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THE EXACT HAUSDORP? DIMENSION OP A BRANCHING SET 

Quansheng LIU 

Institut de Recherche Mathématiques de Rennes 
Université de Rennes 1, Campus de ΒeauIieu, 35042 Rennes, Frauice 

Sumnary. We obtain a criticai function for which the Hausdorff measure of a 

branching set generated by a simple Galton-Watson process is positive and 

finite. The results solve a conjecture of Hawkes (1981)· 

0. Introduction 

Let (Ω, ii, P) be a probability space, 7=ÏÏ(LÙ) (α>€Ω) the genealogica! tree of 

a one-type Galton-Watson process (Ζ )s(z (ω)) (η£0,ω€Ω) with a single founder 
η η 

member Z Q» 1 and off spring distribution Z^Z^. The root of 7 is identified to 

the founder member which is represented by the null sequencer 0. The vertices 

in the n-th level are represented by n-terms séquences <r s (<r ,<r , ... ,<r ) of 
1 2 η 

non-negative integers which correspond to the particles in the n-th generation 
of the branching process. The edges of ST are formed by joining the vertices <r 

<r = (cr ,<r , . . . ,<r ) to their descendants (<r,i)s (<r ,<r ,...,<r ,i), 0^i<Z , where 1 2 η 1 2 η 
CT 

Ζ is the number of children of <r. The tree 7 is then identified to a random 

set of finite séquences of non-negative integers. Let Κ=Κ(ω) be its boundary, 

i. e. the set of ali the infinite séquences (0^ ,<J*2 , . . . ) such that (<Γ̂  ,<Γ2 , . .., <r ) 

€ J for all η = 1,2,... The set Κ is called to be the branching set generated 

by a simple branching process [8] . Let IN be the set of non-negative integers 

with the discrete topology, and I » N** be the set of ali séquences i = 

(i , i , ...) of the integers in Ν with the product topology. Then I is 

1980 Ma t hématies subject classification: 60B05, 60J80, 60J85, 11K55. 
Key words and phrases: Branching processes, branching set, fractals, Hausdorff 

measure, Hausdorff dimension 
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metrizable, and a possible choice of metric is given by d(±#j)=2 ' i A^', where 

İAj is the common sequece of i and j, i.e., the maximal séquence q such that 

q<i and q<j (§2) . We will always refer to this metric in this paper if it is 

not specified further. The branching set Κ is then a random compact subset of 

the metric space (I,d) (§2). 

If ρ (e) s £ Ρ 8 is the generating function of the family distribution Ζ, 
k 

and if μ = Y kp, < œ, then W= lim Ζ /μ11 exists and, if ^ u k η η r 

Σ P Rk Log k < œ, (ZlogZ) 

then E(W) = 1 and the extinction probability satisfies 

P ( Z - * O ) = P ( W = O ) = P ( K = 0 ) . η 

Throughout this paper, we suppose always that the moment condition 

(ZlogZ) is satisfied. 
Our interest centers on the Hausdorff measures of the branching set Κ. 

In 1981, Hawkes first proved that if 
2 2 Σ Pfck log k < », (Zlog Z) 

the Hausdorff dimension of Κ satisfies 

dim Κ = α:= log μ / log 2 (0.1) 

almost surely on Κ * 0. This resuit was also obtained under the weaker 

condition (ZlogZ) by several other authors in some différent contexts 

(see for example [4,11,12,13]). As we shall see in §4, the fact that the 

condition (ZlogZ) suffices for the dimension resuit (0.1) can also be easily 

shown by a simple truncation from Hawkes (1981). 

In the case where the offspring is of geometrie distribution (i.e. P(Z=i) 

= a(l-a) 1 1 for some a € (0,1) and all i£ 1), Hawkes showed moreover that 0 < 

•ι φ ι 

Η (Κ) <» a.s., where Η (Κ) denotes the Hausdorff measure of K with respect 

tο the function 

^(t) = ta(loglog 1/ t) 

Thus is an exact dimension function of Κ, i.e. a function for which the 
2 
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Hausdorff measure of Κ is almost surely positive and finite if Κ * 0. Hawkes's 

proof on the last resuit was heavily dépendent of the fact that the underlying 

distribution Ζ is geometrie. In the case where it is of general distribution , 

He conjectured that the dimension function would be of the form φ {t) = 

CL -1 1 

t R (loglog - ) , if R{x) := - log P(Wfcx) is regularly varying at infinity (He 

did not precise the regularity condition) . Our results here will show that 

this is endeed the case if, for example, the distribution of W decreases 

geometrically, or more generally 
-Xxa 

P(W£x) ~ Ce ( C ,A,a>0, χ -» oo) . 
In fact, we shall be able to treat the case where . a . a -λ χ -λ^χ 

c e 1 2S Ρ ( W 2: χ ) ̂  c 2e 2 (Vx £ Δ) , 

for some positive constants λ^, , c^, c^ , a, Δ >0 . (§1, example 2) and the 

results we shall prove are much better than this: différent dimension 

functions of the form t Ä, tÄ(log z ) & i ta(loglog ^ ) ß , etc. will bê caculated 

t t 
explicitely according to the offspring distribution Ζ. For example, writing 

β = 1- log μ / log II Ζ II , (0.2) 
00 

where μ=ΕΖ and II Ζ II = ess sup Ζ 3 ω (thus O^ß^l), the function 
oo 

φ (t) := ta(loglog ~ ) ß (0.3) 

is an exact dimension function of Κ if the offspring distribution Ζ is bounded 

(i.e. II Ζ II «», hence 0<£<1) or it is not bounded (II Ζ II =oo, hence ß=l) but it 
00 oo 

decreases geometrically, 
c a ks P(Z=k) * c a\ 
1 1 2 2' 

say, where c^c^O, 0<a.^Sa.^<l and k is sufficiently large (see §1, Theorem 3 

and Example 3). The case where the reproductive distribution decreases more 

slowly, for example, the case where 

c^k" * P(Z=k) 3 c 2k" (k€N sufficiently large) 

for some constants c , c >0 and δ>1, will also be discussed (see §1,Theorem 6 
1 2 
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and Example 4), and the convenable dimension functions will be found greater 

(This is rather natural: more slowly decreases the reproductive distribution, 

larger the branching set associated, and so greater the convenable gauge 

functions for the set.). However, in this case the exact dimension functions 

remain unknown, and the author conjectures that, quite probably, they 

would not exist (by an argument of density of an associated measure). 

Finally, we point out that our results here are closely related to those 

of Graf, Mauldin and Williams (1988). In fact, the author has recently 

developed the ideas to Euclidian space, and thus improved the classical 

results of Gral et al.(1988) (see Liu 1993). 

1· Main résulte and examples 

The main results are stated in the following, where the moment condition 

(ZlogZ) is always supposed to be satisfied. For convenience, we establish our 

results for the spherical Hausdorff measure μ £(.), where f=f(t) is a positive 

£une£iun âefiaed for t>Ô sufficienti^ email, nen-degreâsing and çontinuoue on 

the right. However, ali the conclusions hold for the ordinary Hausdoff measure 

3<f(.) since the two measures μ^.) and H f ( . ) coincide on K (see §2, lemma 

2.3) . 

We first gather some preliminary results as follows: 

Theorem 1. (The dimension a of K and the α-dimensional measure associated) 

Let α be defined as in (0,1). Then 

(i) dim Κ(ω) = α a.s. on Κ(ω)* 0; (ii) μα(Κ(ω)) < co a.s.; 

(iii) 0 < μα(Κ(ω)) < oo a.s. on K(u>) * 0 if and only if Ζ is a.s. a 

constant. 

The dimension resuit was first found by Hawkes (1981) under the condition 
2 

(ZlogZ). It was also proved by Falconer (1986, Corollary 5.7) and Lyons 

(1990, prop. 6.4) in différent languages under the condition (ZlogZ), see also 
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Lyons and Pemantle (1992) or Lyons, Pemantle and Peres (1993, th.7.3). We 

shall see that, this can also be obtained easily by truncation from Hawkes 
2 

(1981) (to relaxe the condition (ZlogZ) as (ZlogZ), see §4, Corollary 4.1). 

The conclusion (ii) is easy; the conclusion (iii) is a special case of 

Falconer (1987, Lemma 4.4) (see §4). 

Theorem 1 shows that in the non-degenerate case the α-dimensionai measure 

of the branching set vanishes and so the function t a is too small to measure 

the set. The following resuit is to give a criterion for a function of the 

form 

0e(t) := ta(loglog ^ ) θ (1.1) 

to be an exact dimension function of Κ: 

Theorem 2. (A necessary and sufficient condition for μ (Κ) to be zero, 

positive and finite, or infinite) Let 0< θ < -π», φ be the function defined by 
(1.1) and r = r(W^^) the radius of convergence of the moment generating 1 /Θ 

function E(et^L ) of . Then 
Φ 

μΘ(Κ) = (r
1/e^w a's- (1'2) 

In particular, 
ΦΘ 

μ (Κ) is zero, positive and finite, or infinite 

almost surely on Κ * 0 if and only if 

is zero, positive and finite, or infinite 

respect ively. 

