and M=3 a.s. 

Thus cc= log2/log3 and P=0. 

Here is a more explicite example of Falconer (1986, example 11.2): divide 

the unit interval into three equal parts and retain each part independently 

with probability p. Repeat this with the parts that remain, and so on. In this 

case, we have 

M=3 a.s; p(N=k)=(JJ)pk(l.Prk, k=0,l,2,3. 

The extinction probability of the branching process is 1 if p_l/3 and is the 

solution of (l-p+pu)3==u lying between 0 and 1 if p>l/3; this is the 

probability that /£=0. Otherwise the exact dimension function for net measures 

and Hausdorff measures is the function ^ defined above, with 

cc=log(3p)/log3 s l+logp/log3 and P=l+alog(l/3)/log3=l-a. 

The number a has been calculated by Falconer (1986). 

7.2. Remove from the unit interval a central portion so that the 

remaining parts have lengths 1/3 < Tx = T 2 < 1/2 distributed according to the 

probability density function /. From each of this parts remove a propotion 

distrbuted in the same way, etc. This time extinction cannot occur. 

Since 
E ( T ^ ) = 2 S\a

n uaf(u)du, 
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equating this to 1 gives the almost dimension of the resulting fractal K. 

In the case where f(u) is uniformly distributed over (1/3, 1/2), a is the 

solution of 
a + l = 1 2 [ 2 - ( a + 1 ) - 3 - ( a + 1 ) ] 

0 < a < l , and P=l-cc (=p2) since nS(x)noo=21"x. We now verify the condition (Ln) 

with n=2. We have 

E(S(a) ) = Sm (2u ) 6du - ^ ^ 2 - 3 £ JT^+J^ 

Thus [ E ( S ( a ) k ) ] 1 / k

 > [ 3 l i /k . ~ [ E ( S ( a ) k ) ] 1 / k _ 
ihus — - 2 [2(ak+L)J ' L O G N > — &

 < 0 0 > 
1 = 1 

so the condition (L ) holds with n=2. Theorem 6.3 gives then 
n 

0 < v\K) < co a .s. 

where (|)(t) = t a(loglogy) i a . As the conditions (CNJ hold evidently, we have 

also 0 < H^(K) < oo a.s. 

7.3. Random von Koch curve 

Let T be a random variable taking valus in (?, ?) with probability 

density function /. Let F be a line segment in R 2 and I@ be the equilateral 

triangle based on F. Let F and F 4 be (random) subintervals of lengths T 

obtained by removing a central portion F c from F, and let F 2 and F 3 be the 

other two sides of the equilateral triangle based on F c, always on the same 

side of F. Define I. as the equilateral triangles based on F. (l£i<4). I. may 

be regarded as images of with respect to the similarities S. that map F 

onto F.. Repeat this process on each segment F.(l<i<4), we obtain a random von 

Koch curve K. The polygonal curves P:= .U, F^ converge to a realization of 
k l a | = k a 

the random fractal K in the Hausdorff metric and K is a.s. an unrectifiable 

Jordan curve (see Falconer 1986,p.581.). In this case N=4 a.s„ T =T =T and 
1 4 

T2=T3=1-2T. The number a is determined by 
E(S(a)) s S\l ^u)(2ua+2(1.2u)a)du = 1. 
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If T is uniformly distributed on then as1.444 is determined by 

Since llS(x)ll =2sup{tx+(l-2t)*: te({, \)}=4&, we have p= 1-cc log3/log4 =B,. 
oo 3 2 3 4 

As E(S(a)k)= sYl 6[(2ua+2(l-2u)a)]kdu * j " J 6№-2uf?dxi = d j k / ( a k + l ) , 
1/3 i/3 3 

[E(S(a) k )] 1 / k _ [ E ( S ( a ) k ) ] 1 / k ^ f 1 ) , / k 

4 B US (a) ~ (aklTj ' 

it is clear that the condition (L) holds with n=4 (see the calculation in 
n 

7.2 above). As the conditions (CN) hold evidently, Theorem 6.3 shows that 

0 < v\K) < oo and 0 < j A k ) < oo A.s. 

where a sl.444 and <!>(t) = t^glogi) 1 "™^ 3 ' 1 0 * 4 

7.4. A random set of high connectivity 

Let 2<M and 0<N<M2 be integers with some random distribution. Divide the 

unit square into M2 equal sqares and select N of these. Repeat this 

independently for each of the selected squares and continue, to get a random 

fractal K. The probability of the process becoming extinct is determined by 

the distribution of N. By selecting squares in an approprite way we can 

arrange for the sequeneces of homology groups of the sets . L to be 
LC J . 1 

Ic 

strictly increasing, so that the limiting set K has infinite connectivity, 

(see Falconer 1986, p.581.) 

