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ABSTRACT. A theory of random walks on the mapping class group and Teichmuller space 

is developed. We prove convergence of sample paths in the Thurston compactification and 

show that the space of projective measured foliations with the corresponding harmonic 

measure can be identified with the Poisson boundary of random walks. The methods 

are based on an analysis of the asymptotic geometry of Teichmuller space and of the 

contraction properties of the action of the mapping class group on the Thurston boundary. 

We prove, in particular, that Teichmuller space is roughly isometric to a graph with 

uniformly bounded vertex degrees. Using our analysis of the mapping class group action 

on the Thurston boundary we prove that no non-elementary subgroup of the mapping 

class group can be a lattice in a higher rank semi-simple Lie group. For studying boundary 

behavior of bounded range invariant Markov operators on Ibichmuller space we establish 

a Harnack inequality, which is then used for discretization of corecurrent operators. 
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0. INTRODUCTION 

The mapping class group T = Mod(#) = D i f f + ( M ) / D i f f 0 ( M ) of a closed C°° surface 
M of genus g > 2 consists of isotopy classes of orientation preserving diffeomorphisms of 
M . This group plays a fundamental role in the topology in dimensions 2 and 3. A study 
of the dynamics of T was initiated by Thurston [Th]. He constructed a space VMT of 
projective measured foliations of M on which T acts, and used this action to classify the 
elements of T into finite order ones, reducible, and pseudo-Anosov. This classification 
generalizes the classification of elements of M o d ( l ) = 5X(2,Z£) into elliptic, parabolic, 
and hyperbolic ones. Thurston also showed that topologically VMT is a sphere of 
dimension 6g — 7, that it is the boundary of a compactification of Teichmiiller space Tg 

of genus and that the natural discontinuous action of T on Tg by isometries extends 
to an action on VMF. This picture gives a vast generalization of the genus 1 case, in 
which T\ is the hyperbolic plane H 2 , and VMT is its circle at infinity [FLP]. 

The action of V on Teichmiiller space has been used to solve the Nielsen realiza
tion problem [Ke2] (every finite subgroup of V can be realized as a finite subgroup of 
DifF*"(M)), and the dynamics of the action of T on VMJ7 - to prove algebraic results 
about T. For example, McCarthy [Mc] proved a Tits alternative theorem for T, and 
Ivanov [Iv2] showed that Out(r) consists of 2 elements for g > 3. 

Another far reaching generalization of the action of 5L(2 , Z ) on H 2 is provided by 
the Gromov theory of hyperbolic spaces and groups [Gr]. Although for g > 2 neither 
Teichmiiller space Tg is a Gromov hyperbolic space [MW], nor the mapping class group 
T is a word hyperbolic group (as it contains rank 2 abelian subgroups generated by 
Dehn twists about disjoint curves), they still share some important global properties 
with general Gromov hyperbolic spaces and groups as we shall see below (actually, our 
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approach is based on exploiting these properties), and apparently can be considered as 
prospective examples for a future "semi-hyperbolic" theory. 

From a completely different perspective one can often understand groups from study
ing boundary behavior of the group, more specifically, measure type preserving group 
actions on boundaries naturally associated with the group. The most spectacular ex
ample is the Mostow-Margulis rigidity theory [Mar], [Mo], [Zi]. 

Another example is the Patterson-Sullivan theory of conformai densities on the 
sphere at infinity of Cartan-Hadamard manifolds. In the constant curvature case this 
notion is non-trivial (conformai density does not belong to the Lebesgue measure type) 
only for groups with co-infinite volume [Pa], [Su]; however, this is not so if the curva
ture is non-constant. For example, in the cocompact case the corresponding conformai 
density is directly connected with the Bowen-Margulis (maximal entropy) invariant 
measure of the geodesic flow [Ka3]. For a discrete group G of isometries of a Cartan-
Hadamard manifold G-invariant conformai densities are obtained by taking weak limits 
(with respect to the visibility compactification) of the normalized family of measures on 
the G-orbit of a reference point o with exponential weights proportional to e~sd(°'go\ 
as s tends to the critical exponent of the Poincaré series e~~sd(°l90h 

Generally speaking, one may try to construct "boundary actions" of a discrete group 
G by talcing limits of sequences of probability measures on G tending to infinity. A 
natural sequence of this kind is the sequence of n-fold convolutions (jLn of a given prob
ability measure /i on G. It turns out that one can associate with the pair (G,/i) a 
probability measure space (3G, v) endowed with an ergodic action of G which is called 
the Poisson boundary. The harmonic measure v is fi-stationary (i.e., v = SMflOfl̂ )' 
and the Poisson formula f(g) = ( / , <7f) (a. direct analogue of the classic Poisson formula 
for bounded harmonic functions in the disk) establishes an isometry between the space 
of bounded \x-harmonic functions on G (those that satisfy the mean value property 
fid) = = 12x f(9x)^(x) V 9 € G) ^ e space L00(dG^u). The Poisson boundary was 
first introduced by Furstenberg for semi-simple Lie groups [Fui], and can be defined in 
a number of various equivalent ways (see [Kal i ] ) . 

Although the harmonic measure v on the Poisson boundary can be in a sense consid
ered as a limit of the sequence /in, the Poisson boundary is a purely measure theoretical 
object and does not require for its definition any a priori compactification of G. Using 
this invariant of the pair (G,/i) Furstenberg proved that a discrete subgroup of a rank 
one semi-simple Lie group cannot be a lattice in a higher rank semi-simple group, which 
was one of the first results of rigidity theory [Fu2]. 

For any measure on an abelian, or more generally, a nilpotent group the Poisson 
boundary is trivial (i.e., consists of a single point). This is equivalent to saying that 
there are no non-constant bounded harmonic functions on such groups. For a general 
amenable group there always exists a measure /u with trivial Poisson boundary (but 
there may also be measures with a non-trivial boundary). On the other hand, for any 

file:///x-harmonic
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(non-degenerate) measure on a non-amenable group the Poisson boundary is non-trivial 
[KV]. 

There is also a topological Martin boundary associated with the pair (G , / i ) , which 
is the boundary of the Martin compactification of G and is responsible for integral 
representation of all positive /j-harmonic functions. Note that the constructions of the 
Martin and the Thurston boundaries are in a sense parallel. Using the Green kernel 
(resp., the intersection function) one embeds the group (resp., the set S of homotopy 
classes of simple curves) into the space of functions on itself, after which the boundary is 
obtained by taking the closure in the corresponding projective space (the Martin kernel 
is precisely the projectivization of the Green kernel). The Martin boundary considered 
as a measure space with the representing measure of the constant harmonic function 
1 is isomorphic to the Poisson boundary, so that the Poisson boundary retains only 
"significant" (up to measure 0) information about the Martin boundary. However, in 
a sense the Martin boundary is a "less functorial" object than the Poisson boundary, 
and describing the Martin boundary in intrinsic terms is a much more difficult problem 
than that of describing the Poisson boundary (see [K5], [K l l ] ) . 

Due to the fact that the sequence of measures fxn is obtained by iterative convolutions 
with the measure û, these measures can be presented as one-dimensional distributions 
of a Markov chain (random walk) on G with transition probabilities p(g,gf) = ^(g^g') 
determined by the measure /i. In other words, if we start at time 0 from the identity 
of the group, then the position of the random walk at time n is gn = 7172 • • • 7n, where 
7i, i > 1 are independent /i-distributed increments of the random walk. Now one can 
not just consider the convolutions /x n (which describe the position of the random walk 
at time n) , but also look at the individual behavior at infinity of the sample paths 
g = { # n } , n > 0 (a.e. with respect to the probability measure P in the path space 

In terms of the path space ( G Z + , P ) the Poisson boundary can be defined as the 
space of ergodic components of the time shift. Thus, if the group G is equivariantly 
embedded into a topological space i?, and P-a.e. sample path g = {gn} converges to 
a limit g^ = n(g) G then the space B with the corresponding harmonic measure 
A = 7r(P) on it is necessarily a quotient of the Poisson boundary with respect to a 
certain G-invariant partition. Such quotients are called ^-boundaries (this definition 
is equivalent to the one given in [Fu3]). The Poisson boundary is then the maximal 
/u-boundary. 

The problem of describing the Poisson boundary of (G,/x) consists of two parts: 

(1) To find (in geometric or combinatorial terms) a /i-boundary (J3, A); 
(2) To show that this ^-boundary is maximal. 

In other words, first one has to exhibit a certain system of invariants of stochastically 
significant behavior of sample paths at infinity, and then to show completeness of this 
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system. If a certain compactification of the group G has the property that sample 
paths of the random walks on G converge a.e. in this compactification (so that it is a fj,-
boundary), and this /x-boundary is in fact isomorphic to the Poisson boundary of (G, /x), 
then it means that this compactification is indeed maximal in a measure theoretical 
sense, i.e., there is no way (up to measure 0) of splitting further the boundary points 
of this compactification. Note that this property has nothing to do with solvability of 
the Dirichlet problem with respect to this compactification. For example, the Dirichlet 
problem is trivially solvable for the one-point compactification; on the other hand, even 
if the boundary of a certain group compactification can be identified with the Poisson 
boundary, it does not imply in general that the Dirichlet problem is solvable (or even 
that the support of the harmonic measure is the whole topological boundary). 

One can ask the question about identification of the Poisson (resp., Martin) boundary 
for Markov operators arising in various situations. For example, see [Bi], [MP] for a 
description of Euclidean domains for which the Poisson boundary can be identified 
with the topological boundary. For pinched Cartan-Hadamard manifolds the Martin 
(thereby the Poisson) boundary was shown to coincide with the sphere at infinity [AS], 
[Anl] . In the discrete setup the most general result on the description of the Martin 
boundary is its identification with the hyperbolic boundary for finite range random 
walks on hyperbolic graphs satisfying a strong isoperimetric inequality (in particular, 
for random walks determined by finitely supported measures on word hyperbolic groups) 
[An2]. Note that the Martin boundary methods usually do not use group invariance. 
For random walks on general Lie groups the Poisson boundary was described by Raugi 
[Ra]; however, his approach strongly depends on the structure theory of Lie groups and 
can not be applied for discrete groups. 

A powerful technique for describing the Poisson boundary for random walks on groups 
is provided by ergodic methods, more specifically, by the entropy theory of random walks 
[KV], [Kal] , [De2]. It leads to several simple geometric criteria of boundary maximality 
which allow one to identify the Poisson boundary with "natural" boundaries for word 
hyperbolic groups, groups with infinitely many ends, discrete subgroups of semi-simple 
Lie groups, cocompact lattices in rank 1 Cartan-Hadamard manifolds, polycyclic groups 
under mild conditions on the measure /x (finite first moment is sufficient) [BL1], [Kal] , 
[Ka7], [Ka!0], [Lei]. It is this technique that we are using in this paper. 

The main results of the paper are the following. 

Theorem 2.2.4, If fj, is a probability measure on the mapping class group T such that 
the group generated by its support is non-elementary, then there exists a unique 
stationary probability measure v on the space VM.T, which is purely non-atomic and 
concentrated on the subset US C VMT of uniquely ergodic foliations, and the measure 
space (US, u) is a ^-boundary. For any x € TG and P-a.e. sample path g = {gn} of the 
random walk (T,/i) the sequence gnx converges in VMJF to a limit F = F(g) G US, 

and the distribution of the limits F(g) is given by the measure v. 
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In particular, for any x 6 Tg the sequence of measures ) U N * 8X converges weakly to 
the measure v. 

Theorem 2.3 .1 . If in addition, the measure fi has a finite entropy and finite first 
logarithmic moment with respect to the Teichmuller distance, then the space u) 
is the Poisson boundary o / (G, / i ) . 

Since Teichmuller space has exponentially bounded growth (Theorem 1.3.2), these 
conditions are satisfied if the measure (JL has a finite first moment ]T) /1(7)^(0,70) with 
respect to the Teichmuller distance and, in particular, if it has a finite first moment 
with respect to a word metric on V (Theorem 2.3.2). Thus, it turns out that indeed the 
Thurston boundary is a maximal boundary of the mapping class group from a measure 
theoretical point of view. 

Our analysis of the action of T on probability measures on VM.T allows us to give a 
new proof of the fact that T is not isomorphic to a lattice in a semi-simple Lie group, a 
result first proved by Ivanov [Ivl]. Actually, we prove a stronger result (Theorem 2.4.1), 
that any subgroup of T which satisfies a natural non-elementarity condition (NE) (see 
below) cannot be a lattice in a semi-simple group of rank > 2. 

Passing from random walks on T to T-invaxiant Markov operators P on Teichmuller 
space Tg} we prove (under appropriate geometric assumptions) in Theorem 3.3.2 that if 
the quotient operator P on the moduli space Mg = Tg/T is recurrent, then the Poisson 
boundary of P coincides with the Poisson boundary of T with a certain measure JJL 
(depending on P ) . If, moreover, P is positively recurrent (i.e., V has cofinite volume 
with respect to the unique T-invariant stationary measure of P ) , then almost all sample 
paths of the Markov chain determined by P converge to U£ C VMT, and VM.T with 
the corresponding harmonic measure is the Poisson boundary of P (Theorem 3.4.2). In 
particular, this result applies to the geodesic random walks on Tg considered earlier by 
Masur [Ma4]. 

This paper is intended to be interdisciplinary, appealing to specialists from different 
areas. It is inevitable therefore that extra space is needed to explain things that might 
be self evident to experts in one area. 

The paper is organized as follows. 

In Section 1 we review the relevant parts of the Thurston theory of measured folia
tions and of Teichmuller theory. §§1.1 and 1.2 are devoted to elementary properties of 
the action of the mapping class group V on the space VMT of projective measured folia
tions. In §1.3 by using recent results of Minsky [Mi] we prove that the Teichmuller space 
is roughly isometric to a graph with uniformly bounded vertex degrees (Theorem 1.3.2), 
which means that the "volume" of Teichmuller balls grows at most exponentially with 
the radius (we say that Teichmuller space has exponentially bounded growth). In §1.4 we 
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prove several auxiliary results on the Teichmiiller geodesic lines in Tg (close analogues of 

the corresponding properties of Gromov hyperbolic spaces). Finally, in §1.5 we consider 

contracting properties of the action of the mapping class group on probability measures 

on VMT, which are a key ingredient of our proof of convergence of random walks on T 
(once again these properties are analogous to those of the action of the isometry group 

on the hyperbolic boundary of a Gromov hyperbolic space). We say that a sequence 

gn € F is universally convergent if it tends to infinity in T and for any simple closed curve 

a £ S on M the sequence g^}ot converges in VMT. If gn is such a sequence, then there 

exists a foliation F 6 VMT such that for any x £ Tg all limit points of the sequence 

gnx are contained in the set {H : i{F,H) = 0, i(F}a) = 0 i{H,a) = 0 V a 6 S} 
(Lemma 1.5.4), Hence, for any probability measure v on VMT satisfying a natural 

non-degeneracy condition all weak limits of the translations gnu are concentrated either 

on the set F = {H : z(F, H) = 0} C MXM for a certain minimal foliation F, or on the 

set Zp = {H : i(F,a) = 0 <=> i{H,a) = 0 V a G 5 } for a certain non-minimal F 
(Lemma 1.5.6). 

Section 2 is devoted to the proofs of the Theorems on the random walks on I\ We 

say that a subgroup V of the mapping class group T satisfies condition (NE) (is non-

elementary) if it is not a finite extension of the stabilizer of a set F or Zp (which is 

a direct analogue of the notion of non-elementary groups of isometries of hyperbolic 

spaces). For proving Theorem 2.2.4 we use the following idea of Furstenberg applied 

first to the discrete subgroups of S X ( 2 , R ) [Fu3]. Take an arbitrary /i-stationary prob

ability measure v on VMJ7 which exists by compactness considerations. Then by the 

Martingale Convergence Theorem the sequence of translations gnv converges weakly to 

a (random) limit \{g) for a.e. sample path g — {gn}, and the measure v is an integral 

of the limit measures A(gr). Using weak dissipativity of the action of T on V)MJr\MXM 
(established in §1.2) we show that the measure v (hence, a.e. limit measure X(g)) is con

centrated on MXAf. Further, for proving that the measure v is concentrated on US we 

use the fact that for any Teichmiiller geodesic ray determined by a non-minimal foliation 

its projection to the moduli space Tg/T tends to infinity [Ma3j. Then convergence of 

sample paths follows from the contraction properties established in §1.5 (cf. with anal

ogous convergence theorems for semi-simple Lie groups [GR] and for hyperbolic groups 

[CS], [KalO], [Wo2]). In particular, the Poisson boundary of any probability measure 

whose support generates a non-elementary subgroup is non-trivial, which implies that 

any non-elementary subgroup is non-amenable. 

For proving maximality of the Thurston boundary (Theorem 2.3.1) we use a geometric 

"strip criterion" due to Kaimanovich [Ka7], [KalO]. Under the conditions of finiteness 

of the entropy of fx and of its first logarithmic moment it requires considering a fi-

boundary (J?+, v+) simultaneously with a /2-boundary (J3_, z/_) for the reflected measure 

jj,(g) = n(g~l). If there exists an equivariant measurable map assigning to a.e. pair 

of points ( F _ , F + ) G L x B + a "strip" 5 ( F _ , F + ) C V which is sufficiently "thin" 

in the sense that intersections of a.e. strip with balls in Tg grow polynomially, then 

( £ + , z/+) is the Poisson boundary of (G, /i). These strips are easily constructed by using 



8 VADIM A. KAIMANOVICH, HOWARD M A S U R 

Teichmuller geodesic lines determined by any pair of distinct uniquely ergodic foliations. 
For deducing Theorem 2.3.2 from Theorem 2.3.1 we use the fact (established in §1.3) 
that Teichmuller space has exponentially bounded growth. 

For proving Theorem 2.4.1 we use the following remarkable result of Furstenberg 
which he used in his rigidity theorem [Fu2], [Fu3]. If G is a lattice in a semi-simple Lie 
group of rank > 2, then there exist a probability measure /i on G with supp/i = G and 
a number e > 0 such that for any two /i-harmonic functions fx and /2 on G conditions 
0 < fi{g) < 1 Vflf G G and / i (e ) > | — e imply that min{/i(gr),/2(0)} does n°t ^en(^ *° 
zero as g -> 00. By using our description of the unique /i-stationary probability measure 
v on VM.T we are able to construct for any probability measure (JL on a non-elementary 
subgroup f c T and any e > 0 two closed disjoint subsets Q 1 ? Q2 contained in MXAf 
such that uQi > | — £, and for any F G MlAf there is a neighborhood of F which does 
not intersect Qx and Q2 simultaneously. Then Lemma 1.5.6 implies that the harmonic 
functions fi(g) = gv{Qi) have the property that m m { / i ( # ) , / 2 ( g ) } —>• 0 as g tends to 
infinity in r ;, so that Tf cannot be a lattice in a higher rank semi-simple group. 

