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for some Nonstationary Processes 
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Abstract. We consider a class of zero mean second order stochastic processes whose covariance 
kernel admits a Fourier series decomposition, E[X(s+t)X(8)] ~ ]C*€R*aW €^*» s u * ) C ^ a s s 

of these processes for which the coefficient functions ba are the Fourier transforms of complex 
measures m a , a € R. These classes of processes which contain the almost periodically correlated 
processes and the strongly harmonizable processes, are frequently applied in signal analysis. 

This paper addresses the problem of the asymptotic behavior of the variance, and of the con­
sistency for some natural estimators of ba(t), and whenever ma(dX) = fa(A) d\} of /«(A). We 
deal with this problem under two different types of hypotheses: first, in terms of conditions on 
the associated stochastic spectral measure whenever the process is strongly harmonizable, next, in 
terms of a mixing condition which constrains the dependence of remote events. 

Key words, almost periodic, harmonizable process, spectral measure, spectral density, consistent 
estimator, periodogram, mixing property 
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1 Introduction 

In signal theory the processes are not always stationary or periodic, however some pro­

cesses exhibit cyclic components. This paper concerns processes whose covariance kernel 

admits a Fourier decomposition. An amount of works have been done on this subject (see 

[13] and references therein). Here we study the consistency and the rate of convergence of 

estimators of the cyclic components of these processes. First define the processes we are 

concerned with. From now, we only consider processes which are zero mean. 

CCF processes and CSM processes. Let (fi,.4,P) be a probability space. In this 

work, a process X : R -> £ 2 (P) is said to be with cyclic covariance functions, and we will 

write X is a CCF process, whenever it satisfies the two following conditions 

( A l ) for any t, the function u -> K{u + u) = cov[JST(tt + *), X(u)] is in £/ 0 C (R), 

(A2) for all t and a, the following limit exists 

lim - T K(u +1, u) e~iua du = ba(t). 
s-+oo s Jo 

Then the functions 6 a are called the cyclic covariance functions of X} and for all a,t G R, 

we have |6 a(*)| < 60(0). 
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Whenever in addition, 
(A3) the function (t, u) -* K(u +1> u) is measurable, 
(A4) and the function 60 18 continuous at t = 0, 
it is known [23] that for any a there exists a unique complex measure ma on R, called a 
cyclic spectral measure of X, such that 

/ eiiXma(d\) Leb-a.e., 

and the process is said to be with cyclic spectral measures, X is a CSM process. Each mea­
sure ma is absolutely continuous with respect to mo which is a finite nonnegative measure 
[6,18], and for any a, m-a(d\) = m^(d\ + a). Moreover, if ma(d\) = /«(A)mo(rfA), the 
function fa 6 £ 1(mo) is called a cyclic spectral density of X. 

Note that a second order stationary white noise e : R -* £2(P)> E[s(u)] = 0 and 
cov[e(u + t ) , e(u)] = 1 if t•= 0 and 0 if t ^ 0, is CCF but not CSM . 

PC processes and APC processes. A process X is said to be periodically correlated 
(PC ) with period T > 0 whenever for any t the function u -> K(u + u) is periodic with 
period T and satisfies the condition 
( A l f ) for any t, u -+ +1, ti) is continuous. 

A process -Y is said to be almost periodically correlated (APC ) whenever for any * the 
function u K(u + t,u) is almost periodic in the sense of Bohr [3, 6, 14, 18]. In signal 
analysis these processes are also said to be respectively wide sense cyclostationary and wide 
sense almost cyclostationary [11]. 

Note that the almost periodicity of u K{u + u) implies its uniform continuity in 
R. Hence, here, any PC process is APC . However in some papers (see [17] and references 
therein) the condition of continuity (Al*) is removed from the definition of the periodically 
correlated processes and replaced by the measurability condition (Al). Such periodically 
correlated processes are not necessarily APC but are CCF . In the following we only con­
sider PC processes with the continuity property (Al ') . 

Harmonizable processes. A process X is harmonizable (in the sense of Loeve) 
whenever there exists a measure M on R 2 , called the spectral bimeasure of , such that 

K(syt) = / / e1'̂ 1-***) M(d\udX2). 

This notion can also be generalized for instance to weakly harmonizable processes [24, 25], 
a-finite harmonizable processes [8] and locally harmonizable processes [7]. 

These different classes of processes are frequently applied in signal analysis [2,11,12,24] 
as generalizations of the second order stationary processes, pointing out a spectral point 
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of view. It is known that the statistical methods based on periodicity, almost periodicity 
or spectral decomposition are widely used in modelling real life data e.g. in climatology, 
signal transmission, oceanography (see [11] and references therein). 

From the theory of the periodic or almost periodic functions, we easily deduce that the 
class of the CCF processes contains the PC or APC processes, thus the second order sta­
tionary processes. The class of the CSM processes contains the uniformly Z2(P)-continuous 
PC or APC processes, as well as the harmonizable processes, the <r-finite harmonizable pro­
cesses and the locally harmonizable processes. 

