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THE EXACT HAUSDORFF DIMENSION OF A BRANCHING SET

Quansheng LIU

Institut de Recherche Mathématiques de Rennes

Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

Summary. We obtain a critical function for which the Hausdorff measure of a
branching set generated by a simple Galton-Watson process is positive and

finite. The results solve a conjecture of Hawkes (1981).

0. Introduction
Let (Q,d,P) be a probability space, T=7(w) (0v€QQ) the genealogical tree of
a one-type Galton-Watson process (Zn)z(zn(w)) (nz0,wefl) with a single founder
member 20! 1 and offspring distribution Z!Zl. The root of J is identified to
the founder member which is represented by the null sequencer @. The vertices

in the n-th level are represented by n-terms sequences ¢ = (cl,c ,...,cn) of

2

non-negative integers which correspond to the particles in the n-th generation
of the branching process. The edges of J are formed by joining the vertices ¢

. . . . O
,...,crn) to their descendants (c¢,1)= (O'l,a' ,...,0‘n,1), 0si<Z , where

= (o ,0
(l 2

2

Za'is the number of children of o. The tree J is then identified to a random
set of finite sequences of non-negative integers. Let K=K(w) be its boundary,

i.e.the set of all the infinite sequences (0'1,0' ,«..) such that (0'1,0'2,...,0'n)

2
€ J for all n = 1,2,... The set K is called to be the branching set generated
by a simple branching process [8]. Let N be the set of non-negative integers

with the discrete topology, and I = NN be the set of all sequences i =

,...) of the integers in N with the product topology. Then I is

i, i
( 1" 72
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R . -|iA
metrizable, and a possible choice of metric is given by d(i,3)=2 I j', where

iAj is the common sequece of i1 and j, i.e.,the maximal sequence q such that
g<i and @<j (52). We will always refer to this metric in this paper if it is
not specified further. The branching set K is then a random compact subset of
the metric space (I,d) (s2).

If p(s) =} pksk is the generating function of the family distribution Z,
k

. . n . .
and if u = ¥ kpk< o, then W= lgm Zn/p exists and, if
L pk Log k < , (Z1ogZ)
then E(W) = 1 and the extinction probability satisfies
P ( Zn 20)=P (W=0)=P (K=@).
Throughout this paper, we suppose always that the moment condition
(ZlogZ) is satisfied.
Our interest centers on the Hausdorff measures of the branching set K.
In 1981, Hawkes first proved that if
2 2
Y pkk log'k < o, (Zlog™~Z)
the Hausdorff dimension of K satisfies
dim K = a:= log p / log 2 (0.1)
almost surely on K # @. This result was also obtained under the weaker
condition (ZlogZ) by several other authors in some different contexts
(see for example [4,11,12,13]). As we shall see in §4, the fact that the
condition (ZlogZ) suffices for the dimension result (0.1) can also be easily
shown by a simple truncation from Hawkes (1981).
In the case where the offspring is of geometric distribution (i.e. P(Z=1i)
= a(l-a\)i“1 for some a € (0,1) and all iz 1), Hawkes showed moreover that 0 <
¢1 ¢1
¥ "(K) <o a.s., where ¥ ~(K) denotes the Hausdorff measure of K with respect
to the function
o
¢1(t) = t (logleog 1/ t)
Thus ¢l is an exact dimension function of K, i.e. a function for which the

2



THE EXACT HAUSDORFF DIMENSION OF A BRANCHING SET

Hausdorff measure of K is almost surely positive and finite if K # @. Hawkes'’s
proof on the last result was heavily dependent of the fact that the underlying
distribution Z is geometric. In the case where it is of general distribution ,
He conjectured that the dimension function would be of the form a(t) =
taRnl(loglog é), if R(x):= - log P(W2x) is regularly varying at infinity (He
did not precise the regularity condition). Our results here will show that

this is endeed the case if, for example, the distribution of W decreases

geometrically, or more generally
a

P(W2x) ~ ce M ( C,A,a>0, X > ®).

In fact, we shall be able to treat the case where

-Alxa —Azxa
cle S P(W2zx) = cze (Vx =2 4),
for some positive constants Al,Az,cl,cz,a,A >0. (s1, example 2) and the

results we shall prove are much better than this: different dimension
functions of the form t“, ta(log %)g, ta(loglog %)B, etc. will be caculated
explicitely according to the offspring distribution Z. For example, writing
B =1- log g / log IIZIIco , (0.2)
where u=EZ and IIZIlou = ess sup Z S o (thus 0sBsl), the function
o 1.8
¢B(t) := t (loglog E) (0.3)
is an exact dimension function of K if the offspring distribution Z is bounded
(i.e. uznm<m, hence 0=B<l) or it is not bounded (HZszm, hence B=1) but it
decreases geometrically,
c aks P(Z=k) = ¢ ak,
11 22
say, Wwhere cl,c2>0, 0<alsa2<1 and k is sufficiently large (see s§l1l, Theorem 3
and Example 3). The case where the reproductive distribution decreases more
slowly, for example, the case where
-8 -3

clk < P(2=k) = czk (keN sufficiently large)

for some constants cl, c2>0 and 8>1, will also be discussed (see 51, Theorem 6
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and Example 4), and the convenable dimension functions will be found greater
(This is rather natural: more slowly decreases the reproductive distribution,
larger the branching set associated, and so greater the convenable gauge
functions for the set.). However, in this case the exagt dimension functions
remain unknown, and the author conjectureé that, quite probably, they
would not exist (by an argument of density of an associated measure).

Finally, we point out that our results here are closely related to those
of Graf, Mauldin and Williams (1988). In fact, the author has recently
developed the ideas to Euclidian space, and thus improved the classical

results of Gral et al.(1988) (see Liu 1993).

1. Main results and examples

The main results are stated in the following, where the moment condition
(ZlogZ) is always supposed to be satisfied. For convenience, we establish our
results for the spherical Hausdorff measure pf(.), where f=f(t) is a positive
funstion defined for t»=0 suffirciently emall, non-decreasing and continuocus on
the right. However, all the conclusions hold for the ordinary Hausdoff measure
%f(.) since the two measures uf(.) and Jﬁ}.) coincide on K (see §2, lemma
2.3).

We first gather some preliminary results as follows:

Theorem 1. (The dimension a of K and the a-dimensional measure associated)
Let o be defined as in (0.1). Then

(i) dim K(w) = « a.s. on K(w)# ; (ii) p¥*(K(w)) < w a.s.;

(iii) 0 < pa(K(w)) < o a.s. on K(w) # @ if and only if Z is a.s. a
constant.

The dimension result was first found by Hawkes (1981) under the condition
(ZlOQZZ). It was also proved by Falconer (1986, Corollary 5.7) and Lyons

(1990, prop. 6.4) in different languages under the condition (ZlogZ), see also
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Lyons and Pemantle (1992) or Lyons, Pemantle and Peres (1993, th.7.3). We
shall see that, this can also be obtained easily by truncation from Hawkes
(1981) (to relaxe the condition (ZlogZZ) as (ZlogZ), see §4, Corollary 4.1).
The conclusion (ii) is easy; the conclusion (iii) is a special case of
Falconer (1987, Lemma 4.4) (see s§4).