In Section 3 we consider bounded range T-invariant Markov operators on Tg (i.e., such 
that the step lengths are uniformly bounded). For continuous time diffusion processes 
the elliptic Harnack inequality automatically follows from boundedness of geometry 
of the generating operator; under appropriate "bounded geometry" and irreducibility 
conditions on the transition densities we prove in Theorem 3.2.2 a general Harnack 
inequality (uniform equivalence of the probability measures obtained by the balayage 
of ^-measures to the complement of sufficiently large balls) for bounded range Markov 
operators on continuous state spaces (it applies, for example, to geodesic random walks 
on Riemannian manifolds). 

Assuming that a T-invariant Markov operator P on Tg is corecurrent (i.e., the quo
tient Markov operator P on the moduli space Mg = Tg/T is recurrent in the sense of 
Harris, so that its sample paths visit infinitely often any positive measure subset of 
M p ) , we then use the Harnack inequality for a discretization of P , which allows one 
to put a measure /i on the group T (identified with an orbit To, o G T^), such that 
the Poisson boundary of (r,/u) is the same as the Poisson boundary of the operator 
P . More precisely, the restriction of any bounded P-harmonic function to the orbit 
To is /i-harmonic, and, conversely, any bounded /i-harmonic function can be uniquely 
extended from To to a P-harmonic function on Tg (Theorem 3.3.2). This discretization 
is based on the balayage method introduced by Furstenberg [Fu3] and Lyons-Sullivan 
[LS] (see also [An2], [BL2], [Ka4]). In view of the results from Section 2 it implies that 
VMT with a uniquely determined T-invariant system of harmonic measures on it is a 
quotient of the Poisson boundary of the operator P (Theorem 3.4.1). If the quotient 
operator P is positively recurrent, then the measure /i can be chosen to have a finite first 
moment with respect to the Teichmuller distance, and the sample paths {xn} on Tg can 
be approximated by the sample paths of the random walk (G, / / ) well enough to ensure 
that {xn} converges a.e. to US C VMT (this also gives a new proof of convergence 
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of sample paths for the modified geodesic random walk on Tg first proved in [Ma4] by 
analyzing the train tracks decomposition). Then by the results of Section 2 VMJF with 
the corresponding harmonic measure is the Poisson boundary of P (Theorem 3.4.2). 

In conclusion we formulate several open questions connected with the results of the 
paper. First, what can one say about the type of the harmonic measure v = u(/j) on 
VMF determined by a measure JJL on T? It is known that for the sphere at infinity of the 
universal cover M of a compact negatively curved manifold the Lebesgue measure type, 
the harmonic measure type (corresponding to the Brownian motion on M ) , and the 
Patterson-Sullivan measure type are pairwise singular in the general case (see [Le2]). 
In our situation there is a smooth (Lebesgue) measure type on VMT (concentrated in 
fact on US [Mai]) . Further, one may define "conformal densities" on VMT by using 
the usual limit procedure. In a sense, the mapping class group T should be considered 
as having "cofinite volume" in T^, so that one may expect that the Patterson-Sullivan 
measure type would be unique and also concentrated on US. Apparently, it should be 
singular with respect to the Lebesgue measure type as the Teichmiiller space should be 
considered as having "non-constant curvature" with respect to the Teichmiiller metric. 
One might expect that the harmonic measures v(fj) are singular with respect to both 
Lebesgue and Patterson-Sullivan measure types for any finitely supported fi (note that 
in the Riemannian situation this question is still open). 

Another question is connected with invariant measures of the geodesic flow on the 
moduli space Mg = Tg/T. Recall that the Lebesgue measure types determines a (unique) 
ergodic invariant measure of the geodesic flow on Mg [Mai], [Ve]. Is the same true about 
the harmonic (or about the Patterson-Sullivan) measure type? By a general result on 
Poisson boundaries T acts ergodically on the square of the Poisson boundary of any 
symmetric measure / i o n T and on the square of the Poisson boundary of any reversible 
corecurrent invariant Markov operator on Tg [Ka9] (it is also known that the measure JJL 
obtained from discretization of an invariant Markov operator P on Tg by using Theorem 
3.3.2 can be chosen symmetric if P is reversible [BL2]). Thus, one might expect to obtain 
(at least, in some situations) a harmonic invariant measure of the geodesic flow on Mg 

from the square of the harmonic measure on VMT. Note, however, that all known 
constructions of the harmonic invariant measure of the geodesic flow for hyperbolic 
spaces and groups require a rather strong almost multiplicativity property of the Green 
kernel [An2], [Ka8]. 

The end of proof is denoted by the sign • . On several occasions we had to subdivide 
proofs into separate claims, in which case the sign A denotes the end of the proof of 
each claim. 
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1. A S Y M P T O T I C PROPERTIES OF TEICHMULLER SPACE 

Basic references for the material on measured foliations and Teichmuller theory in 
this section are [FLP], [Be], and [Ga], 

1.1. The space of projective measured foliations. 

For a closed surface M of genus g > 2 let S be the set of homotopy classes of simple 
closed curves on M given the discrete topology. The geometric intersection number of 
a,/3 € <S, i.e., the minimal number of intersections of any two their representatives, 
is denoted by i(a, /3) . Let R ^ be the space of non-negative functions on S given the 
product topology. The quotient of R+ \ { 0 } with respect to the multiplicative action of 
R + is the (compact) projective space P R + . 

The map 
a i-> i ( - ,a ) 

determines an embedding of S into R + which projects to an embedding of S into P R + . 
The closure of the set { r a , r > 0, a 6 S} in R + is denoted by MP, and the closure of the 
embedding of S into P R + (i.e., the quotient of MT with respect to the multiplicative 
action of R + ) is denoted by VMT. 

A measured foliation on M is determined by a finite number of points P* € M and 
an atlas of coordinate charts (a^, j/j) : Ui —• R 2 on the complement M \ {Pk} such that 
for any two overlapping charts 

*j = fij{xi,Vi) > Vj = ±Vi + C . 

The foliation is defined by the lines y = Const, and the transverse measure of the 
foliation is \dy\. The foliation has a standard form of a p^-pronged singularity at each 
point Pfc. For any a € <S, 

i ( P , a ) = inf / \dy\. 

where the infimum is taken over all representatives ao of the class a. 
Two measured foliations P, G are equivalent if i(F,a) = i (G, a ) V a € 5 . Topolog

ical^, it means that there is a finite sequence of homeomorphisms homotopic to the 
identity (and preserving the transverse measure) and of Whitehead moves or their in
verses that take F to G. So, points from M>T can be identified with equivalence classes 
of measured foliations on M. 

There is a natural action of R+ on the space of measured foliations: rF, r > 0 is 
topologically the same measured foliation as F with the transverse measure scaled by r. 
Thus, points from VMT are identified with equivalence classes of projective measured 
foliations. Topologically VMJ7 is a sphere of dimension Qg — 7 [FLP]. 
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The embeddings S ^ M.T,S <—» VM.T have the following geometric interpretation: 
any homotopy class a G S gives rise to a measured foliation for which all closed regular 
leaves are homotopic to a and form a cylinder with the transverse measure across the 
cylinder being 1 [FLP]. In particular, this foliation has the same intersections numbers 
with curves from «5 as a. 

The intersection number •) extends to a continuous function on MT x MT, and 

i(r1Fur2F2) = rir2i(FuF2) VFU'F2 G MT, n , r 2 G K+ . 

So, given two projective measured foliations F\,F2 € VM.T we can say whether their 
"projective intersection number" is zero or non-zero and use the notations i(F\, F2) = 0 
and i(Fi,F2) > 0, respectively. 

Below we shall often identify a measured foliation F € MT with its projective 
class { r F , r > 0 } from VMT and vice versa. However, we shall always distinguish 
between convergence in M.T and projective convergence in VMT\ a sequence Fn € MT 
converges to F G MT in P R + (notation: Fn

Vj^+ F) if there exists a sequence rn > 0 

such that r n F n - » F in R+ (notation: rnFn F ) , i.e., rni(Fn,a) -> « (F , a ) V a G <S. 
We shall say that a sequence Fn G MT tends to infinity if there exists H G MT such 

that i(FnjH) - » oo (notation: F n — o o ) . 

We shall often use decompositions of the surface M into spheres with three holes 
("pairs of pants"). Every such decomposition is determined by a disjoint system of 
homotopy classes of 3^ — 3 simple closed curves A = { a i , . . . a^gs} C S (i.e., i'(a,-, ay) = 
0) , and conversely, any disjoint system A consisting of 3g — 3 simple closed curves 
determines a pants decomposition and is maximal in the sense that for any /3 G S \ A 
there is a G A with > 0. 

Lemma 1.1.1. Any distinct sequence an G S tends to infinity in MJ7. 

Proof Take a pants decomposition of M determined by curves /3i,... ,/?35- If &n in
tersects each fa a bounded number of times, then an must "wrap" around some j3i an 
unbounded number of times, and therefore must intersect some curve crossing fa an 
unbounded number of times. • 

A foliation F G MT is minimal if i ( F , a ) > 0 for any a G S. Topologically, it means 
that F is equivalent to a foliation all of whose leaves are dense. Denote by MlM the 
subset of VM\F which consists of projective classes of minimal foliations. For a foliation 
F G VMT let 

F = {GeVMJr:i(F,G)=0} . 
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If F G MXN', then all foliations from F are also minimal, and JF is the set of all 

foliations topologically equivalent to F, so that 

F ~ G <=> ¿ ( F , G ) = 0 , F,G e M1AÍ (1.1.1) 

is an equivalence relation on MXM [Re]. The equivalence class F, F e MXM is closed 

and has the natural structure of a convex set (of transverse measures). If F consists of 

a single point, the foliation F is called uniquely ergodic. Denote by US C VMT the set 

of uniquely ergodic projective measured foliations. 

Let MXM be the quotient of the set MXM with respect to the equivalence relation 

- (1.1.1). 

Lemma 1.1.2. There exists a countable family {B¡} of Borel subsets of MXM which 

are unions of classes of the equivalence relation ~ and separate any two such classes, 

i.e., for any Fi 7¿ F2 € MXM there exists a set B 6 {Bi} such that either F\ C 

B , F2 fl B = 0 , or the other way round. 

Proof The sets Bi are provided by train tracks [Pe], [Ke3]. 

A train track is a 1-dimensional branched submanifold of the surface M . It has a 
finite number of switches which we can assume are trivalente i.e., for every switch there 
is one large branch which forms a C1 path with each of the other two small branches, 
whereas the small branches form a cusp. A winged branch is one which is large at each 
of the switches at its endpoints. We will assume that the domains complementary to 
the track have at least 3 cusps each. A train track is complete if every complementary 
component is simply connected and has exactly 3 cusps. 

The set of weights wi > 0 on the branches of a train track r which are normalized 
by requiring ^ w¡ = 1 and satisfy the switch condition (the weight of the large branch 
equals the sum of the weights of the small branches) is a polyhedron A ( r ) . This polyhe
dron parametrizes the set of foliations (also denoted A( r ) ) carried by r: one runs groups 
of leaves along the branches, assigning transverse measures according to the weights; 
then one fills in each complementary region with p cusps with a p-pronged singularity. 
If T is a complete train track, then A( r ) is the closure of an open set in VMT. If a 
track r carries a minimal foliation, then all complementary domains of r are simply 
connected. We use the notation T\ < T2 to mean that every foliation carried by T\ is 
carried by r<i. 

There are two basic operations on train tracks: reduction and splitting. 

Any face of the polyhedron A ( r ) is determined by the condition WÍ = 0 for a certain 

branch of r. In this case we can erase that branch, so that any foliation corresponding 

to this face is carried by a track with one branch and one complementary domain less 

(the foliation then has a saddle connection). Given a foliation F £ A ( r ) we can continue 
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this process until all weights lie in the interior of the polyhedron A( r ) corresponding to 
a reduced track r. 

The other operation is the splitting of a track r along a chosen winged branch. The 
result is two train tracks r ' and r" such that A( r ) = A ( r / ) U A ( r " ) . The intersec
tion A ( r ' ) fl A ( r " ) has codimension 1 and is the set of foliations carried by both r' 
and r " with weight 0 assigned to their corresponding branches obtained from splitting 
the winged branch. Erasing these branches gives a track r (degeneration of r ) such 
that A ( r ' ) n A ( r " ) = A ( r ) . Every foliation carried by r has a saddle connection. To 
make the splitting process well defined, fix, once and for all, a winged branch for each 
combinatorial type of train tracks. 

Now start with a minimal foliation F carried by a complete train track r = r 0 . 
Reducing if necessary, we may assume that F lies in the interior of the polyhedron 
A ( r ) . Split the track r, and take T\ to be either r1 (resp., r " ) if F is in the interior of 
A ( r ' ) (resp., A ( T " ) ) , or r if F is carried by r. Applying the same procedure to ri, and 
so on, we find that every minimal foliation F has an infinite expansion TQ > r\ > . . . by 
train tracks. This expansion has the property that two minimal foliations are equivalent 
if and only if they have the same sequence of combinatorial types [TO], [TI], 

Since the number of different combinatorial types of tracks is finite, and subsets of 
MXM C VMT obtained by fixing any first n combinatorial types [TO], . . . , [rn] are 
Borel, we are done. • 

1.2. The mapping class group. 

Let Diffo(M) and Diff 4"(M) be the group of all diffeomorphisms of M homotopic to 
the identity and the group of all orientation preserving diffeomorphisms of M , respec
tively. The mapping class group 

r = Mod(g) = Diff1 - ( M ) / D i f f 0 ( M ) 

is finitely generated and naturally acts on S and MT (thereby on VMT). The inter
section number is T-invaxiant, i.e., 

i(gFugF2) = i(FuF2) Vg G T, F1,F2 € MT . 

In particular, 
gF=(gF) Vg G T, F € MXM , 

so that the group T acts on MXM as well. 
Note that there are two equivalent ways of defining the T-action on MT: one geo

metrical, and the other one using the embedding F H> z(F, •) of MT into the space of 
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functions on S and the F-action on <S, so that the intersection numbers of the foliation 

gF, g G T, i*1 G MT are by definition 

' ' i{gF,a)=i{F,g~xOL) , a £ S . 

One can associate with any a G S an element 7^ G T which is called the Dehn twist 

about a [FLP]. 

Lemma 1.2.1. For any a, a G <S with i(a,cr) > 0 there exists a sequence rn —)• 0 s^c/i 

r n 7 ^ a — y a . 

Proof. The curves 7^0? wrap more and more around a. Consequently, for any two curves 

01,02 G<S With i ( < 7 , # ) > 0 

i ( 7 > , 0 1 ) ^ ¿((7,01) 

i ( 7 - a , / 3 2 ) i(cr,/? 2) ' 

where the denominator and the numerator in the left-hand side tend to infinity. • 

Lemma 1.2.2. Tor any a G S its T-orbit in S is infinite. 

Proof. Take a G S such that z(a,cr) > 0, and let 7^ be the Dehn twist about cr. By 
Lemma 1.2.1, if the T-orbit of a is finite (so that the set {7™a} is also finite), then 
i(a,(jj) — 0 for any to G S> which is impossible. • 

Remarks. 1. Lemma 1.2.2 also immediately follows from the more general fact that the 

action of T on VMT is minimal [FLP]. 
2. Lemma 1.2.2 means that for any a G S its stabilizer Stab a C T has infinite index 

in r. On the other hand, Stab a is infinite, because by Lemma 1.2.1 it contains the 
infinite cyclic subgroup generated by 7 a . 

3. The number of T-orbits in S is finite. Indeed, if a\,a2 are simple closed curves 
whose complements are topologically the same, then there is a homeomorphism taking 
ai to a2. But there are only finitely many possible topologically different complemen
tary regions. 

For each F G VMT \ MlAf let 

ZF = {H eVMT\M!Af :i(H,a) =0 i(F,a) = 0 V a G S} , 

so that Zp is the set of all H which have zero intersection with exactly the same curves 

from S as F. It is clear from the definition that any two such Zp either coincide or are 

disjoint, and that they partition VMT\MXM. The next Lemma shows that the action 

of T on the complement VMT \ MXM is weakly dissipative in the following sense: 
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Lemma 1.2.3. The partition {ZF} ofVMT\MXM has the following properties 

(i) It is countable, i.e., there are countably many distinct sets ZF; 
(ii) It is r-invariant, i.e., together with any set ZF it contains all its translations 

7 z F , 7 e r . 
(iii) For any set ZF the number of pairwise disjoint translations 7 # F , 7 G T is 

infinite. 

Proof. If F € VMT\MXNthen the graph (not necessarily connected) GF of compact 
(critical) leaves of the foliation F is non-empty, and i(Fy a) = 0 iff a is homotopic to a 
closed loop in GF* Since any such graph has a bounded number of edges, there are only 
finitely many combinatorial types of graphs. As T is countable, there are therefore only 
countably many graphs Gi up to equivalence ~ by homeomorphisms homotopic to the 
identity and Whitehead moves. Let 

Bi = {F e VMT \ MXM : GF ~ Gi} . 

Since Whitehead moves do not change the homotopy classes of closed loops contained in 

the graph, each set Bi is contained in some ZF, and so the partition {ZF} is countable. 

Clearly, 

Z l F = lZF V 7 € T,F G VMT\ MXM , 

so that this partition is T-invariant. 

Given any F G V>MT\MXAIthe surface decomposes into a union of annuli in which 
every leaf is closed, and minimal domains in which every leaf is dense in the domain. 
The boundary of each domain is comprised of critical leaves of F [FLP], [St]. Take 
a boundary curve a and a curve a that does not lie in a boundary with i(a,cr) > 0, 
then i(F,a) = 0 and i(F,a) > 0. Denote by j a the Dehn twist about a. Then by 

Lemma 1.2.1 7 £ a —> a, and i(JP, 7^a) = i(i~nF, a) > 0 for all n greater than a 

certain number N. Thus, j~nF <fc ZF and %nZp C\ZF = & for all n > JV, so that the 

sets ^ZF, i = 0 , 1 , 2 . . . are all pairwise disjoint. • 

Remark. We do not know whether the sets JB, = {F G VMT \ MIAf : GF ^ Gi} are 
in general smaller than the sets ZF or coincide. 

1.3. Teichmiiller space. 

A conformal structure x on the surface M is determined by an atlas of coordinate 
charts (UinZy), where {U^} is an open cover of M , and local uniformizers : —> C 
have the property that z^ o z"1 is analytic whenever defined. The Teichmiiller space Tg 

is the space of all conformal structures on M endowed with the Teichmiiller metric 

dr(x,y) = ^ log infK(Zi ) , x.yeTg, 
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where the infimum is taken over all quasiconformal maps h : x —>• y homotopic to the 
identity, and K(h) is the maximal dilatation of h. The infimum in the definition of the 
Teichmuller metric is realized by a unique Teichmiiller map, and for any two points 
x 7̂  y £ Tg there exists a unique Teichmuller geodesic line (i.e., an isometric embedding 
of R into Tg) passing through x and y. 