Whenever the process X is strongly harmonizable, for any a the cyclic spectral measure 
ma can be seen as the restriction of the spectral bimeasure M of the process to the straight 
line Da with equation Ai - A2 = a [18]. The set F(X) = {a € R : ba(t) ± 0 for some t] 
is countable, and the Fourier series Ylc*eF(X) e**A lB absolutely convergent. Its sum 
is equal to K(s + t9s) if and only if the strongly harmonizable process X is APC [18]. 
Furthermore an harmonizable process is not PC or APC whenever its spectral measure 
M is absolutely continuous. See [6, 18] for more details on the relationships between the 
strong harmonizability and the almost periodicity. 

Aim of the paper. In [17, 19] Hurd and Leskow showed that the usual estimators of 
the covariance function and of the spectral density of a second order stationary process, 
formed from a single sample path of the process, can be modified to provide consistent 
estimators of the cyclic covariance functions and of the cyclic spectral densities of PC or 
APC processes. In this paper, we are concerned with the asymptotic behavior and the 
consistency of these estimators in the case of the CCF processes and of the CSM processes. 

After the presentation of the estimators in Section 2, we tackle those problems with 
two quite different points of view. 

The first one, presented in Section 3, and which does not seem to be explored or 
published to our knowledge, applies whenever the process in consideration is strongly har­
monizable. It is founded on the decomposition of such a process X as the Fourier transform 
of an Z2(P)-valued measure /i:£?(R) £ 2 (P), called the spectral stochastic measure of X 
[25] 

= JR e"A ft{d\). 

Whenever the product measure exists as an ZP(P)-valued measure on R 2 , for some 
p > 1, the estimator of ba(t) converges in LP(P) towards a random variable, and the esti-
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mator of / a ( A ) converges towards a random transformation (Theorem 3.1). If in addition 
the process X is Gaussian, p = 2 and the spectral stochastic measure /A of X has no point 
mass, the estimators are consistent in quadratic mean (Theorem 3.2). Simultaneously we 
point out that the consistency and the rate of convergence of the estimators depend on the 
repartition of p ® fL and of M on the straight lines Da and on their neighborhoods. 

In order to control the correlation between time separated random variables in the 
expressions of the variances of the estimators, and in order to avoid a normality condition, 
we can consider a mixing condition limiting the dependence of remote events [2]. Thus, in 
the case of the uniformly mixing APC processes, Hurd and Leskow have established some 
sufficient conditions for the quadratic mean consistency of the estimators of ba(t) and / a (A) 
[19], next for the almost everywhere consistency and for the asymptotic normality [20, 21]. 

In Section 4, we introduce a notion of mixing property which is expressed only in terms 
of moments, and which is sligthly more general that the classical notions of uniform mixing 
and of strong mixing (Definition 4.1) [1]. Then, this mixing condition and some mild hy­
potheses provide the consistency in quadratic mean and in almost everywhere convergence 
for the estimators of ba(t) for CCF processes, and of / a (A) for CSM processes (Theorem 4.3 
and Theorem 4.6). These results improve those in [5] where the fourth moments of the 
process X are assumed to be bounded. Furthermore some rates of convergence are ob­
tained for the PC or APC processes, for which the rate of convergence of the bias of the 
estimators is known (Lemmas 2.1 and 2.2). 

In the particular case of the PC or APC processes, another point of view to studying 
the consistency of the estimators of ba(t) and / a (A) has been considered in [6]. It is founded 
on the Fourier series decomposition of the covariance kernel 

and on the convergence of this series. Thus, the results are expressed in terms of the 
cyclic covariance functions 6 a , and in terms of distance between the elements of the set 
F(X) = {a € R : ba(t) ^ 0 for some t} which is countable whenever the process X is 
uniformly i2(P)-continuous. All these points of view provide different sufficient conditions 
for the consistency of the estimators, but the common problems are: 
i) the control of the variance of the estimators, and 
ii) the control of the convergences which defined ba(t) as a time average, and /«(A) as the 
inverse Fourier transform of ba(t). 

Throughout the paper, the process X is assumed to be measurable as a function defined 
from (12 x R M ® B(R)) into (C,5(C)). 
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2 Definition of the estimators 

In the following, the hypotheses will always imply that X has moments of sufficiently large 
order for the following integrals which defined the estimators can be taken in the Lebesgue 
sense and path by path P-almost everywhere. Moreover we assume that the process X is 
zero mean. 

2*1 Estimators of the cyclic covariance functions 

By analogy with the second order stationary case where only the estimation of b0(t) is 
considered, Hurd [17] defined the following natural estimators of 6 a(t), a € R, 

I y^Xiu + ^Xffie-™ du fo rO<<<* , 

lJltX(u + t)X(u) <Tiua du for - s < t < 0, 

0 otherwise, 

which is computationable with the data recorded from t = 0 to t= s. We can easily see 
that if JIT is a CCF process then ba(t, s) is an asymptotically unbiased estimator of ba(t) 

Hm E[fea(M)] = M*). 

Some rates of convergence towards 0 of the bias of ba(t,s) are established in the fol­
lowing lemma for the PC processes and some APC processes. Remind that for an APC 
process, the set F(X,t) = {a € R;ba(t) ^ 0} is countable for any t. For a PC process or a 
uniformly I2(P)-continuous APC process, the set F(X) = UteRF(X,t) = {a € R;6 a(<) ^ 
0, for some t} is countable [18]. 