Theorem 1 shows that in the non-degenerate case the a-dimensional measure
of the branching set vanishes and so the function £ is too small to measure
the set. The following result is to give a criterion for a function of the
form

9g(t) = t*(loglog %)e (1.1)
to be an exact dimension function of K:
¢

Theorem 2. (A necessary and sufficient condition for u e(K) to be zero,

positive and finite, or infinite) Let 0< 6 < +w, ¢e be the function defined by

(1.1) and rl/e = r(Wl/e) the radius of convergence of the moment generating
/0
function E(etwl ) of Wl/e. Then
®
e (]
= .S. .2
B (K) (rl/e) W a.s (1.2)

In particular,

¢

7] e(K) is zero, positive and finite, or infinite

almost surely on K # @ if and only if
11/6 is zero, positive and finite, or infinite
respectively.
Remark. If E(Zp)=w, then r1/6=0 for all 0€(0,w), Theorem 2 is then
interpreted as u¢9(K) =0 a.s. for all 0€(0,w). In this case Theorem 6 in the

below will give more exact results.
Theorem 3. (The exact dimension function: case uzum< +0 ) Suppose that

HZHm< +o. Let a€(0,o) and Be(0,1) be defined as in (0.1) and (0.2). Then
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¢
0 < S(K) < +» (1.3)

18
almost surely on K # @, where ¢S(t) = ta(LogLog E) . More exactly, a.s.on K#o,

¢s ¢s 8
M (K) =1 1if B=0 and pu (K) = (IE/B) w if B>0, (1.4)

where 0O<r <o.
1/8

Remark. We note that B=0 if and only if 2 is a.s. a constant. This shows

c e s 1.8 ..
that in the deterministic case the term (loglog E) disappears.

Theorem 4. (Hausdorff measure of K: case IIZII°° = +®) Suppose that Ilzll°° =

+0. For 6€(0,o), let ¢9 be defined by (1.1). Then
(i) U (K) =0 a.s. VO < 1;
.. 1 . tz
(ii) p (K) > 0 a.s. on K# @ if E(e ) < o for some t>0;
¢

(iii) 1(K) <wa.s., iIf E(etz) = o for some t>0;

Theorem 5. (The exact dimension function: case IIZIIm = +o) Suppose

that IIle°° = +o and that E(etz)<m for some but not all t>0. Then

¢1
0 <p (K) <ow (1.5)
almost surely on K # @, where
¢ (t) = t* (1oglog é). (1.6)
Moreover
¢B
H (K) = rlw a.s., (1.7)

where r1= sup(tz0: E(etw)<m} is positive and finite.

Theorem 6. For 6€(0,w), put
1.6
Vg (t) = t* (1og 2. (1.8)
Let
¥ =sup { pel: EZ<w } (1 Sy =w) , (1.9)
then, almost surely on K#@,

" 0 if O<1/%;

. e , ,
(i) 4 (K) = { © if 8>1/(y-1), where 1/y or 1/(y-1) is interpreted as 0
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if y=ow;

Y1/(y-1) ¥

(ii) (K) = 0 if l<y<w and E(2°)=w;
v

(iii) p YYV(K) < » a.s. if

k 1/ 1

lim sup { )) p(wzv’/¥)-= log k } > -0, (1.10)
Je>eo v=[logk] v

Corollary. (a) If E(Zp)<m for all p>1, that is, if y=w, then for all 6>0,

Y
u 9(K) = o a.s.on K#6. (b) If E(Zp)=m for some but not all p>1, that is, if
we
l<y<w, then there exists x€[l/y, 1/(y-1)] such that a.s.on K#@, p (K) =0 if
we
<y and p (K) =o a.s. on K#@ if 6>).
The assertion (b) holds also in the case where =0: ¥ 1is then

) "]

interpreted as 0 and the result means pu e(K) =0 if 6<0 and pu 9(K) =0 if 6>0.
Thus (a) can be considered as a limit case of (b) with ¥y=w. There is another

limit case with %=1. The author believes that it would hold also with the

Y
interpretion that y=w and p e(K) =0 if 6€(0, ).

"] v
Conjecture. In any cases (l1sSysSw), u e(K) =0 a.s.if 6<1/(y-1) and u e(K)

=w a.s.on K#@ if 6>1/(y-1). (In the limit cases where ¥=1 or w, the result is

interpreted as in the above.)

Remark 7. All the results above hold with a replaced by «a(M) :=
log o / log M if the distance d(i,]) = 2_|1Ajl on I is replaced by dM(i,j) :=

M-IiAjl

, where M > 1.
As applications of the theorems, we give some examples here:
Example 1. (Embedding in euclidean space) Suppose that the distribution of

2 = Z1 has compact support, that is HZHm<w or p = 0 for k sufficiently large.

Let M be an integer such that M 2 HZHw (namely P, = 0 for k > M). If Zl= k
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we choose at random k distinct integers j1’j2""'jk with 0 = ji < M-1 and let
)
= j . (3 M).
1= Ul (3,/MG#+1/M

We now treat each interval in I1 as the vertex of a tree and preceed
inductively in the same fashion. At the n-th stage we have In as a union of Zn
intervals of length M ". The limit set K = n:;In can be described by the
associated branching set K of the process under the mapping

f£: K —>K L —>FLiM" .
If we consider covers of K by M-adic sets and if K carries the matric dM(i,j)=

M-'iAjl, it is then easily seen that the Cantor set K has the same exact

o (M)

18
dimension function as K, given by ¢3(t) =t (loglog E) , Where

a(M) = log g/ logM and B = 1- log u / logHZHw.

(Theorem 3 and Remark 7).
We give now a more explicit construction to explain this: divide the unit
interval into three equal parts and retain each independently with probability

p. Repeat this with the parts that remain, and so on. In this case M=3,

pu=E(2)=3p and "Z"w = 3. Then a=log(3p)/log3 = 1+ 1logp/log3 and B= 1-

log(3p)/log3 = l1l-a. The exact Hausdorff dimension function of the resulting
. o 1 1-a

fractal set is then t (1oglogE) , where a=1l+logp/log3.

Example 2. (On the conjecture of Hawkes) Hawkes (1981) conjectured that an
exact dimension function of K would be of the form h(t) = taR_l(loglog%) if

R(x) = -log P(W2x) is regular at +w (He did not precise the rerularity

a
condition). We say that this is well the case if for example P(W2x) = e->tx

for some A >0 and a > 0, since in this case R(x)= A xa and h(t) =

1.1/a

o . . . . .
t (loglogE) , Wwhich is shown to be an exact dimension function of K by

a+2-k/a

Theorem 2 (as E(Wk) = A '(2-a+k/a) and consequently r(Wa) = 1/A). In

fact we can obtain a 1little more: if there exist some positive constants

Al,Az,cl,cz,a,A > 0 such that

a
-Alx -Azx
cle S P(W2x) = cze (Vx = A),

a
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1.1/a

o . . . . . .
then ¢ (t) = t (loglog=) is an exact dimension function of K. This is an
1/a t

immediate consequence of Theorem 2 if we note that

0 < %1 = r(Wa) =< %2 < .

Remark. In the case where P(Wax):xne (6>1 is a constant, x-®), Hawkes’s

conjecture mean that the dimension function might be wl/e(t)= ta(log %)1/9.

By Theorem 6, we know that, if there are some constants 6>1, 0<clsc2<m such

that clx-e = P(W2x) = czx_6 for sufficiently large x>0, then

Y Y/ (o-

u 1/B(K) < o and ] /(6 1)(K) = o a.s. on K # @2,

<+ if p<6
=+00 1f sz '

¥

By a density argument, it appears probably that one would have pu b(K):O for

1/(6-1) 1/p

where w1/(e-1)(t)= ta(log %) , since E(W)= f: P(Wzx""")dx

all b< 1/(8-1) (Thus a critical function would be ¥ rather than ¢

1/(0-1)' l/e)'

where wb(t)= ta(log %)b for any b20 (see Remark 4.1. and the conjecture

after theorem 6).

Example 3. (Case where the reproductive distribution decreases
geometrically) Suppose that there exist some constants c1>0, c2>0, and 0 < als

a2< 1 such that

c ak < P(Z=k) = ¢ ak
11 2 2

for all sufficiently large k, then the function ¢1(t) = ta(loglog %) is an

exact dimension function of the branching set K.