The group T naturally acts on Tg by isometries, and this action is properly discontin
uous. The stabilizer Stabs C T of a point x £ Tg corresponds to a group of conformal 
self-mappings of the surface, so that card Stabs < S4(g — 1) Vx £ Tg by Hurwitz' The
orem [FK, p.242]. For each such group, the set of fixed points is a lower dimensional 
Teichmuller space [Ga, p. 151]. There are only countably many such finite groups. Thus, 
in the case g > 2 points with non-trivial stabilizers lie on a countable union of positive 
codimension subvarieties in Tg. In the case g = 2 the situation is somewhat different as 
there is the hyperelliptic involution 70 £ T which fixes every point in T2, so that { e , 7 o } 
is a 2-element normal subgroup of I \ However, the quotient group Tf = T / { e , 7 o } acts 
on T2, and points with non-trivial stabilizers in V lie on a countable union of positive 
codimension subvarieties in T2. 

For any x £ Tg and a € S let 

Extx(a) = sup inf p(a)2 , 

be the extremal length of the homotopy class a with respect to the conformal structure 
x (here the supremum is taken over all conformal metrics p on x with area 1), and let 

Ext* = inf {Ext* (a) : a £ S] . 

By [Kel, Theorem 4] 

a(zS Exty(a) 

which implies that 

! ^ < e 2 M ^ ) V s , y € T , . (1.3.2) 

In particular, the function x H> Ext* is continuous on Tg. 

Let 7r : x »-> x be the projection from Tg to the moduli space Mg = Tg/T. Denote by 
dT the distance on Mg induced by the distance dr on Tg, and by x H> E X % the projection 
to Mg of the T-invariant function x »-> Ext x . By the Mumford compactness theorem 
[Mu] a subset X of Mg has compact closure if and only if the function x i-> Ext^-
is bounded on X from below. Hence, by continuity the values Ext^-, x £ Mg (and 
consequently, the values Ex t x , x £ Tg) are uniformly bounded from above. 
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The map 
x f~> G , 

where now i(#, a ) , a G S is the length with respect to the hyperbolic Riemannian struc
ture determined by x of the (unique) geodesic from the class a, defines an embedding of 
Tg into which projects to an embedding of Tg into PR+ whose boundary is VMT. 
This embedding is equivariant with respect to the action of T, and (see [FLP], [Ke2], 
[CB]) the intersection number •) extends continuously from Tg x S to Tg x MT in 
such way that 

i(x,F) > 0 Vrc G Tgy FeMT. 

Comparing the definitions of *(x,a) and Ext^(a) gives the inequality 

i(x,a) < a J ^ E x t ^ a ) 1 / 2 , (1.3.3) 

where ag = 27r(2(7 — 2) is the area of the hyperbolic metric on x. Below we shall also 
use the following well known fact: if i(a9fi) > 0, and xn G Tg is a sequence such that 
ExtXn(a) - » 0, then Ex t X n ( / ? ) - » oo. For, since ExtXn(a) -> 0, by (1.3.3) the hyperbolic 
length i(xn,a) of a tends to 0. As (3 crosses a, by [Kr, p.570], 

s i n h ! ( f ^ ) s i n h ! ( ^ ) > 1 , 

which implies that i(xn,(3) —> oo, and therefore Ex t X n ( / ? ) oo. In particular, there 
exists e > 0 such that 

E x t , ( a ) < e => Extx{/3) >4e Vx G T p , a,/? € 5 : i(a,/3) > 0 . (1.3.4) 

Let C be a disjoint system of homotopy classes of simple closed curves, i.e., 
z(a,/?) = 0 Ma ^ (3 G A. Its cardinality does not exceed 3g — 3. Moreover, since there 
is only a finite number of homotopy types for the complement of such systems, there 
is a finite collection {Ai} of disjoint systems A* C S with the property that any other 
disjoint system A has the form A = ^A{ for some Ai and 7 G T. 

For each disjoint system A C S there is a boundary Teichmuller space TA obtained 
by pinching or degenerating along the curves a G A. The space TA consists of noded 
or punctured Riemann surfaces, for which the curves in A have been assigned zero 
hyperbolic length. We can think of Tg as corresponding to the empty set A. If A! C A 
we say that TA is a deformation of TA»\ every curve that is assigned 0 length in TA> is 
also assigned 0 length in TA- Then TA is a (trivial) deformation of itself, and each TA is 
a deformation of Tg. Denote by TA = { 7 G T : 7 A = A} the stabilizer of the set A, and 
by the normal subgroup of TA that is isotopic to the identity on each component of 
the complement of curves from A. Then TA/TQ is the mapping class group of TA-
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Lemma 1.3.1. Given a constant L > 0 there exists N > 0 such that for any x G Tg 

there are at most N curves a G S with Extx(a) < L. 

Proof. By the invariance of Extx under the T-action it is enough to consider the pro
jections x G Mg of points x G Tg. For any compact X C Mg and x G 7 r - 1 X , we may 
find a pants decomposition of the surface x in which the pants curves have hyperbolic 
length bounded from below, and the distance between the curves in each pair of pants 
is also bounded from below (with constants depending on X only) [FLP], Then for each 
L there is N = N(L,X) such that the number of curves of hyperbolic length at most L 
on x does not exceed N. By the formula (1.3.3) this implies the result for the extremal 
lengths as well. 

Thus, we need to find bounds in the case when x lies in a neighborhood of infinity 
in Mg. First we describe a neighborhood basis at infinity. 

Let MAi = TAi/(TAi/T^) be the moduli space of TAi . There are various equivalent 
ways of defining a topology on 

Mg =MgU[JMAi 

i 

in a neighborhood of (J i MAi which compactifies Mg. We indicate one of them. Suppose 
y G MAi. Let V be a union of disjoint neighborhoods of the punctures of y, and let 
p > 0. Denote by Af(y, V, p) the set of all x G Mg such that 

(i) If x G MAj, then TAi is a deformation of TAj, i.e., Aj C A{. 
(ii) There are disjoint open sets Ua on s, one for each a £ A j , and such that Ua 

is an annular neighborhood of the geodesic a on x if a G A{ \ Aj, and Ua is a 
neighborhood of the punctures on x corresponding to a if a G Aj. There is a 
homeomorphism from x \ [Ja Ua to y \ V. 

(iii) The homeomorphism from (ii) is a (1 + ^-distortion of hyperbolic metrics. 

The neighborhoods M{y^ V,p), p < 1 form a basis for a topology at infinity on Mg 

compatible with the topology on Mg in the sense that intersections of these neighbor
hoods with Mg are open in Mg. With this topology Mg is compact [Ab]. 

Now fix p < 1. For each puncture of y G Mg \ Mg we may take two disjoint curves 
homotopic tg the puncture such that any arc crossing the annulus bounded by these two 
curves has hyperbolic length at least L. Let V be the neighborhood of the punctures of 
y whose boundary consists of the "inner" curves. Then any geodesic arc with endpoints 
on the boundary, not homotopic to an arc on the boundary, must cross the annuli twice 
and thus has length at least 2L. The neighborhoods N(y, V, p) obtained in this way 
form a cover of the compact Mg \ Mg. Take a finite subcover {J\f(yk, Pk)}, then 
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its complement is compact in Mg. For each yk G Ai there are at most N = N(yk,L) 

homotopy classes of curves with hyperbolic length < 2L on j / * . 

Suppose now x € J\f{yk> V*, pk)C\Mg, and /3 is a closed geodesic in x of length at most 
L. We claim that if (3 £ A{, then /3 cannot intersect a € Aj> or indeed even enter one 
of the annular neighborhoods Ua of a described in (ii). For if it did, then there would 
be an arc of /3 lying in x \ [Ja Ua whose endpoints lie on the boundary of (J Ua, and 
which is not homotopic to an arc on this boundary. Via the homeomorphism of (ii) this 
axe maps to an arc in y with endpoints on the boundary of V, not homotopic to an arc 
on the boundary of V. This arc in y has length at least 2L. By the distortion property 
(iii), the arc of /3 has length at least 2L/(1 + p) > L, and therefore (3 has length greater 
than L, contrary to assumption, proving the claim. 

Now by the claim and the distortion property (iii), the closed geodesic (3 maps to a 
closed curve on y of length at most L(l + p) < 2L. There axe at most N homotopy 
classes of geodesies on y with length at most 2L, and this means that there are at 
most N geodesies (3 £ Ai on x of length at most L, and therefore a total of at most 
N + | A j | < N + 3g — 3 geodesies of length at most L on x. Since there are a finite 
number of such and the complement of [Jk Af(yk>Vki Pk) is compact in Mg, we are 
done. • 

Recall that a map / from one metric space ( X i , d i ) to another ( X ^ ^ ) is called a 
rough isometry [Kan] if there exists a constant C > 0 such that 

±d1(x,y)-C<d2(f(x),f(y)) < C d i ( x , y ) + C yx,yeX1 

(some authors use in this situation the term "quasi-isometry", e.g., see [CDP], [GH], 
[Gr]). Two spaces (Xi,di) and (X2,c?2) are roughly isometric if there exist rough 
isometries fi : X\ —> X% and /2 : X2 —>* X\. We shall say that a metric space has expo-

nentially bounded growth if it is roughly isometric to a graph with uniformly bounded 
vertex degrees. 

Theorem 1.3.2. The Teichmuller space Tg with Teichmuller metric dy has exponen

tially bounded growth. 

Proof. We shall construct a graph Q with uniformly bounded vertex degrees whose 

vertex set X = {xi} is a subset of Tg, and the embedding Q °-» Tg is a rough isometry 

(then necessarily this embedding is discrete). If in addition 

sup dT(x,X) < 00 , 
X£Tg 

then the map from Tg to Q assigning to any point x € Tg the nearest point from X (or, 

if it is not unique, the nearest point Xi with minimal index i) is also a rough isometry, 

so that Tg and Q are roughly isometric. 
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Fix an e > 0 satisfying the property (1.3.4), and let 

ft = {x e Tg : Ext* > le} 

ft = eMg : Ext* > } e } = fl"(ft) , 

so that ft has a compact closure in Mg by the Mumford theorem. 

For any disjoint system A C S and e > 0 put 

X A ( S ) = € T9 : Extar(a) < e, a G A; Ext*(a) > | e , a £ A} , 

= 7 r ( X A ) C Mg ( L 3 , 5 ) 

Claim 1. The space T p is covered by ft and the sets XA, and this cover has non-zero 
Lebesgue number <7. 

We wish to find a constant a > 0 such that for each x £ Tg there is a ball of radius 
a about x contained in either ft or a single set XA-

If E x t x > | e , then x 6 ft, and by (1.3.1) any point y £ Tg \ ft (i.e, such that 
Extj, < \e) has the property that 

1 1 

dr{x,y) > r l o g - } - . 
Z 4 

Suppose then that Extx < | e . Let 

A = A(x9 f e ) = { a G <S : E x t x ( a ) < §£> . 

It follows from (1.3.4) that the system A is disjoint, and quite clearly x G XA- Suppose 
y G Tg \XA- Then either Exty(a) > £ for some a G A, or Ext y ( /?) < | e for some /3 A. 
On the other hand, by the definition of the set A we have E x t x ( a ) < | e for a G A and 
Exta;(/?) > f £ for /? ^ A. Hence, in the first case by (1.3.1), 

rfT(z,y) > ^ l o g ^ - , 
Z 4 

and in the second case 
1 1 

Z 2 

Thus, 
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so that finally we can take a = | log | . A 

Denote by H p the product of p copies of the hyperbolic 2-space H with the product 
topology and sup-metric, and put the sup-metric d on H p x T A , where p is the cardinality 
of a disjoint system A C S. By [Mi] there exists a constant C = C(e) and for each 
disjoint system A C S a continuous map 

F = (FUF2):XA->H*xTA 

such that 

\d(F(x),F(y)) - d T ( * , y ) | < C V s , y e XA , ( 1 . 3 . 6 ) 

and 

E x t F 2 ( x ) > Ce V X G I A . ( 1 . 3 . 7 ) 

The Mumford compactness theorem and ( 1 . 3 . 7 ) imply that F2(XA) has a compact 

quotient by TA/TQ, and therefore so does the (C + a)/2-neighborhood F^XA) of 

F2(XA). Take covers of H p and of F£(XA) by balls of radius a with a positive Lebesgue 

number, and with the property that each ball intersects a bounded number of others, 

and consider the product cover {Vi} of H p x F^XjCj. Then the sets F"~ 1(Vi) cover XA. 
By ( 1 . 3 . 6 ) each of them is contained in a ball of radius C + a. 

Take a cover of by a finite number of balls J3(#, <J), and denote by {Wi} the cover 

of £2 by the balls of radius a + C centered at all points from the T-orbits of the points 

x H > x. Clearly, the cover {W%} has a positive Lebesgue number and the property that 

each element of this cover intersects a bounded number of other elements of the cover. 

The sets Wi together with the sets F _ 1 ( K ) (taken for all disjoint systems A C S) form 

a cover of Tg which we denote by {Ui}. Any set Ui is contained in a Teichmuller ball of 

radius R = C + cr. 

Claim 2. There is a constant K such that each set Ui intersects at most K other sets 

As the sets Ui have uniformly bounded diameter, any Ui intersects a bounded number 

of the sets Wj. Further, if a set Ui intersects a set F"1 (Vj), then Ui lies within a bounded 

distance from the corresponding set XAy so that by ( 1 . 3 . 1 ) Extx(a) is uniformly bounded 

from above on Ui for all a e A. If there were no universal bound to the number of 

intersections of Ui with the sets F~l(Vj), then there would not be a universal bound 

for the number of curves whose extremal length is bounded from above with a certain 

constant. This contradicts Lemma 1 .3 .1 . A 

Claim 5. There is a constant L such that any two points y,z £Tg with dr{y^z) < a 

can be joined by a chain of at most L sets Ui. 

By the choice of cr, the cr-ball around y is contained either in Q, or in a certain set 

XA. 
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In the first case the geodesic joining y and z is also contained in ft. Since the cover 
{Wi} of ft has a positive Lebesgue number, the points y, z can be joined by a bounded 
number of Wi along this geodesic. 

In the second case y,z e XA, and d(F(y),F(z)) < C + a by (1.3.6), so that the 
geodesic joining F(y) and F(z) is contained in H p x F^XA). Since the cover {V^} has a 
positive Lebesgue number, the same argument as in the first case shows that the points 
F(y) and F(z) can be joined by a bounded number of V*. A 

Now choose in every set Ui a point Xi such that Ui is contained in the ball of radius 
R = C + a centered at xt-, and consider the graph Q with the vertex set such that 
two vertices X{ and Xj are joined with an edge iff the sets Ui and Uj intersect. By Claim 
2 each vertex has at most K neighbours. Let d be the graph distance in Q. Since any 
Ui is contained in the i2-ball centered at Xi, the Teichmuller distance between any two 
neighboring points in the graph Q does not exceed 21?, and 

dT(xii%j) ^ 2Rd(xi,Xj) Vxi^Xj € G • 

Conversely, by Claim 3 above 

d(xi,Xj) < L[dT(xi,Xj)/a + 1] . 

Thus, the identity map f\:G-±Tg and the map /2 : Tg -> Q assigning to any point 
x 6 Tg the nearest among the points Xi are rough isometries, so that Tg and Q are 
roughly isometric. • 

Remarks. 1. The fact that any (not necessarily covering) Riemannian manifold with 
bounded geometry (bounded curvature and injectivity radius) has exponentially bounded 
growth is rather straightforward [Kan]. Milnor [Mil] proved that for a regular cover of a 
compact Riemannian manifold the natural embedding of the Cayley graph of the deck 
group into the cover obtained by identifying the group with its orbit is a rough isometry 
(Claim 3 from the proof of Theorem 1.3.2 basically uses the same argument). In general, 
this is not true for covers of non-compact manifolds, the simplest counterexample being 
the action of the group 51/(2, Z ) on the hyperbolic plane. However, by a recent result, 
of Lubotzki, Mozes and Raghunathan [LMR] this embedding is a rough isometry for 
the action of lattices in higher rank semi-simple groups on the corresponding symmetric 
spaces. Apparently, one should be able to prove that this embedding is not a rough 
isometry for free orbits of the mapping class group V in Teichmuller space Tg. 

2. It is not immediately clear whether the graph Q in Theorem 1.3.2 can be made 
r-invariant (which depends on T-invariance of the cover {F^CVi)}). 
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Corollary 1. There exist constants D,R> 0 such that any r-ball in Tg can be covered 
by not more than DeDr balls of radius R. 

Proof. By Theorem 1.3.2 there is a countable set X = {x{} C Tg and a constant R such 
that 

Tg = \jB(xi,R). 
i 

Then for any x G Tg 

B(x,r) C [J B(xi,R). 

Further, X can be given a graph structure in such way that any point has at most K 
neighbours, and the graph distance d on X satisfies the inequality 

d(xi,Xj) < CdT(xi,Xj) + C 

for an absolute constant C. Hence, if XQ G X is such that d^x^xo) < R, then 

card{x{ G X : c?t(^, Xi) <r + R} 

< caxd{xi G X : d r (xo ,£ i ) ^ r + 2-R} 

< card{a: i G X : d(x0jXi) < C{r + 2R) + C} < (K + if{r+2R)+c ^ 

• 

Corollary 2. For any point y G Tg there is a constant Dy such that 

c*xd{g G r : dT(x,gy) < r} < Dve
D»r Vx G Tg, r > 0 . 

Proof. Since the orbit of y in Tg is discrete, and the stabilizer Stab y C V is finite, the 

number 

iVj, = card{tf G r : dT(y,gy)< 2R} 

is finite (here R is the constant from Corollary 1). Hence, 

card{flf G r : dT{x,gy) < R} < Ny Mx G Tg , 

and the statement follows from Corollary 1. • 

Remark. The numbers Ny (hence, Dy) are not uniformly bounded for y €Tg. Indeed, 

take y G Tg and a G S with E x t y ( a ) very small. Then the Dehn twist about a is like 

a parabolic element - it moves x very little, so that one can iterate it many times and 

still stay within a bounded distance. 
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1.4. Teichmiiller geodesic lines and quadratic differentials. 

The Teichmiiller maps and the Teichmiiller geodesic lines are described in terms 
of quadratic differentials. A holomorphic quadratic differential tp(z)dz2 on x € Tg 

associates to each uniformizing parameter z^ a holomorphic function (p^z^) in such 
way that 

if the coordinate charts of zv and z^ overlap. Any non-zero quadratic differential <p has 
a finite number of zeroes on M . Other points are called regular points of tp. 

In a neighbourhood of any regular point p € M of <p there exists a natural uniformizing 
parameter w such that 

dw2 = (p(z)dz2 ... 

If wi and W2 are two overlapping natural coordinates, then w2 = dtwi + c, so that 
each quadratic differential <p determines by the formula \dw\ = \<p(z)1l2dz\ a flat metric 
on the complement of the finite set of zeroes of <py where this metric has cone type 
singularities. The set of quadratic differentials Qx on a; is a Banach space of complex 
dimension Sg — 3, the norm | |^ | | = J \<pdz2\ being the area of M with respect to the flat 
metric \(p(z)dz2\. Denote by Sx the unit sphere in Qx. 