LEMMA 2.1 Let X be a measurable process, ao 6 R and K be a compact subset ofK. 
Assume that 
i) either X is PC, 
ii) or X is APC and sup t € / c E a € F(x,<)^o l / M 2 < °°> 
Hi) or X is APC, sup< €# Eor€F(X,t) < 0 0 a n d ao .** n o t a l i m i t P°int °fUt€KF(X> *)> 
then for any e < 1, 

lim sup* e |E[6 a o(M)] - bao(t)\ = 0. 
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PROOF. The theory of the almost periodic functions [3], implies that 

|E[6„0(t, •)] - bao(t))\ < k\tbao(t)\ + £ i ! 2 ^ ! ) ' 

for some c > 0. Moreover 

|6a(*)t2 = lim i r E[X(u + t)J«3]2 du < lim - /'E[X{u)X{u)) 2 du, 
aeF(Xt) •-+<*> S Jo *-+ooSJo 

where the limits exist and axe finite since the function u -» E[X(u + t)X(u)]2 almost 
periodic for any t. Hence we readily deduce the lemma. • 

This lemma applies whenever the process is strongly harmonizable since for such a 

process E * € F ( X ) M * ) l < \M\(R X R) . 

Note that sup a €R |E[6a(J, s)] - ba(t)\ does not converge towards 0 since for any nonnull 
APC process the function a —• ba(t) is not continuous at any point of F{X^ t). 

2.2 Estimators of the cyclic spectral densities 

For the estimation of / a ( A ) , Hurd [17] introduced the shifted periodogram defined by 

Sa{Ks) = ^ J(A, j )J(A-a,*) = ± jf * Stt(«, s) e~itx A, 

where I(XyS) = /0* * (* ) e-" A dt. 

5 a(A, 5 ) is known to be an asymptotically unbiased but inconsistent estimator of /<*(A) 
for the periodic situation, A smoothed shifted periodogram can be defined in the following 
way [17, 19]. Let ^ : R C be a bounded measurable function, continuous at t = 0 
with if>(0) =5 1 and supp(V>) C [—1,1] (covariance averaging kernel), and let (as)s>o be a 
nonincreasing family of numbers (window width) such that s~x < a3. Set tl>8{t) = ^(a8t) 
and 

/ « ( A , I M = 

/ « ( A , * ) = 5 ^ MOW) 

In the next sections we obtain some sufficient conditions for / a (A, i()a> s) is an asymptot­
ically unbiased estimator of fa. The following result provides a rate of convergence towards 
0 of the bias of this estimator of fa(\) for some PC or APC processes. 
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LEMMA 2.2 Let X be a measurable CSM process and cto € R such that |6 a o(t) | < 
cinf{|t|~ 6,1} for some b > 1 and c> 0, thus mao(dX) = / a o(A)dA. Assume that 
i) either X is PC, 

ii) or X is APC and E a € F ( X W o V M 2 < «>> 
Hi) orXis APC, YlaeR l̂ orl G Lq(R) for some q, 1 < q < oo, and ao is not a limit point 
ofF(X)9 

then for a, = s~s with 0 < 6 < 1, we have 

Urn sup |E[/ a o(A,V.,*)] - /a 0(A)| = 0. 

/if in addition ip(t) = 1 + 0(tr), as t -+ 0, /or some r > 0, <Aen /or any £ «ucA <Aa* 
0 < e < inf{1 - 6,6r(b - l)/(6 + r)}, toe force 

Urn sup 5 e | E [ / a o ( A , ^ , « ) ] - / O 0 ( A ) | = 0. 
" °° AeR 

PROOF. From the proof of Lemma 2.1 we have 

|E[/« 0(A,V>.,*)]-/„ 0(A)| = | J'y>.(0E[6ao(M)]e-"A<ft-/ M<) e-"A<ft| 

< c(/№(*)M<)I + \ J E 1 ^ 1 * + / hw«) - ill 

We estimate the three terms in the following ways, c being a constante whose value can 
change from an expression to another. 

, m c f a 7 > f (c/*)(l + «$- 2 ) , for 6 ¿ 2 , 
/ I ^ W W O P * < £ / J * M * ) l « f c < ' 

' a a y - ^ " I (e/.Xl + M O ) , for 6 = 2. 

For l / g + l / g

/ = 1, 

• / R a€F(Jf),«,4ao 1 0 1 

As t > 0, 6 > 1 and £ < Sr(b - l)/(6 + r), there exists A such that (e + S)/(r + 1) < A < 

6 - e/(b - 1). Set c, = 3 " A . Then A < 6 < (r + 1)A, e < (r + 1)A - 1 ) , 

and a7 1c, > 1. Hence 

< « . ; » ( / W r * + « t / , l*r**) 
y|*|<c, J|*|>c, 
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for s sufficiently large. Thus we can deduce the lemma. • 

Note that in the lemma, we can replace conditions (i) and (ii) by 
i')either X is PC and £ a € R \ba\k € Lq(R) for some q, 1 < q < oo and for k = 1 or 2, 
ii') orXis APC, ]£a€R \ba\2 € Lq(K) for some q, 1 < q < oo, and J2aeF(X),a#o 
oo, 
and the condition on £ by 
0 < e < inf {1 - 1 - 6(2 - b), (6 - A)(b - 1), A(r + 1) - 6}, for some number A such 
that A < S < (r + 1)A. 