Remark. If E(Z P ) = c o , then r =0 for all θ€(0 , α> ) , Theorem 2 is then 

Interpret ed as μ (Κ) =0 a. s. for all θ€(0 , α > ) . In this case Theorem 6 in the 

below will give more exact results. 

Theorem 3. (The exact dimension function: case II Ζ II < *οο ) Suppose that 
00 

IİZİI < +00. Let cce(0,<x>) and ße[0,l) be defined as in (0.1) and (0.2). Then 
00 
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Φ 
Ο < μ &(Κ) < +0» (1-3) 

OL 1 ß almost surely on Κ * 0, where φ (t) = t (LogLog . More exactly, a.s.on K*0, ß t 

μ ß W = 2 if ß=0 and μ S(Jt) = (r ıır)&W if β>0, (1.4) 
1/ß 

where 0<r <oo . 
l/ß 

Remark. We note that ß=0 if and only if Ζ is a.s. a constant. This shows 
1 ß 

that in the deterministle case the term (loglog -) disappears. 

Theorem 4. (Hausdorff measure of K: case II Ζ II = +co) Suppose that IIZII = 

00 00 
+00. For θ€(0,<χ>), let φ be defined by (1.1). Then 

Θ 
φ 

(i) μ θ(Κ) = 0 a.s. V θ < 1; 
Φ 

ι tz 
(ii) μ (Κ) > 0 a.s. on Κ * 0 if E Ce ; < co for some t>0; 

Φ 
1 tz (Hi) μ (Κ) < oo a.s. if E (e ) = w for some t>0; 

Theorem 5. (The exact dimension function: case IIZII =· +co) Suppose 
00 

t z 
t h a t II Ζ II = +00 and that E f e ; < o o for some but not all t>0. Then 

00 

0 < μ (Κ) < oo (1.5) 

almost surely on Κ * 0, where 

φ^ί = t*(loglog i). (1.6) 

Moreover 
Φ 

μ** (Κ) = r W a.s., (1.7) 
tw 

where r^= sup{t^0: E(e )<œ} is positive and finite. 

Theorem 6. F o r Qe(0,œ), put 

$Q(t) - t a r i o g i)B. (1.8) 

Let 

γ = sup { pZl: E Z P < o o } (1 S γ * ω) , (1.9) 

then, almost surely on K*0, 

Φθ o if e<i/r; 
(i) μ (K) = { where l/γ or 1/(γ-1) is interpreted as 0 

00 2Γ O>±/[J-±/, 
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if 7=oo; 
ψ 

(ii) μ 1 / < y ~ 1 ) (Κ) = co if l < y < c o and E(Zy;=«; 
Φ 

(Hi) μ Ğ (Κ) < œ a.s. if 

Hm sup i £ Ρ ( W Ζ ν1/Ύ } - - log k \ > - c o . (1.10) 
k-*» y v=[logk] 7 J 

Corollary. (a) If £(£*)<*> for ail p>l, that is, if 7 = 0 0 , then for ail B>0, 

μ (Κ) = » a.s.on K*0. (b) If E(Zr)=oo for some but not all ρ>1, that is, if 

1<γ<α>, then there exists χ^[1/γ, 1/(γ-1)] such that a.s.on K*z, μ (K) =0 if 

θ<χ and μ (K) =oo a,s. on K*e> if θ>χ. 

The assertion (b) holds also in the case where y = c o : χ is then 

ΦΘ ΦΘ 

interpreted as 0 and the resuit means μ (K) =0 if θ<0 and μ (K) =00 if θ>0. 

Thus (a) can be considered as a limit case of (b) with y = c o . There is another 

limit case with y=l. The author believes that it would hold also with the 
ΦΘ 

interpretion that χ=α> and μ (Κ) =0 if θ€(0,α>). 
ψθ Φθ Conjecture. In any cases (1*γ£α>), μ (Κ) =0 a.s.if θ<1/(γ-1) and μ (Κ) 

=οο a.s.on Κ*& if θ>1/(γ-1) . (In the limit cases where γ=1 or co, t h e r e s u i t is 

interpreted as in the above.) 

Remark 7. All the results above hold with α replaced by a(M) : = 

log μ / log M if the distance d(i,j) = 2 ' ' on I is replaced by d^(i,j) := 

M ~ 1 İ A j ' , where M > 1. 

As applications of the theorems, we give some examples here: 

Example 1. (Embedding in euclidean space) Suppose that the distribution of 

Ζ = Z ı has compact support, that is HZlI^co or p^= 0 for k sufficiently large. 

Let M be an integer such that M £ Il Ζ II (namely pi = 0 for k > M) . If Ζ = k 
00 k 1 



Q. LIU 

8 

we choose at random k distinct integers 31#J2,---,Jk with 0 ^ s M-l and let 
ζ 

1= [j4/M, <j +D/M). 
1 1=1 i i 

We now treat each interval in I as the Vertex of a tree and preceed 

inductively in the same fashion. At the n-th stage we have I as a union of Ζ Λ η η 
intervais of length M~n. The limit set Κ = fl"l can be described by the 

• »0 η 
associated branching set Κ of the process under the mapping 

f : Κ -» Kf i -* £ ikM~k. 

If we consider covers of K by M-adic sets and if Κ carries the matrie d M(i,j)= 

M~|iAj|^ i t i s t h e n easiiy Seen that the Cantor set Κ has the same exact 

dimension function as Κ, given by φ (t) = (loglog where 
ß t 

α (M) = log μ / logM and β = 1- log μ / log ItZtl . 
00 

(Theorem 3 and Remark 7). 

We give now a more explicit construction to explain this: divide the unit 

interval into three equal parts and retain each independently with probability 

p. Repeat this with the parts that remain, and so on. In this case M=3, 

μ=Ε(Ζ)=3ρ and tiZil = 3. Then a=log (3p)/log3 = 1+ logp/log3 and β= 1-
00 

log(3p)/log3 = I-α. The exact Hausdorff dimension function of the resulting 

fractal set is then t(X(loglogì)1 a, where a=l+logp/log3. 

Example 2. (On the conjecture of Hawkes) Hawkes (1981) conjectured that an 

exact dimension function of Κ would be of the form h(t) = t 0 6^ 1 (loglogì) if 
JR(X) = -log P(W£x) is regulär at +oo (He did not precise the rerularity 

-Xx a 

condition). We say that this is well the case if for example P(W^x) = e 
a 1 

for some λ >0 and a > 0, since in this case fl(x)= λ χ and h(t) = ~ 
λ 

ta(loglog~) which is shown to be an exact dimension function of K by 
k a+2 —k/a a Theorem 2 (as E(W ) = λ T(2-a+k/a) and consequently r(W ) = l/λ) . In 

fact we can obtain a little more: if there exist some positive constants 

. a . a -λ χ -λ χ 
c^e s P( w £ χ ) s c 2e 2 (Vx £ Δ) , 
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then φ ( t ) = t Ä(loglogì) is an exact dimension function of K. This is an 

l/â t 

immediate conséquence of Theorem 2 if we note that 

0 < - s r(W a) s ì < ». 
1 2 

Remark. In the case where P(W£x)=x (θ>1 is a constant, χ-*»), Hawkes's 

OL 1 1 / θ 
conjecture mean that the dimension function might be 0 - / ö ( t ) = t (log —) 

1 / θ t 

By Theorem β, we know that, if there are some constants θ>1, 0<c^sc^<œ such 

-θ -θ 
that e x £ P(W£x) 2S e x for sufficiently large x>0, then 

^1/θ ^1/ίθ-1) μ (Κ) < co and μ κ (Κ) = co a.s. on Κ * 0, 
i / ^ v ^<*>,Λ 1 λ1/(θ-1) R T / r ^ v P ° ° T W T , ^ ^Ρχ J < + C 0 İf ρ<θ 

where # 1 / ( e . 1 } ( t ) = t (log -) , since E(V^) = S Q P(W*x )dx ^ . f ^ . 

By a density argument, it appears probably that one would have μ (K)=0 for 

all b< 1/(θ-1) (Thus a criticai function would be ψ , rather than φ ), 
1/(θ-1) 1/Ό 

where φ ( t ) = t a(log ì ) b for any b^O (see Remark 4.1. and the conjecture 
b t 

after theorem 6). 