This is immediate by Theorem 5, since E(etz) < o if t < log % and E(etz)
2

= o if t > log % . It covers of cause the case of geometric distribution.
1

Example 4. (Case where the reproductive distribution decreases

polynomially) Suppose that
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1 1
c = < P(2=Kk) = c_ -
1 kG 2 kG

for some constants c1>0, c2>0, 6>2 and sufficiently large k, then

v v
u P(K) =0 if b< 1/(8-1) and p "(K) = w a.s. on K#& if bx1/(0-2),

where wb(t)= ta(log %)b.

The result follows from Theorem 6 since E(Zp) < o if p < 6-1 and E(Zp) =

if p =2 6-1.

2. Preliminaries
2.1. Sequences and trees
. k
Let N be the set of non-negative integers with the discrete topology, N

. k
be the set of all k term sequences of the integers in N, T = U:_ON be the set

of all finite sequences and I = NN be the corresponding infinite sequences i

= (il,i o) (ike N) with the product topology. We make the convention that

2

0 .
N contains the null sequence @.

.. N . . .
If i = (11,12, ...) € N, we write iln = (11,12, .,1n) for the
curtailement of i after n-terms; if o = (01,02,...,0n) € T, we write |o| = n
for the length of ¢, and o* = (vl,vz,...,0h+1) € T for the new sequence

corresponding to ¢ obtained by augmenting the n-th composant ¢ to o + 1. If T
n n

N (Tl,t ..,rm) € T 1is another finite sequence, we write o*T=

2
(00, T) = (01,02,...,0n,11,t2, ...,tm) for the sequence obtained by juxtaposition
of the terms of ¢ and T. We partially order T by writing ¢ < T (or T > ¢) to
mean that the sequence T is an extension of ¢, that is T = o*t’ for some
sequence T'€ T. We use a similar notation if ¢ € T and T € I. We remark that
thé null sequence @ < 1 for any sequence i. Finally, if 1 and j are two
sequences of T or I, we write iAjJ for the maximal sequence ¢ such that o<i and

o<j.

A tree J is a collection of finite sequences of non-negative integers such

10



THE EXACT HAUSDORFF DIMENSION OF A BRANCHING SET

that (a) 2€7; (b) If ceJ then oc*ied if and only if 0si<z’ for some z°eN; (c)
o € J implies 0’€ J for any ¢'< 6. See Neveu (1986). The sequences ¢ of J

may be identified with the vertices of a directed graphe with ¢ joined to c*i
in the obvious way. The null sequence @ corresponds to the root of the tree;
vad represent the number of edges going out from o. The classical
Galton-Watson branching process is then identified to a random tree. This tree
will be also denoted by J. The branching set K = K(w) is then defined as its
boundary, i.e., the se£ of infinite sequences j such that 1 € J for every
finite curtailment i < j. However, we shall give a more careful definition of

this set in the following.

2.2 Branching set and Hausdoff measures

o0
Suppose that P, z 0, that } k:opk= 1 and let (Za) (c € T := Lan) be a
n=0

countable family of independent random variables each distributed according to
. . 0
the law P(Z = k) = pk. Here by convenience we write N := { @ } be the set of

the null sequence. Put

and by induction,

The set K = ﬁ C

n=1 n

is then called the branching set generated by Z. Write

C0 = { ] } and Cn = {(iln): ie én } (n =21),

the Galton-Watson process can be defined by

Z =1 and A = Y 2z (n = 0).

0 n+l
oeC
n

11
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Thus Zli Zae Z by our notations. Let J=J(w) be the genealogical tree of the
process. Then Cn=(0e$: |le|l=n) (neN) and K=(ie€I: i|neJ for all n=0).

As pointed out in the introduction, if pu = } kpk< o, then W = lgm Zn/pn
exists a.s. and, if } pkk log k < w, the extinction probability then satisfies
P ( Zn 20)=P(W=0)=P(K=92),

and E(W) = 1 (see for example Athrey-Ney 1972).
Suppose that (E,d) is a metric space, A € E, and f=f(t) is a positive
function defined for t >0 sufficiently small, non-decreasing and continuous

on the right (which we call a dimension function). The Hausdoff measure of A

with respect to the dimension function f is by definition

Rf(A) = lim Rf(A) (2.1)
)
850+

where

£ . . .
Hg(A) = inf ( Zn::lf(dlam u):Ac U‘:’:lu , diam U S8 ) (2.2)

i
(diam (Ui) represents the diameter of Ui)' It is not difficult to see that the
quantity 3{f(A) remains the same if in the definition we use covers of just
open sets or just closed sets, or again just subsets of A, see for example
Rogers (1970). If we use covers of 3just balls, we obtain the spherical

Hausdorff measure:

f . f
p (A) = lim pa(A) (2.1)'
350+
where
£ .
pg(A)= inf (}:"j‘_’zlf(luil). AcU:ﬂUi, |U, 18 and U, are balls}. (2.2)
£
The two measures ¥ (.) and uf(.) are in general not identical (see

Besicovitch (1928, chapter 3) but equivalent for a large class of dimension
functions (which are usually called regular):

Lemma 2.1. Suppose that (E,d) is a metric space and f(t)z0 is a positive
function defined on (0,T) (T>0), non-decreasing and continuous on the right.
If

12
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f(2t) s cf(t) Vte(0, T/2) (2.3)
for some c>0, then
HE(a) = uf(a) s M (a) for all ASE. (2.4)

Proof. Clearly ﬂg(A) = ug(A) since any &-cover of A by balls is a
permissible covering in the definition of R;(A). Also, if ﬂﬁ} is a 8-cover of
A, then (Bi} is a 28-cover, where, for each i, B1 is choosen to be
some ball containing Ui and of radius IUiISB. Thus

r f(lBi|) =Yy f(2|Ui|) = é T f(lUil),
and taking infima gives p (A) = cH’(A). Letting & » 0, it follows that X (A)
spfa) san’a). o

We suppose that the condition (2.3) is always satisfied in this paper.
It holds for example for f(t):ta, ta(log%)ﬁ, ta(loglog%)s, etc. (a,B>0).

If 0 < pf(A) < o, we say that f is an exact dimension function of A, or
simply an exact dimension of A, or an exact measure function of A. If f(t) =
ta (a>0), we write ua(A) instead of uf(A), and we call it the a-dimensional
(spherical) Hausdorff measure of A.The Hausdorff dimension of A is defined as

dimA =sup {a>0 | p?(A) = +m )} =inf (a >0 | p*(A) = 0
Then ua(A) = 40 if a < dim A and ua(A) = 0 if a > dim A. All the statements in
this paragraph hold if the spherical Hausdorff measure pf(.) is replaced by
the ordinary one ?{f(.) since they are equivalent.

For our purposes, we shall take E=I with the metric d defined by
d(i,3) = 2-|1Ajl. First of all, we remark that the balls of I are of the form

B(c) :={1e€I: i>c)} (c€T),
which constitute a basis of the topology of I. Secondly we have

Lemma 2.2 K(w) is a. s. a separable compact topological space if Z<w a.s.

proof. Since it is evident that K has a.s. a countable topological basis,

13
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it suffices to prove that K is a.s. compact. We remark that K can be regarded
(-]

as a subset of the product space E = || En, with product topology, where En=
n=1

{0,1,...,Zn—1} carries the discrete topology. Since En is compact, so is E by
Tychonoff'’s theorem. As K is a closed subspace of E, it is then compact. o

Finally we claim that on (I,d), the sherical Hausdorff measure pf(.)
coincides with the ordinary Hausdorff measure Rf(.), although it is not so
for a general metric space.

Lemma 2.3 For any dimension function f, we have

ufa) = #5(a), va c 1.