In this case, we have 

Z=(N; ^.....flf), S(x)=NM"Y 

Thus the calculation is exactly the same as in section 7.1, and we obtain 

that, if M is independent of N, then ae(0,2] is the unique solution of 
E(NM*a)=l, 

p=l+ otlogIIM"1 ll^/logllNll^P , where n=liN«^o, 
pe[0,l), and ^ 0 

0 < v B(K) < oo and 0 < n *{K) < oo 

a.s. on K*0, where A (t) = ta(loglog|) f i with a and P defined above. 
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As special cases of the model, we obtain the exact dimension functions of 

Graf, Mauldin and Williams (1988) for Mandelbrot's Percolation Process and 

Modified Curdling. We note that they were obtained quite difficultly. 

Special case 1: Mandelbrot's Percolation Process (Graf et al. 1988, example 

6.2) In 1974, Mandelbrot introduced a process in [0,1]2 which he called 

"canonical curdling". Fix a positive integer n and a positive p<l. Partition 

the unit square into n 2 congruent subsquares: B. .= [(i-l)/n, i/n] x [(j-l)/n, 

j/n]; l<i, j<n. Each subsquare B.. "survives" independent of the others with 

probability p. For each subsquare which survives, rescal and apply the same 

procedure. 

The construction is a special case of the example above with 

M=n and p(N=k)= (* ) p k (l-p)n ~k. 

Clearly E(N) = n2p, so K(co) is non-empty with positive probability if 

and only if p>l/n2. Otherwise, using the result above, the a.s. dimension a of 

K is determined by E(Nn"a)=l, that is 

a = logE(N)/logn = log(n2p)/logn = 2+logp/logn, 

and the number P is determined by 

p = l+alogiiM^ii^/logiiNn^ = l+alogfr^yiogfa2) = l-a/2. 

Our conclusion above ensures that 

0 < yfiiK) < oo and 0 < H\K) < oo a.s. on £*0, 

where <|>(t)= ^(loglogi) 1" 0^ 2 and a = 2+logp/logn. 

Special case 2: Modified curdling (Graf et al. 1988, example 6.12) 

Fix a positive integer n and a probability measure x on the power set of 

{1, n 2}. Let J , J be a labelling of the partition of [0,1] x 
n 

[0,1] into congruent subsquares. Let l0=[O,l] x [0,1]. If the square I a has 

been constructed, then choose Ac {1, n2} according to x and let I + . ieA 

be the subsquares of 1^ obtained by scaling J., is A into 1^ via the natural 
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map. 

Let £ be the cardinality map from the power set ?>:=?>({ l,...,n2}) into 

{l,...,n2}: £(A)= card(A) if Ac ?>({l,...,n2}). Example 7.4 applies with M=n 

and N the random variable distributed according to the image of v by £, namely 

p(N=k)= v{Ae?>: £(A)=k}. 

Thus, using the preceding result we have 

a = logE(N)/logn, 

P = 1 + alogliM^ii^/logiiNi!^ = 1 +alog(n'1)/logllNlloo 

= 1- alogn/logliNli^ = 1- logECNyiogllNll ,̂ 

and the exact dimension function for net measures and Hausdorff measures is 

ta(loglogy)B, with a and p defined above. We remak that Graf et al.(1988) had 

to use their rather complicated result (their Theorem 5.2, p.78. See also 

pp. 117-118) to obtain this function. 

7.5. Let N^l be a random variable taking values in IN, p(N=k)=pk 0^pfc, p <1 

and X ^ p ^ l . Let l0=[O,l] and a>l. If N=k, we choose k equal intervals I. 

such that T.:=|l. | / | l0|=: l/ka and Int(I.)nInt(I.)=0 if i*j. Repeat this 

independently for each of the selected intervals, and continue, to get a 

fractal K. In this case S(x)= NN"ax=N1"ax. For x=l/a, E(S(x))=l. Thus cc=l/a is 

the a.s. dimension of K. Since S(oc)=l a.s., p=0. The exact dimension function 

for net measures is then t1 / a, that is 

0 < vx,\K) < oo a .s. 