Example 3. {Case where the reproductive distribution decreases 

geometrically) Suppose that there exist some constants ο^>0, c
2>0/ and 0 < a^s 

a < 1 such that 
2 

c a k < P(Z=k) < c a k 

1 1 2 2 
oc 1 

for all sufficiently large k, then the function ^ ( t ) = t (loglog -) is an 
exact dimension function of the branching set K. 

t z 1 t Ζ This is immediate by Theorem 5, since E(e ) < » if t < log — and E(e ) a 2 
= co if t > log — . It Covers of cause the case of geometrie distribution, a 1 

Example 4. (Case where the reproductive distribution decreases 

polynomially) Suppose that 

9 
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c ! Κ * p ( z = k ) s c 2 h 

k k 

for some constants c >0, c >0, θ>2 and sufficiently large k, then 

μ b(K) =0 if b< 1 / ( θ-1) and μ b(K) = œ a.s. on K*0 if b£l/(0-2), 
where φ (t)= ta(log i ) b . b t 

The resuit follows from Theorem 6 since E(Z P) < » if ρ < θ-l and E(Z P) = oo 

if ρ £ Θ-1. 

2. Preliminariôfl 

2.1. Sequencee and treee 

Let IN be the set of non-negative integers with the discrete topology, N 

be the set of ail k term séquences of the integers in IN, Τ = U^_0^k be the set 

of ali finite séquences and I = be the corresponding infinite séquences i 

= (i ,i , ...) (i,€ N) with the product topology. We make the convention that 
1 2 K. 

N° contains the null séquence 0. 

If i = (i,i, ...) € N^, we write i|n = {i.,i-, . . ., i ) for the 
1 2 1 2 η 

curtailement of i after n-terms; if σ = (er #σ ,...,σ ) € Τ, we write |<r| = η 
1 2 η 

for the length of σ, and cr* = (<r , cr , . . ., σ +1 ) € Τ for the new séquence 
1 2 η 

corresponding to σ obtained by augmenting the n-th composant σ to σ + 1. If τ 
η η 

= (τ ,χ , ...,τ ) € Τ is another finite séquence, we write σ*τΞ 1 2 m 
(σ,τ) = (σ . σ , . . . ,σ ,τ ,τ , ...,τ ) for the séquence obtained by juxtaposition 1 2 η ι 2 m 
of the terms of σ and τ. We partially order Τ by writing σ < τ (or τ > σ) to 

mean that the séquence τ is an extension of σ, that is τ = σ*τ' for some 

séquence τ'€ T. We use a similar notation if c € Γ and τ 6 I. We remark that 

the null séquence 0 < i for any séquence i. Finally, if i and j are two 

séquences of T or I, we write iAj for the maximal séquence er such that <r<i and 

cr< j . 

A tree J is a collection of finite séquences of non-negative integers such 
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that (a) 0 € 7 ; (b) If σ€? then σ*ΐ€ίΓ if and only if 0^ί<ζσ for some Ζσ€ΐΝ, (c) 

σ € ïï implies σ'€ ïï for any cr'< er. See Neveu (1986) . The séquences ir of J 

may be identified with the vertices of a direeted graphe with σ joined to <r*i 

in the obvious way. The nuli séquence 0 corresponds to the root of the tree; 

Ζ represent the number of edges going out from <r. The classical 

Galton-Watson branching process is then identified to a random tree. This tree 

will be also denoted by 3". The branching set Κ = Κ (ω) is then defined as its 

boundary, i.e., the set of infinite séquences j such that i € ïï for every 

finite curtailment i < j. However, we shall give a more careful définition of 

this set in the following. 

2.2 Branching set and Hausdoff measuree 
00 

Suppose that p, £ 0, that Y . °° p. = 1 and let (Ζσ) (σ 6 Τ := U ΙΝΠ) be a k ^ k=0 k 
n=o 

countable family of independent random variables each distributed according to 

the law Ρ (Ζ = k) = ρ . Here by convenience we write IN°:= { 0 } be the set of 

the null séquence. Put 

C 1 = j İ € I : 0 S i 1< Z0-l j, 
and by induction, 

C = j i € C : 0 £ i S Z ( İ | n ) - l l (n £ 1). n+1 1 η n+ı J 

The set Κ = Π C 
n=l 

is then called the branching set generated by Ζ. Write 

Co = { 0 } a n d °n = | ( i ' n ) : 1 6 } ( n 2 5 1 ) 1 

the Galton-Watson process can be defined by 

Ζ = 1 and Ζ = Υ Ζ σ (η 2: 0) . ο n+1 u „ 
η 
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Thus Z 1s z 0s Ζ by our notations. Let 7=2Γ(ω) be the genealogical tree of the 

process. Then C =(σ€Ϊ": |<r|=n) (n€İN) and K=(i€l: i\neïï for ail n£0) . 
n 

As pointed out in the introduction, if μ = £ ^Ρ^< °°' then W = lim z
n / f * n 

exists a.s. and, if J p^k log k < co, the extinction probability then satisfies 
Ρ ( Ζ - » O ) = P ( W = O ) = P ( K = 0 ) , η 

and E(W) = 1 (see for example Athrey-Ney 1972). 

Suppose that (E,d) is a metric space, A S E, and f=f(t) is a positive 

function defined for t >0 sufficiently small, non-decreasing and continuous 

on the right (which we cali a dimension function). The Hausdoff measure of A 

with respect to the dimension function f is by définition 

Hf(A) = lim HÌ(k) (2.1) 
S->0+ δ 

where 

K^(A) = inf { J^fidiam υ±)ι A C U^.^, <*iaro V** > (2-2> 

(diam (U ) représente the diameter of U ) . It is not dif f icult to see that the 
i ì 

quantity K f ( A ) remains the same if in the définition we use covers of just 

open sets or just closed sets, or again just subsets of A, see for example 

Rogers (1970) . If we use covers of just balls, we obtain the spherical 

Hausdorff measure: 

μ £(A) = lim μ ? ( Α ) (2.1)' 
δ->0+

 6 

where 

μ ^ ( Α ) = inf f(|ü I): A c U " U . |U Isô and U. are balls} . (2.2)' 
Ο 1=1 1 1=1 i i 1 

The two measures J f f ( . ) and μ £ ( . ) are in general not identical (see 

Besicovitch (1928, chapter 3) but équivalent for a large class of dimension 

functions (which are usually called regulär): 

Lemma 2.1. Suppose that (E,d) is a metric space and f(t)*0 is a positive 

function defined on (Ο,Τ) (T>0), non-decreasing and continuous on the right. 

If 
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f(2t) S cf(t) \/t*(0, T/2) (2.3) 

for some c>0, then 

Hf (A) s μ1 (A) S cHf (A) for all AQE. (2.4) 

f f 
Proof. Clearly W-(A) ^ μ*(A) since any δ-cover of A by balls is a d o 

permissible covering in the définition of H* (A) . Also, if {U } is a δ-cover of 
O i 

A, then {B^} is a 2ô-cover, where, for each i, B^ is choosen to be 

some ball containing U and of radius |U |^δ. Thus 
i i 

Σ f(lBil) * Σ f(2|u,|) s c £ f(|u,|), 

and taking infima gives μ^(Α) s cJff(A). Letting δ -» 0, it follows that Hf(A) 

s μ ί (A) s cHf(A) . • 

We suppose that the condition (2.3) is always satisfied in this paper. 

It holds for example for f(t)=ta, t a(log£) ß, t Ä(loglog^) ß, etc. (α,β>0). 

If 0 < μ^(Α) < oo, we say that f is an exact dimension function of A, or 

simply an exact dimension of A, or an exact measure function of A. If f(t) = 
a a f t (a>0), we write μ (A) instead of μ (A), and we cali it the a-dimensional 

(spherical) Hausdorff measure of A.The Hausdorff dimension of A is defined as 

dim A = sup { a > 0 I μ α(Α) = +00 } s inf { a > 0 | μ51 (A) = 0 } 

Then μ ά(Α) = +co if a < dim A and μ*(A) = 0 if a > dim A. All the Statements in 

this paragraph hold if the spherical Hausdorff measure μί(.) is replaced by 

the ordinary one K f ( . ) since they are équivalent. 

For our purposes, we shall take E=I with the metric d defined by 

d(i,j) = 2~'iA"''. First of all, we remark that the balls of I are of the form 

Β (er) : = {i€l: 1>σ} (σ€Τ), 

which constitute a basis of the topology of I. Secondly we have 

Lemma 2.2 Κ (ω) is a. s. a separable compact topological space if Z<oo a.s. 

proof. Since it is evident that Κ has a.s. a countable topological basis. 
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it suffices to prove that K is a.s. compact. We remark that K can be regarded 
00 

as a subset of the product space E = Π E , with product topology, where E = 
1 1 η π 

n=l 
{0,1,...,Z -1} carries the discrete topology. Since E is compact, so is E by η η 

Tychonoff's theorem. As Κ is a closed subspace of E, it is then compact. • 

Finally we claim that on (I,d), the sherical Hausdorff measure μ£(.) 

coïncides with the ordinary Hausdorff measure H f(.), although it is not so 

for a general metric space. 

Lemma 2.3 For any dimension function f, we ha ve 

μ1 (A) = Hf (A), VA S I. 