Proof. The same method as in the proof of Lemma 2.1, noting that if {Ui}

is a d8-cover of A, so is {Bi), where, for each 1i, Bi is choosen to be some

ball of a center aiEUi and of radius diam(Ui) <8. In fact, for each i, taking

a €U and k. = inf |iAj] , the ball B := B(a lk,), where B(a lk,) = {(a } if
i i i i’ i i i i
i,jeu
i
ki=+m, satisfies our needs: firstly, if eri, then Iani|Zki by the

definition of ki' Thus x > ailki or namely xeB(ailki). This shows that UiSBi'
-k

Secondly, diam (Bi) = 2 i= sup Z—IiAjl = diam(Ui). Therefore (Bi) is a
i,jeUi
8-cover of balls of A. The proof is then completed. (a]

2.3. A random measure K, on I= NN and the Q-measure on Q x I

If o € Cn, we let

Z, = L Al
P TECp,T>O‘

denote the number of descendents of ¢ in the generation p. We define

Z
o,p
a p->® p-n
u

, if c e C
n
and choose Wo as an independent copy of W if ¢ € Nn—cn such that (Wv) (o €
n . . .
N —Cn) is a family of independent random variables, and as a family,

independent of the family (WT) (tecn). Then (Wo) (c € T) is a family of random

14
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variables, each distributed as W = %33 Zn/pn, and Wo and WT are independent

if neither ¢ < T nor T < ¢. It is easily verified that

-lol z -1 -lo*i]
K Yo = Z iTO H Wi

almost surely, where the sum is interpreted as 0 if Z¢=0. So if we write

-lol if 0 € C ;

I n
1 - {

0

¢ if ¢ € N°-c_ ,
n
then
[+ ]

Wl =i§;01‘r*iwo_,,i . (2.5)
For ¢ € T, let

B(o) = { Te€elI :oc<T }
be a ball in I of radius 2 !%! and define

p(Blo)) = 1w (@ =1 p %
w oo oceT o
An arbitrary clopen set A € I can be written as
k
A=U B(O‘i)
i=1
Let k0 = max ( |¢il :i=1,...,k ) and
ko
E = { TeN : 3ie€e (1,...,k) such that o, <T },
then A= UB(tr) and B(T) 0 B(t') = ¢ if T # T".
T€E

Define Mw(A) = ¥ Mw(B(T)),

TEE

By (2.5) uw is a well-defined finitely additive measure on the field of all
clopen subsets of I and, therefore, uniquely extends to a Borel measure on I .
This measure will be called H, again. We remark that it is concentrated on the
branching set K(w), and pw(K(w))=W(w).

It will prove very useful to consider the product space Q x I with the
product o-field and with probability law Q defined by

Q(a) = E J 1,(0,1) dp (1),

15
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see for example Proposition 4.1. in section 4.

3. Moments results on branching processes

>

Let (Zn) (n 20, Z=1) be a branching process with family distribution

Z and
1
(3.1)

. n
W= %3& Zn/p .

k
We shall need some results on the order of growth of the moments E(W ) of W,

which themselves are interesting.
Lemma 3.1 (Comparison theorem for radius of convergence of W and Z)

the radius of convergence of the moment generating

Denote by r(Z,)
tZ 1
function E [e 1] of Zl and r(W) that of W, then

r(W) is zero, positive and finite, or infinite

if and only if the same is true for r(Zl).

Proof. We first note that

tZ 2
1 t 2
EI[ e ] =1+ ¢t E[le + 5T E[le +
tw t2 2
E[ e ] =1+ t E[W] + 5T E[(W'] +

and that

EwW"] = E[E(WnllFl)] = E [ E(WHFl)“] = E[(Zl/u)n] = u'“rztz’l‘l,

where Fl is the o-algebra generated by Zl. We have then immediately that
rw) =pu r(Zl)
by the well known formular on the radius of convergence of Taylor series. This

shows that r(Zl)< +00 implies r(W) <+w, and r(Z1)=0 implies r(W)=0.

We then prove that r(Zl) > 0 implies r(W) > 0. Put
Z
p(t) = E[t 1],
then
Zn n
E[t "] = (p") (&),
K+1 ok '
p((p’") (t)) (k=1). We shall prove that

where (p‘)l(t)=p(t) and (p") " (t)

16
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there exists t>0 such that E(etw)<m. To this end, we shall find t>0 such that

t2 /un
E(e © ) sc
XZ
for some C>0 and all nz0. Since E(e 1)<oo for some x>0, we can choose by

induction rl ' r2 ¢ eee rn , ... such that r1 > 1 and that

p(ry) =r, , plry) =r, , ... , plr) =1 . ,...

Now

n I3 - ’
rn_l—l = p(rn)—l = IZ p’(t)dt = (rn 1)p (rn),

where p’ (t) represents the derivative of p(t). Hence
’ ’ ' —1 -
rn-l z [p (rn)p (rn_l)--.p (rz)] (r1 1).

Since

n
tz /u n
Ele " 1 =p"et) sp ) =1,

n
if et/“ s o and p'n(rn) =T by the definition of r the proof will be

completed if we can choose t > 0 such that
€/p® = log (1+[p’(r_)...p’(r,)]1 *(r,-1))
n 2 1
for all n = 2. But the latter is implied by
n oo l ' ' -1 -
t/u = 2[? (rn)...p (r2)] (r1 1)
as log(l+x) = % X for 0 = x = 1, it then suffices to prove that
o p’'(r ) 0
M —2 = (s & Jr“ p*(t)dt ) < +o.
n=2 B n=2 ® 1

We see that this is so because
r
n " < - " < - ']
Jl p"(t)dt (rn L)p (rn) (rn p (rl)

and

1
- € — -
(r 1) = ... = (r1 1).

M

We finally prove that r(Zl)=w implies r(W)=wm. To see this, we recall the

1
Y -1 € —en
n p’ (1)

Tir

(p(r )-1) =

functional equation
d(ut)= G(®(t)),

17
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tz
where Q(t):E[etW] and G(t)= Efe 1]. Since we have shown that r(Zl)>0 implies

r(W)>0, we know at least ®(t)<w for some t>0. From the functional equation and
the fact that G(t)<w for all t>0 (r(Zl)=m), we know immediately $(t)<w for all
t>0. The proof is then completed. o

The following result can be compared by that of Kahane-Peyriére (1976)
which was concerned to a model of turbulence of Mandelbrot.

Lemma 3.2. Suppose that HZlﬂw < +0 and write

B =1-1logp / log Illel°° .

Then
, , log E(Wk)
(i) lim —————" = B;
P k Log k
(ii) For 0<B<w, denote by r the radius of convergence of the moment

e

enf

generating function E(e ) of Wp. If in addition to uzlum<m, Zl is not a.s.a

constant, then 0<B<1l and

0 <r < +®,
1/8

e

or namely E(e ) < +w for some but not all t>0.

Proof. (i) We first prove that

k
. \ log E(W")
lim inf ————- B.
K+ k Log k
For convenience, write n = uzlum. Then pn= P(Zl=n) > 0. Since
Z
1 1
WLl Wy (3.2)

where Wi(izl) are independent from each other and from Zl, and have the same

distribution as W, we have
n k

k k t i
E[W l len] = P-E E[W ] + l—k -T(-lLk_‘ lE[W 1]
M Bk 4k +.. .4k =k 1°°"""n" i=1
o<k, =1
* n k
= 2 g’ 4 l;(nk-n) inf |7 E(W 1, (3.3)
M M i=1
k
where E(W | Z1 = n) denotes the expectation of Wk conditioned on Zl= n and
the inferior is taken over all (k,,k.,...,k ) such that k.+ k. +...+ k =
1’72 n 1 2 n

18
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-~

k and that 0 = ki < k-1. If k = nk, this inferior is (E[Wk])n. Hence

E[Wnkl zl=n] > nk -nk, & nk

tlb
~

=(§)“ku£[wk1 )7,

-~

or EI™) = p ()™ (E(W1)". Therefore
> ~ log p
L tog EW™) 2 109 2 4+ L 109 E0WS 14 —2.
nk ® k nk

E™) + p K (™ on) (E(wR)) P

Choosing k = n* (reN) and using this inequality repeatedly, we see that

1 log P

-(r+l) T+ n
n log E [Wn ] =2 (r+l1) log ﬁ + log E[W] + =

Thus

r
n_rlog E [Wn ] 2 r log 3 + C(n)

(Vr=0), where C(n) > -o is a constant independent of r. Hence
r
loglE[Wn ]
lim inf % 21 - log p / log n.
-0 n log n

Now for each keN sufficiently large, choose reN such that n'=k<n ' .