For a geodesic (3 of the metric \<p(z)dz2 \ denote by 

101* = / Wf'2dz\ = f \dw\ , 
Jj3 Jp 

h^{(3) = / \R<p{z)1'2dz\ = / \Xdw\ , 
Jj3 Jp 

V{p{(3) = / \Qtp(z)^2dz\ = / \%dw\ 

Jp Jj3 

its length, horizontal length and vertical length, respectively. Clearly, 
hv(/3),vv(P)<\l3\v, (1.4.1) 

and 
\P\v < ExktiP)1'2 Vy> € S*, (3 € S , (1.4.2) 

where is the length of the geodesic from the class (3 € S with respect to the flat 
metric determined by (p. 

The horizontal (resp,, vertical) trajectories of a quadratic differential (p are curves z(t) 
such that <p(z(t))z'(t)2 > 0 (resp., < 0), i.e., $tw(t) = Const (resp., Uw(t) = Const) 
for any natural parameter w. The horizontal (resp,, vertical) trajectories of tp given 
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the transverse measure \$kp{z)1l2dz\ = \%dw\ (resp., \*t<p{z)1l2dz\ = \%tdw\) define the 
horizontal 11^ (resp., vertical V^) measured foliation of y>. The foliations JEf̂  and V<p 

are transverse, which is equivalent to saying that * ( i f v , V ^ ) > 0 and for any a £ S 

either «(jBTy,a) > 0 or i ( V ^ , a ) > 0 (the foliations J5TV and V ,̂ /iZZ). Conversely, any 
two transverse measured foliations F\,F2 G MF (in particular, any two topologically 
non-equivalent minimal foliations) uniquely determine a point x G Tg and a quadratic 
differential (p G Qx such that Fi = Hv and ify = 1^,. The intersection numbers of the 
vertical foliation of a quadratic differential <p and the horizontal length with respect to 
<p are connected by the formula 

h^a) = i ( V ^ , a ) , (1.4.3) 

where in the left-hand side h<p(a) is the horizontal length of the geodesic from a class 
a G S with respect to the flat metric determined by <p. This formula follows from the 
fact that this geodesic is quasi-transverse to V^, so that it realizes the minimum in the 
definition of i(y<p,P) [HM], Another proof of (1.4.3) using Jenkins-Strebel differentials 
is given in [Ma4, Lemma 2.2]. 

Given x,y G Tg the extremal quasiconformal or Teichmuller map, from x to y is 

defined by an initial quadratic differential <p G Sx and a number K > 1. There is 

a terminal quadratic differential ^ G 5 y . The Teichmuller map sends zeroes of <p to 

zeroes of rj> of the same order. Away from the zeroes, in terms of the natural parameters 

w• = u + iv for x and (" = £ + irj for y, the Teichmuller map is given by the formulas 

e = k^u , 

rj = K-l'2v 

with dT(x,y) = l/2\ogK. Equivalently, the Teichmuller map sends horizontal (resp., 

vertical) trajectories of <p to horizontal (resp., vertical) trajectories of ^ stretching by a 

factor of Kx<2 (resp., i f - 1 / 2 ) , so that 

and 

The Teichmuller geodesic line determined by <p consists of the set of image points y 

of Teichmuller maps as K varies, 0 < K < oo. Thus, any Teichmuller geodesic line / 

determines a pair of transverse projective measured foliations: the projective classes of 

the horizontal and vertical foliations of quadratic differentials along /. Conversely, any 
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two transverse foliations F-^F+ G VM.T uniquely determine a Teichmuller geodesic 
line [jF_, F+] = /. Clearly, exchanging F_ and .F+ corresponds to changing the direction 
of /. As we shall see now, the vertical foliation F+ (resp., horizontal can be in some 
situations considered as the endpoint of the geodesic at +00 (resp., —00) with 
respect to the compactification Tg VMT. 

Lemma 1.4.1. Let [JF_, JF+] be the Teichmuller geodesic line determined by transverse 
projective measured foliations F~,F+. If F+ is minimal, then for any M > 0 and any 
xo G [jF_, JF+] all limit points of the M-neighbourhood of the geodesic ray [xo,F+] belong 

to the equivalence class JF+ G MXN. 

Proof. The choice of XQ determines a parameterization /(<), t 6 R o n [JP_,jP+] with 
/(0) = XQ. Let yn be a sequence from the M-neighbourhood of the ray {/(£), t > 0 } 

such that yn —> H G VMT. As yn -» 00, there is a G S with i(ynya) -> 00 , i.e., 

friVn — • H for a certain sequence rn -> 0 [FLP]. There exists a sequence t n —>• oo 
such that d r ( a ; n , y n ) < M for xn — l(tn). Since the values Ext*, x € Tg are uniformly 
bounded from above, there exist C > 0 and a sequence (3n € S such that 

E x t X n ( / ? n ) < C V n > l . 

Then by formulas (1.4.1) and (1.4.2) 

K M < \pn\Vn < ExtXn((3n)1/2 < C 1 / 2 • 

On the other hand, denote by <p G Sx° and </?n G £ * n the initial and terminal 
quadratic differentials of the Teichmuller map from xo to xn (rescaling F+ we may 
assume that V<p = F+) . Then by the formulas (1.4.3) and (1.4.4) 

so that 
* ( F + , / ? n ) —>o. 

n—»00 
Since the foliation F+ is minimal, / ? n are all distinct for sufficiently large n. Choose 

a subsequence again labeled j3n which is convergent in VM.T to a foliation if ' , i.e., 
8n ^ # ' for a sequence sn —>» 0 (Lemma 1.1.1). Then 

i(F+,H') = limsni(F+,pn)=0. 

Since dT(xn,yn) < M and Extj ; n ( /? n ) < C , Kerckhoff's formula (1.3.1) says that 
Ext j , n ( /? n ) is bounded. Hence by (1.3.3) the sequence i(yn,fin) is also bounded, but 
then 

i(H,H') = \im i(rnyn,sn/3n) = \imrnsni(yn,(3n) = 0 , 

thereby i{F+,H) = 0. • 
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Lemma 1.4.2. Suppose that xn ETg is a sequence such that xn —> F G US. If 

dT(x0,xn) - dT(xn,yn) -> oo 

for a sequence yn G Tg, then yn —> F. 

Proof. By [Ma2] convergence of the sequence xn to F is equivalent to convergence 

where y>n G 5*° is the initial quadratic differential of the Teichmuller map from XQ to 
xn. Denote by 9n G Sx° and G 5 J , n the initial and terminal quadratic differentials 
of the Teichmuller map from XQ to yn. We have to show that 

As in the last Lemma we choose a sequence fin such that E x t X n ( / ? n ) is bounded, which 
implies that 

Since F G US, we have 

Now by (1.3.1), 

Extyn((3n) = 0(e*d^*»^), 

which by (1.4.1) and (1.4.2) in turn gives 

and since dT(xo,yn) — dT(xn,yn) -4 oo, (1.4.3) and (1.4.4) give 

W „ , / ? „ ) = / > * „ ( / ? „ ) - > 0 . 

Again, since / ? n —> F, we have V^n —> F. • 

Remark. Lemma 1.4.2 is an immediate analogue of the corresponding property of Gro
mov hyperbolic spaces (in particular, Cartan-Hadamard manifolds with pinched cur
vature; see [CDP], [GH], [Gr]). If X is a Gromov hyperbolic space with the hyperbolic 
boundary dX, and xn G X is a sequence convergent to a point u) G dX, then any 
sequence yn such that d(xn,x0) — d{xn,yn) - » oo converges to the same limit u G dX. 
The reason is straightforward: the Gromov product 

{xn\yn)x0 = ^[d(xn,x0) + d(yn,x0) - d(xn,yn)] 

tends to infinity. 
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Lemma 1.4.3. For any reference point o £Tg the function 

f : (F,G) * dT(o,[F,G}) 

assigning to a pair of transverse foliations (F,G) the distance from o to the Teichmuller 
geodesic line [F,G\ is continuous on the subset ofVMT x VM.T where it is defined. 

Proof. Suppose ( F n , G n ) — > (FQ,GO). Let ZQ be the point on the geodesic [JFb,Go] 
realizing / ( F o , G o ) . On ZQ there is a quadratic differential (fo with horizontal and 
vertical foliations projectively equivalent to Fo and Go, respectively. By rescaling, we 
may assume that = F0 and V^ 0 = Go- Find representatives again denoted Fn, GN 

in the corresponding projective classes such that Fn FQ and GN Go. Then the 
quadratic differentials (pn with Fn and G n as horizontal and vertical foliations converge 
to (fo, and the corresponding points zn converge to zo, so that 

limsup f(FN,GN) < Y\mdT{o,zn) = dT(o,z0) = / ( F 0 , G 0 ) . 

For the opposite inequality take a subsequence (Fnk, GNK) such that lim f(Fnft, GNK ) = 
liminf / ( F n , G n ) , and denote by Wk G [Fnky GNK] the point realizing f(Fnk, GNK). Since 
Wk remains in a bounded subset of Tgj passing again to a subsequence we may assume 
that Wk converges to a point wo. The points Wk carry normalized quadratic differentials 
ifrk with horizontal and vertical foliations from the projective classes of FUk and GNK, 
respectively. Passing to a subsequence we may assume that -0* —> ̂ o? a quadratic dif
ferential on WQ. The horizontal and vertical foliations of ij>k converge to the horizontal 

and vertical foliations of IJ>Q. Since (Fnit, GNK) —> (FQ, GO), the horizontal and vertical 
foliations of xj)Q are represented by the projective classes of FQ and Go, respectively, so 
that too € [F0,GQ]. Then 

l im in f f (F n ,G» ) = ]imf(FNK,GNK) = Yixa.dT{o,wk) = dT(o,w0) > f(F0,G0) . 

• 

Denote by 

Graph(~) = {(F, G) € MlAf x MlM : F ~ G} 

the set of all pairs of equivalent minimal foliations. 

Lemma 1.4.4. For any reference point o € T f l the function 

$(F0,G0) = * ( F 0 , G o ) = snp{dT(o,[F,G)) : F ~ F0, G ~ G0} 
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on MXAf x MXAf \ Graph(^) is upper semicontinuous. 

Proof We have to show that for any sequence (FN,GN) ( F 0 , G o ) there is a subse

quence (FNK,GNK) such that l i m $ ( F n / e , G n J < $ ( F 0 , G 0 ) . 

Since the equivalence classes F G MXAf are closed in VMT, by Lemma 1.4.3 the 

sup in the definition of the function $ is attained, and for any (Fo,Go) € MXAf x 

MXAf \ Graph(~) there exist F ~ F0, G ~ G0 such that 

$(F0,G0) = dT(o,[F,G\) . 

Now take a sequence (FN,GN) (FQ,GO). Since Fo and Go are two disjoint closed 

sets, Fn GN for all sufficiently large n. Let [F^GJJ, F'n ~ FN,G
F

N ~ GN be the ge

odesic realizing $ ( F n , G n ) . Take a subsequence (F'NH,G'NH) of the sequence (FF

N,G
R

N) 
convergent to (FQ,G'0). Since i(Fn,F„) = 0, the continuity of implies that 

t ' (F 0 ,F^) = 0, and similarly i(G0YG'0) = 0. 

Thus, 

* ( F o , G 0 ) > d T ( o , [ ^ , ( % ] ) = l i m i T ( o , [ F ^ , G ^ J ) = l i m $ ( ^ , G ; j , 

proving the claim. • 

1.5. Action of the mapping class group on VMT. 

We shall say that a sequence gn € T is universally convergent if it tends to infinity 

in T, and for any a 6 S there exists a limit 

limg^a^FaeVMT, 

i.e., for any a £ S there exists a sequence s% such that 

As it follows from Lemma 1.1.1, any sequence s% is bounded, and it tends to zero iff 

9 n l a — ^ 0 0 • Clearly, any unbounded sequence in V contains a universally convergent 

subsequence, and any subsequence of a universally convergent sequence is also univer

sally convergent with the same limits Fa. 

By Lemma 1.1.1, if gn is a universally convergent sequence, then for any a G S either 
J^t JF~ 

g~la —> oo, or there is (3 = /3(a) 6 S with the property that g~xa = (3 for infinitely 

many values of n. In the former case put N% = 0 and JV£° = { 1 , 2 , . . . } . In the latter 

case such (3 is clearly unique, and we put 

№a = {n:g-xcc = (3} 

N~ = {n:g;1a^/3}. 
Again by Lemma 1.1.1, if the set iV£° is infinite, then g^a —> oo when n goes to 
infinity along the set 7V£°. Note that the set JV£° may well be empty (see Remark 2 
after Lemma 1.2.2). 
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Lemma 1.5.1. For any universally convergent sequence gn there exists ot £ S with 
infinite set iV£°. 

Proof. Take a disjoint system A = { a i , . . . , a$g-.z} C S of curves which determines 
a pants decomposition of the surface. Suppose that the sets are all finite, then 
the sequences gZla% all stabilize. Denote by fa € S the corresponding limits, so that 
g^cti = fa for all sufficiently large n. Then clearly the curves /?,• are all distinct and 
pairwise disjoint, hence they also form a pants decomposition. Since any map that 
preserves the curves of a pants decomposition is a product of the commuting Dehn 
twists about these curves [FLP], any g^1 with sufficiently large n must have the form 

gn1 = 7 i 1 ''" 7 ^ r 3

8 # , Pi = Pi(n) , 

where g £ T is some fixed map such that goti = z = 1 , . . . , 3g — 3, and 7,- = 7^. are 
the Dehn twists around the curves As gn goes to infinity in T, 

i 

so that there is a curve (3% and a subsequence p n ! e such that |pi(nfc)| 00, which means 
that g~^(io) wraps more and more around this /3i for any curve uj that crosses g ^ , and 
hence goes to infinity. • 

We shall say that a sequence gn € T is strongly universally convergent if it is univer-

sally convergent, and in addition there is a € S such that g^1® —> 00. By Lemma 1.5.1 
any unbounded sequence in T contains a strongly universally convergent subsequence. 

Remark. In fact, one can show that any universally convergent sequence is strongly 
universally convergent. However, the weaker (and easier to prove) statement of Lemma 
1.5.1 is sufficient for our purposes. 

Lemma 1.5.2. Let gn be a universally convergent sequence. If for a certain a G S the 
set is infinite, then i{Fa,Fp) = 0 for all (3 € S. 

Proof. Pass to the subsequence of gn (again denoted gn) with indices n € iV£°. Then 

g^lot —> 00, so that s% - » 0. Since for any (3 € S the sequence s@ is bounded, by 
continuity and T-invariance of the intersection number we have 

i(Fa,Ff,) = H m i K ^ a , ^ - 1 / ? ) = l i m ^ ^ ( « , / ? ) = 0 . 

• 
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For a given universally convergent sequence gn let 

X = ( J Fa C VMT , (1.5.1) 

Note that as it follows from Lemma 1.5.2, the intersection of the set X with MXM 

consists of at most one equivalence class F , F G MTAf. 

Lemma 1.5.3. If gn is a strongly universally convergent sequence, then gnF —>• oo 

for any F € Tg U VMT\X. 

Proof. Take a £ S such that g^1® — > oo, i.e., s„ —»• 0. Since 

sZi(gnF,a) = s ^ g - ' a ) = i{F, s^g-1 a) -+ i(F,Fa) ? 0 , 

we have that i{gnF, a ) —> oo. • 

Lemma 1.5.4. Let gn be a strongly universally convergent sequence, and foliations 

F,F' eTgU VMT\X be such that g n F V ^ H € VMT and gnF' H' € VMF. 

Then 

(i) .(JST.JET') = 0 ; 
(ii) i(H,a)=0 i(H',a) = 0 V a G 5 . 

Proof, ( i) . By Lemma 1.5.3 there exist sequences tn,t'n -> 0 such that tngnF —y H 

and t'ngnF' ^5 H'. Then 

i(H,H') = limtnt'ni{gnF,gnF') = limtnt'ni(F,F') = 0 . 

(ii). For any a € S we have 

M2°L= l imt w . - (g w F a ) *» 

i(F,Fa) lims^gn'a) s% K ) 

and in the same way 

^ U l i m V (1.5.3) 
i(F',Fa) s% K } 

Now take uj G S with z(iï,u>), i(H',u>) > 0. Such a; exists, for, otherwise, for any a G S 

either i(H, a) = 0, or i ( i ? ' , a) = 0, hence, since S is dense in VMT, for any F G VMT 

either i(H,F) = 0, or i(H\F) = 0, which is impossible, because i(H,F),i(Hf, F) > 0 

for any F G \ { i f , i ? ' } . 

Then by (1.5.2) and (1.5.3) the limits \imtn/s^ and l imt^/s^ are both non-zero, 

so that there exists a non-zero limit l i m t n / ^ . Comparing again formulas (1.5.2) and 

(1.5.3) yields the desired statement. • 
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Corollary. If gn is a strongly universally convergent sequence, then there exists H G 
VMT such that all limit points of the sequences gnF, F G TgUVMT\X are contained 
in the set determined by the conditions (i) and (ii). 

Now we shall study the limit points of translations of measures in VMT. We begin 
with the following elementary statement. 

Lemma 1.5.5. Let v be a Borel probability measure on VMT, and gn - a sequence in 
T such that gnv converges weakly to a measure A on VMT. If there is a set E C VMT 
with uE = 0 and a Gs-set ft C VMT such that ft contains all limit points of sequences 
gnF, F € VMT\ E, then the measure A is supported on ft. 

Proof. Let U be an arbitrary open neighbourhood of ft. Then for any F £ E there is 
a finite number n(Z7, F) such that gnF G U for all n > n({7, F). Since vE — 0, for any 
e > 0 there is N > 0 such that v{F : n(U,F) < N} > 1 - e. Hence, gnu(U) > 1 - e 
for all n > TV, and XU > 1 — e. Since e is arbitrary, XU = 1. Being G^, the set ft is a 
countable intersection of its open neighbourhoods, hence Aft = 1. • 

Lemma 1.5.6. Let v be a Borel probability measure on VMT such that u(F) = 0 for 
any F G VMT, and gn - an unbounded sequence in T such that gnv converges weakly 
to a measure A on VMT. Then 

(i) Either the measure A is concentrated on the set 

H = {F : H) = 0} C MlAf (1.5.4) 

for a certain H G MZN, or it is concentrated on the set 1 

ZH = {F:i(F,a) = 0 « i(H9a) = 0 Va G S} C VMT\ MXM (1.5.5) 

for a certain H G VMT \ MlN. 

(ii) In the first case all limit points of the sequences gnx, x G Tg are contained in 
the set H, and in the second case - in the set Z#. 