We already noted that for a PC or APC process 

£ M * ) | 2 < Um i f9 E[X(u)X(u))2 du < oo. 
aeF(Xtt) * J 0 

The conditions on the cyclic covariance functions ba can be interpreted as mixing con­
ditions . 

3 Harmonizability hypotheses 

For simplicity, in this section we call Sp-harmonizable process^ p > 1, any harmonizable 
process whose spectral stochastic measure p is such that the product measure exists as 
an Lp(Pyvalued measure on R 2 with ix®p(A, B) = fi(A)fx(B) for all A and B in #(R). For 
instance, this condition on fi is satisfied whenever /1 has a bounded total L2p(P)~variation 
[9, 10]. 

Consider an 5p-harmonizable measurable process X. Thanks to [4], for all a, A and 
1*1 < the estimators and fa(K$sis) c a n ^ e expressed in the following ways 

ba(t, s) = JJR2(NWX* - A * - a)) + *(*,s)) e"A* /i®F(^Ai, A 2), 

/«(A, V>„ a) = ^ ^ [JV(«(Ai - A2 - a))tf)8(\i - A) 

+ / e ^ A l - A ) A] ,i®p(dAx, A 2), 
./R 

where i\T(u) = ( e*w - l)/iu for u £ 0, and 1 for t* = 0, and where |e(t,s)| < \t\/s. Denote 
by X 1 (R) the set of the Fourier transform functions of the elements of Z X (R) . 



9 

3.1 Convergence of the estimators 

Consider the process ba : R LP(P) defined by 

k(t) = JJd eiiX* ti®Jl(d\ud\2) = e"A i/a(dA), 

where va is the stochastic measure defined by i/a(j4) = //®/I((i4 x R ) n D a ) [4]. Set 

/ . ( A , * . ) = ^JK^{t)Ut) e~itX dt = ^ f K U \ i - A) i ^ ) . 

Then, we have E[i/a(i4)] = m a (A), E[6a(*)] = 6 a(t) and 

E[/«(A,^)] = ^ l K U \ x ~ A) maiiXx) = F J ^ ^ ( A i - A ) / ^ ) d\u 

the last equality being valid only if ma(d\) = / a (A) d\. Furthermore, we know that for 
any CCF process, lim^oo E[6a(<, s)] = ba(t). In the following theorem we precise the 
asymptotic behavior in LP(P) of the estimators ba and / « . 

THEOREM 3.1 Let X be an Sp-harmonizable measurable process, for some p> 1, and 
let a € R. 

i) For any compact subset K of R, we have 

lim sup E[\bJt, s) - ba(t)\p] = 0. 

ii) jyhm,->oo saj = oo then we have 

lim sup E[|A(A, V„ a) - / a (A, = 0, (1) 

and /or any 5 € X J (R) n I X (R) , 

lim E[\ f % ( A ) dX - f g(X) va(d\)?\ = 0. (2) 

Furthermore, if in addition ba G Ll(K) then ma(d\) = / a (A) d\, and 

Urn E [ / a ( A , ^ , 5 ) ] = Km E[ / a (A ,^ ) ] = / a ( A ) . 

PROOF. The error e a ( M ) = 6 a ( M ) - 6 a(t) is given by the expression 

ia(t,s) = JJR2(N(s(\l-\2-a)) + e(t,s)-lDa(Xu A2)) e" A l / ^ ( d A x , A 2). 

Since lim,_*oo #(*A) = £o(A), \N(s)\ < 1 and \e(tfs)\ < \t\/s, the dominated convergence 
theorem for vector valued measures [10] applies, thus for any compact subset K of R, 
lim,_>oo sup t € K E[ | f a (M) | p ] = 0. 
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In the same way, if lim,_.oo sal - 0 0 » w e easily obtain convergence (1), after noting 
that 

| / e(t,s)i/>t(t) e*<Al-A> dt\ < 8-xa-2 [ dt - 0 as s -* oo. 
JK JK 

For any g € X 1 (R) n X X (R), we have 

2x / /«(A,y>„«)$(A)dA 
JK 

= JJkj N(s(Xi - A2 - a))A,(\i) + B,(\i) /x®p(dAi, dX2), 

where 

A,(Xi) = II V.WffW e . ' i ( A l _ A ) dt rfA = / * . ( i )$ ( -0 e*Al d*, and 

g denoting the Fourier transform function of Since lim^oo Aa(\\) = 27r<7(Ai), |i4,(Ai)| < 
l№l!oo||d||i < <»> a n d \Ba\ < s~laj2 H l̂looll̂ lli? the dominated convergence theorem for 
vector-valued mesures applies, providing convergence (2). Thanks to the classical Lebesgue 
dominated convergence theorem, whenever in addition ba(t) € LX(K) we obtain that 
/ a(A,V>5,s) is an asymptotically unbiased estimator of / a ( A ) . • 

From [25] we can deduce a majorization of E[|e a(i,s)| p] for |<| < s, 

Efl*«(*. *)H1/P < 2(| |M®p|| p(5(a, I) - Da) + s-\\t\ + a r ^ p l U B - 8 ) ) . 

for any a and all s, / > 0, where JB(a, /) is the band parallel to the line Da with width 
2/, and where ||/J®7r||P(>T) denotes the semi-variation of the £p-valued measure /i®/J on 
the Borel subset A of R 2 [10]. As the behavior of the semi-variation of fi does not seem 
to be easily obtain in practical situation, we do not go deeper in the study of the rate of 
convergence following this point of view. 