__._zi

r

=0

1

X r n
w
log EWS) _ loglE®)1* | logtE® )17 _ 109V ]
k log k log k lognr+1 nf lognr+1
and consequently
r r
k loglE[Wn ] 1oglE[Wn ]
lim inf 229 EM ) o i dnf — - lim inf
k log k r r+l r r
k00 - n  logn r-)w n Log n

We now prove that

log E(Wk)

lim sup X Tog K - B.

k*+
Write again n = Hzlﬂm, then

1
= =
W H Z2:1 wi !

A
1

n

Thus

(3.4)

2z l-log p / log n.

where Wi(izl) are independent from each other, and have the same distribution

as W. Hence

19
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Thus
n k.
k k! i i
E(W'] = Y TRk T 'n E(w 1. (3.5)
M -n k_+k_+...+k =k 1 n i=1
oSkisk-'f
Write B, = sup (E[Wll/ll)l/l, then
k
1<k n
k k k k
< 3.6
Bk+1 < sup [ " Bk . Bk } ( )
U -n

since the number of the terms in the sum } is inferior to k". Therefore Bk is
bounded. This shows that E(etw)< +o for sufficiently small t > 0. Again from
the recursive relation, we obtain

E(e"Mt) = (B

So E(etw) < +o for all t> 0 and

£ t) = (£ s (B
where k € N and
K =1log n / log p.
Put Y(t) = log E(etw),

then Y(ut) s nyY(t), and consequently W(pk) = nkw(l). For each kelN, choose an

integer i = 0 such that

u =k < M4
Thus
1/K i+l i+l (i+1)K K
kKW W w w
Ete® ") sEe® M) s (BN = (EE)HH < (E(e" )M K.
On the other hand, by Markov’s inequality we have
1/ 1/K, 1/k
k k
EW) = fSp0'>t) at = % po I ) at
1/ 1/K, 1/k
< E[eX ﬁ"’] 5 Kt g
1/K
= E[ek w]ks/ kk/K

Thus

20
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K
EwWS) s (E(e"))* ¥kis kKK

Writing

K
B = (E(e")* = (E(&")"

(K =1logn/ log u), then

/K

E(Wk) =< Bk(k!)/ kk (3.7)

for all k 2 1. Since 1-1/K = B, it then follows that

log E(wk)

Lim sup ===

k++o

=8 .
Thus (i) is proved.
(ii) We first note that 0< B <1 since Z1 is not a.s. a constant. The

first part of the proof above shows that

r r
EfW" ] = {(§>re°‘“’1“

for all rz0 (cf.(3.4). For k € N sufficiently large, choose r € N such that

1 . o :
nrs k/B < nr+ . Using Stirling‘’s formular gives

r r
y IE(wk/B) 1/k> ' E[Wn ])1/(n B)
im sup % Z lim sup K/e
k-0 ’ k-0
BT cmyzs _cma
Z lim sup =
-0 B nr+1/ e An
since (n/p)r/s= nr. Thus r(wl/g) < .
Using E(Wk) = Bk(k!)/ kk/K (proof of (i)), the same method as above
applies, yielding that
L E(Wke) 1/k< . (E(W[k9]+1))9/([k9]+l)
im sup |——— < lim sup 17k
k-0 ’ k- k!
' B9([k9]+1)!6/([k9]+1)
< lim sup 1/k 87K = B 0 < 4+,
rw k! ([kOl+1)
where 6 = 1/ B. This shows that r(Wl/B) > 0. The proof is completed. o
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Lemma 3.3. Suppose that llzlll°° = +w0 and denote by Tg = r(wp) the radius of

s , t
convergence of the moment generating function E (e ) of WB . Then

(i)  lim inf 132-5155) >1 and r(WP) =0 Ve >1;
k log k
k- +00 Wk
tz
(ii) 1im 29 EMW ) _ 1 and  r(W) > 0 if additionally E(e‘%) < w
k400 k log k

for some t>0.

Proof. (i) Let 8 > 1. Choose n € N sufficiently large such that P(Z1=n) >0
and BBn > 1, where Bn= 1 - log p / log n. The proof of part (i) of the above

lemma shows that

nr
log E[W ]
lim inf —m8 ——— 2 B
r r n
-0 n log n
log E(Wk)
Hence lim inf —E—TSE—E = Bn and the inequality in (i) follows by letting

k2+m

n — ®. Moreover Ve>0
r
log E[W' ] = (B_-€)n"log n”

for sufficiently large r. We choose € > 0 such that G(Bn—e) > 1. For k € N

sufficiently large, choose r € IN such that n’= k6 < nr+1. The Stirling’s
formular gives then
ke y1/k n"  e/n" r (B -€)
. E(W ) . E{(W ]) . (n) n
lim sup — % Z lim sup e Z lim sup — T = to.
ko0 ) k-0 r-w n / (eB)
Thus r9 = 0, as desired.
(ii) Suppose that E(etz) < o for some t>0. Then r(Z) > 0 and hence r(W) > 0
k 1/k k,1/k
by lemma 3.1. Consequently 1lim sup[ Eing ] < o and lim sup—E£¥7£——— < ®
k-0 ’ k-
log E(wk)
by Stirling’s formula. The last result gives immediately lim sup X 1og & =1
k-+0 °g
which ensures our conclusion combining with the inequality in (i). a
k
Remark. The result 1lim }Egigéﬂi) 1 does not hold in general. For
Y
k e lo E(wk)
example, if E(W )=+o for some k>0, then it is evident that 1lim —EgIEE—E =+

k400
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4. Proof of Theorems
The theorems will be proved in a series of propositions and lemmas, using
the preliminaries in the sections 2 and 3.
We first recall that we have defined a random measure pw(.) on I,
concentrated on the branching set K(w), such that
p(Be) =1w (=1 p %y,
w oo oed o
where B(o) = {T€I: 0<T}, (w0) (0 € T) is a family of random variables, each
distributed as W = %ig Zn/pn, and W¢ and WT are independent if neither ¢ < T
nor T < 0. We have also defined a probability measure on the product space
QxI by
o(a) = E I 1, (0, 1) du (1),
see section 2. To obtain some density theorems about the measure K, we shall
need the distributions of the random variables &n(w,i):= Wiln on QxI (nzl1).
Lermma 4.0. Let f: R > [0,0) be a Borel measurable function, then

EQf(W = E Wf(w),

iln)

where EQ represents the expectation with respect to Q.

Proof. From the definition of Q and the structure of the Galton-Watson

tree, we have

-n -n
EfW,, ) =EY fW)u W =€EY p" ¥ £(W )W
o iln cecC g a oec 0sicz® 7 ¢
n

=EY pp E(EWW) = EWE(W). o

oeC
n-1

We can now obtain our density results about the measure B, We recall that
. -n
a= logu /log2 and we remark that |B(i|n)|:= diam B(i|n) =2 .

The first result (4.0) in the following proposition was first obtained by

Hawkes (1981). For convenience, we shall give a simple proof here.