Proof. The same method as in the proof of Lemma 2.1, noting that if {l^} 

is a δ-cover of A, so is i^}, where, for each i, is choosen to be some 

ball of a center aj€U and of radius diamit^) =s5. In fact, for each i, taking 

a.€U and k.= inf |İAJ| , the ball Β := B(a.|k ), where B(a.|k.) = {a.} if 
l ì i l i 1 1 1 

ki=+oo, satisfies our needs : firstly, if xet^, then IxAa^ss^ by the 

définition of k . Thus χ > a |k or namely x€B(a |k ) . This shows that U SB . 
i _ ^ i i i i i i 

Secondly, diam (B.) = 2 i= sup 2 ' i A^' = diam(U ) . Therefore {B } is a 
İ,J€U± 

δ-cover of balls of A. The proof is then completed. • 

2.3. λ random measure μ on I • and the Q-measure on Ω χ I 

If σ € C , we let 
η 

ζ = Γ ζ τ 

(Γ, ρ u 

T € C ,τ>σ 
Ρ 

denote the number of descendents of σ in the generation p. We define 
Ζ 

W = lim _Jül£ , if (Γ € C 
σ ρ-*χ> ρ-η η μ 

and choose W as an independent copy of W if σ € INN-C such that (W ) (σ € er η er 
W N - C N ) is a family of independent random variables, and as a family, 

independent of the family (W ) ( T € C ). Then (W ) (σ € T) is a family of random 
τ η er 
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variables, each distributed as W = lim Ζ /μ11, and W and W are independent 
η-»oo η ^ er τ 

if neither σ < τ nor τ < σ. It is easily verified that 
-|cr|TT π Ζ -1 -|σ*ΐ| Τ 7 μ W = ) cr μ W . . 

ι=0 
almost surely, where the sura is interpreted as 0 if Ζ =0. So if we write 

<r 
, -kl if σ € c ; 

1 = { μ 

σ i 0 if σ € lNn-C , 
η 

then 
oo 

W 1 = Τ 1 ^.W .. . (2.5) 
i = 0 

For σ € Τ, let 

B(<r) = -| τ € I : σ < τ | 

-Ieri 
be a ball in I of radius 2 and define μ (Β(σ>) = 1 W (ω) 5 1 _ μ~ | ( Γ |Ν . 

ω <Γ <Γ <T€JÌ er 

An arbitrary clopen set A S I can be written as 

k 
A = U B(o\ ) . 

i = l 

Let k Q = max ( |σ\| : i = l,...,k ) and 

E = <| τ € IN °: 3 i € ( l,...,k ) such that o\ < τ j>, 

then A = U Β(τ) and Β(τ) η Β(τ') = φ if τ * τ'. 
τ€Ε 

Define μ (Α) = £ μ (Β(τ)), 
τ€Ε 

By (2.5) μ is a well-defined finitely additive measure on the field of ail 
0) 

clopen subsets of I and, therefore, uniquely extends to a Borei measure on I . 

This measure will be called μ^ again. We remark that it is concentrated on the 

branching set Κ(ω), and μ (K(ü>))=W((j). 
G) 

It will prove very useful to consider the product space Ω χ I with the 

produet σ-field and with probability law Q defined by 

Q(A) = E J 1Α(ω,1) άμ ω(1). 
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see for example Proposition 4.1. in section 4. 

3. Moments résulte on branching processes 

Let ( Z ^ ) (n £ 0 , Z Q = 1 ) be a branching process with family distribution 

Ζ and 
ι 

W = lim Ζ /μ η. ( 3 . 1 ) η-*» η 
We shall need some results on the order of growth of the moments E(W ) of W, 

which themselves are interesting. 

Lemma 3.1 {Comparison theorem for radius of convergence of W and Ζ) 

Denote by r(Z ) the radius of convergence of the moment generating 
tzi 

function E [e ] of Ζ and r(W) that of W, then 

r(W) is zero, positive and finite, or infinite 

if and only if the same is true for r(Z^). 

Proof. We first note that 
t Z l t 2 2 

E [ e X ] = 1 + t E [ Z 1 ] + jj E[Zj] + ... 
2 

E [ e t W ] = 1 + t E [ W ] + |y E[W 2] + ... 

and that 

E[W n] = E [ E ( W N | F 1 ) ] £ E [ E ( W | F 1 ) N ] = ΕΠΖ^μ) 1 1] = μ~ηΕ[ζ"] , 

where F ^ is the σ-algebra generated by Z ^ . We have then immediately that 

r(W) =s μ r(Z ) 

by the well known formular on the radius of convergence of Taylor séries. This 

shows that r ( Z ^ ) < +oo implies r(W) < + c o , and r{Z^)=Q implies r(W)=0. 

We then prove that r(Z ) > 0 implies r(W) > 0 . Put 
Zl 

p(t) = E[t ], 
then 

Ζ 
E[t n ] = (p-)n{t), 

where (ρ' ) 1 (t) =p (t) and (ρ') k + 1 (t) = p((p')k(t)) (kil). We shall prove that 
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tW 
there exists t>0 such that E(e ) < o o . To this end, we shall find t>0 such that 

tz /μ 
E(e n ) =s c 

xZ 
for some C>0 and all n£0. Since E (e )<œ for some x>0, we can choose by 

induction r. , r^ , ... , r , ... such that r. > 1 and that 
1 2 n 1 

p(r ) = r. , p(r^) = r , ... , p(r ) = r 
2 1 3 2 n n-l 

Now 

r -1 = p(r )-l = Γη p'(t)dt s (r -l)p'(r ), n-l n Jl η n 
where ρ'(t) représente the derivative of p(t). Hence 

r -1 * [p'(r )p'(r )...p'(r )] - 1(r -1). η η n-ı 2 1 
Since 

tZ /μη η 
E[e ] = ρ (e ^ ) s ρ (r ) = r 

η ı 
t/ n η if e " 2S r , and p* (r ) = r. by the définition of r , the proof will be η η 1 η 

completed if we can choose t > 0 such that 

t/t? * log (1+[ρ'(rn)...p'(r2)]"1(r1-l)) 

for all η £ 2. But the latter is implied by 

t/μ11 * İlpMr )...p'(r n'V-l) 2 η 2 ι 
as log(l+x) £ ì χ for 0 ^ x 5 1 , it then suffices to prove that 

oo p'(r ) « r 
Π — — = Π < 1 + μ J P"(t)dt ) < + · . 
n=2 μ n=2 M J 1 

We see that this is so because 

Γ n p"(t)dt < (r -l)pH(r ) s (r -l)p"(rj J ^ η η η 1 

and 

We finally prove that rfZ^ s o o implies r(W)=oo. To see this, we recali the 

functional équation 
Φ(μ^= Gti l t ) ) , 

17 



Q. LIU 

18 

tz tw 1 where Φ(^=Ε[β ] and G(t)= E[e ]. Since we have shown that r(Zı>>0 implies 

r(W)>0, we know at least Φ^)<οο for some t>0. From the functional équation and 

the fact that G(t)<oo for ail t>0 (r(Zi)=œ), we know imraediately Φ^)<οο for ail 

t>0. The proof is then completed. • 

The following resuit can be compared by that of Kahane-Peyrière (1976) 

which was concerned to a model of turbulence of Mandelbrot. 

Lemma 3.2. Suppose that II Ζ .11 < -M» and write 
1 oo 

β = 1 - log μ / log WZJ . 
1 co 

Then 

M i 7 im İ££_EÎ?0 - fi. 
(D lim k k - β; 

k-++cû 
(ii) For 0<θ<οο, denote by r the radius of convergence of the moment 

generating function E(et ) of vP. If in addition to HZ II <oo, Ζ is not a.s.a 
1 oo 1 

constant, then 0<β<1 and 

0 < r 1 / e < * · , 

tv?-'* 

or namely E(e ) < +& for some but not all t>0. 