Whenever the spectral stochastic measure /j has a bounded total Z2p(P)-variation mea­
sure m, the majorization formula of the error involves 

E[|*«(*,«)H1/p < 2(m®ro(5(a,/) - Da) + s"1^ + 2 r 1 )m®m(R 2 ) ) . 

Hence the rate of convergence of E[|ea(<, s)\p] towards 0 can be estimated with the 
repartition o f i n the neighborhood of the line Da. 
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3.2 Consistency of the estimators 

Whenever p = 2, the variances of ba(t) and / a (A, VO satisfy 

var[6*(t)] = / / / / ' e*x*-W M4(d\l9d\2,d\l,i\fo (3) 

var[/ a(A,^)] = W J I I I D X D ^ ( A l " A ) ^ ( A i ~ A ) ^ ( r f A x ^ A a ^ A i , ^ ) , (4) 

where the bimeasure M 4 : £ ( R 2 ) x S ( R 2 ) -> C is defined by 

M4(AxB) = cov(/i®7T(i4),/i®/T(J?)). 

Whenever M4 is not a measure on R 4 , we consider the integrals in (3) and (4), as integrals 
with respect to a bimeasure as defined in [25]. 

If in addition the process X is Gaussian, we can state sufficient conditions for the ran­
dom variables ba(t) and /<*(A, VO a r e equal to constant values P-almost everywhere. 

THEOREM 3.2 Consider a Gaussian S2-harmonizable centered measurable process X 
such that the bimeasure M*(A X B) = E[pi(A)/i(B)] is extendable as a measure on R 2 . 
Assume that the spectral bimeasure M has no point mass (i.e. ||^(A)||2 = Af(A, A) = 0 for 
any A). Let a 6 R. Then, for any compact subset K of R, we have 

lim sup E[|6a(t, s) - ba(t)\2] = 0. 
5"-*°° teK 

If Km A-+oo sa2 = 00 ; then for any g € I 1 ( R ) H Z 1 (R), 

lim / /a(A,V>,,%(A)dA= [ S(\)ma(d\)mL2(P). 
JR JR 

Furthermore, if in addition ba € £*(R) <Aen ma(dA) = / a (A) dA and 

lim sup E[|/ a(A, rl>„ s) - / a (A) | 2 ] = 0. 

PROOF. Since the harmonizable process X is centered and Gaussian, its spectral stochastic 
measure /i is also centered and Gaussian, and from the fourth moment property for jointly 
Gaussian complex variables, we have for all Borel subsets A, 2?, C, D in R 

M4(AxBxCxD) = M{AxC)M (BxD) + M\AxD)M*(BxC). 

The bimeasures M and M* being extendable as complex measures on R 2 , the bimeasure 
M4 is extendable as a complex measure on R 4 . 
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This expansion of Miy relations (3) and (4), and Fabini theorem imply 

var[6a(0] = ^ 3 e . t ( A - A ' ) M ( A _ a \ i _ a ) M(d\, dX) 

+ JJ e « * ( A - V - « ) M . ( A _ a > A' + a) M*(d\, dA*), and 

47r2var[/a(A,if,.)] =11 ^,(Ai - A)^.(A; - X)M(X1 - a,X[ - a) M(dXltdX[) 
JJR* 

+ JJRA - X)UK + « - A)M*(A! - a, A; + a) M*(dAj, dAi). 

Whenever p has no point mass, then the complex measures M and M* has no point mass 
and var[6a(*)] = var[/0(A, ̂ . ) ] = 0. Thus ba(t) = E[ba(t)] = ba(t) P-a.e., and 

hM.) = E[/„(A, V.)] = ^ J R ^ ~ A)/«(A) DA P"A-E" 
From Theorem 3.1 we can easily conclude. • 

In fact, if /i has no point mass then for any bounded measurable function / : R 2 - » C 
we have 

JJD f(Xi,X2)n®Jl(dX1,dX2) = JJd f(XuX2) M(dXudX2)m L2(F). 

4 Mixing hypotheses 

To avoid a normality condition and to control the fourth moments that appear in the 
variances of the estimators, we consider the following mixing property. 
DEFINITION 4.1 Let p > 2 and/3 : R+ -> R + measurable and such that limt-oo P(t) -
0. A process X —• L2(P) is said to be fl-IS-mixing , if 

for any t > 0, any s € R, any o(X(u)J u < 8)-measurable f € LP(P) and any a(X(u)> u > 
s + t)-measurable g € I^iF). 