Proposition 4.1 (Density theorem about the measure uw)

(0) If E Zlogzz <w, then
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log uwB(iIn)
lim = = -log p for P-a.e. w and B, a-e. i (4.0)
n->w

or equvalently
log uwB(i|n)

lim = a for P-a.e. w and B,- a.e. i. (4.0)’
nsw log |B(i|n)|
. ew?
(1) If E(e ) < w for some 6€(0,w) and te(0,w), then
f
Hp,B(in) -1/0
lim sup ——+ =t ° for P-a.e. w and p = a.e. 1, (4.1)
1/06 w
n-0 (logn)
or eguivalently
u B(i|n) _
lim sup ¢ ?IB(iIn)I) =t 1/8 for P-a.e. w and uw- a.e. 1, (4.1) "
n-o 1/6
a 1.1/6 . c s
where ¢1/e(t) = t (loglog E) Consequently (with no condition)
lim sup #?f;tlT;)1) = re_l/e for P-a.e. w and uw- a.e.l, (4.1)"
n->w ¢1/6
t -1/6 , , .
where re= sup(tz0: E(e )<}, re is interpreted as 0 if re=w, and o if
rezo.

(ii) If E(WB+1) < w for some O€(0,w), then

pnuwB(iln)
lim i =0 for P-a.e. w and pw— a.e. 1§, (4.2)
nyo n
or equvalently
uwB(iln)
lim =0 for P-a.e. w and up - a.e. 1, (4.2) '
rom V1 o (TECATEIT) w
_ Lo 1.1/06
where wl/e(t) =t (log E) .

Proof. (0) It is known that EWlog+W <o if and only if EZlogZZ <o (see
for example Athreya and Ney 1972). So it suffices to show that, if EWlog+W <o,

then

log wiln

n

lim
n->o

=0 Q - a.e. (4.0)*"
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By the distribution of W (Lemma 4.0), for all &€>0, we have

i|n
ne -ne
Q(Ilogwi|nlz ne) = Q(Wi|n=e or Wilnse )
= E [W(1 ne + 1 ne )1.

(W2e' °) {Wse T}

Thus

-ne
Loy Q(l1ogW, | 1= ne) =L" E (W 1 ety L, e

{

=O(EW10g+W} + Z§_1 e—ne <.

|log wiln -

The Borel - Cantelli lemma gives lim sup
n-w

n

result desired.
e

S &€ Q - a.e. and then the

(i) It is equivalent to show that, if E(etw ) < o for some 0€(0,w) and

te(0,»), then
(]

W
lim sup iln =< t—l Q.- a.e.
logn
n-»o
t’We tWe
For all 0O<t’<t, we have [E(We ) <o since E(e ) <. Then V € > 0
twilne l+e
Q(e zn ) = IE[W 1 o ]
{etw zn1+z:}
and consequently
e twe

tw
Z:-l o(e iin > nl+€) - O{E(We1+€)) <o

(since t/(1l+g)<t). The Borel-Cantelli lemma ensures that

twilne
i —_ = - a.e.
%1m sup Tog 1 (1+e) Q- a.e

Hence the result follows.

(4.1)"

(ii) Again equivalently, we have to prove that, if E(We+1) < o for 6€(0,m),
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then

e
iln
n

W

1lim =0 Q - a.e.

n-o

The approach is almost the same as above by means of the Borel-Cantelli Lemma,

noting that, for all &>0,

(2] 1_..1+0
Lo QW “=me) = L EM1 o ) =08 ") <w. o
{W 2ne)}
tW9 |
Remark 4.1. (i) If Ee =w, then a simple calcul as above shows
twilne
E Q(e Z n) =oo.

=1
(2]
twiln

If the events (e = n) satisfied some asymptotic independent

properties (it is so in the case that 2 is of geometric distribution,

see Hawkes 1981), then we could conclude that

e

w
iln = t-1 Q.- a.e. (4.1)""
logn

lim sup
n->o

and then (4.1)" could be strengthened to

p B(i|n) _
od r 1/0 for P-a.e. W and-pw- a.e.i. (4.1)"

S S g BT ~ o

n-»o0

If additionally there were no uw— exceptional sets, then a standard density

¢
argument could imply 0<¥ 1/G(K(w))«m if 0<re<m. This explains why ¢1/9 is the

correct gauge function.

(ii) If EW*!) = o, where 08€(0,w), then VM0 £, o, %= nM) =w. Again
=1 " iln
if the events (wilnez nM) satisfied some asymptotic independent properties,
Wil 0
we could conclude lim LI Q - a.e. and
n O
pr(iIn)
lim - =0 for P-a.e. wand pu - a.e. {i.
oo V1,9 (IBATRI) w
By the same reson as above, this shows that we might have probably
U
1
# %%w)=0 a.s. if EWT'Y) = w.
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Corollary 4.1. (The dimension a of K and the a-measure associated)
(i) dim K = « a.s. K#; (ii) p*(K)<w a.s.
(iii) 0 < ua(K) < o a.s. on K#0 if and only if Z is a.s.a constant.

Proof. As K can be covered by Zn balls of radius 2-n, and Zn(2—n)a = Zn/pn
2 W a.s., we have consequently ua(K) =W a.s. This proves (ii) and dim K s a
a.s. To show (i), it then suffices to prove that dim K 2a a.s. If EZlog2Z <o,
this is an immedeate consequence of (4.0)’ by a standard argument of density,
see for example Taylor (1986, s54), and this appeared explicitly in Hawkes
(1981) . Otherwise, we truncate the process as follows. Let 0<MeN and consider
the Galton -Watson tree J* generated by the defining elements Z*¢:= min(Zo,M)
(c€T). The resulting branching set K* has a.s. dimension a*(M):= logu*(M)
/log2, whgre pu*(M):= Emin(z,M) >1 if M is sufficiently large. Hence dim K =
dim K* = «a*(M) with probability = 1-g*, where g*=g*(M) €(0,1) is the
extinction probability of thé new branching process (Zn*), which satisfies

p+ p,a*+ (@)’ +oe by (@) (B g +ee) (@) =gt

Since g* decreases (remark that Zn* increases) when M increases, the limit

q0:=1im g*(M) exists. Letting M-w, in the above equation gives p(q0)=q0. As
M-

qoe[o,l), we have 9,4 the extinction probability of the branching process
(Zn). Thus dim K 2 a with probability = 1-q by letting M-»w. This establishes
(1).

. We then turn to (iii). If Z is a.s. a constant, then it is easily
verified that‘ua(K) =1 a.s.; if Z is not a.s.a constant, then pa(K)=0 a.s.

by Falconer (1987, Lemma 4.4). (a]
Proposition 4.2 (The lower bound) Let 0 < 6 < +w.

W

(i) If E(e¥" ) < » for some r € (0,»), then

217



Q. LIU

¢
1] l/e(K) = rl/eW a.s. (4.3)

where $, o () = t% (loglog é)1/°=

(ii) If EP*1) < w then

¥
18 k) =w a.s. on W > 0, (4.3)"
o« 1,1/6
where wl/e(t) = t (log E) .
Proof. (i) We first note that pw(K(w)) = W a.s. By Proposition 4.1(i),
(4.1)', for each € > 0 we can choose a compact subset K’=K’(w) of K=K(w)

such that u(K’) = W-g and

-1/0
uwB(iIn) s (1+€)x ¢1/e(|B(i|n)I)

for all 1 € K'=K'(w) and all n = NozNo(w) (proposition 4.1(i) ensures that

this can be done almost surely). This means that with probability 1,

1/

p,( B(iln) nK) = (l+e)r (1B(11n) |)

¢1/9
-N

when n = No(w). Let (Sj) be any cover of balls of K‘ with diam Sj = 2 0. Then

/6

' 1 oA
p.w(sj NK') s (l+e)r ¢1/9(|Sjl) (lSjI = diam Sj)'
Hence

1/

W-g = pw(K:)s pw(g](sj N K= § pw(sj nk) = (1+4e)r g ¢1/e(|Sj|).