Proof. (i) We first prove that 
1 i m inf lESJSÒ > fi lim int —: — 2t ρ . k Log k 1 

k-*+oo y 

For convenience, write η = HZ. 11 . Then ρ = P(Z =n) > 0. Since 
1 oo η 1 
w = èai wi' <3·2> 

where W^(i2tl) are independent from each other and from Ζ , and have the same 

distribution as W, we have 

E[W k| Z 1 =n] « \ E [ W k ] +
 l- l " , Π 

μ μ k +k +. . .+k =k 1 η ı=l 
1. 2 ^ η 0 < k. ^ k-1 

k 1 k η k. 
> H_ EfW ] + ±^(n -n) inf j] E[W 1 ] f (3.3) 
μ μ i=l 

k k where E (W | = n) denotes the expectation of W conditioned on Z ^ η and 

the inferior is taken over all (k.,k0,...,k ) such that k + k +...+ k = 
1 2. η 1 2 η 
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k and that 0 s k s k-1. If k = nie, this inferior is (E[W k]) n. Hence 

E[W° k| Z 1 =n] ï: 2_ E[W
n k] + μ" η 1 ΐ(η η*-η) (E[Wk] ) n 

μ 

*<£) n k(E[W k]) n, 

or E[W n k] £ ρ ("î^iEtW*])11. Therefore η μ 
~ ~ log ρ 

— log E[W n k] 2 log - + ì log E[Wk]+ s-ü. 
nk M k nk 

Choosing k = η (rcIN) and using this inequality repeatedly, we see that 
r+1 log ρ 

n ~ ( r + 1 ) l o g E [Wn ] * (r+1) log ~ + log E[W] + n
 n _0 — · 

^ η 
Thus 

r 
n"rlog E [Wn ] 2: r log ~ + C(n) (3.4) 

(Vr2:0), where C(n) > -oo is a constant independent of r. Hence 
r 

logE[Wn ] 
lim inf 2t 1 - log μ / log n. 
r-x» η log η 

Now for each k€İN sufficiently large, choose r€İN such that h r^k<n r + : l- Thus 
r 

-i n - / r r k v Γ , Ρ Μ ^ Χ , Ι Α ì r r / t / n l / n logEtW ] log E (W ) _ log [E (W ) ] log [E (w )] _ _ 
k log k ~~ log k r+1 r , r+1 

logn η logn 
and conséquently 

log E(W k) logEtv/] logEtW^] 
lim inf Ί _ — 2: lim inf = lim inf 2: 1-log μ / log n. k log k r . r + l r r r k-X» r-»oo η logn r-x» η Log η 

We now prove that 
ì· e i m log E(w k) < 

lim SUp —: - r- ^ β. k log k k++co 
Write again η = II Ζ II , then 

1 00 
μ ^ι=1 ι 

where W^(i&l) are independent from each other, and have the same distribution 

as W. Hence 
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E [ w k i s \ E i w k ] + ^ ι k , k ; > k , π E [ w k i i . 

il il k + k +...+k =k ι*··· n
e ^ = i 

o 1*! Sk-Ï 
i 

Thus 

E [ W

k ] S l J - l k ! kl.k ! nE[W k ll- (3.Ï 
μ -n k +k +...+k =k 1 n i = l 

ο Ss lt Sk - Î 
1 1/1 

Write Β = sup (E[W ]/l!) , then 
l<k 

ν μ -n J 

since the number of the terms in the sum £ is inferior to k n. Therefore ì 

t w 

bounded. This shows that E(e )< +oo for sufficiently small t > 0. Again frc 

the recursive relation, we obtain 

, Wμt. _ . _ . Wt. . η 
E(e ^ ) s (E(e )) . 

t w 

So E (e ) < +00 for all t> 0 and 

E[."»\ s ( E ( e W t ) ) n k = ( E ( e W t ) ) ^ , 

where k € IN and 

Κ = log η / log μ. 

Put ı/f(t) = log E ( e t W ) , 
k k 

then ^f^t) s n\fß(t) t and consequently ψ(μ ) s η ψ(1) . For each k€İN, choose an 

integer i 2: 0 such that 
i .l/K i+1 μ ^ k < μ 

Thus 

Ε ί Λ - Ι ΐ Λ * CE,.»»» 1*'. «E«.",!"' 1* 1"- « E « . » „ - \ 
On the other hand, by Markov's inequality we have 

. ı/ıe, , ı/K i/k - / T T k «oo k r oo k w k t . _ E (W ) = J Qp(W >t) d t = / p( e > e ) dt 
, ι/κττ 1/K 1/k ^ „ r k w. r oo -k t _ ss E [e ] χ e dt 

= E[e k l / K w]ki/ k k / K 

Thus 
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E(W k) s ( Ε ( β Ν ) ) μ kk!/ k k / K 

Writing 

Β = ( E ( e ) ) p s (E(e )) 

( K = log n / log μ ), then 

E(W k) s B k(ki)/ k k / K (3.7) 

for ail k tfe 1. Since 1-1/K = ß, it then follows that 
log E(W k) ^ 0 lım sup - T - ^ r r ^ β . k log k k-++oo 

Thus (i) is proved. 

(ii) We first note that 0< β <1 since Z^ is not a.s. a constant. The 

first part of the proof above shows that 

EIW»*] * [ ( ^ ) r e C ( n ) ] n r 

for ail r£0 (cf. (3.4). For k € IN sufficiently large, choose r € IN such that 
r r+1 n s k/ß < n . Using Stiri ing./s formular gives 

r E ( w k / ^ ) i l f \ ,. Ε [ * Λ ) 1 / ( η Γ β ) 

lım sup r~ £ lım sup — 1 k! 1 . k/e k-x» ν ' k-*» 
(~) r / ß C(n)/ß C(n)+1 

£ lım sup r ^ r = — 
r-x» β η / e 

. . xr/ß r m_ / Ml/ß. since (η/μ) = η . Thus r(W ) < co . 

k k k/K 

Using E(W ) ^ Β (ki)/ k (proof of (i)), the saine method as above 

applies, yielding that Γ E ( W k V / k ( E ( W
[ k 9 1 + 1 ) ) e / ( l k 6 1 t l ) 

lım sup — s lım sup γγτ 
k-»o V κ · } k-*o k ! ' 

B e
( [ k e ] + i n e / ( [ k e ] + 1 ) « 

s lira sup - - - — — = Β θ < +00, 
r-κ» ki 1 / k([ke]+i) e / K 

where θ = 1/ β. This shows that r(W 1 / ß) > 0. The proof is compieteci. α 

21 
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Lemma 3.3. Suppose that Il Ζ ,11 = +*> and denote by r ö 2 r(vP*) the radius of 
1 00 θ 

vP 
convergence of the moment generating function Efe** ) of vP . Then 

(i) lim inf 1 f g , E f ^ ; * 1 and r(vP) = O V θ > 1; k log k 

(H) n m
 lo9^(w) = 1 r > 0 if additionally E(etZ) < « 

k log k 

for some t>0. 

Proof. (i) Let θ > 1. Choose n € IN sufficiently large such that V(Z^-n) > 0 

and θβ^ > 1, where β^= 1 - log μ / log η. The proof of part (i) of the above 

lemma shows that 
r 

log E[W n ] 
lim inf £ β . r r η r-x» η log η 

log E(W ) 
Hence lım inf ^ ^ 0 — £ ^ # n

 a n d t l i e inequality in (i) follows by letting 
k-*+oo g n 

η —> oo. Moreover Ve>0 
r 

log E[W n ] £ (β -e)nrlog n r 

η 
for sufficiently large r. We choose ε > 0 such that θ (β -ε) > 1. For k € IN 

η 

sufficiently large, choose r € IN such that nTs k0 < n r + 1 . The Stirling's 

formular gives then 

lim sup E ( ™ A ± lim sup * lim sup ( n \ n = + e . 
k-x» V *· ) k ^ k ' e

 r ^ n
r + 1 / ( e 0 ) 

Thus r = 0, as desired. u 
t ζ 

(ii) Suppose that E (e ) < 00 for some t>0. Then r(Z) > 0 and hence r(W) > 0 
( E(W k) ì 1 / k E ( w V / k 

by lemma 3.1. Consequently lim sup < 00 and lim sup w < 00 
k-*» l k* ) k-x» k / e

 t 

by Stirling's formula. The last resuit gives immediately lim sup 1 ° g * s 1 

. k log k 

which ensures our conclusion combining with the inequality in (i). • 

Remark. The resuit lim 1^€ί E ( w ) _ ^ d o e s n o t ^old £ n generai. For 
k-+œ K 1 0 g K 

example, if E(Wk)=+oo for some k>0, then it is evident that lim 1 f g E ( W , }
 = + 0 0 . 

. k log k 
k-*+oo * 
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4. Proof of Theorems 

The theorems will be proved in a séries of propositions and lemmas, using 

the preliminaries in the sections 2 and 3. 

We first recali that we have defined a random measure Μ ω ( · ) o n 

concentrâted on the branching set Κ(ω), such that 

μ (Β(σ)) = 1 W (ω) s 1 „ M ' ^ ' W , 

where Β(σ) = {τ€ΐ: <τ<τ), (W ) (σ € Τ) is a family of random variables, each 

distributed as W = lim Ζ /μ11, and W and W are independent if neither er < τ 
η-»οο η ^ σ τ 

nor τ < σ. We have also defined a probability measure on the produet space 

ΩχΙ by 

Q(A) = E J 1 A(«M) <anw(i>f 

see section 2. To obtain some density theorems about the measure μ , we shall 
U) 

A. 

need the distributions of the random variables W (o>,i):= W.. on ΩχΙ (n2:l) . 
η i I η 

Lemma 4.0. Let f: IR - » [0,oo) be a Borei measurable function, then 
0 i|n 

where E^ représente the expectation with respect to Q. 

Proof. From the définition of Q and the structure of the Galton-Watson 

t ree, we have 

E Q f ^iln* =
 E ̂  «<νμ"Χ = E Σ

 Σ σ f
 (VW* ν 1 σ€0 σ€0 osi<z η η-1 

= E J] μ" Πμ E(f(W)W) = EWf (W) . ο 
η-1 

We can now obtain our density results about the measure μ . We recali that 
u) 

a= logμ /log2 and we remark that |B(i|n)|:= diam B(i|n) =2 n . 