The same result holds for the ordinary Hausdorff measure HV\K) if liNll^o* 

since T.^l/llNll . 
i oo 

7.6. Let N be an integer with some random distribution, p(N=k)=pfc, pk^0 and 

^T=o Pk = L lZr№^ m d 0<Q^'m =0.6922... (The last condition is to 

ensure that sup kak£l). If N=k, we choose k equal intervals I. such that 
k>0 

X.:= 11.1 / 1 1 0 1 = ak and Int(I.)nInt(I.)=0 if i*j. Repeat this independently for 
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each of the selected intervals, and continue, to get a fractal K. We have then 

S(x)= Na N \ If kp £1, then K=0 a.s. Otherwise a is the unique solution in 

(0,1] of the eqution 

that is oc= logr/loga, 

where r is the unique solution in (0,1) of the equation 

F( r )= i , with P(x)= p.x1, 

and in fact e"1/e= 0.6922...<r<l. a is the a.s. dimension of AT if K*0. 

Besides, since llS(x)lloo=sup{kakx: Pk>0}, then 

p=l-aloga/logs =l-logr/logs, 

where 0<s<r is the solution of the equation 

sup{ksk: pk>0} =1. 

A simple study on the function y —> ysy shows that s is the solution of the 

equation 

if Pk>0, where k=l]0gj/s3» [| 0g|y sl+l. A numerical calculation gives 

s=0.69336... if p3>0. 

Theorem 6.3 implies 

H b(£)= v b(K)=0 if b<p 

a.s., where 4>b(t)=ta(loglogy)b, with a and (3 defined above. If llNll^oo, 

then, a.s. on K*09 

ti b(K)>0 and v b(K)>0 if b>p, 

since T.>an, where n=liNlloo. We remark an interesting fact that P=l-logr/logs 

depends only on the distribution of N, but not on a. 

Let us take for example the case where N is of geometric distribution: 

P^P^O-P), k>L Then P(x)=I"=l xV'^l-p) = (l-p)x/(l-px) and 
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V 

(s<r<l). A numerical calculation shows that if a=p=l/2, then r=0.7639..., 

cc=0.3885..., p=0.2646 and, if a=l/2 and p=l/3, then r=0.8038..., cc=0.3151... 

and p=0.4036..., etc. 

7.7. We take a construction similar to the above, but, if N=k, we choose 

k intervals 1^...,^ in l@ such that T.:= 11.1 / 1 T 0 1 =a*, where 0<a£l/2 is a 

given number. If E(N)£1, then K=0 a.s. Suppose that E(N)>1. We have 

S(x)=X^ja i x, S(0)=N and S(x)=ax(l-aNx)/(l-ax) if x>0. 

a is then given by 

a=logr/loga, 

where r is the unique solution in (0,1) of the equation 

E(rN)=2-l/r. 

Since llS(x)lloo=:tx(l-tnx)/(l-tx), where n=llNlloo^oo, we have 

p=l-aloga/logs =l-logr/logs, 

where s is the unique solution in (0,1) of the equation 

s+s2+...+sn=l, where n=llNll <<*>. 

If n=oo, then s=l/2. Theorem 6.3 shows again 

n b(£)= v \K)=Q if b<p, 

and, if llNli <», then 
* <l> 

H \K)>0 and v \K)>0 if b>P 

a.s. on AT*0, where <Ht)=ta(loglog|)b, with a and p defined above. The 
b i 

<J> 

conslution holds for H b(K) since T.>an (Vi), where n=llNiioo. Again, we note 

that p=l-logr/logs depends only on the distribution of N. 

If p(N=k) =pk'1(l-p) (k2>l and 0<p<l), then r=l/(l+p), s=l/2, 

a=log(l+p)/log(l/a) and P=l-log(l+p)/log2. 

7.8. The zero set of Brownian bridge 
Graf, Mauldin and Williams (1988, example 6.1) calculate the Hausdorff 
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dimension function of the zero set of Brownian bridge, here we shall see 

that how we can easily calculate the exact dimension function with respect 

to the net measures. Let 0 ^ ) ^ be one -dimensional Brownian motion starting 

at zero. Let B° = B - tB f. Then (B°)^^,is called the Brownian bridge. 

Define 

xx = sup {t<l/2: B° = 0} 

and 

x2 = inf {t>l/2: B° = 0}. 

Set 10 = [0,1], ^=[0,1^ and I2=[x2,l]. Continue this process by rescaling to 

each of the intervals already obtained. Due to the scaling and invariance 

properties of Brownian bridge the random set K obtained by this recursive 

construction is the zero-set of Brownian bridge. 