This mixing notion contains the more classical uniformly mixing and strong mixing 
ones. Indeed, if a process is uniformly mixing with coefficient function $, then it is /?-
Zp-mixing with p = 2 and /? = 2$*/ 2, and if a process is strongly mixing with coefficient 
function a, then it is /?-£p-mixing with p > 2 and /? = 6al/r, r = p/(p— 2) [15]. However 
some less restrictive mixing conditions can be assumed as 

|cov[/, , ] | < £ /3n№[\f\Pn]1,Pnn\9\Pn)l/pn> (5) 
n 
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with 2 < pi < j>2 < • • • < Pn < • • • < oo. Some authors considered such mixing conditions 
as the "absolute regularity" conditions and the "restricted mixing" conditions (see [1, 22] 
and references therein). Here for simplicity we only consider /?-i*-mixing processes. The 
results can easily be reformulated for the processes satisfying mixing condition (5). 

4.1 Estimation of the cyclic covariance functions 

From now on let I(s) = ft 0(t) dty Ap(s) = sup 0< t<,E[|X(Ol p] 1 / p , and Bp(s) = 1/sfi 
E [ l * ( * ) l p ] 2 / p Remark Bp(s) < Ap{s), and for 1 < q < p, Aq(s) < Ap(s). Then we can 
state the asymptotic behavior of the bias 6a(M) — E[6a(<,s)]. 

LEMMA 4*2 Let X be a (3-Lp-mixing measurable process, for some p > 2 and /3 6 
L}0C(R+). Assume that (A2p(s))AI(s) < c(l + s^) for some 0 < 7 < 1 and c> 0. Then for 
any e, 0 < 2e < 1 — 7 and for any compact subset KofH 

Hm sup sup *2eE[|Sa(«, s) - E[Sa(<, *)]|2] = 0. 

If in addition 7 < 1/2 and 0 < Ae < 1 - 27, then for all a and * ; 

Km se(bJtys) - E[ba(t, s)]) = 0 P-a.e. +00 

PROOF. First, the /?-Zp-mixing property implies the inequality 

|var[6a(t, s)]\ < 2s~\A2p{s))\Z\t\ + I(s)). (6) 

In [19] this inequality is proved in the particular case of uniformly mixing and ape processes 
with bounded fourth moments, and the proof can easily be fitted to our hypotheses. 
The quadratic mean convergence follows directly. 
Now we prove the almost everywhere convergence. If 4e < 1 — 27, then 7 + 2e < 
1 - 7 - 2e < 1, and there exists a > 1 such that a(2e + 7) < 1 < a(l - 2e - 7) . For 
the obtention of the almost everywhere convergence, Borel Cantelli lemma will be ap­
plied, thus we shall prove that any f) > 0, the series £ n € N P[n a e|^<*(*>n a)ll ^ v] 
£ n € N p [ s u P { * e l # a ( M ) - 2 t t (t ,n a ) | ;n a < s < (n+ l ) a } > IJ] converge uniformly with re­
spect to a € R and to / in each compact subset of R, where Za(t, s) = 6 a(t, s) - 2?[6a(t, s)]. 

Indeed, from Tchebychev inequality and inequality (6), we have for some c > 0, 

P[n a e |Z a(t,n*)|] >t]]< crT2n<-l^2e\ 
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For P-almost every w, if n° < s < (n + 1)° and, for example, 0 < * < n°, then we have 

Tl Jo 
+ 7^T7vT / \Y(* + t,*,»)\du, 

(n+l)a Jn*-t 

where Y(«, v) = X(u)X(v) - E[X(u)X(v)]. In the same way, for the other values of t we 
can get similar inequalities. Hence, we deduce that for some c> 0, 

P[ sup se\Za(t,s)-ZQ(tina)\>ri] 
n°<*<(n+l) a 

< cr,-\n + 1) 2 -((1 + \f - l)V4((n + l)'))4. 

The convergence of the series follows from the choice of a, and we can readily complete the 
proof. • 

The previous lemma provides the consistency of the estimators of ba(t) for CCF pro­
cesses. Thanks to Lemma 2.1 we can also deduce the rate of convergence for some PC or 
APC processes. 

THEOREM 4,3 Let X be a /3-Lp~mixing measurable CCF process for some p > 2 and 
/3 € £ j 0 C (R + ) , and let a € R. Assume that (A2p(s))4I(s) < c(l + s 7 ) for some c > 0. 
Then, we have the following convergence in L2(P) ifO < 7 < 1, and P-a.e. if 0 < 2y < 1, 

]im^ 6 a(t, s) = ba(t). 

In addition, assume that X, a0 and K satisfy the hypotheses of Lemma 2.1. Then we 
have the following convergence in X 2(P) ifQ <, 2e < 1 — 7, 

lim s u p 5 e | 6 a o ( M ) - bao(t)\ = 0, 

and the following convergence P-a.e. for any t 6 K if 0 < 4e < 1 - 27, 

Urn s ' I M M ) - 6 a o (t) | = 0. 

4.2 Estimation of the cyclic spectral densities 

The /?-J7-mixing property provides the existence of the cyclic spectral densities, and that 
fa(K^s^) is an asymptotically unbiased of estimator of / a (A) [5]. 
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LEMMA 4.4 Let X be a 0-Lp-mixing CSM process, for some p>2 and/3 € X^R"1"), 
and such that Bp(s) < c for some c> 0. Then, for any a, the cyclic covariance function ba 

belongs to X 1 (R) , and the cyclic spectral density fa exists, ma(dX) = fa(X)d\. Moreover, 

Hm sup \E[fa(X, il>„s)] - fa(X)\ = 0. 