Proof, ( i) . By passing to a subsequence we may assume that the sequence gn is 
strongly universally convergent. Let X C VMT be the corresponding set (1.5.1). 
Take a foliation F G VMT \ X. Passing again to a subsequence we may assume 

that gnF —> H G VMT. Now we have two possibilities: either H G MTN\ or 
H G VMT \ MlAf. In the first case denote by ft = ft(if) the corresponding set H 
(1.5.4), and in the second case - the corresponding set Zu (1.5.5). 
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Any set H is the countable intersection of open sets 

{F G VMT : i(F, H) < $i(F9a)} , a G <S,n > 0 , 

so that it is G<5. Any set ZH is also Gs> as it is the countable intersection 

ZH= f | {F:i(F,a) = 0} n f | {F:i(F,a)>Q} 
1 a:t(i7,a)=0 J L a:i(tf,a)>0 ^ 

of the Gj-sets {F G VMT : i{F, a) = 0 } and open sets {F G VMT : a ) > 0 } . 
Thus, the set ft is G«$. Now by Lemma 1.5.4 all limit points of sequences gnFf\ Ff G 

VMT\X belong to ft. Since uX = 0, by Lemma 1.5.5 the measure A is supported on 
ft. 

(ii). This immediately follows from Lemma 1.5.4. • 

Remark. As it follows from the proof of Lemma 1.5.6, the set ft(iJ) is completely 
determined by the sequence gn, so that if uf is another probability measure on VMT 
such that uf(F) = 0 V F G VMT, and gnvf —> A', then A' is concentrated on the same 
set ft(i?) as the measure A. 

2. R A N D O M WALKS ON THE MAPPING CLASS GROUP 

2.1 . The Poisson boundary of random walks on groups. 

Let G be a countable group, and JJL - a probability measure on G. We shall denote by 
sgr(/i) (resp., gr(/i)) the semigroup (resp., the group) generated by the support of the 
measure JJL. The random walk on G determined by the measure /i is the Markov chain 
on G with the transition probabilities 

p{g,h) = ii(g~~lh) 

invariant with respect to the left action of the group G on itself. Thus, the position gn 

of the random walk at time n is obtained from its position go at time 0 by multiplying 
by independent //-distributed increments 7 :̂ 

9n =5o7 i72 "-7n , 

and the set of all points in G attained by the random walk from the identity e is the 
semigroup sgr (/i). 

Denote by P the probability measure in the space G z + of the sample paths g = 
{gn}-> n > 0 which corresponds to the initial distribution concentrated at the identity 



34 VADIM A. KAIMANOVICH, HOWARD MASUR 

(i.e., go = e). The one-dimensional distribution of P at time n (i.e., the distribution 
of gn) is the n-fold convolution / i n of the measure The Markov operator of 
the random walk (G , / i) (i.e., the operator of averaging with respect to the transition 
probabilities of the random walk) is 

P,f(9) = Y,p(g,h)f(h) = X > ( 7 ) / ( < n ) . 
h 7 

A function / is called \i-harmonic if P^f = / . By iJ°°(G , / i) we denote the Banach 
space of bounded fx-harmonic functions on sgr(//) with the sup-norm. 

Suppose for a moment that the group G is embedded into a topological G-space B , 
and P-a.e. sample path g = {gn} converges to a limit = ir(g) € B. Then the 
harmonic measure A = 7r(P) is fj,-stationary in the sense that 

fiA = ] T A*(ff)tfA = A , 

and the Poisson formula 

f(g) = (f,g\) ( 2 . 1 . 1 ) 

determines an isometric embedding / H> / of the space L°°(B, A) into iJ°°(G, /i). When 
is this embedding a bijection? That is, when can every bounded harmonic function be 
represented as a Poisson integral (2.1.1) over the space (2?, A)? 

Topology on the space B is, in fact, irrelevant, and the only thing one needs from a 
measure preserving map 7r : ( G Z + , P ) -> ( 5 , A) in order to have the embedding (2.1.1) 
is its measurability with respect to the equivalence relation 

g~g* <=> 3*? ,^ > O : 0 j f c + „ = ^ , + n V n > O . 

In other words, 

g ~ g < ^ 3 M ' > O : T * 0 = T * V , (2.1.2) 

where (Tg)n = gn+i is the time shift in the path space G ^ , i.e., the equivalence relation 
~ is the trajectory equivalence relation of the shift T. Note that the shift T does not 
preserve the measure P, nor its type. However, the measure P# corresponding to an 
initial distribution 6 with supp 0 = G is quasi-invariant with respect to T. 

The quotient measure space (dP^^v) of the path space ( G z + , P) with respect to the 
measurable envelope of the equivalence relation ~ (i.e., the space of ergodic components 
of the shift T) is called the Poisson boundary of the pair (G, /u). The Poisson boundary 
is endowed with an action of the group G, and the harmonic measure v is //-stationary 
with respect to this action. The Poisson formula (2.1.1) is an isometric isomorphism of 
the spaces H°°(G^) and L°°(T9u) [Ka5]. 

file:///i-harmonic
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Triviality of the Poisson boundary is equivalent to absence of non-constant bounded 
//-harmonic functions on the semigroup sgr(//), or, equivalently, on the group gr(^u), 
(the Liouville property), which is the case for all measures on abelian and nilpotent 
groups. If the group G is amenable, then there always exists a measure fj, with trivial 
Poisson boundary (but there may also be measures with a non-trivial boundary). On 
the other hand, the Poisson boundary is non-trivial for all measures on a non-amenable 
group G [KV]. 

Any G-space which is a ^-measurable image of the path space is the quotient of 
the Poisson boundary with respect to a certain G-invariant measurable partition. Such 
quotients are called ^-boundaries [Fu3], [KalO]. By definition, the Poisson boundary is 
the maximal ^-boundary. Thus, the problem of describing the Poisson boundary of a 
random walk (G, / i ) consists of two parts: 

(1) To find (in geometric or combinatorial terms) a //-boundary (J5, A); 
(2) To show that this ^/-boundary is maximal. 

In other words, first one has to exhibit a certain system of invariants of stochastically 
significant behavior of sample paths at infinity, and then to show completeness of this 
system. 

Note that in the same way as for random walks on groups one can define the no
tions of harmonic functions and the Poisson boundary (and ask the question about its 
identification) for an arbitrary Markov operator [Ka5], 

2.2. Convergence in the Thurston compactification. 

Lemma 2.2 .1 . Let fx be a probability measure on a countable group G, and X - a 
compact G-space. Then there exists a ^-stationary probability measure on X. 

Proof. Let v be a Borel probability measure on X. Compactness of X means that the 
space M(X) of Borel probability measures on X is compact in the weak topology. The 
Cesaro averages 

Un = . . (v + / i * I / + / i 2 * * ' + . . . + M n * l ' ) 
n + 1 

have the property that 

№ * vn - vn\\ = ^ y l l M n + i *v-v\\< ^ Y ^ O 

(here ||A|| is the total variation of a measure A). Hence any weak limit point of the 
sequence vn is a /i-stationary measure, • 
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Lemma 2.2.2 (cf. [Ba], [Wol] ) . Let \i be a probability measure on a countable group 
G, and v - a ^-stationary probability measure on a G-space X. Suppose E C X is a 
measurable subset such that for all g G gr (/i) either gE = E or gE fl E = 0 , and there 
is an infinite number of pairwise disjoint translations gE, g G gr ( / / ) . Then v(E) = 0. 

Proof Without loss of generality we may assume G = gr (/i); if not, just consider instead 
of G the subgroup gr(/i). If v(E) > 0, then there is a go G G which maximizes v{gE), 
i.e., 

u(gE)<u(g0E) Vg € G . 

Put Ef = goE. Since the measure v is //-stationary, 

u(E') = J2^g)gu(E') = ^ fi(g) u{g-x E') < J ^ M ^ ) = • 
0 0 0 

Therefore u{g^1Er) == ̂ (JS') for all # G supp/x. Applying the same argument to convo
lutions of the measure /i, we see that 

v{9-1E') = u{E') Vt/GsgrOti) , 

which is only possible if the set of pairwise disjoint translations g~lE\ g G sgr (//) (i.e., 
the sgr (/i)"" 1 -orbit of the set Er in the space of subsets of X) is finite. The latter by a 
standard argument implies that for the group G generated by the semigroup sgr (^u)""1 

the orbit of Ef ( = the orbit of E) is also finite, which gives a contradiction. • 

Lemma 2.2.3. Let JJL be a probability measure on a countable group G, and v - a JJL-
stationary probability measure on a compact separable space X. Then for P-a.e. sample 
path g = {gn} of the random walk ((?,//) the translations gnv converge weakly to a 
(random) limit A = A(g), and 

u = f \(g)dP(g). (2.2.1) 

Proof The measure v being /i-stationary, for any continuous function / : X —>• R the 
Poisson integral 

M = {lgv)= I f{x)dv{g^x) 
Jx 

is a bounded //-harmonic function, so that by the Martingale Convergence Theorem 
the sequence f(gn) = (f^gn^) converges for a.e. sample path {gn}- The space X is 
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separable, hence taking / from a dense countable subset of C(X) we obtain that P-
a.e. sequence of measures gnv0 converges weakly (see [Pu3, Corollary 3.1]). Moreover, 
passing to the limit on n in the identity 

v = / i n * v = J gnv dP(g) 

gives the decomposition (2.2.1). • 

We shall say that a subgroup T* of the mapping class group T satisfies condition (NE) 
if it does not fix any finite union of the sets 

H = {Fe VMT : i(F,H) = 0} , He MlM , 

or 

ZH = {Fe VMT : i(F,a) = 0 ^ i(H,a) = 0 V a € S] , # € VMT\MXM . 

Equivalently, JT' C T satisfies condition (NE) i / i i ¿5 no£ a finite extension of the stabilizer 

of a set H or ZH. This notion is a direct analogue of that of non-elementary groups 

of isometries of hyperbolic spaces [Gr]. Note, however, that unlike in the hyperbolic 

case r a subgroup of T may not satisfy (NE) and still be non-amenable. For example, the 

subgroup generated by Dehn twists about two intersecting curves that are each disjoint 

from a third curve a is non-amenable, but fixes the set ZA. As it follows from minimality 

of the T-action on VMT and Lemma 1.2.3, the group T itself satisfies condition (NE). 

Theorem 2.2.4. Let fi be a probability measure on the mapping class group T such 

that the group gr (/i) satisfies condition (NE). Then 

(i) There exists a unique ^-stationary probability measure v on the space VMT, 

which is purely non-atomic and concentrated on US, and the measure space 

(US, v) is a ^-boundary; 

(ii) For P-a.e. sample path g = {gn} of the random walk (I\/u) and any x € Tg the 

sequence gnx converges in VMT to a limit F = F(g) €USf and the distribution 

of the limits F(g) is given by the measure v. 

Proof, ( i) . Let v be a //-stationary probability measure on VMT which exists by Lemma 
2.2.1. Since VMT is a Polish topological space (complete, metrizable, separable), and 
v is a Borel measure, the measure space (VMT, v) is a Lebesgue space, so that we can 
use the standard language of measurable partitions [CPS]. 

By condition (NE) the gr(//)-orbit of any set ZF, F C VMT\ MTM is infinite, 

hence by Lemma 2.2.2 the measure v is concentrated on MTM. By Lemma 1.1.2 the 

partition of the measure space (MTM,v) into equivalence classes of the relation ~ is 
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measurable, so that there exists a quotient Lebesgue measure space (MXM, v) whose 

elements are equivalence classes F, F G MXM. By Lemma 2.2.2 and condition (NE) 

the measure v is purely non-atomic. 

By Lemma 2.2.3 for P-a.e. sample path g of the random walk there exists 

the weak limit \(g) = \imgnu. Since the measure v is supported on MXMthe de

composition (2.2.1) implies that a.e. limit measure X(g) is also supported on MXM. 

Hence, by Lemma 1.5.6 a.e. measure X(g) is concentrated on a single equivalence class 

of the relation ~ in MXM, which means that we have a measurable map from the path 

space to MXM. Clearly, this map is measurable with respect to the trajectory equiv
alence relation (2.1.2) in the path space and T-equivariant. As it follows from formula 
(2.2.1), the image of the measure P in the path space under this map is so that 

the quotient measure space (MXM, v) is a non-trivial //-boundary. It implies that the 

Poisson boundary of the pair (I\/i) is non-trivial. In particular, the random walk 

is transient, i.e., gn —> oo for P-a.e. sample path g = {gn} [KV]. 

Now we shall show that in fact the measure v is concentrated on US, so that the 

measure spaces (MXM, v) and (VMT, v) coincide, and (VMT, u) is a /i-boundary. 

Consider the measure space (r z, P ) of bilateral paths g = {gn, n G Z } corresponding 

to bilateral sequences of independent //-distributed increments 7 = {7 n } by the formula 

gn = 0n-i7n, go = e . (2.2.2) 

Clearly, the formula (2.2.2) states a one-two-one correspondence between bilateral paths 

g = {gn} in r passing through e at time 0 and their increments 7 n = g~^.±gn- For 

negative indices n the formula (2.2.2) can be rewritten as 

g-n = #- n+i7ln+i > ^ > 0 , 

so that 

gn = g-n = 7<717li *"' 1-n+i > n > 0 

is a sample path of the random walk on T governed by the reflected measure /¿(7) = 
/i(7""1). The unilateral paths g = {gn}, n > 0 and g = = { ^ - n } 9 n > 0 are 

independent, or, in other words, the map g K > (g,g) is an isomorphism of the measure 

spaces (r z, P ) and (rz+ , P ) x (rz+, P ) , where P is the measure in the space of unilateral 

sample paths of the random walk (I\/2). 

Denote by U the measure preserving transformation of the space of bilateral paths 

( r z , P ) induced by the Bernoulli shift (also denoted by U) in the space of increments 

7 = {7n}, n > 0, i.e., 

( ^ 7 ) n = 7 n + i V n G Z . 
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Hence, if g = {gn} is the bilateral path corresponding to the sequence of increments 7, 
then 

(Ug)n+i = (Ug)n(Unr)n+i = (Ug)n^fn+2 Vn e Z , 

so that 

or, more generally, for any fc 6 Z 

(tf*£)n = g^Qn+k Vn € Z , (2.2.3) 

i.e., the path Uhg is obtained from the path g by translating it both in time (by k) and 

in space (by multiplying by gj"1 on the left in order to satisfy the condition (Ukg)0 = e). 

In terms of the unilateral paths g and g it means that (for k > 0) one cancels first k 

factors gk = 7172 •' -7* from the products # n = 7172 • • • 7& • • • 7n, n > 0 and adds (on 

the left) k factors g^1 = 7 ^ 1 • • • 72~17i~1 *° products gn = 9-n — 7oT17Zi • • • 7 Z ^ + i : 

: " , 7 - i > 7 o Y 7 i r " ,7*- i~7*>7*+i>"- : 

By the argument above applied to the measure fx there exists a purely non-atomic 

/2-stationary measure u~ on MXAf such that the space (MXAf,v~) is a /2-boundary. 

For symmetry we shall use the notation *7+ for the measure u for the rest of the proof. 

Denote the boundaries (MTAfyv+) and (MXM\v~) by B+ and J5__, respectively, and 

let bnd+(gf) = bnd(gr) G J3+ and bnd^(^) = bnd(g) 6 be the corresponding 

boundary points of the unilateral paths g and <y. 
Independence of g and g implies that the image of the measure P under the map 

7T: g H> (bnd - (g f ) ,bnd + ( f l f ) ) 

(i.e., the joint distribution of bnd-(^) and bnd+(y)) is v~®v+. By the formula (2.2.3) 

bnd+{U
kg) = g?hnd+{g), 

b n d _ ( t / f c g ) = ^ 1 b n d _ ( g ) . 

Take a reference point o €Tg, and let 

(g) = sup{cZ T (o, : F_ € bnd_(g ) ,F+ € bnd+(g)) 

= $(bnd_(g),bnd+(sf)) 
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be the pullback of the function $ defined in Lemma 1.4.4 from MXAf x MXAf to the 
space of bilateral paths Yz. Since the measure v+ is purely non-atomic, the function 
is a.e. defined, and by Lemma 1.4.4 it is measurable. 

Then by the formula (2.2.4) for any k € Z 

svLp{dT{gkO,[F-,F+]) : F- e bnd-(g),F+ € bnd+(g)) 

= 8up{dT{o,g^[F.,F+}) : F- € bnd_(g ) ,F+ € bnd + (g ) ) 

= sup{dr(o, [F-M) : F- € gfbhd-tg),^ € gfbnd+(g)) 

= Sup{dT(o,[F-,F+]) : F_ € bnd.{Ukg),F+ € b n d + ( l / f e g ) ) 

As the function \1/ is a.e. finite and measurable, we can choose a number M such 
that 

P [¥(£) < M ] = p > 1/2 , 

then by the Ergodic Theorem applied to the transformation U for a.e. bilateral path g 
the density of times k > 0 such that 

sup{dT(flfftO,[JL,F+]) : JFL € bnd-(flr),F+ G bnd+(g)} < M 

equals p. 
Since the unilateral parts g and g of the bilateral path g are independent, it means 

that for P-a.e. unilateral path g and £L-a.e. class H- G MlAf the density of times 
fc > 0 such that 

sup {d T (MO , [F - ,F+] ) : F_ G i L , F + G bnd(gf)} < M 

equals p. The measure z/_ being non-atomic, there exist distinct H}_, G MlAf with 
this property. As p > 1/2, it means that for P-a.e. unilateral path g there exist an 
infinite sequence of times and i ? I ^ H2_ G MlAf such that 

s u p { d T ( ^ o , [ ^ i , F + ] ) : F+ G bnd(flf)} < M , Vfc > 0, » = 1,2 . 

Suppose bnd(flf) G MlAf \ US, and take F+ G bnd(gr), then 

dT{gnho,[Hl,F+\) < M , Vfc > 0, t = 1,2 . (2.2.5) 

Choose parametrizations U(t), t 6 E on the Teichmuller geodesic lines [Hl_,F+]. Since 
F+ G MlAf \ US, by [Ma3, Theorem 1] 

dT(li{t),To) —> o o . 
t—>--f-oo 
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On the other hand, by Lemma 1.4.1, the intersection of the M-neighbourhoods of the 
negative rays {k(t), t < 0 } is compact. Thus, there must exist only a finite number 
of distinct gnk satisfying the condition (2.2.5), which is impossible because gn (hence, 
gnk) tends to infinity by transience of the random walk ( I \ / / ) . 

Thus, we have shown that the measure v = v+ is concentrated on US, and by the 

decomposition (2.2.1) from Lemma 2.2.3 almost all limit measures \(g) = l img n u are 

5-measures corresponding to points from US. If v1 is another //-stationary probability 

measure on VMT, then by the Remark after Lemma 1.5.6 it has the same limit measures 

Y\mgnv = l i m g n v
f , so that in view of the decomposition (2.2.1) v1 = v, which means 

that v is the unique //-stationary measure on VMT. Since v is concentrated on US, 

the factorization map (MXAf, v) H > {MXM, V) is an isomorphism of measure spaces. 

As we have already shown that (MXAf,u) is a //-boundary, we have that the measure 

space {MXM, v) = (MXAf, u) is a //-boundary. 

(ii). We have shown that for P-a.e. sample path g there exists a point F = F(g) £US 

such that gnv -> 8p weakly. By Lemma 1.5.6 it implies that gnx —> F Wx € Tg. In 

particular, the distribution of the limits \imgnx is the same as the distribution of F(g) 
which has been shown to coincide with v. • 

Corollary 1. For any x € Tg the sequence of measures //n * Sx on Tg converges weakly 

to the unique pi-stationary measure v on VMT. 