The first resuit (4.0) in the following proposition was first obtained by 

Hawkes (1981). For convenience, we shall give a simple proof here. 

Proposition 4.1 (Density theorejn about the measure μ^) 

(0) If E Zlog2Z <co, then 
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log μ B(i\n) 
lim = -log μ for P-a.e. ω and μ - a.e. i (4.0) 

or equvalently 
log μωΒ(ί\η) 

lim = α for P-a.e. ω and μ - a. e. i. (4.0)' 
n-x» log \Β(±\η) | 

ii; If E Ce ; < oo for some θ€(0,η) and t€(0,oa), then 

μήμΒ(±\η) 
lim sup s t for P-a,e, α» and μ - a. e. i, f 4 . 2 ^ 

/ τ ι I/ö W 

n-*x> (logn) 

or equivalently 
μ Β α ì«; _ Ι / Θ lim sup . >!„/,, t — Γ Τ . - t for P-a.e. ω and μ - a.e. i, (4.1)' 

o*. Φ1/θ(\Β(ί\η)\) 
where φ /Ck(t) = ta(loglog \ ) ^ ^ . Consequently (with no condition) 

V i , a > -1/Θ 
1 İ m S U P Φ1/ΰ(\Β(ί\η)\) S rB f o r P-a-e- 0 a n d * V * · β Λ ' ( 4 - i r 

n-x» 2/Θ 

tvP where r = sup{t^0: E (e )«*>}, r is interpreted as 0 if r =», and oo if θ θ θ 

Cii; If E(vP+1) < oo for some θ€(0,οο), then 

μημωΒ(±\η) 
l i m T~~7r\ =° for P-a.e. ω and μ - a. e. i, (4.2; 

1/θ ω 
n-x» n 

or eqruvalently 
μ^Βαΐη; 

İ İ i n ψη/α(\Β(±\η)\) =° f°r Ρ-*'θ· ω a n d V a ' e ' L ' ( 4 · 2 , ' n-Xx> I / O 

where *1/Q(t) = t^(log ^ ) 1 / θ . 

Proof. (0) It is known that EWlog+W <oo if and only if EZlog2Z <oo (see 

for example Athreya and Ney 1972) . So it suffices to show that, if EWlog+W <co, 

then 
log W . 

lim L- = o Q - a.e. (4.0)" 
n-x» 
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By the distribution of W.. (Lemma 4.0), for all ε>0, we have 
1 |n 

Q(|logW i | n|a ηε) = Q(W ± | n*e e or W i j n S e ) 

= E [W(l + l )l. 
{Wfcene} {WSe) 

Thus 

Cl Qdlogw | S ηε) ^ E [W 1 ] + ζ e " n e 

{W£e } 
=0{EWlog+W} + j£ e " n G <co. 

I l o g W 1 | n l 
The Borei - Cantelli lemma gives lim sup — s ε Q - a.e. and then the 

n-x» 
result desired. 

tW^ 

(i) It is équivalent to show that, if E(e ) < oo for some θ€(0,οο) and 

t€(0,oo) , then 

W . θ 

lim sup - — — * t~ Q.- a.e. (4.1) " ' logn n-x» θ θ t ' W t w For all 0<t'<t, we have E(We ) <oo since E (e ) <oo. Then V ε > 0 
tW. . θ r τ 

i n _ 1+εχ r T Λ Q(e * η ) = E W 1 _ 
L / t w ® ı + € \ J r * ; 

and conséquently 
θ 

M î θ t w 
t w r̂ oo i|n _ 1+εχ A f r / M 1+ε χ. Σ^_χ Q(e £ η ) = 0{E(We )} <oo 

(since t/d+ε)^). The Borei-Cantelli lemma ensures that 
θ 

t Wi|n lim sup — — ' ^ (1+ε) Q- a .e. n-x» log η 
Hence the result follows. 

Θ+1 
(ii) Again equivalently, we have to prove that, if E(W ) < oo for θ€(0,οο). 
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then 

i n Λ lım = 0 Q - a.e. η n-x» 
The approach is almost the same as above by means of the Borei-Cantelli Lemma, 

noting that, for ail ε>0, 

Σϋ ì β ι̂Α »e) » f . E(W 1 ) = 0 ( W + e ) <«. α 

t w ® 
Remark 4.1. (i) If Ee =co, then a simple calcul as above shows 

θ 
tW . 

ζ = 1 Q(e , n 2: n) =oo . 

t w 1 | n
e 

If the events (e £ n) satisfied some asymptotic independent 

properties (it is so in the case that Ζ is of geometrie distribution, 

see Hawkes 1981), then we could conclude that 

W . Θ 

lim sup - fct Q.- a.e. (4.1) M t t 

logn n-x» 
and then (4.1) M could be strengthened to 

μ ωΒ(ϋη) 
lim sup -r , ι , . . — r - r . = r Λ for P-a.e. ω and μ -a.e.i. (4.1) M 

n^ Ve ( | B ( i | n ) l ) θ 

If additionally there were no μ^- exceptional sets, then a standard density 

^1 / θ 

argument could imply 0<H (Κ(ω))<οο if 0<r <oo . This explains why φ is the 
θ 1 / θ 

correct gauge function. 
(ii) If E(W 0 + 1) = oo, where θ€(0 , ο ο ) , then VM>0 0 < Ν ± | η

θ * n M ) =*· Again 
θ 

if the events (w^|n - nM) satisfied some asymptotic independent properties, 
w 9 

we could conclude lim — = oo Q - a.e. and n n-x» 
μωΒ(1|η) lt »1/fl(lB(Hn)|) = W f ° r P " a - e - W a n d V a ' e -

n-x» ι /θ 
By the same reson as above, this shows that we might have probably 

^1 / θ Ö+1 H (Κ(ω))=0 a.s. if E(W ) = oo. 
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Corollary 4.1· (The dimension a of Κ and the α-measure associated) 

(i) dim K s α a.s. K*0; (ii) μα(Κ)<α> a.s. 
ot 

(Hi) 0 < μ (Κ) < oo a,s. on Κ*0 if and only if Z is a.s.a constant. 
Proof. As K can be covered by Z balls of radius 2 n, and Ζ (2 η ) α = Ζ /μ1 

η η η 
-» W a.s., we have conséquently μ α(Κ) 3W a.s. This proves (ii) and dim K s α 

2 

a.s.-.To show (i), it then suffices to prove that dim K £<x a.s. If EZlog Ζ <oo, 

this is an immedeate conséquence of (4.0)' by a standard argument of density, 

see for example Taylor (1986, §4), and this appeared explicitly in Hawkes 

(1981). Otherwise, we truncate the process as follows. Let 0<M€lN and consider 

the Galton -Watson tree ïï* generated by the defining éléments Z* := min(Z ,M) 

(σ€Τ) . The resulting branching set K* has a.s. dimension a*(M):= logμ* (M) 

/log2, where μ*(Μ):= Emin(Z,M) >1 if M is sufficiently large. Hence dim K 2r 

dim Κ* = a* (M) with probability 2: 1-q*/ where q*=q*(M) €[0,1) is the 

extinction probability of the new branching process (Z * ) , which satisfies 
n 

2 M-l M 
P 0+ Pxq*+ P2(q*) +...+ P M - 1(q*) + ( P M + P M + I + * * " * ( Q * ) = Q * ' 

Since q* decreases (remark that Z * increases) when M increases, the limit 
η 

qQ:=lim q* (M) exists. Letting M-x», in the above équation gives p(qo)=qQ. As 
M-x» 

q Q€[0,l), we have qQ=q/ the extinction probability of the branching process 

(Z ) . Thus dim Κ £ α with probability £ l~q by letting M->oo. This establishes 
η 

(i) . 

We then turn to (iii) . If Z is a.s. a constant, then it is easily 
oc α verified that μ (K) s 1 a.s.; if Ζ is not a.s.a constant, then μ (K)=0 a.s. 

by Falconer (1987, Lemma 4.4). • 

Proposition 4.2 (The lower bound) Let 0 < θ < -H». 

(i) If E(e ) < » for some r e (0,<χ>), then 
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μ1/Β(Κ) * r1/QW a.s. (4.3) 

whmrm Φ1/Β(^> - ^ (loglog ^)1/θ• 

(ii) If EfìP*1) < oo then 

*1/Q 

μ (K) = oo a.s. on W > 0, ' 

where $1/Q(t) s t*(log ί)1/θ. 