This implies that

¢
1l/8 1 1/0

almost surely. Letting € - 0, it gives the result desired.

(ii) The same idea as above: Vn>0, choose a compact subset K’ of K such
t t I Z - ’ s !
ha uw(K )2W-7 and pw( B(i|n)p K') 7 wl/e(lB(iIn)l) for all ieK’ and nzN0

(That this can be done a.s. by Proposition 4.1(ii), (4.2)’). Thus for any

cover (Sj} of balls of K’ with Isjl:=diam Sj = 2 {

W-ns p (K')= uw(tjusj nkK))s § M85 NK) =7 ? V10018510

¢1/e

1]
1 .
/9 (W-7) . Letting 70, we know that a.s. u (K)=ow if

This gives (K) = %

W>0. a]
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Lemma 4.3. Suppose that a function g: R > [0,1] is non-increasing such

00 .
that I g(t)dt = +o and that j: N > R is a function satisfying lim sup 21%1 <1
0 k>
then Ve>0
1/(1+€) -
lim sup Jk U (1ee) ge)t€ ae k&) _ (4.5)
k>0 J(k)

for each € with 0 < € < €

Proof. Since

) k+1

o o
© = f g(t)at = } g(t)dt = } g(k)
1 k=1 Yk k=1

we can choose an increasing sequence (kv)veN of integers such that

1 , .
g(kv) z Tier (€ >0 given )
k
v
for all v = 1,2, ...For each kv' choose Kve N such that (kv—l)1+€< Kv < kv1+€.

This is possible since kl1)+e—(kv—1)l+8 Z 1. Now

1/(1+€) -
lim sup Ik L/ (1se) g(t)tfat - k€/(1+e)]
ko, keN L Y (j(k))

1/(1+¢g)
r -
= lim sup JKV g(t)tedt _ KE/(l+e)]
. 1
V- (J(Kv))l/( +€)
z lim sup [ I%E g(kv) [ Kv_j(Kv) ] _ KlE;/(1+e) ]
V-0

>4
= +o
v]

, l+e .
e-¢ [(kv—l) J(Kv) Kv ] ok
1

2 lim sup [ Tre k

- k1+c l+e

K k
14 v v

if we choose €’ > 0 such that € < £€-¢’, noting that

l+e . .
(k_-1)" " j(K) K 3 (K )
. v . v v . v
lim e =1 and 1lim sup Tre = lim sup < 1.
V-0 k V-0 K k V-0 K
v v v v
The proof is then completed. o

Proposition 4.4. (i) Suppose that
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—

E(e ) = o
for some 0 € (0,w) and r € (0,w). For t > 0, write

1 1 e
(w) < ( ¢ loglog — )

* * Nk | w
Bk = Bk(e,t) = o €

(clv)*

2
for all v = [logk],[logk]+1,...,k.}, (4.6)
= ] = ey , d
where T* = (11,12,...,tn_1,tn+1) if t (11,12, 'rn) an
=1 k) g loglog — edP (4.7)
Ik = Ik(e,t) = Y « (2 ) (ve?)(w) oglog % . .
Q o-eBk 2
Then for all t > r we have
*
lim inf I, = 0 . (4.8)
k
k>
(ii) For @ € (0,m), write
—* k 1 ]
Bk(e) = {ceN | W(vlv}*(w) < (log ;:; )
for all v = [logk],[logk]+l,..‘,k.} (4.6) "
and
T ~hey g log % edP (4.7)"
Ik(a) = EEE* (2 ) (ce?)(w) og ;:E . .
Q k
k /0
Then lim sup { Y P [ Wl zp ] - 0 logk } > - (4.9)
koo v=[logk]
implies
-X
1lim inf I (0) < +w. (4.8) "
k
k-
In particular we have
-%
lim inf Ik(e—e) = 0 (Ve>0) (4.8)"
k>
if EW7?) .
Proof. (i) Using the notations introduced in the proceeding, we can write
-ko
lw' 2 1(0&7)(w)'
and, since W (v = [logk],...,k.) are independent and, as a family

(oc]v+l) *

(o|i)

independent of F@ (the oc-algebra generated by Z (0 =i = |o|)), we have
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* 1 6
Ik = z 10‘[ loglogm ] dp
k

2
1 11)6
{W(le)*< [E loglog —:;] }

v=[1logk] 2

(conditioned on Fw firstly)

e
1 k 1 1)e
"L J 1°[ 109t STt ] * vE[logk]P{ " [E regtes ;:;] }

" (2]
= loglog i E| ¥ 1 “k P{ W < 1 loglog —%— 6
k kK O t v
\ 2 ceN v=[1logk] 2

( e
= loglog Ek ] ]’]‘k P { W < { % loglog —%; ]9 }
\ 2 v=[logk] 2

r e
loglog 1k ] exp { - Zk P { W = [% loglog —%;]9 }

~ 2 v=[1logk] 2

( log k )9 exp { - P [ Wz [ % log v ]e ] }.

v=[logk]

1A

1A

Hence
1/0

* tw
Ik s exp { - zk P [ e

zZ v ] + 0 log logk } . (4.10)
v=[logk]

It then suffices to prove that

k tw1/9 ’
lim sup { ) P [ e =y ] - 0 log logk } = +00. (4.11)
k-0 v=[logk]

To show this we note that
v+1

1/ 1/e
Zk P [ WL, ] > Zk-l [ p [ oW
v

v=[1logk] v=[logk]

v

X ] dx
1/(1l+¢) t 1/6

1/e — W
= p{etw = x] dx = I%E 1/ (1se) p[el+e = y]yedy
[logk] [logk]

(x=y1+e), where € > 0 is chosen such that t/(l+g) > r . Writing

Y
f(Y) = P [ e zy ]l

then
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t 1/6
© T e "
I f(y)dy = E [ e ] = +00.
0

By use of Lemma 4.3, we have eventually

k 1/e
lim sup { ) P [ e

zv ] - 0 log logk }
k=00 v=[1logk]

1/(1l+¢e) £ w1/9 _
z lim sup I%E { 1/(1+€) P[e1+e z y]yedy - k€/(1+€) } = +o,
k-0 [logk]

which ends the proof of (i).

(ii) The same argument as above shows that

i:(e) < eXp { - Zk P [ W1/9= v ] + 0 log k } .

v=[logk]

(4.10)°
from which the first conclusion follows.

To prove the second it suffices to
show that Ve>0

lim sup { Zk P [ Wl/(e—e)z v ] - (0-g) log k} = +o.
k-0 v=[logk]

(4.12)
Note that
v+1
Zk P [ w1/(9-—8)z v = Ek-l J P [ wl/(e-e)Z x ] dx
v=[logk] v=[logk] 1%
= Jk p w8y 4y ax - Jk p wi/% 17870 g
[logk] [logk]
1-€/6
1 1/6 €/(0-¢) 1-€/0
= _ P(W zZt) t dt (x =t).
1-g/6 Jtlogk]l €/6
1/(1l+e’)
1 , 1/6 €'’
= —, ., P(W Zt) t dt (4.13)
l+e Jtlogkll/(1+€ )
where €’=g/(6-¢), using Lemma 4.3 with j(x) = [log x], g(t) = P(Wl/ezt)

(remark that I:g(t)dt - Ew*’®

) =0 ) and €'=g/(0-g) gives then

lim sup { Zk P [ wt/ (8-€), v ] - (8-g) log k}
k-0 v=[logk]

1/(1l+e’) _
z lim sup I%E’{ 1/(1+e’) P(wl/ez t) te'dt - k€/(1+e')} = +w,
k-0 [logk]
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where Ee(o,s’). This shows (4.12), which ends the proof of the proposition. o

Proposition 4.5 (the upper bound)

(i) If
/6
E [erWl ] = +o
for some @ € (0,+») and r € (0,+»), then
¢9
M (K) < +o a.s. (4.14)
o 1.0
where ¢9(t) = t (loglog E) . Moreover
®
Ep 2k = 22, (4.15)
(ii) If E(Wl/e) = +0 for some 6 € (0,w), then
Vo-
@€k =0 a.s. Veso, (4.16)
o 1,0-¢ ¢94
where we_c(t) =t (logE)- . Moreover, (4.9) implies E [p (K)] <o (thus
v

M 9(K) <o a.s.).