Proof. By definition, 

p<n * Sx = J gnSx dP(g) . 

Since a.e. gnx -> bnd(flf) € US, and the distribution of the limit points bnd(flf) is v, 

passing to the limit (in the same way as in Lemma 2.2.3) yields the result. • 

Corollary 2- Any subgroup Tf ofT satisfying the condition (NE) is non-amenable. 

Proof. By Theorem 2.2.4 for any probability measure // on V with gr(/i) = Tf the 

Poisson boundary is non-trivial. By [KV] (see also [Ro]) this implies that Tf is non-

amenable, n 
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2.3. Identification of the Poisson boundary. 

Theorem 2*3.1. Let ft be a probability measure on the mapping class group T such 
that the group gr( / / ) C F satisfies condition (NE). If 

(i) The measure // has a finite logarithmic moment with respect to the Teichmuller 
distance 

] T //(7) l o g + dT(o, 10) < 0 0 ; 
7 

(ii) The measure // has a finite entropy 

7 

then the measure space (VMT,u)} where v is the unique fj,-stationary probability mea
sure on VMT, is the Poisson boundary of the pair (r,//). 

Proof We shall use the "strip criterion" from [KalO] (see also [Ka7]). It requires consid
ering a //-boundary (-B+, iv+) simultaneously with a //-boundary ( i ?_ , If there exists 
an equivariant measurable map assigning to a.e. pair of points ( F - , JF+) € B - x B+ a 
"strip" S(F~,F+) C F = To which is sufficiently "thin" in the sense that intersections 
of a.e. strip with balls in Tg grow polynomially, then (2?+,*/+) (resp., (J3_,i/_)) is the 
Poisson boundary of the measure // (resp., / / ) . 

By Theorem 2.2.4 there exist unique //- and //-stationary measures v+ and v~ con
centrated on US such that the spaces (US,v-) and (US,v+) are a /^-boundary and a 
//-boundary, respectively. Since the measures v± are purely non-atomic, for v~ ® j/+-a.e. 
pair (F~,F+) there exists a unique Teichmuller geodesic line [F_ ,F+] . Fix a reference 
point o, then the function [F~,F+] H-> [F~,F+]) is a.e. defined and measurable 
(see Lemma 1.4.3), and there exists M > 0 satisfying the condition 

v-®v+{(F-,F+):dT(o,[F-,F+])<M}>Q. 

Let 
5 ( F - , F + ) = {7 € r : d T ( 7 o , < M } 

be the "strip" in T associated with the pair of points F-,F+. By the definition of M 
the set of pairs (F-,F+) with non-empty set 5(F_,-F+) has positive V- ® measure, 
so that the ergodicity of the action of gr (//) on the product of the boundaries (US, v~.) 
and (US, i/+) [Ka6] (which follows from ergodicity of the Bernoulli shift U in the space 
of increments - cf. the proof of Theorem 2.2.4) implies that the sets S(F~, F+) are a.e. 
non-empty. 

Let 
B „ = {^eT:dT(o^o) < n } . 

Since the group T acts on the space Tg properly discontinuously, for any F~ =fi JP + G 
US the intersections S(F~,F+) D Bn grow at most linearly with respect to n, so that 
conditions of the strip criterion are satisfied. • 
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Theorem 2.3.2. Let fx be a probability measure on the mapping class group T such that 

the group gr(/i) C T satisfies condition (NE). If the measure \i has a finite first moment 

with respect to the Teichmuller distance 

X ! ^(7)^(0,70) < 0 0 , 
7 

then the measure space (VAiJ7, v), where v is the unique fi-stationary probability mea

sure on VMJ7, is the Poisson boundary of the pair ( I \ / i ) . 

Proof Theorem 2.3.2 follows from Theorem 2.3.1. Clearly, finiteness of the first moment 

implies finiteness of the first logarithmic moment, so that condition (i) of Theorem 2.3.1 

is satisfied. We have to check that finiteness of the first moment implies finiteness of the 

entropy of the measure JJL (condition (ii) of Theorem 2.3.1) as well. This follows at once 

from the fact that for any reference point o £Tg the number of elements 7 G T such that 

dT{o^6) < R grows exponentially as a function of R (Corollary 2 of Theorem 1.3.2). 

For the sake of completeness, we shall give here the corresponding standard argument 

( e .g , cf. [De2]). 

Let 

Dk = {7 e T : k - 1 < dT(o,jo) < k} , A: = 1 , 2 , . . . , 

so that r is the disjoint union of the sets Dk, and let 7r* = fx(Dk). Denote by a* the 

normalized restrictions of the measure fj, onto the sets Dk, so that fj, = Kk&k- Then 

H(fi) = H(7r) + J2^HM^ 
k 

where 

is the entropy of a discrete probability distribution p = (p$). The sets Dk grow at most 

exponentially, i.e., there is a constant C > 0 such that log card Dk < Ck. Then by 

standard properties of the entropy 

^2^kH(ak) < y ^ 7 r f c logcardPfc < C ^ ^ k < C [dT{o^o) + l}^) < oo . 

k k k 7 

On the other hand, monotonicity of the function t \-> —ilogi on the interval [Oje""1] 

implies that 

H(n) = ^(-log7rfc)7TA; < ]Pmax{fc,-log7Tfc}7rA; < ^2 k7Tk + ] C k e ~ k < 0 0 ' 

k k k k 

• 



44 VADIM A. KAIMANOVICH, HOWARD MASUR 

Corollary. Let /j be a probability measure on the mapping class group T such that the 
group gr(/i) C F satisfies condition (NE). If the measure /a has a finite first moment 
with respect to a word length in T, then the measure space (VAiJ7, v) is the Poisson 
boundary of the pair (I\/x). 

2.4. The mapping class group and lattices in semi-simple Lie groups. 

Furstenberg in [Fu2] (see also [Fu3]) proved the following remarkable result on lattices 

in semi-simple groups of rank > 2. If G is such a lattice, then there exist a probability 

measure fi on G with supp /j, = G and a number e > 0 such that for any two //-harmonic 

functions fx and /2 on G conditions 

(i) 0 < / f - ( f l f ) < l V f l f € G , t = l , 2 , 
(ii) fi{e)>\-e, ¿ = 1 , 2 

imply that min{/ i (#) , / 2 ^ ) } does not tend to zero as g -» 00 [Furstenberg considered 
the group of real unimodular matrices only, but his argument verbatim carries over to 
general real semi-simple Lie groups]. Using this result of Furstenberg we shall now prove 
the following theorem. Note that the question about non-arithmeticity of the mapping 
class group T (answered positively by Ivanov [Ivl]) was first asked by Harvey [Ha]. 

Theorem 2.4 .1 . Any subgroup Tf of the mapping class group satisfying condition (NE) 
is not isomorphic to a lattice in a semi-simple Lie group of rank > 2. The mapping 

class group itself is also not isomorphic to a lattice in a rank 1 semi-simple group. 

The fact that V is not isomorphic to a lattice in a semi-simple Lie group was proved 
in [Ivl]. Our theorem includes a new proof of that result. Note that a subgroup of T 

satisfying (NE) may however be a lattice in a rank 1 group. For an example take the 
subgroup generated by the Dehn twists about two curves that fill the surface. This 
means that every component of the complement of the two curves is simply connected. 
Such a subgroup is a finite index subgroup of 51,(2, Z). On the other hand, since 
it contains pseudo-Anosov elements [FLP] which have attracting and repelling fixed 
points, it is easily seen to satisfy (NE). 

Proof. First recall that V can not be isomorphic to a lattice in a rank 1 semi-simple group 

for the following reason (this argument was suggested by Ivanov): it contains an element 

whose centralizer is non-amenable (two Dehn twists commute iff the corresponding 

curves do not intersect; otherwise they generate a non-amenable group), whereas the 

fundamental group of a finite volume negatively curved pinched Riemannian manifold 

can not have this property [BGS]. 

Thus, we only have to prove that a subgroup f C T satisfying (NE) is not isomorphic 

to a lattice in a semi-simple Lie group of rank > 2. 
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Let /i be an arbitrary probability measure on T' with supp/i = T', and v - the 
unique ^-stationary probability measure on VMfF (Theorem 2.2.4). We claim that for 
any e > 0 

(i) There are two sets Q\,Q2 C VMT such that vQi > \ — e/2 and for any point 

F € MlAf there is a neighborhood U of F which does not intersect Qi and Q2 

simultaneously; 
(ii) There is a neighborhood V of VMT \ MlAf such that vV < e/2. 

As we have shown in Lemma 1.1.2, every minimal foliation F € MlAf determines 

an infinite expansion [TO] > [ti] > ... by train tracks, and any two minimal foliations 

are equivalent if and only if they have the same sequence of [TO], [TI], . . . . Denote by £ n 

the partition of MlAf into the sets X? = -X*([r0], [TI], . . . , [ r n ] ) obtained by fixing the 

first n + 1 terms in the train tracks expansion. Any set X" is the open interior of a 

polyhedron in VMT. As it follows from Lemma 1.1.2 and the fact that the measure 

v is concentrated on US (Theorem 2.2.4), the measurable intersection of the increasing 

sequence of partitions £ n is the point partition of the measure space {US, v). Hence, 

m a x i / X f — > 0 . 
i n—•oo 

Thus, for a sufficiently large n there are two disjoint sets Q[ and Qf

2 which are finite 

unions of the sets X", and vQ't, vQf

2 > ~ — e/4. Let N be the maximal number of the 

sets X" in these unions. For any X" one can take a closed subset Y{ C X" such that 

vX? — vYi < e/4Ny so that replacing the sets Q[, Q2 with the corresponding unions of 

the sets Y{ we obtain two disjoint closed sets Qi, Q2 with vQ\,vQ2 >\—ej2. Moreover, 

since each equivalence class F is closed, there is an open neighborhood of F which does 

not intersect Q\ and Q2 simultaneously. 

As for (ii), the complement VMT \ MIA! is a countable union of the sets 

Ea = {F € VMT : i(F,a) = 0 } , a e S . 

Take an ordering a u a2,... in S. By Theorem 2.2.4 v(VMT \ MlAf) = 0, so that 

vEai = 0 V i , Since the sets Ea are Gs (see the proof of Lemma 1.5.6), for any i there is 

an open neighbourhood Vi of Eai with uVi < e / 2 l + 1 . Then the set V = {Ji VJ satisfies 

the condition (ii). 

Now take the sets Q i = Qi \ V, and consider the /u-harmonic functions 

Mg) = gv(3i), ¿ = 1 , 2 . 

Then clearly 

0 < fi{g) < 1 V# G F , 
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and 

fi(e) = vQi>vQi-vV>i-e. 
We claim that 

wmtfMJiig)} —• 0 , 
g~+oo 

which by Furstenberg's theorem would imply that TF cannot be isomorphic to a lattice 
in a semi-simple Lie group of rank > 2. 

Since any sequence in V which tends to infinity contains a strongly universally con
vergent subsequence, we may assume that we are given a strongly universally convergent 
sequence gn. Moreover, by compactness we may also assume that the sequence of trans
lations gnu weakly converges to a measure A. Under these assumptions we have to 
show that m i n { / i ( # N ) , / 2 ( < 7 n ) } —» 0. By Lemma 1.5.6 A is concentrated either on a set 
H, H £ MZN, or on VMF \ MlAf. In the first case eventually an arbitrarily large 
part of the measures gnv is concentrated on a small neighborhood of if, and we are 
done by (i) . Suppose A is concentrated on VMT\ MIAf. Then gnv(V) -> 1, and so 

9nv(Qi) = fi(gn) ->o. • 

3. T H E POISSON BOUNDARY OF INVARIANT M A R K O V OPERATORS 

ON TEICHMULLER SPACE 

3 .1 . Invariant Markov operators on Teichmuller space. 

Suppose that one has assigned in a measurable way a probability measure 7rx to any 
point x €Tg. Then the family of measures nx, x G Tg determines a Markov chain on Tg 

with 7rx being the distribution of points where one can get from x in one step. Denote 
by Px the probability measure in the space T^ of sample paths x = { . r o , # i , . . . } 
of this chain corresponding to the initial distribution 8X, x £ Tg (i.e., the measure 
Pa: is concentrated on sample paths which start from the point XQ = x at time 0). 
For an arbitrary cr-finite initial distribution 6 (not necessarily a probability one!) put 
P$ = JPxde(x). 

Fix a smooth reference T-invariant Radon measure m on Tg (i.e., m(K) < oo for all 
compact sets K C Tg), and suppose that all transition probabilities nx are absolutely 
continuous with respect to m with densities p (x , - ) . We shall always assume that the 
transition probabilities TTx are T-invariant (more precisely, T-equivariant), i.e., 

K~IX = IKx V 7 € T, x € Tg , (3.1.1) 

which by T-invariance of the measure m is equivalent to T-invariance of the transition 
densities p(-, • ) . Then the transition Markov operator 

Pf{x) = </,7r x) = J f(y)p(x,y)dm(y) (3.1.2) 
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in the space L°°{Tg,rn) is T-invariant (i.e., commutes with the action of T). Since T acts 
on Tg properly discontinuously, and the measure m of points from Tg with non-trivial 
stabilizers is zero, P is a covering Markov operator in the sense of [Ka9] with the deck 
transformations group T, i.e., there exists a measurable "fundamental domain" X cTg 

such that all its T-translations are pairwise disjoint, and the complement of (J jX in Tg 

has zero measure m (in the case g = 2 instead of T one has to take its quotient V with 
respect to the two-element normal subgroup generated by the hyperelliptic involution). 

Denote by Q the adjoint operator of P acting in the space of measures on Tg. In 
probabilistic terms, 

. Q0(E) = Pe[x! G E] , EcTg, 

i.e., Q assigns to an initial distribution 0 the distribution of the position of the Markov 
chain at time 1. Since P has absolutely continuous transition probabilities, the operator 
Q preserves the type of the measure m (moreover, QO -< m for any measure 0 on Tg) 
and acts in the space of densities <p = d0/dm by the formula 

Q<f(v) = ^(V) = JP(x,y)d0(x) = J<p(x)p(x,y)dm(x) . (3.1.3) 

A measure 0 is called P-stationary (or, P-invariant), if Q0 = 0. 

In the same way as for random walks on groups, one can define P-harmonic functions 
and the Poisson boundary of the operator P (see Section 2.1). A function / on Tg is 
called P-harmonic if Pf = / . Denote by dP the Poisson boundary of the operator P , 
i.e., the space of ergodic components of the shift in the unilateral path space ( T ^ + , P m ) , 
and by bnd the corresponding projection T z + -> dP. By [v] denote the harmonic 
measure class on c?P, i.e., the class of measures u$ = bnd(P^), where 0 is a probability 
measure equivalent to m. The Poisson boundary is endowed with a natural T-action 
induced by the action of T on the path space by coordinate-wise translations, and the 
harmonic measure type [v] is invariant with respect to this action. For any point x € Tg 

the harmonic measure vx = bnd(P x ) is absolutely continuous with respect to the type 
[z/], and the Poisson formula 

is an isometric isomorphism between the space of H°°(P) = { / G L°°(Tg,m) : Pf = /} 
of bounded measurable P-harmonic functions and the space L°°(dP, [v]) [Ka5], [Ka9]. 

3.2 . Balayage and the Harnack inequality. 

For a measurable set V with m(V), m(CV) ^ 0 (here CV = Tg \ V is the complement 
of V) denote by A = Ay the balayage operator of the set V which assigns to an initial 
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distribution 9 the distribution of the first exit point of the Markov chain determined by 
the operator P from V, i.e., 

A9(E) = P$[xr € E] , 

where 
t(x) — tqv(x) = min{n > 0 : x n G CV} 

is the time of the first exit from V. The measure A9 is called the balayage of the measure 
9. Note that we define balayage for all measures on Tg, not only for those supported 
on V; if 9{V) = 0, then by definition A9 = 0. In general, the total mass ||A0|| of the 
measure A6 can be less than the total mass of 9 (if the measure P$ of those sample 
paths which never leave V is non-zero). However, if the set CV̂  is recurrent in the sense 
that P m - a . e . sample path eventually hits CV, then ||A0|| = for any measure 6 on T. 

Denote by Py the sub-Markov operator with the state space V obtained by restricting 
P to V , so that it has the transition densities 

' \ 0 , otherwise. 

Then P — Py is also a sub-Markov operator. In terms of the adjoint operators Q and 
Qy the result of applying the balayage operator A to a measure 9 supported on V can 
be expressed as 

oo oo 

A8 = Y,(Q- Qv)QW = (Q- Qv) ] T Q^e 
n=0 n=0 

(each term (Q — Qy)Qy9 in this sum corresponds to staying in V for the first n steps 
and exiting to CV at the time n + 1). Hence, we have 

L e m m a 3 .2 .1 . If there is a constant H such that 

oo oo 

n=0 n=0 

for two measures #i,#2 on V, then 

A91 < HA92 . 

If | |A^|| = 1 for a probability measure 9 on Tg, i.e., P#-a.e. sample path eventually 
leaves the set V , then the harmonic measures us and v\e on the Poisson boundary 
coincide (this is so because A0 is the distribution of the first exit point x(t$v ) determined 
by the Markov stopping time tqv - see [Ka5]). In particular, if the set ZV is recurrent, 



49 POISSON BOUNDARY OF TEICHMÜLLER SPACE 

then the values on V of any bounded P-harmonic function can be recovered from its 
values on CV by the formula 

/ ( * ) = < / > * > = < / > A O = < / , A ^ ) . (3.2.1) 

Let 

ri(x) = min{n > 0 : xn G CV"} , 

T f c + i ^ ) = min{n > rk : xn 6 ZV} 

be the times when a sample path x = {xn} hits the set CV, then {xTk} are sample 

paths of the induced chain on CV corresponding to the operator P^v with transition 

probabilities Airx> x G CV. The Poisson boundaries of the operators P and P C v are 

isomorphic; for any bounded P-harmonic function its restriction to CV is P C v r -harmonic, 

and, conversely, any bounded P^-harmonic function uniquely extends to a P-harmonic 

function on T by the formula (3.2.1) [Ka5]. 

Below we shall impose on the measure m and the transition densities p ( v ) the 
following additional conditions. 

(P i ) There exist e,5 > 0 such that mB(x,e) > 8 V z 6 Tg. 

(P2) There exists a constant C such that p(x,y) < C V x , y G Tg. 

( P 3 ) There exists R > 0 such that p(x,y) = 0 whenever dr(x,y) > R. 

(P4) There exist c > 0 and ri ,r2 with 0 < ri < r2 < R, T2 — ri > 4e such that 

p(x,y) > c whenever ri < drix^y) < r<i. 