Proof. (i) We first note that μ (Κ(ω)) « W a.s. By Proposition 4.1(i), 

(4.1) for each ε > 0 we can choose a compact subset Κ'=Κ'(ω) of Κ=Κ(ω) 

such that μ(Κ') £ W-ε and 

μ B(i|n) s (1+ C)r~ 1 / Ö φΛ ._(|B(i|n)|) 
u> JL / ü 

for all i € Κ'βΚ'(ω) and all η 2: Ν^Ν^ω) (proposition 4.1(i) ensures that 

this can be done almost surely). This means that with probability 1, 

μ ω( B(i|n) p| K' ) s (1+ε)τ' 1 / θ o> 1 / 0( |B(İ |n) | ) 

~ N o 
when η 2s Ν (ω). Let (S.) be any cover of balls of K' with diam S, ̂  2 . Then 0 j 3 1 /Θ u (S. η K') s (l+e)r 0,/fl(ls.|) (|S.| = diam S . ) . W 3 -L/ö 3 3 3 
Hence 

W-ε s μ ω(Κ')* μ ω(υ<δ η K'))s £ f| κ'> * < 1 + e > r Σ *ι/θ< >^ D · 
j j j 

This implies that 

almost surely. Letting ε -> 0, it gives the result desired. 

(ii) The same idea as above: VT)>0, choose a compact subset K' of Κ such 

that μ (K')£W-rç and μ ( B(i|n)nK') s η φΛ / Λ ( |Β (i |n) | ) for all İ€K' and n£N 
(d Cı) 1 1 1/Θ 0 

(That this can be done a.s. by Proposition 4.1(ii), (4.2)'). Thus for any 
-N 

cover {S } of balls of K' with |S.|:=diam S. S 2 °, 
3 3 3 

w-ııs μ ω(Κ')^ ßjUis Π κ ' ) Σ μ ω(£. fiκ'> Σ ̂ ı/eds.l) 
3 3 3 ^1/θ 1 ^1/θ This qives μ (Κ) £ - (W-η) . Letting we know that a.s. μ (K)=oo if 

W>0. ρ 
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Lemma 4.3· Suppose that a function g: IR -> [0,1] is non-increasing such 

that Γ g (t) dt - +00 and that j: IN -» İR is a function satisfying lim sup J ^ < 
J0 k-*» K 

then \/ε>0 

[k1/(1+Z) ε ^ Js/d+e) ,A c lım sup git; t dt -/c = +œ (4.5 
^j(ki1/<Ue) 

for each € with 0 < e < ε . 

Proof. Since 
<οο oo Jc+1 00 

00 = g(t)dt = Σ g(t)dt s £ g(k) 
J l k=l J k k=l 

we can choose an increasing séquence ( k ^ ) ^ ^ of integers such that 

g(V " ΤΤε' ( ε' > 0 given ) 
k 
ν 

for ail ν = 1,2, ...For each k , choose K € IN such that (k -1) 1 + ε< K s k 1 + ε . 
V V V V V 1+ε ι+ε This is possible since k -(k -1) 2: 1. Now 

V V 

Γ f k 1 / ( 1 + e ) -i/d+e)] lım sup g(t)t dt - k 
k^o.keN L J ( j ( k ) ) 1 / ( 1 + e > J 

„l/<l+e) 
* lim sup Γ Ρ g(t)tedt - Κ

έ / ( 1 + ε ) ] 
L ( j ( V ) 1 / ( 1 + e ) " J 

£ izsup t ̂ g ( V ( v j ( v ) " κ*/(1+ε) ] 
* l ı m s u p [ ϊ+ε ν Τ Ϊ Ϊ Ϊ ~ ΓΪΤε I " k „ I = + e 

it we choose ε' > 0 such that ε < ε-ε', noting that 

<νΐ)1+ε j(V \ j(V 
l ı m — = 1 a n d nm S U p _ ^ - ii m S U p < ^ β 

i/-*» k K k V-Xo Κ 
V V V V 

The proof is then completed. • 

Proposition 4.4. (i) Suppose that 
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E Ce ) = œ 

for some θ € (0,m) and r € (0,co) . For t > 0, write 

Β* δ jye , t ; - ì σ € N k I ^ ί σ | ν ; . ίω ; < f | loglog - 1 ? >° 

for ail ν = [logk], [logk]+l, . . . ,/c.j, ( 4 . * ; 

where τ* = (τ,,τ-, . . . ,τ ,τ -fi; if τ = (τ η,τ 0, . . . ,τ), and 
1 2 η-1 η 1 2 η 

J Q k 

Then for all t > r we have 

lim inf I* = 0 . ( 4 . a; 

fii; For θ 6 (Ο,οο), write 

^ 2 

for ail ν = [logk], [logk]+1, ... ,/c.j (4.6)' 
and 

K(e> - } le-B* (2'kot) W; ( ω )[ l o g j ^ d p • <4·7,' 
Ω k 

Then Hm sup \ Σ p \ - v 1 " θ i ° f l * } > -α> (4.9) 
k-**> l v=[logk] l i ) 

implies 

i i j n inf Ik(Q) < + » · C 4 . Ô ; ' 

k-x* 

In particular we have 

lim inf I*k(Q-c) = 0 (\/ε>0) (4.8)" 
k-*x> 

if Ε(^/Θ)=οο. 

Proof. (i) Using the notations introduced in the proceeding, we can write 

1 σ = 2 " Χ < Χ ΐ ( σ 6 7 ) ( ω ) ' 
and, since W ( < r | l ? + 1 j * = [ logk], . . ., k. ) are independent and, as a family 

independent of F^ (the σ-algebra generated by Ζ*σ'*'(0 s i s |<r|)), we have 
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Π f ( σ | V ).< t l o g l ° g - = ï \ f ı>=[logk] V ν < Γ |" ; ΙΛ 2 ^ ì 

(conditioned on F firstly) 

= l I l i l o g l o g - ^ f d P n

k p{ W < [| loglog -Uθ } 

- f iogi°g-4ır ) θ E [ Σ k d n k p { W < ( E L O G L O G -=5 ) θ } 

= i loglog-l- ] θ
 n

k Ρ { W < ί | loglog | θ } 
V. 2 > v=[logk] V V. u 2 ^ * 

s [ 1 o 9 l o g - l r ) β e,p { { « * (i İ d e , - İ p ) * } 

£ ( log k ) θ exp { - Ρ | W £ f J log ν | θ 1 i. 
V y=[logk] L * ; J J 

Hence 

I* £ exp j - £ k Ρ [ e t W ν 1 + θ log logk \ . (4.10) 
k l vs[logk] L J > 

It then suffices to prove that 

( k Γ t w 1 / e 1 ì 

lim sup j Ρ e > ı> - θ log logk V = +». (4.11) 
k-*x> V p=[logk] L J J 

To show this we note that 

„k n Γ tw1'® 1 ^ _ k - ı f + \ Γ tw1'® I . Jj P e a ı> a P e & χ I dx 
ı>=[logk] L J v=[logk] Jı> L J 

rk ι/β r k 1 / ( 1 + e ) fc w 1 / ö 

= P e s χ dx = - — .... . Ρ e ϊ y y (fy 
.[logk] L J 1 + ε J [ l o g k ] 1 / ( 1 + e ) L J 
1+e 

(x=y ), where ε > 0 is chosen such that t/(1+ε) > r . Writing 
t f T ı / e 

e + ε * y , 
then 
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t ı/e 
oo « W -ı 

J f (y)dy = E e + ε J = +00. 

By use of Lemma 4.3, we have eventually 

r k r t w 1 / e ι ì 
lim sup < £ P e a ρ - θ log logk Y 
k-*x» V. p=[iogk] L J > 

i/d+ε) t ı/e 
* lim sup J - J , / M , p f e 1 + e s ylyCdy - k e / ( 1 + e ) l -

k-*, 1 + C l J [ l o g k ] 1 / ( 1 + e ) L J / 
which ends the proof of (i). 

(ii) The same argument as above shows that 

ϊ*(θ) * exp j - Ρ f W 1 / 0 2 : ν 1 • + θ log k i , (4.10) ' 
k ν v=[logk] L J J 

from which the first conclusion follows. To prove the second it suffices to 

show that Ve>0 
lira sup j Ρ j W 1 / ( e ~ € ) 2 : ν ì - (θ-ε) log kl = +α>. (4.12) 
k-x» Vy=[iogk] L J ) 

Note that 

fv+l 
t Ρ [ W 1 / ( 6 " e ) ^ ] fe f1 Ρ [ W 1 / ( e - e ) , x ] dx 

v=[logk] i/=[logk] \v 

Ρ [W > x] dx = Ρ [W x ] dx 
, [logk] J[logk] 

Jtlogk] 

- 1 / d + C ) 
= ϊϊε' 1/(1+0 P ( W İ / e * fc) t C ' d t ( 4 ' 1 3 ) 

1/Θ 
where ε'=ε/(θ-ε), using Lemma 4.3 with j (x) = [log χ], g(t) = P(W fct) 

00 1 / Q (remark that XQg(t)dt = E(W ) =» ) and ε'=ε/(θ-ε) gives then 

lim sup { Ρ Γ W 1 / ( Ö ~ E ) > ν 1 - (θ-ε) log kl 
k-*» Vp=[logk] L J ) 

- 1 / U + C ) 
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0 

where ε€(0,ε'). This shows ( 4 . 1 2 ) , which ends the proof of the proposition, α 

Proposition 4·5 (the upper Jbound) 

(i) If 

E [e ] = +ω 

for some θ € (0,+œ) and r € (0,+co), then 

Φ 
μ Θ (Κ) < +œ a.s. (4.14) 

oc 1 θ where <t>Q(t) = t (loglog —) . Moreover θ t 
Φ 

Ε[μ Θ(Κ)] s rQ. (4.15) 

(ii) If E(W1/e) = -foo for some θ € (Ο,οο), then 
Ψ 

μ Θ~ε (Κ) = 0 a.s. \/ε>0, (4.16) 

OL 1 θ-*ε 
where φ (t) = t (log—) . Moreover, (4.9) implies E [μ (Κ)] <ω (thus θ~ε t 
μ (Κ) <α> a.s. ) . 