PROOF. The mixing property and Schwarz inequality imply that for all 5 > 0, and t £ 0, 

f \K(u +1 , u)\ du < №M» + \t\)Bp(s)Bp(s +1))1'2. (7) 
Jo 

Hence |6 t t(t)| < c/3(\t\) for some c > 0, and ba € Ll(R). The spectral density function fa 

exists and is the inverse Fourier transform of 6 a . 
Furthermore, from inequality (7) we deduce that |E[6a(t,$)]| < /3(|*|)2?p(s), and thanks 

to Lebesgue dominated convergence theorem we can easily prove that the estimator 
/ a (A, is asymptotically unbiased uniformly with respect to A € R. • 

LEMMA 4.5 Let X be a (3-Lp-mixing measurable process, for some p > 2 and ¡3 € 

£ / o c ( R + ) 8 u c h t h a t Mv(s) < c(l + 3 ^ ) ; < c(l + s^) with 0 < 71,72 and 471+372 < 1, 

c> 0. Assume that a, = s~6, with 0 < 6, 72 < 6 < (1 - 47i)/3. Then for any e, such that 

0 < 2e < 1 - 471 - 36, 

Hm sup sup a*E[|/ a(A f ik, J) - E[/ a(A,V>,,*)]|2] = 0. 

In addition, assume that 871 + 572 < 1, 72 < 6 < (1 - 87i)/5, and iAc function if) is even 

and nonincreasing on R + . I%cn for any e such that 0 < 4e < 1 - 871 - 5£, and for any 

A € R we have 

Urn 3 e ( / a ( A , ̂ , 3 ) - JE[/a(A, ^ , « ) ] ) = 0 P-a.e. 

PROOF. The convergence in quadratic mean is a consequence of the following inequality 

( 8) which is implied by inequality (6) 

var[/ 0(A,^,*)] < (8) 

< c * - 1 + 4 ^ + 3 5 ( l + 3 - ^ ) . 

Assume that $ is even and nonincreasing on R + . If 871 + 56 + 4e < 1 then 471 + 26 + 

2e < 1 - 471 - 26 - 2e < 1, and there exists a > 1 such that a(47i + 26 + 2e) < 1 < 

a(l — 471 — 36 — 2e). As in the proof of the almost everywhere convergence in Lemma 

4.2, Borel Cantelli lemma will be applied and we shall prove that for any rj > 0 that 

the series £ n g N ?[n a e \F a (X y n
a ) \ > 17] and EneNP[™P{*1^(M - F a(A,n a) | ; na < 

s < (n + l ) a } > rj\ converge uniformly with respect to a and A in R, where F a(A,s) = 
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/a(A ,^J,«) — E[fa(X,i/>B,s)]. Indeed, from Tchebychev inequality and inequality (8), for 
some c > 0 

P[n s e |F a(A,n°)| > f}] < c ^ - V ( - 1 + 4 ^ + 3 * + 2 e ) . 

For P-almost every w if n° < s < (n + l ) 8 , we have 

2)r|F a(A,5,a>)-F a(A,n 0,u;)| 

< / №(a.<) - iKn-**)l |3«(*.»*,«) l 
./R 

+ £ - Za(t,n
a

yu>)\ dt. 

From the behavior of we deduce that 

P[ sup s< f \tl>(a,t) - i/>(n-*€t)\\Za(t, n")| dt > r,] 
n*<#<(n+l)« ' R 

< cq-\n + l)^(M(»+W))\[ W(n+l)-a6t)-1>(n-a6t)dt)2 

«/R 

< crj-2(n + l) 2 o< e + 2^>((n + 1)°* - n°*)2( / V(0 dt)2. 
•/R 

Moreover, for P-almost every a;, 

/ 1>(a9t)\Za{t,3,u) - Z a(t,n a ,a;)| A 

< r V»((n + - (n + 1)~°) r ~* \ Y ( U + * ."» w ) l d u d t 

Jo Jo 
/(n+l)° . / (n+l)"-« 

+ / + l)-aSt)n-a / |F(« + tyu,w)| du <ft, 

Hence we get for some c > 0, 

P[ sup / 4,(a9t)\Za(t,s) - Z a (t , n a ) | A > 77] 
n«<*<(n+l)« ' R + 

< c*T2(n + l)2""((n + 1)" - n a ) 2 n- 2 a (A 4 ( (n + l ) " ) 4 

< c l ? - 2 n 2 a ( e + 5 + 2 7 i ) - 2 

We can complete the proof from the choice of a. • 

Finally, we deduce the consistency of/ a(A ,V>„s), and thanks to Lemma 2.2 we obtain 

the rate of convergence for some PC or APC processes. 

THEOREM 4.6 Let X be a fi-Lp-mixing measurable CSM process, for some p>2 and 

P € Ll(R) such that A2p(s) < c(l + s**) with 0 < 7 and 0 < c. Assume that aB = s~6 for 

some 0 < S < 1, and that the function V> ¿5 even and nonincreasing on R + . Then for any 
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a, the cyclic spectral density fa exists and we have the following convergence in L2(P) if 

0 < 36 < 1 - 47, and P-a.e. ifO < 56 < 1 - 87 

Km /a(A,V>#,*) = /«(A). 