~[logk0]

Proof. (i) Let t > 0, € > 0, koe N and 6 = 2 , where [x] denotes

the integral part of x. Define
B* = { o€ NN : W(@lk)*(w) < [ % loglog ;%E ]6
for all k = [logko],[logk0]+1,...,k0}. (4.17)
For o € NN - B*, let k(o) be the smallest k = [logko] such that
W(olk)*(w) = [ % loglog ;%E ]9.
Then k(o) = ko. set T = { clk(c): o € NN—B* } ( E = E(ko) ). It is easy to

check that I' is an antichain. Hence there exists a maximal antichain T =

~ * *
F(ko) with ' € T'. For every o € B*, we have vlko € Bk (w), where B, (w) is

k
v 0 0
defined in proposition 4.4(i). Thus
K(w)S[U..D(w)]U[ u, D(w)], (4.18)
c o
cel’

oeBkéw)
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where Dw(w)={TeK(w): T>0) = B(0) n K(w) denotes the closed descendants of ¢.

By Proposition 4.4(i), we can choose a sequence (ki) of integers
increasing to +o such that
(]
. 1 (4.19)
}1m E [ Z* lo[loglog—:qqu ] =0 ]
100 2
0€B, (w)
k.
i
Now
¢9 . .
Hs (K(w)) = Y ¢e(d1am Dﬁ(w))+ g ¢9(d1am Do(w))
cel’, 0eT ceB, (w),0€T
0
e (]
_ -lola 1 -lola 1
= z~ 2 l(ceﬂ) loglog;:T;T + § 2 1(067) loglog;:T;T .
cel 0€B, (w)
k
0
1 6 1 6
= Z~ lo.[lOglOg—:—I?T] + Z 1¢(loglog—_—|FT] .
2 * 2
cell 0eBk(w)
0
Let k0 run through (ki) and § = Si = 2-[Logki] , this gives
¢9 1 6
L < 7iwmi
}m inf E[u& (RK(w))] = }mmf E [Z~ lw[loglog—_l—‘;—'—] ]
1->0 i 10 2
0er(ki)
1 e
+ lim E Y 1 | loglog ——
. . C -lol
i 2
0€B, (w)
k.
i
sliminf E[ ¥ t%1w_ |. (4.20)
i oot .
0er(ki)

First conditioned on Fk , the o-algebra generated by Zo(lcl =< ki), we obtain
i

that
% 0 ‘
lim inf E{pg (K(w))] =t~ lim inf E| } 1
i i isw ) a
cel(k.)
i
Since E(ww) = 1, the same reason shows
1 n]-fr ]
cel(k.) cell(k,)
i i
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With this at hands, and noting that W = } 1¢W¢ for any maximal antichain
oell

', we have eventually

lim inf E[ug(K(w))] < ¢9. (4.21)
¢ i-500 i é

Since uae(K(w)) increases as Bi decreases, this implies that E[u e(K(w))] st
i

6

for any t > r, which ends the proof of the part (i) of the proposition.

(ii) To obtain the second conclusion, by Proposition 4.4(ii), it suffices

¢
to show that, if (4.8)‘’ holds then E(p e(K(w))]<on. The argument is the same as

above, using (4.8)' instead of (4.8): write
-%
I = I(8) := lim inf Ik(e) (<+w),
k-0

and define

B* = { cen .

(W) < [ log —%E )9

W
(olk)* 2

for all k = [logkol,[Iogko]+1,...,ko}. (4.17)°

For ¢ € NN - B*, let k(¢) be the smallest k = [logk,) such that

1 ]
"olx)+ @) ® ( e ] :

Then i(o) = ko' Setting I = F'(ko) = { oli(c): oc € Nw-ﬁ* }, then T’ is an

antichain and there exists a maximal antichain T = f(ko) with I'" € T. For

- - -%
every ¢ € B*, we have then ¢lk0 € Bk (w), where Bk (w) is defined in
0 0

Proposition 4.4(ii), and, instead of (4.18), (4.19), (4.20) and (4.21) we have

respectively
K(w) € [ U. D (w ] U [ u, b» (w)], (4.18) "
(o = g
oelr’ veBk(w)
0

. 1 e

I(e) = 11m E [ Z lo_[log—_—l?l-] ] < +m, (4.19)°
i =% 2
ceBk(w)
i
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'
lim inf Elpy (K(0))] S lim inf E| T 1, ] ‘1, (4.20)°
i i i ¢€f(ki)
¥
lim inf E[uae(K(w))] s1+1I (4.21)°
i i
. . : . -[Logk, ]
where ki is a sequences of integers increasing to +w and 5i = 2 i’ . Hence
Yy Yy

E( p e(K(w)) ) <=1 + I and e(K(w)) < +® a.s.

This‘establishes the second assertion. To see the first, we note that I(8-g)=0

Yo-
for all &>0 if E(Wl/e)=m. Thus by the preceding argument, p 6 €(K(w)) < +0
v Vo
a.s. Since p 6 C/Z(K(w)) < +o also, we have u 6 c(K(w)) = 0 a.s. The proof is
then completed. ]

Proposition 4.6. (The fundamental theorem) Let 0 < 6 < +wm, = r(wp) be

To
, , , t Wﬁ
the radius of convergence of the moment generating function [E (e ) of and

¢e(t) = ta(loglog %)e. Then

¢
(] (2]
u (K) = (rl/e) W a.s.

In particular

¢

7] 9(K) is zero, positive and finite, or infinite
almost surely on K # @ if and only if

Wl/e , s .. e e

r{( ) is zero, positive and finite, or infinite
respectively.
Proof. This is a mere combination of propositions 4.2(i) and 4.5(i):

¢

e

from proposition 4.2(i) we have pu e(K) =z (r ) W a.s. and from

¢

ce s . 6 6 ()
proposition 4.5(i) we have E[p (K)] = (rl/e) = E[(rl/e) Wl . o

Our results have nearly been proved till now. Theorem 1 comes directly
from Corollary 4.1, and Theorem 2 from Proposition 4.6.
Proof of Theorem 3. We first note that 0 s B < 1. If 0 < B < 1, the

result follows immediately from Lemma 3.2 and Theorem 2; if B = 0, then Zla u
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a.s. and the result comes from Corollary 4.1 and its proof. This ends the

proof of the theorem. o
Proof of Theorem 4. (i) If 8 < 1, then r(Wl/e) = 0 by Lemma 3.3 and hence
¢9 t2
M (K) = 0 a.s. by Theorem 2. (ii) If E(e ) < w for some t > 0, then r(Z) > 0
¢
and consequently r(W) > 0 by Lemma 3.1. Thus u 1(K) > 0 a.s. on K#@, again by
Theorem 2. (iii) Finally if E(etz) = o for some t > 0, then r(Z) < o and
¢
Lemma 3.1 and Theorem 2 imply again r(W) < o and 1(K) < ® a.s. o
Theorem 5 comes directly from Theorem 4. o

Proof of Theorem 6. This is a combination of propositions 4.2(ii) and
4.5(ii). In the case where ¥y=wo, we use also the fact that ua(K) < ®a.s.,
we
which implies p (K) =0 a.s. o

Remark 7 is seen by the proofs. o
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