Proof. (i) Let t > 0, ε > 0, k Q€ İN and δ = 2~^"l°gko\ where [χ] denotes 

the integral part of x. Define 

Β* . { σ . Ι ^ : W ( < r | k ) Ä C < ( ì loglog - L ) 9 

for all k = [logk0],[logk0]+l,...,k0j- ( 4 . 1 7 ) 

IN 

For σ 6 N - B*, let k(<r) be the smallest k a [logkQ] such that 

w « r | k ) * ( w ) a ( E L O G L O G 4 k ) θ . 

Then k(<r) s k Q. Set f = j σ|Μσ) : σ e IN̂ -B* j ( Γ = r(k Q) ). It is easy to 

check that Γ is an antichain. Hence there exists a maximal antichain Γ = 
* * 

T(k ) with Γ S Γ. For every σ 6 Β*, we have <r\k € Β (ω), where Β (ω) is 0 o k k o o 

defined in proposition 4 . 4 ( 1 ) . Thus 

Κ ( ω ) S U . D ( w ) U U t D ( » ) ] , ( 4 . 1 8 ) 

*· σ6Γ σ > l <reB (ω) σ > 
ri 
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where D (ω)={τ€Κ(ω): τ>σ} s Β(σ) η Κ(ω) denotes the closed descendants of σ. 

By Proposition 4.4(i), we can choose a séquence (kj of integers 

increasing to +00 such that 

lira E [ Σ l^loglog 1 ] - 0 ( 4 ' 1 9 ) 

σ€Β^(ω) 
i 

Now 
Φ 

μ^ θ(Κ(ω))^ Y 0 i d i a m D (ω)) + £ 0 t ì(diamD (ω)) 
Ο σ (Γ ^ ti ν 

σ€Γ,σ€^ σ€Β]̂ . (ω) ,aeÏÏ 
ο 

σ€Γ σ€Β^(ω) 
ο 

= Ζ 1 ( r [ l o g l o g - r ^ r ) . Σ ^(loglog-^-] . 
<Γ€Γ σ€Β (ω) κ. 0 

Let k Q run through (k^) and δ = δ^ = 2 t L o g k J ^ this gives 

lim inf Ε[μ^ Θ(Κ(ω)Π £ liminf Ε Γ Γ 1 i l o g l o g — 1 

σ€Β (ω) 
iv , 

1 

s lim inf Ε £ t 0 1 W ^ . (4.20) 
İ-»oo *- (Γ (Γ J 

σ€Γ(κ.) 

First conditioned on F , the σ-algebra generated by Ζ (|σ| ^ k.), we obtain k. i ι 
that 

lim inf Ε[μ* Θ(Κ(ω))] s t Ö lim inf Ε Γ £ i l . 
i-X» i i-χ» L , σ J 

<Γ€Γ(^) 
Since E(W ) = 1 , the same reason shows 

E[ Σ ΐΛ ] - E[ Σ ισ ] . 
<Γ€Γ(^) σ<=Γ(^) 
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With this at hands, and noting that W = Y 1 W for any maximal antichain 
CT < T 

σ€Γ 
Γ, we have eventually 

lim inf Ε[μΪ(Κ(ω))] s t 0. (4.21) o. 

Since μ (Κ(ω)) increases as δ. decreases, this implies that Ε[μ (Κ(ω))] 2δ t ο. ı 
1 

for any t > r, which ends the proof of the part (i) of the proposition. 

(ii) To obtain the second conclusion, by Proposition 4.4(ii), it suffices 
Φθ 

to show that, if (4.8)' holds then Ε[μ (Κ(ω))]<οο. The argument is the same as 
above, using (4.8)' instead of (4.8): write 

I 2 I(Θ) := lim inf ϊ*(θ) (<+«), 
k-x» 

and define 

Β* = -| <r e : W ( < r ( k ) # U » < ( ΐ ο 9 - ^ ) θ 

for all k = [logk0],[logk0]+l,...,k0|. ( 4 . 1 7 ) ' 

IN -
For σ e IN - Β*, let k(<r) be the smallest k £ [logkQ] such that 

V i k ) . < w ) * (log4k)e. 
Then ίς(σ) s k Q. Setting f' 2 Γ' (kQ) = | cr|k(<r) : <r € IN̂ -B* |, then Γ' is an 

antichain and there exists a maximal antichain f = f(kQ) with Γ' Q f. For 

every σ € Β*, we have then <HkQ ^ B^ (ω), where B^ (ω) is defined in 
0 0 

Proposition 4.4(ii), and, instead of (4.18), (4.19), (4.20) and (4.21) we have 

respectively 
Κ(ω) S f U . D (ω) ì U ί U # D ( ω ) | , (4.18)' 

* σ€Γ' ' V σ €Β κ(ω) ' 
ο 

θ 
Ι ( β ) = lim Ε [ ^ ^ ( l o g - ^ p j ] < +00, (4.19)' 

<Γ6Β^.(ω) 2 

i 

3 5 



THE EXACT HAUSDORFF DIMENSION OF A BRANCHING SET 

36 

lim inf Ε[μ^θ(Κ(ω))] s lim inf E [ £ l^W^ 1 + I, (4.20)' 
i J m 1 ^ aef<k.) 

Ψ 1 

lim inf Ε[μ_θ(Κ(ω))] s 1 + ì (4.21)' 
d . 

1 

-[Logk ] 
where is a séquences of integers increasing to +00 and = 2 i . Hence 

E( μ θ(Κ(α>)) ) * 1 + I and μ (Κ(ω)) < +« a.s. 

This establishes the second assertion. To see the first, we note that Ι(θ-ε)=0 
Φ 1/θ θ~~£ for all ε>0 if E(W )=oo. Thus by the preceding argument, μ (Κ(ω)) < +œ 

^θ-ε/2 ^θ-ε a.s. Since μ (Κ(ω)) < +α> also, we have μ (Κ(ω)) = 0 a.s. The proof is 

then completed. • 

Proposition 4.6. (The fundamental theorem) Let 0 < θ < -π», r„ = r(tP) be 

tvP 

the radius of convergence of the moment generating function E(et ) of Vp and 

<t>Q(t) ^ ta(loglog . Then 
Φ 

μ 9(Κ) = < r
1 / Q ^ w a's-

In particular 

ΦΘ 

μ (Κ) is zero, positive and finite, or infinite 

almost surely on Κ * 0 if and only if 

) is zero, positive and finite, or infinite 
respectively. 

Proof. This is a mere combination of propositions 4.2(i) and 4.5(i): 
θ 

from proposition 4.2(i) we have μ (Κ) £ (r ) W a.s. and from 
φ 1 / 0 

θ θ θ proposition 4.5(i) we have Ε[μ (K) ] s (r ) = E f ( r i / e } W 1 · ° 

Our results have nearly been proved tili now. Theorem 1 cornes directly 

from Corollary 4.1, and Theorem 2 from Proposition 4.6. 

Proof of Theorem 3. We first note that 0 5 β < 1. if 0 < β < 1, the 

result follows immediately from Lemma 3.2 and Theorem 2; if β = 0, then Z^s μ 
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a.s. and the result comes from Corollary 4.1 and its proof. This ends the 

proof of the theorem. • 
1/Θ 

Proof of Theorem 4. (i) If θ < 1, then r(W ) = 0 by Lemma 3.3 and hence 
t z 

μ (Κ) = 0 a.s. by Theorem 2. (ii) If E(e ) < œ for some t > 0, then r(Z) > 0 

and conséquently r(W) > 0 by Lemma 3.1. Thus μ (Κ) > 0 a.s. on K*0, agaın by 
t z 

Theorem 2. (iii) Finally if E(e ) = oo for some t > 0, then r(Z) < oo and 

Lemma 3.1 and Theorem 2 imply again r(W) < oo and μ (Κ) < oo a.s. • 

Theorem 5 comes directly from Theorem 4. o 

Proof of Theorem 6. This is a combination of propositions 4.2 (ii) and 

4.5(ii). In the case where y=co, we use also the fact that μ (Κ) < oo a.s., 

which ımplıes μ (Κ) =0 a.s. ο 

Remark 7 is seen by the proofs. • 
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