Here (P i ) and (P2) can be considered as "bounded geometry" conditions, ( P 3 ) is a 
bounded range condition, and (P4) is an irreducibility condition. Note that condition 
(P4) implies that mB(x,e) < 1/cV.z G Tg. An analysis of the arguments below shows 
that condition (P4) could be significantly relaxed. Moreover, Theorem 3.2.2 uses con
ditions ( P i ) - (P4) only locally, so that for proving Theorem 3.3.2 it is just sufficient to 
have conditions (P i ) - (P4) satisfied on a big compact subset (and its translations) in Tg 

only. However the bounded range condition (P3) has to be satisfied for all points x £Tg 

for proving the moment estimates in Theorem 3.4.2. The constants e ,<£,c,C,r^,r2 ,R 

from conditions ( P i ) - ( P 4 ) will be used through the rest of this Section without further 
notice. 
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Theorem 3.2.2 (Harnack inequality). Let P be a T-invariant Markov operator on Tg 

satisfying the conditions (Pi) - (P4)' For a point o G Tg and a number M > 0 denote 
by A the balayage operator of the ball V = 2?(o, M + R) of radius M + R centered at o. 
Then there exists a constant H > 0 depending on M and the constants from conditions 
(Pi) - (P4) such that 

A6X < HA8y Vz , y G B ( o , M ) . 

For convenience we shall first prove the following auxiliary statements. 

Lemma 3.2 .3 . There is a number N = N(M + R) such that for any two points z,z G 
I?(o, M + R) there exists a chain of points z = Zo, z \ , . . . , zjq —z inTg with the property 
that 

dT{zi, Zi+X) = ( n + r 2 ) / 2 = r Vt = 0 , 1 , . . . , iV - 1 

and 
dT{zi,o) <M + R - e Vt = l , 2 , . . . , i V - 1 . (3.2.2) 

Proof. It takes at most [ (M + R)/r] steps of length r to attain a point zf G B(o,r) by 
moving from z to o along the Teichmuller geodesic segment [2, o] (here [•] is the integer 
part). Then by continuity of the function x >-» dT(z',x) on the sphere 5 (o , r) it takes 
at most 2 steps to attain o from z'. Concatenating the chains joining z and z with o 
we obtain that one can get from z to z in not more than 2[ (M + i?) / r ] + 4 steps. As 
we want all chains to have the same length, we can further add to any such chain 2 
segments [o, x], [x, o] or 3 segments [o, x], [ X, X j , ^x , ] with x,x* e 5 (o , r), dT(x,xf) = r 
several times until we get a chain of length AT = 2[ (M + R)/r] + 6. The chain obtained 
in this way satisfies condition (3.2.2), because e < r < R — e by (P4). • 

Lemma 3.2.4. If d(xo,yo) = r, and 6 is a measure on Tg such that dd/dm > 1 on 
B(xo,s), then dQ6/dm > c6 on B(yo,e). 

Proof. Since 

\dT(x,y) - r | < 2e Vx <E B(x0,e), y G B{yQ,e) , 

by formula (3.1.3) and by conditions (Pi), (P4) for any y G B(yo,e) 

~^~(y) ^ JP(x^y)^(x)dm(x) ^ cmB(x0le) > cS . 

• 

Proof of Theorem 3.2.2. First notice that by condition (P3) the measure QSX is sup
ported on V for any x G J ? (o ,M) , so that A<^ = AQ6X. Now, by Lemma 3.2.1 it is 
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sufficient to prove that for any x G B(o,M) the density of the measure (%2Qy)QSx 

with respect to the restriction m y of the measure m to V is uniformly bounded from 
below and from above. 

By condition (P4) there exists an e-ball in V such that the density of the measure 
QSX is at least c on this ball. Take the number N from Lemma 3.2.3, then Lemma 3.2.4 
applied to the operator Qy implies that c(cS)N is a lower bound of the density of the 
measure QyQSx with respect to the measure my. 

For obtaining an upper bound note that the operator Qy acts in the space L°°(my), 
and 

I I Q v l l o o < esssuppv(x,y)m(V) < Cm(V) . (3.2.3) 

The transition densities py of the operators Qy satisfy the relation 

Pv*k(xi V) = JPv{x,z)pl(z,y)dm(z) Vn,fc > 1 , 

so that 

esssupp^~*(x,y) < ess sup py(x,y) Vn,fc > 1 . (3.2.4) 

Moreover, there exists a constant ko and a number a > 0 such that 

Jpty(x, z)dm(z) < 1 - a V z G V 

(cf. the proofs of Lemmas 3.2.3 and 3.2.4). Hence, 

ess sup py+ko(x, y) < (1 - a)esssuppy(x, y) V n > l . (3.2.5) 

Formulas (3.2.4) and (3.2.5) imply that ess supp^(x, y) decays exponentially on n. Thus, 
by (3.2.3) || || 0 0 a l s ° decays exponentially, hence 

Note that the convergence | | Q y | | o o —> 0 implies that the set ZV is recurrent. • 

Remark. In fact, Theorem 3.2.2 holds for an arbitrary metric space satisfying the prop
erty formulated in Lemma 3.2.3. In particular, it applies to geodesic random walks on 
Riemannian manifolds with bounded geometry. 
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3.3. Discretization of corecurrent Markov operators. 

By m denote the measure on the moduli space Mg = Tg/T which is the image of 
the restriction of the measure m to any fundamental domain in Tg under the projection 
x h^x from Tg to Mg. Since the transition densities of the operator P are T-invariant, 
the projection {3Fo,x i , . . . } of the Markov chain { # o , £ i , • • • } from Tg to Mg is also a 
Markov chain with transition densities with respect to the measure m 

where x,y G Tg are inverse images of the points x,y £ Mg. The corresponding quotient 
Markov operator P on L°°(Mg,m) can be identified with the restriction of the operator 
P to the subspace of T-invariant functions in L°°(Tg,m) [Ka9]. By denote the 
probability measure in the path space of the quotient Markov chain {#o> • • • } with 
the initial distribution concentrated at a point x. 

By Lemmas 3.2.3 and 3.2.4 the operator P is irreducible, i.e., there are no non-trivial 
sets E C Mg such that the characteristic function 1# £ L°° (M^ ? m) is P-harmonic. 
Thus, either for any measurable set E C Mg with 0 < m(E) < oo and any x £ Mg the 
probability P^ of visiting the set E is strictly less than 1, or any measurable set E C Mg 

with m(E) > 0 is recurrent (Hopf's dichotomy). In the latter case the operator P and 
the corresponding Markov chain are called Harris recurrent [Fo], [Kre], [Rev] (recall 
that P is always assumed to have absolutely continuous with respect to m transition 
probabilities). In this situation we shall say that the covering operator P (and the 
corresponding Markov chain) is corecurrent. If P is Harris recurrent, then there exists 
a unique (up to a constant) P-stationary measure A on Mg absolutely continuous with 
respect to m. If the measure A is finite, then the operator P is called positively Harris 
recurrent. Denote by A the (P-stationary) lift of the measure A to Tg. 

Lemma 3 .3 .1 . Under conditions (P i ) - (P4) , if the quotient operator P is Harris 
recurrent, then the P-stationary measure A on Mg is a Radon measure. 

Proof. As it follows from Lemma 3.2.3 and conditions (P i ) , (P4) (see the proof of Lemma 
3.2.4), for any R > 0 there exists a number a = a(R) such that 

dX 
— {x) >a\B{y,e) V o G T ^ , x,yeB(o,R) . 

In particular, the derivative d\/dm is positive m-a.e. Since dX/dm is a.e. finite, the 
above inequality also implies that XB(y,e) < 00 for any y G Tg, so that A is a Radon 
measure (because all balls in Tg are compact). • 
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Theorem 3.3.2 (cf. [Fu3], [LS], [Ka4]) . Let P be а Г-invariant Markov operator on 
Tg satisfying conditions (P i ) - (P4). If the quotient operator P is Harris recurrent, then 
for any point о € Tg with trivial stabilizer in Г there exists a probability measure ц on 
Г such that the Poisson boundary dP of the operator P with the harmonic measure vQ 

is isomorphic as a measure Г-space to the Poisson boundary dP^ of the random walk 
(T,/jl). For any bounded P-harmonic function on Tg its restriction to the orbit To == Г 
is a bounded p-harmonic function, and, conversely, any bounded pi-harmonic function 
can be uniquely extended from the orbit To to a bounded P-harmonic function on Tg. 

Proof. The proof will consist of several steps. First we describe a construction of the 
measure p, and then show coincidence of the Poisson boundaries dP and <9PM. 

1. Construction of the measure p. 
We begin by choosing a constant M and a measurable set E С J3(o, M ) such that 

m(E) > 0, and all translations ^E, 7 € Г are pairwise disjoint. Let x y(x) be the 
map from ТЕ to Г uniquely determined by the condition x 6 /y(x)E. Now for every 
point x € Tg we shall construct a probability measure px on the group Г in such a way 
that the harmonic measure vx on dP satisfies the relation 

V X = »'№10 = £ FHHVO • ( 3 . 3 . 1 ) 
7 € Г 7 € Г 

We do it by an iterative construction described below. Namely, we construct a sequence 
9k = 0% of measures on Tg and a sequence xk = xk of measures on Го = Г such that 

(i) i/*0 = ux ; 
(ii) veh = и в к + 1 + v„k+1 Vfc > 0 ; 

(iii) W I - • < > . 

Thus, we begin with the harmonic measure ux = u$0, and at each step we single out 
a part of it which can be replaced with the harmonic measure of a distribution (denoted 
Xfc+i) concentrated on Го = Г. Condition (iii) says that finally the whole measure vx 

will be exhausted. The resulting measure 

*>i 

then clearly has the property (3.3.1). 

Denote by Л the balayage operator of the set V = P ( o , M + R), and let uj = AS0. 
Put 

t 70;, x = 70 . 



54 VADIM A. KAIMANOVICH, HOWARD MASUR 

In other words, if x = 70 belongs to the orbit To, then 6Q is the balayage of the measure 

Sx = jS0 to C 7 V ; otherwise, #o = Sx. Clearly, this choice of 9Q satisfies condition (i) 

above. The reason why if x = 70 we take 6Q = 7 ^ rather than OQ = $x should become 

clear in the course of the proof. 

Now we define the iterative procedure. Since m(E) > 0 and the quotient operator 

P is Harris recurrent, the set YE is recurrent for the operator P. Hence, we can 

balayage the measure 0* to YE. Denote the resulting measure on YE by and 

denote by 7 € Y the restrictions of £¿+1 to the translations 7JB, 7 € T, so that 

Let = l^l^tk+i ^ e ̂ e balayage of the measure to the set C 7 V , then 

and 

= £ • 
As it follows from Theorem 3.2.2, for any 7 € T 

IIC f c

7

+ 1 l |-^ 7 ' 

thus if we put 

, x HCZflll II 
^ + 1 ( 7 ) = H = g > 

then all measures 

=Cfc+i -**+i(7)7«> 
are non-negative. Let 

Ok+i = ' 

then, since uw = v0 by definition of the measure to (so that = v10 — ̂ vQ for any 

7 € T) , we have 

7 7 
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and condition (ii) is satisfied. Finally, by the construction 

\\ek+1\\ = (i-i/H)pk\\, 

so that the total masses decay exponentially, and condition (iii) is also satisfied. 
Clearly, all measures fix are supported on the whole group I\ Note also that the 

construction is T-equivariant, so that 

¡¿1* = v 7 e r , ^ r 5 . 

2. Coincidence of the Poisson boundaries. 

The fact that the restriction of any bounded P-harmonic function from Tg to the 

orbit To = T is a /i-harmonic function for the measure // = //° follows from formula 

(3.3.1). Indeed, if / is a bounded P-harmonic function, then by the Poisson formula 

there exists a bounded measurable function / on the Poisson boundary dP such that 

f(x) = (f,ux) V x € T s . 

By (3.3.1) the measure v = v0 is //-stationary, i.e., v = X ^ 7 /
i ( 7 ) 7 l / - Thus, for any 7 G T 

/ ( 7 0 ) = < / , 7 " ) = £ ^ ) ( / , 7 7 V > = £ > ( 7 ' ) / ( 7 7 ' o ) • 
7 ' V 

Note that this statement is in fact equivalent to saying that the harmonic measure 

v0 of the point o on the Poisson boundary of the operator P is //-stationary, so that 

for any other point of ^ o the restriction of any bounded P-harmonic function to the 

orbit To* is //-harmonic (under the identification 7 f> 70') iff the harmonic measure v0' 

is /i-stationary for the same measure /i. Except for some special situations [Ka9], there 

is no reason for this to be true (although, of course, the measure v0i is //-stationary for 

the corresponding measure // ' obtained by taking of as the reference point in the above 

construction). Even if of belongs to the T-orbit of 0, the measure v0> does not have to 

be /i-stationary. Indeed, if o1 = go, g G T, then /i-stationarity of v0 means that 

Vo, = gUo = g^vilhv = ^MflOfln^""1^' , 
7 7 

i.e., that i v is stationary with respect to the measure = g[xg~x obtained from /i con
jugating it by g (in fact, is exactly the measure obtained from the above discretization 
construction for the reference point 0' instead of 0). 

Now we want to show that, conversely, for any bounded //-harmonic function / on 

the orbit r0 = T its extension to Tg by the formula 

/ ( * ) = 5 > * ( 7 ) / ( 7 ° ) 
7 
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is P-harmonic. 
We shall prove this statement by constructing a sequence of Markov operators con

necting the operator P with the operator P M of the random walk and such that 
the Poisson boundaries of any two consecutive operators in this sequence coincide (this 
argument will also give another proof of the fact that the restriction of any bounded 
P-harmonic function to To is /i-harmonic). 

First we have to reformulate the iterative process from the first part of the proof 
in terms of Markov stopping times. This process includes balayages, for which such 
reformulation is straightforward, and subtracting from the measures < ^ + 1 the measures 
( I IC jb+i l l / ^T^- ^he l a * t e r operation can be realized by introducing a new random 
variable a uniformly distributed on [0,1] and independent of all the rest, and stopping 
the process when a does not exceed the Radon-Nikodym derivative of the measure 
(IICfc+i 11 / ^ ) 7 ^ with respect to the measure Cfc+r 

For a sample path x = {xn} let 

S0(x) = [ °' 9 * T 9 ' 
\ min{n > 0 : xn € C7V}, x = 70 , 

and we define inductively 

Rk+i(x) = min{n > Sk(x) : xn € TE] , 

7*+i(*) = 7 ( » f l » + i ) € r , 

Sk+i(x) = min{n > Rk+i{x) : xn G £jk+iV} . 

For a pair of points y € z € CV let 

be the Radon-Nikodym derivative of the measure u> = ASQ with respect to the measure 
ASy evaluated at the point z, and let 

A ( 7 ; y , z ) = A ( 7 ~ 1 j / , 7 - 1 z ) = d ^ ^ i S (z) » 7 € r,y € iE,z € C 7 y 

be the Radon-Nikodym derivative at the point z of the measure 70; with respect to the 
balayage of the measure 8y to C 7 V . 

Take a sequence of i.i.d. random variables a = { a n } n > o which are independent of 
the chain {xn} and have Lebesgue measure p on the interval [0,1] as their common 
distribution. Formally, it means that from now on we pass from the original path space 
(T,f + , P x ) to its product with the measure space ([0, l ] z + , ) , where pz+ is the infinite 
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product of measures p indexed by the set Z + . Denote the product measure <g> p2* 

on (Tg x [0, l ] ) 2 ^ by Px. The measure P x corresponds to the initial distribution 8X® p 

in the space of the sample paths ( # , a ) of the Markov operator 

Pf(z,a) = Jj f(y,p)dnx(y)dp((1) 

whose transition probabilities irx ® p do not depend on the [0, l]-component. 
Define 

T o ( * , a ) = 0 , 

and for m > 0 by induction 

Tm+1(x,a) =mm{k > Tm : aSk < ^A(^k,xRk,xsk)} 

(as A(7^,a:^?^5'^) > l / # by Theorem 3.2.2, the times Tm are a.e. finite). 

Claim 1. The measures fjtx constructed in the first part of the proof can be presented 

as 

»x{l) = P* [in = 7] • (3.3.2) 

Indeed, by definition of the stopping time So the distribution of xs0 coincides with 

the measure Oo- Now we shall prove by induction that Ok is the distribution of xsk 

restricted to the set [Ti > k] (by "restricted" we mean here that Ok is the image under 

the map (x, a ) H > xsk of the restriction of the measure Px to the set [7\ > &]), and 

is the distribution of 7̂  restricted to the set [Ti = k). As = ]T] , the latter will 

imply (3.3.2). 

Suppose we have already proved this assertion for Ok and x^. Then the stopping 

time Rk+i corresponds to the balayage of the measure Ok to the set YE, so that the 

distribution of XRH+1 restricted to the set [T\ > k] is the measure = X^fjb+i-

After that the stopping time 5*+1 corresponds to the balayage of each of the measures 

from the corresponding set */E to the set C7V, so that the distribution of xsk+1 

restricted to the set [Ti > k] is Yj^Gk+v ^ o w definition of the stopping times Tm 

means that given XRk+1 and xsk+1, we have Ti = k + 1 with the conditional proba

bility A(lk+iiXRk+1,xsk+1)/H which is the Radon-Nikodym derivative of the measure 

1k+iw/H with respect to the measure 7k+iA^'j^1SXR evaluated at xsk+1. 

In order to find the unconditional probability of the event [Ti = k + 1] we have 

to integrate these conditional probabilities with respect to the conditions. Here we 

condition by XRk+1 and xsk+1, so that we have to integrate first with respect to the 

conditional distribution of xsk+1 conditioned by XRk+1, and then with respect to the 

unconditional distribution of XRkJtl. As the measure 7 * + i A 7 i ^ 1 £ C H is precisely the 

conditional distribution of xsk+1 provided XRk+1 is fixed, the result of the first integration 
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is the measure /jk+iw/H for any XRK+1 (i.e., it depend only on yk+i = 7 (^^+1)) - Thus, 
the second integration with respect to XRK+1 just reduces to multiplying the measures 
JLJ/H by the probability that 7^+1 takes a given value 7, the latter being exactly 1|. 
So, we obtain that the distribution of 7^+1 (resp., # s f c + 1 ) restricted to the set [T± = k+1] 
is xjfe+i (resp., ]T) ^-1-1(7)7^)? and that the remaining measure 0k+i is the distribution 
of restricted to the set [Ti > k + 1]. A 

In defining the measures JJLX we had to use two stopping times Rk and Sk-, both of 
which are Markov. However, the definition of Sk includes the position XRH of the Markov 
chain {xn} at the time Rk* If we want to use the formula (3.2.1) for proving coincidence 
of the Poisson boundaries, we have to extend the original Markov chain {xn} by adding 
a component x'n which keeps track of the positions XRH until the moment Sk is attained. 
The second component xn of the extended chain {(xf

nixn)} on Tg x Tg coincides with 
the original chain on Tg, whereas the first component x'n once in TE remains unchanged 
until the second component leaves the set 'y(x'n)V; otherwise xf

n = xn. In other words, 
paths {xn} of the original chain determine paths {(xf

n,xn)} of the extended chain by 
the formula 

< = { ' * ' * < B * 5 ' : (3.3.3) 
^ xn , otherwise . 