In addition, assume that X, a<> and b satisfy the hypotheses of Lemma 2.2, and = 

1 + 0(tr) as t -* 0 for some r > 0. Then we have the following convergence in L2(P) if 

0<e< inf {(1 - 47 - 3*)/2,1 - 6,6r(b - l)/(6 + r)}, 

]im sup se\fao(X, V>„ s) - /a 0 (A)| = 0, 

and the following convergence P-a.c. for any a 6 R if 0 < £ < inf{(l - 87 - 5£)/4,l -

M r ( 6 - l ) / ( 6 + ••)}, 

Km 8<(fao(\,i/>9,s) - / a o (A) ) = 0. 

References 

[1] R. C. Bradley and M. Peligrad (1986), Invariance principle under a two part mixing 

assumption. Stochastic Process. Appl. 22, 271-289. 

[2] R. A. Boyles and W. A. Gardner (1983), Cycloergodic properties of discrete-parameter 

nonstationary stochastic processes, IEEE Transactions on Information Theory IT-29 

(1), 105-114. 

[3] C. Corduneanu (1961), Almost periodic functions, Wiley (New York). 

[4] D. Dehay (1991), On the product of two harmonizable processes. Stochastic Process. 

Appl. 39, 347-358. 

[5] D. Dehay (1992), Estimation de paramètres fonctionnels spectraux de certains proces­

sus non-nécessairement stationnaires, Comptes Rendus de l'Académie des Sciences de 

Paris, 314 (4), 313-316. 

[6] D. Dehay (1994), Spectral analysis of the covariance of the almost periodically corre­

lated processes, to appear in Stochastic Process. Appl. 

[7] D. Dehay and A. Loughani (1994), Locally harmonizable covariances: spectral analysis, 

to appear in Kybernetika. 

[8] D. Dehay and R. Moché (1992), Trace measures of a positive definite bimeasure, J. 

Multivariate Anal. 40, 115-131. 



18 

[9] R. M. Dudley and L. Pakula (1972), A counter example of the inner product of mea­
sures, Indiana Univ. Math. J. 21, 843-845. 

[10] N. Dunford and J. T. Schwartz (1957), Linear operators, parts I and II: general theory, 
Interscience Pub. (New York). 

[11] W. A. Gardner (1985), Introduction to random processes with applications to signals 
and systems, Macmillan (New York), 2nd ed. 1989 McGraw-Hill. 

[12] W. A. Gardner (1988), Correlation estimation and time series modeling for nonsta-
tionary processes, Signal Processing 15, 31-41. 

[13] W. A. Gardner (1994), Cyclostationarity in communications and signal processing, 
IEEE Press (New York). 

[14] E. Gladyshev (1963), Periodically and almost periodically correlated random processes 
with continuous time parameter, Th. Probability Appl. 8, 173-177. 

[15] C. Hipp (1979), Convergence rates of the strong law for stationary mixing sequences, 
Z. Wahrscheinlichkeitstheorie verw. Gebiete 49, 49-62. 

[16] J. E. Huneycutt (1972), Products and convolutions of vector valued set functions, 
Studia Math. 41,119-129. 

[17] H. L. Hurd (1989), Nonparametric time series analysis for periodically correlated pro-
cesses, IEEE Transactions on Information Theory IT-35 (2), 350-359. 

[18] H. L. Hurd (1991), Correlation theory for the almost periodically correlated processes 
with continuous time parameter, J. Multivariate Anal. 37 (1), 24-45. 

[19] H. L. Hurd and Leskow, J. (1992), Estimation of the Fourier coefficient functions and 
their spectral densities for <f>-mixing almost periodically correlated processes, Statistics 
and Probability Letters 14 (4), 299-306. 

[20] H. L. Hurd and J. Leskow (1992), Strongly consistent and asymptotically normal es­
timation of the covariance for almost periodically correlated processes, Statistics and 
Decisions 10, 201-225. 

[21] J. Leskow (1992), An asymptotic normality of the spectral density estimators for almost 
periodically correlated stochatic processes, preprint. 

[22] M. Peligrad (1992), On the central limit theorem for weakly dependent sequences with 
a decomposed strong mixing coefficient, Stochastic Process. Appl. 42, 181-193. 

[23] R. S. Phillips (1950), On Fourier Stieltjes integrals, Trans. Amer. Math. Soc. 69, 312-
323. 



19 

[24] M. M, Rao (1985), Harmonizable, Cramer, and Karhunen classes of processes, Hand­
book of Statistics 5, 279-310, Elsevier Science Publ. 

[25] Yu. A. Rozanov (1959), Spectral analysis of abstract function, Th. Probability Appl. 
4, 271-287. 

Dominique Dehay 
IRMAR, URA CNRS 305 
Université de Rennes 1, Campus de Beaulieu 
35042 Rennes, France. 

E. mail: dehay@iut-lannion.fr 

mercredi 17 février 1994 

mailto:dehay@iut-lannion.fr