Note that we have T =x and T =l-x . As is shown by Graf, Mouldin and 

Williams (1988), it is not difficult to know that the distribution of (T^T^ 

has the density function 

" S 1

1 ». W pqo, , a , '«« 1 - v - t ) 3 ]"" 2 

and E(S(1/2))=1. Thus cc=l/2. Besides 

so P= 1-a = 1/2 ( = P 2 ) . Moreover 

E(S(a)k)= J* (va+ta)kp(v,t)dvdt ;> - i f (v a+t a) k(vty 1 / 2dvdt 
[0.1/2] [0,1/2] 

> i f f2 t a WvtV l / 2 dvdt - 1 . . ? ( 1 ~ a ) k 

V [ o , , / 2 , 2 n [ v > , ] ( } ( } d v d t - 27c(ak+l/2)(ak+l)2 • 

so [E(S(a) k)] 1 / k_ [E(S(a ) k ) ] 1 / k f 1 V* 
s o £1 "SlaTir - 2 [27t(ak+l/2)(ak+l)J • 

It is then clear that the condition (L ) holds with n=2, that is 

Theorem 6.3 applies, yielding that 

0< v^(K) <oo a .s. 
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where <|>(t) = t1/2(log!og~)1/2. Graf et al. (1988) calculate this function for 

ordinary Hausdorff measures. 

7.9. Let N>1 be a random variable taking values in IN, p(N=k)=pk 0<pk> p t<l 

and S ^ p ^ l . If N=k, divide the unit interval into k equal parts, and, in 

each part, remove independently from the right a subinterval of propotion 

according to the uniform distribution on [0,1]. For each part that remains, 

repeat independently the precedure and continnue, to get a random fractal K. 

In this case, T.= U/N (i=l,...,N), {U.}*^ are independent and identically 

distributed random variables, each having the uniform distribution U on [0,1]. 

Thus S(x)= X* N*U?. The a.s. dimension a of K is determined by 

E(N1*a)=l+a, 

where 0<a<l. Since llS(x)ll ^llNll1"* if 0<x<l, we have 
N ' oo oo 

P=l-oc if llNll^oo and JJ=1 if llNll^oo. 

For all ne N with p >0, 

E[S k(a)| N=n]= E t n - ^ ^ U " ) " ] * E t n - ^ n C n ^ ^ ' Y l 

since I I n x. £ (rrn x.)1/n. It follows that 
n 1=1 i 1 1 1 = 1 i 

E[Sk(a) | N=n] £ n ( 1 0 t ) k [E (U a k / n ) ] n = n ( ,- a ) k[(ak/n)+l]- n. 

So 

- l o g ^ [ E ( S k ( a ) ) l N=n]^ < £ n l o g ( a n , . + 1 ) < e o 

1 1 - CjL 1 

k=n n i = 1 n 

whenever n>l and pn>0. Therefore, if llNll^oo, then the condition (Ln) holds for 

all n>l with p >0. Since T.^l/llNii , the conditions (CN) hold. Thus Theorem 
* n i °° v

 1 

6.3 gives 

0< vfy/O <«> and 0< \fl(K) <oo 

a.s.whenever llNll <oo , where (J>(t)= t a(loglogi) 1 0 c, 0<a<l satisfmg E(N1"a)=l+a. 
OO J 

Suppose now that 
p(N=2k)=pk,(l-p), k=l,2,3,... 0<p<l. 

Thus E(S(x)) = T1-E(N1"X)= — ( 1 ' P ) 2 * if x> l-logl/log2 and E(S(x))=~ 
1 + x ( l + x ) ( l - p 2 ! " x ) p 
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if x£l-log^/log2. The number a is the solution in (0,1) of ^ *"P^ 2 , „ 
P ( l + a ) ( l - p 2 i a ) 

that is 

2 , a (l+ap)=l+a, 0<a<l. 
If p=3/v/2-2= 0.1213... then a=l/2; if p>3/V2-2, then a>l/2, etc. Besides 

E[Sk(a)]= E[(S^ = 1N- aU«) k]^ E t N ^ * ] =X7 = 1 2 ( 1 - a ) k Jp 1 - j ( l -p ) <« 

if k< ji^logpVlog2, and 

E[S k(a)]= S ° ° E [ S k ( a ) I N=n]]p ;> S~ / a ) k [ ( a k / n ) + i r p n 

=X~ = i 2 ( 1 0 t ) k j [(ak/^+H"21 PH(l-p) =~ 

if k>j^logp/log2. In particular, 

E[S 2(a)]<oo if 3/^2-2^1/2. 

Let 

X= sup{p>0: E(W p )<oo}, 

then [j^logp/log2] < X. £ ji^logp/log2, where [x] denotes the integral part 

of x. If 3/v2-2<p<l/2, then 2<K and, by Theorem 6.4, 
V V 

v a(K)=0 if a<l/X and v a(K)=~ if a>l/(X-l) 

a.s„ where y (t)=ta(logi)8. 
ft I 
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