The transition probabilities of the extended chain are 

' 8X> ® nx , if xf e TE, x e -y(x')V ; 

•< S x ® t t x , ifx'eTE,xeZ'y(x')VnrE\ 
diag t c x , otherwise . 

Claim 2. All sequences of random variables in the succession 

{ # n } • {(xnixn)} * { ( x m x n - > &n)} 

> { ( x R T m » x S T m , «5rm )} > i x S T r n } > {7Tm} • 

axe Markov chains, and all these Markov chains have the same (in a natural sense to be 
specified in each case) bounded harmonic functions, hence, the same Poisson boundary. 

We shall consider transformations in (3.3.4) step by step. 

1. As we have just seen, the chain {(xf

n,xn)} is Markov. As the set V is relatively 
compact, CrV is a recurrent set for the chain {xn}, and diagClTV is a recurrent set 
for the chain {(xf

nJxn)}. By definition of {{xf

n,xn)} the corresponding induced chains 
on CrV and diag CrV are isomorphic, so that by formula (3.2.1) the chains {xn} and 
{(xf

n,xn)} also have the same Poisson boundary. In particular, all harmonic functions 
of the chain {(xf

n,xn)} depend on the second component only. 



59 POISSON BOUNDARY OF TEICHMÜLLER SPACE 

Another explanation of why {xn} and {(x'n,xn)} have the same Poisson boundary 

can be obtained by using directly the definition of the Poisson boundary as the space 

of ergodic components of the time shift in the path space. Indeed, formula (3.3.3) 

states an isomorphism of the measure spaces of sample paths of the chains {xn} and 

{(xf

n, xn)}. As the chain {xn} is a quotient of the chain {(x'n, xn)}, its Poisson boundary 

must be a quotient of the Poisson boundary of {(xf

n, xn)}. On the other hand, if two 

paths {xn} and {yn} are trajectory equivalent for the shift in the path space, i.e., if 

there exist integers n i , n 2 such that xni+n — yn^n V n > 0, then the corresponding 

paths {(x'nJxn)} and {(yn,yn)} are also equivalent (for, with probability 1, there exists 

an arbitrarily large N such that XN G Cry , and for any such N all stopping times 

RkjSk > N are determined by the positions # n , n > N only). 

2. This transformation consists in adding a sequence of i.i.d. random variables {an} 

independent of {xn} (hence, of {{x!

n, xn)}). As the transition probabilities of the chain 

{(x'n,xn,an)} do not depend on the a-component, the chain {{xf

n,xn,an)} has the 

same harmonic functions and the same Poisson boundary as the chain {(xf

ny xn)}. 

3. This step consists in passing to the induced chain on the recurrent subset 

A ={{x',x,ct) : x1 G x G l~t(x')V, <* < ^A^x^x^x)} (3-3.5) 

which again does not change the Poisson boundary by (3.2.1). 

4. The transition probabilities 7r^, of the chain obtained on step 3 depend only 

on the component x of the triple ( # ' , £ , a ) ; denote their projections to the rr-component 

by 7rf

x. Then clearly {xsTm} is a Markov chain with transition probabilities 7 1 ^ , and 

all (7 r^ /^ a ) -harmonic functions F have the form F(xf,xya) — / ( # ) , where / is a ( t t £ ) -

harmonic function on Tg. 

5. As we have shown in the proof of Claim 1, the transition probabilities n'x are 

convex combinations of translations of the measure u: 

* ; = I > * ( 7 b w (3.3.6) 
7 

On the other hand, 

/i = fi° = J fix du){x) 

because we construct [X by the balayage beginning with u> while /jtx is constructed from 

Sx for all x G Tg \ To, and the balayage of u is the integral with respect to u of the 

balayee measures of 8X (clearly, u(To) = 0). [The latter formula is the reason why in the 
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definition of the measures px we had to treat the points from the orbit To differently.] 

Then 

/ vxdw(x) = £ ^ ( 7 ) 7 0 ; , 
J 7 

i.e., the result of applying the transition probabilities nf

x to the measure to is a sum 

of translations ju> with weights ¿¿(7). This fact alone is sufficient to show that there 

is a natural isomorphism between the spaces of bounded (7r^)-harmonic functions and 

bounded /i-harmonic functions on I\ However, for our further purposes we shall also 

exhibit explicitly the corresponding random walk (namely, the sequence { 7 r m } ) -

A one-to-one correspondence between bounded (7r^)-harmonic functions / on Tg and 

bounded /i-harmonic functions / on T is given by the formula 

7 (7 ) = </>7<") • 

Indeed, let / be (7r^)-harmonic Then for any x 

f(x) = ( / , < ) = $ > * ( 7 ) < / , 7 « > = £ ^ ( 7 ) 7 ( 7 ) , 

7 7 

whence integrating by x with respect to the measure u; we get that / is /i-harmonic at 

the identity e. By T-invariance of the Markov operators involved it implies that / is 

/i-harmonic Conversely, let tp be a /i-harmonic function on T, and define 

/ ( * ) = X > * ( 7 M 7 ) . 
7 

Then we have 

l(e) = (M = X I ^ ( 7 ) / lix{l)dw(x) = 5 ^ ^ ( 7 M 7 ) = ¥>(c) , 
7 7 

so that once again by T-invariance 

7 ( 7 ) = </,7w> = ¥>(7) v 7 e r . 

Returning to the definition of / yields 

/ ( * ) = £ > * ( 7 M 7 ) = £ ^ ( 7 ) 7 ( 7 ) = £ ^ ( 7 ) < / , 7 « > 
1 1 1 

which means that / is harmonic with respect to the transition probabilities TT'X = 

X>*(7)7fc>-
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In terras of the stopping times RTm and 5r m we have that provided XRTrn is fixed, the 
conditional distribution of xsTm

 l s 7 T M ^ and depends on ^Tm

 = = 7(##T m ) o n l y ( s e e the 
proof of Claim 1), hence, the distribution of xsTrn conditioned by 7j-m is 7rm^- Thus, 
again by Claim 1, for a given 7 T M the conditional distribution of 7 T M + X = 7 ( X H T M + 1 ) * S 

It implies that { 7 T M } is the random walk on T governed by the measure /i, i.e., the 
increments 7 j^7r m + i are independent and /i-distributed. Since 7 7 ^ has distribution J U X , 
the distribution of 7 r m , m > 1 is //*/im_i, where /u m_i is the (m — l)-fold convolution 
of the measure /i. In particular, if we start from the point x = 0 , then e, 7 ^ , 7 T 2 > . . . is 
the random walk governed by the measure fi and starting from the identity of I\ 

As the conditional distribution of xsTm conditioned by 7 7 ^ is 7 T m ^ ? we also have 
that the chain { ( a r ^ , x n , a n ) } is up to a group translation renewed at times 5r m , i-e., 
its further behavior depends on 7 7 ^ only. As the transition probabilities ttx, x a are 
T-invariant, it implies, in particular, that the differences between stopping times St2 — 
Stx,St3 — St2, •. • are i.i.d. random variables (in the case xq € To we can also add to 
this sequence the difference Stx — So). A 

Going backwards along the sequence (3.3.4) we see that a bounded function / on Tg 

is P-harmonic if and only if it is (7r^)-harmonic. Finally, since u> is the balayage of the 
measure 50 to CV, we have 

/ ( 7 * ) = </,7W>=7(7) V 7 € l \ 

• 

Remarks. 1. As we have already mentioned, in the case g = 2 the hyperelliptic involu
tion 7 0 € T fixes every point in T2, and P is a covering Markov operator with the deck 
group T' = r / { e , 7 o } . Thus, in this situation Theorem 3.3.2 will provide a measure p ! 
on r ; such that the Poisson boundary of the pair (T,/j.f) is isomorphic to the Poisson 
boundary of the operator P . If // is any lift of the measure /j,' to T, then the pair (r , /z) 
has the same Poisson boundary as (r ' ,^ ; ) , because r ; is the quotient of F with respect 
to a finite normal subgroup [Ka9]. 

2. In fact, Theorem 3.3.2 (with the same proof) holds for an arbitrary covering 
Markov operator satisfying a Harnack inequality. In particular, it is also applicable to 
diffusion processes on the Teichmuller space and to geodesic random walks on covering 
Riemannian manifolds (see Remark after Theorem 3.2.2). 
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3.4. Convergence and the Poisson boundary for corecurrent Markov opera
tors on Tg. 

Now we shall apply Theorem 3.3.2 to proving convergence and identificating the 
Poisson boundary for corecurrent Markov operators on Tg. 

Theorem 3 .4 .1 . Let P be a Y-invariant Markov operator on Tg satisfying conditions 
(Pi) ~ (P4)' If the quotient operator P is Harris recurrent, then there exists a unique 
family of probability measures \ x , x G Tg on VMT such that 

\x = i^x V7 g r, x e Tg 

and 

Xx = J \ y d7rx(y) \/xeTg. (3.4.1) 

The measures Xx are pairwise equivalent and concentrated on 14£. 

Proof First note that such a system of measures { A # } , x G Tg is uniquely determined 
just by the measure A 0 (and its translations A 7 0 = 7 A 0 ) . Indeed, the stationarity 
property (3.4.1) implies that for any continuous function / on VMT the integrals 

/ ( * ) = < / , A,) 

give a P-harmonic function / on T ? . By Theorem 3.3.2 it is uniquely determined by its 
values on the orbit Го. In other words, it means that for any given point x G Tg the 
integral ( / , Xx) is uniquely determined by the integrals ( J F , 7 A 0 ) , i.e., the measure Xx is 
uniquely determined by the measure A 0 . 

Let now JU*, x G Tg be probability measures on Г constructed in Theorem 3.3.2, 
fi = JU° , and v be the unique /u-stationary measure on VMT. Put 

А. = 5 3 , « ж ( 7 ) 7 » ' . (3-4.2) 

Then for any function / G С (VMT) the Poisson integral 

fb°) = (fn") 

is a /^-harmonic function on Го = Г, which by Theorem 3.3.2 extends to a P-harmonic 
function by the formula 

/ 0 0 = 5 > * ( 7 ) / м • 
7 
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Thus, for any function / G C(VMT) we have 

< / , A , ) = / ( * ) = J f(y)dnx(y) = J(f,Xy)dnx(y) , 

so that the system of measures (3.4.2) has the stationarity property (3.4.1). 

Conversely, condition (3.4.1) implies that for any function / € C(VMT) the Poisson 
integral 

/(*) = </,**> 

is a P-harmonic function. Again by Theorem 3.3.2 the restriction of / to the orbit 

To, o € Tg is a /i-harmonic function, so that for any / 

< / , A 0 ) = 5 > ( 7 ) ( / ; 7 A 0 ) , 
7 

which implies that A 0 = ]T} p(^j)^\0^ i.e., A 0 must coincide with the unique /i-stationary 

measure u on VMT by Theorem 2.2.4. • 

By Theorems 2.2.4 and 3.3.2 the space VMT endowed with the system of measures 

\ x from Theorem 3.4.1 is a quotient of the Poisson boundary of the operator P (the 

latter being isomorphic to the Poisson boundary of the pair with respect to a 

certain T-invariant partition. Note that, however, this alone does not necessarily mean 

that the sample paths of the chain on Tg converge a.e. in the Thurston compactification. 

An explicit description of the map assigning to a sample path {xn} the corresponding 

point in US so far has to be based on the constructions from Theorem 3.3.2. 

Theorem 3.4 .2 . Let P be a T-invariant Markov operator on Tg satisfying conditions 

(Pi) - ( P 4 ) . If the quotient operator P is positively Harris recurrent, then 

(i) The measure p constructed in Theorem 3,3.2 has a finite first moment ^ 7 d^o, 70) 

inTg. 

(ii) For any point x £Tg Px-a.e. sample path of the Markov chain determined by 

the operator P converges to US in the topology of the Thurston compactification 

of Tg, and the corresponding limit distribution coincides with the measure Xx 

from Theorem 3.4-1-

(iii) The space VMT with the system of probability measures \ x is isomorphic to 

the Poisson boundary of the operator P. 

Proof. We shall use notations from Theorem 3.3.2. All Markov operators in the sequence 

(3.3.4) are covering Markov operators with the deck group T. Since the quotient operator 

P of the operator P is positively Harris recurrent, all other quotient operators are 

also positively recurrent and have uniquely determined (up to a constant) stationary 
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measures. Denote by A' the stationary measure of the chain {x'n, xn, a n } , and by A' the 
stationary measure of the corresponding quotient chain. Let A^ be the restriction of 
the measure A to the projection A of the T-invariant set A (3.3.5) to Tg xTg x [0, 
By multiplying the measure A' by a constant, we may assume that | |A^|| = 1. Then, 
by (3.3.6), the projection of A^ onto the second component in Tg x Tg x [0, l ] / r is the 
projection uJ of the measure UJ to Mg = Tg/T. Since the transition probabilities of the 
induced chain on A (and of its quotient on A) depend only on the second component, 
we obtain that 'E0(ST1 — So) = E 0 ( S T m + 1 — S r m ) coincides with the average of the first 
return times to A with respect to the measure A^. By the Kac formula [CFS] the latter 
quantity coincides with ||A || and is finite. Thus, we have shown that if P is positively 
Harris recurrent, then the i.i.d. random variables ST± — So, ST2 ~ ST3 — ST2-> • • • 

have a finite first moment with respect to the measure P 0 . 

(i) . The measure /J, is the P 0-distribution of 77̂  = 7(2?# T l ) . Thus, we have to check 
that ^ 

E0dT(o^(xRTi)o) < 00 . 

By the triangle inequality 

dT(o^(xRTi)o) < dT{o,xSo) + d T { x S o , x s T l ) + dT(xsTl,l{xRTi)o) . 

The first and the third terms in the right-hand side are uniformly bounded, whereas 
finiteness of the middle term follows from finiteness of E 0 ( 5 T I ~~ ^ o ) a n ( i the bounded 
range condition (P3). 

(ii). Since the measure \x has a finite first moment, by the Kingman subadditive 
ergodic theorem (e.g., see [Del]) there exists a finite number / (the linear rate of escape) 
such that for P-a.e. sample path g = {gn} of the random walk ( I \ JU) there exists the 
limit 

lim Mo,9no)=l 

n—*oo 77, 

The number / is strictly positive, for, otherwise, the random walk (I\ /i) would have had 
the zero entropy 

h(G,p)= lim EitA, 
n->oo n 

[KalO], hence, trivial Poisson boundary [KV] in contradiction with Theorem 2.2.4. 
By Claim 2 from the proof of Theorem 3.3.2, 7Tm performs the random walk (I\/i), 

so that by Theorem 2.2.4 7r m 0 converges to US in the Thurston compactification of 
Tg. Since STx — So, ST2 — STX, • • • is a sequence of i.i.d. random variables (see the proof 
of Theorem 3.3.2) with a finite first moment, there exists a.e. a finite limit (the mean 
stopping time) 

t = l i m ^IHL = E 0 (5 T a - So) • 
m-»oo m 
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Hence, we have that a.e. 
n ~ S T m ( n ) = o(n) , 

where 

ra(ra) = max{m : 5 r m < n } . 

Since the operator P has bounded range, it implies that a.e. 

MXn^STrn(n))=o(n). 

As ^ r ( ^ S R m ( n j >7T M ( N )<>) is uniformly bounded, we have that a.e. 

^ T ( « n , 7 T m ( n ) o ) = o ( n ) . 

On the other hand, the sequence 7 T m ( n ) o converges to US, and the distance from 7 T M ( N ) 0 
to o grows linearly on n. Thus by Lemma 1.4.2 the sequence xn also converges to the 
same limit point from US. 

The corresponding limit distributions vx on US coincide with the measures from 
Theorem 3.4.1, because the measures vx obviously satisfy the stationarity relations 
(3.4.1). 

(iii). By Theorem 3.3.2 the Poisson boundary of the operator P is isomorphic to 
the Poisson boundary of the random walk As the measure fj, has a finite first 
moment in Tg, by Theorem 2.3.2 the latter is the space VMT with the measure A 0 , 
and we are done. • 

Remark. Note that in fact Theorems 3.4.1 and 3.4.2 also hold for invariant Markov 
operators corresponding to diffusion processes on Tg. For Theorem 3.4.1 one needs 
bounded geometry of the generating operator (which would guarantee the Harnack 
inequality), and for Theorem 3.4.2 it is sufficient to demand uniform boundedness of 
the first moments J dT(x,y)dnx(y) (which would imply existence of a finite rate of 
escape limdT(xo^xn)/n [Ka2]) - cf. [Ka4]. For diffusion processes one can also prove 
Theorem 3.4.2 in a more direct way (without using the discretization procedure) by 
using the methods from [Ka2]. 

Masur in [Ma4] considered a geodesic random walk onTg. Its transition probabilities 
nx are defined in the following way. Fix a positive number X. Then from a point 
x € Tg we move along the Teichmuller geodesic line with a random direction (whose 
distribution is the normalized Lebesgue measure on the sphere of the tangent space at 
x) to a new point xf such that the random distance dT(x,xf) is uniformly distributed 
between L and L + 1. By analyzing the train tracks decomposition along the sample 
paths he proved the following result. 
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Theorem 3.4.3 [Ma4]. For sufficiently large L almost all sample paths of the geodesic 
random walk converge in the Thurston compactification of Teichmuller space Tg, and 
the corresponding limit distributions \ x are concentrated on US C VMT. Moreover, 
there exists a compact set Q, C Tg, such that for all points x G TO, the expected first 
return times to TO, are uniformly bounded. 

Choose a smooth T-invariant Radon measure m on Tg satisfying condition (Pi). The 
geodesic random walk clearly satisfies condition (P3), however, conditions (P 2 ) and (P 4 ) 
(directly connected with the differentiability of the Teichmuller "exponential" map) are 
not known to be true. Masur [Ma4] showed that for any a > 0 one can define the 
modified transition probabilities 7r™od in such way that 

1 ) K - * r * l l < « V a € T , ; 
2) The probabilities rc^od are T-invariant and satisfy conditions (Pi) - (P4); 
3) Theorem 3.4.3 still holds for the modified geodesic random walk determined by 

the transition probabilities 7r™ o d . 
Then Lemma 3.3.1 (which guarantees that ra(fi) < 00) in combination with uniform 

boundedness of first return times to TO, implies that the T-quotient of the modified 
geodesic random walk is positively Harris recurrent. Thus, by Theorem 3.4.2 we get 

Theorem 3.4 .4 . The Thurston boundary VMT with the family of measures Xx is the 
Poisson boundary of the modified geodesic random walk. 

Remarks. 1. Theorem 3.4.2 gives a different proof than in [Ma4] for the convergence of 
the sample paths in the Thurston compactification. 

2. We had to modify the transition probabilities of the geodesic random walk in order 
to be able to construct a probability measure on T with the same Poisson boundary 
and to use our description of the Poisson boundary of random walks on I \ However, it 
seems feasible to apply the entropy technique directly to the geodesic random walk for 
proving coincidence of the Poisson boundary with VMT in the spirit of [Ka2] (see also 
[Ka5]). We shall return to this problem elsewhere. 
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