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I. INTRODUCTION 

We survey various relations between hyperbolic conservation laws arising 

in gas dynamics and Boltzmann formalism. Recent results show that these two 

formalisms are equivalent in the case of a single conservation law and in the 

case of the 2x2 system of isentropic gas dynamics. For the 3x3 system of gas 

dynamics, so precise results do not hold, but the kinetic formalism is still 

interesting, at least for numerical applications. 

Of course the original motivation is to understand the Euler limit of the 

Boltzmann equation (see C. Cercignani [Ce]), but it appears that it can also 

be useful to derive new mathematical results using the tools of kinetic 

equations (L P a priori estimates, compactness, approximation methods). This 

requires to know a large family of entropies, and it turns out that the 

kinetic formulation of scalar conservation laws or isentropic gas dynamics 

equations, as stated in P.L. Lions, B. Perthame, E. Tadmor [LPT1, LPT2] is a 

way to represent by a single equation all the family of entropies. 
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II. SCALAR CONSERVATION LAWS 

The following results are due to P.L. Lions, B. Perthame and E. Tadmor 

[LPT1 ] . 

We consider a multidimensional scalar conservation law 

i„ n 9A ,(u) 

1 = 1 1 

and we require that the solution satisfies the additional entropy conditions 

a c r * n dri. (u) 

1=1 1 

for all convex functions S(°) and with 

(3) t)\ ( • ) = S ' ( « ) a . ( o ) , a . ( o ) = A l ( • ) € C ^ f l R ) l i l l 

It is wellknown (see C. Bardos [Ba], J. Smoller [S] for instance) that, 

even for smooth initial data, solutions to (1) have discontinuities. This 

prevents (2) to hold as an equality. S.N. Kruzkov [K] has shown that, adding 

the family of inequalities (2), the problem (1) - (3) has a unique solution u 

€ L°°(R* ; L 1 ( I R n ) ) for an initial data u(x,t = o) € (R n) . 

II.1. Kinetic formulation 

Let us introduce an additonal real parameter v and set 

( +1 if О S V s u > 
-1 i f U ^ V < о , 
0 otherwise 

2 
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Then, we say that the function u(x,t) satisfies the kinetic formulation 

of (1) if 

(4) There is a bounded non-negative measure m on IRn x R x R* such that 
x v t 

3*(u(x,t);v) f % n , ( . . v 3m . r r Dn+l _+ . 
TT + a(v)»V *(u(x,t);v) = ~ m 2) (R x R ), 
at x av 

where the vector field a(v) is defined in (3), 

Theorem II. 1. Let u € L^CR*; L 1 n L w ( R n } ), then u satisfies (1) - (3) if 

and only if u satisfies (4). 

Proof of theorem II. 1, Being given u as in the statement of theorem 

II.1., define the distribution m by 

(5) m : = ° \ *(u(x,t) ; w)dw + £ ~ a. (w) *(u(x,t) ; w) dw, 
0 Z J o 1*1 ì J o 1 

or equivalently 

(6) >?- *(u,v) + a(v ) * 7 x^(u,v) = 3 v m. 

2 
Multiplying this equality by S'(v) where S is a C function, we get 

(7) - | J S' (v) *(u,v)dv + l Ì » | a . ( v ) S'(v) ^(u,v)dv 

= < S' (v), a ym > = - < S u(v),m > . 

Notice that, since m is expected to be bounded, we are allowed in (7) to 

take S with bounded second derivatives. Finally, (7) can be written 

3 
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•sr S(u(x,t)) + V ~ - rt. (u(x,t)) = - < S"(v),m > 
at 1 = 1 ax. i 

and thus the set of inequalities (2) for any S" £ o is equivalent to the 

non-negativity of the distribution m, which is therefore a measure. 

The following bounds are obtained choosing successively S" = 1 , ^ w ^ v ^ 

( 8 ) [ + n+1 dB(x'v'« 38 2 l Uoi 22 n 
J R x ! R n 1 Z ° L (OR ) 

(9) Г dm(x,v,t) s ||u I Vv e R , 
R + x ! R n L ( R ) 

(10) m(°,v,°) = o if v € [inf u , sup u ] , 
o o 

where u (x) = u(x,t = o) is the initial data for the scalar conservation law. o 

Remarks : A similar formalism has been used for numerical purposes by Brenier 

[Br] who relates the entropy inequalities a Gibb's variational principle. For 

any non-decreasing function £ 

(11) inf / Г £(v)f(vjdv ; -1 s f(v) < + 1, vf(v) ь о, and Г f(v)dv = ut 
U IR J IR > 'R 

is attained for the function f = #(u;v) . 

II.2. Applications This kinetic formulation can be used for several purposes. A first 

possibility is the construction of a semilinear hyperbolic approximation to 

the quasilinear hyperbolic equation (2), (3). This was achieved in 

B. Perthame, E. Tadmor [PT] using the model 

4 
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(12) 'â? f c + a ( v ) ' V c + ( V * ( V V ) ) / e = 0 

f (x,v,t = o) = *(u (x),v), u (x,t) = f (x,v,t)dv . e о e J R e 

this non-linear equation has a unique solution which convergest to the 

solution of (l)-(3) as c tends to o. A clear relation with (4) is described in 

[LPT1]. Indeed 

m (x,v,t) : = \хЫ (x,t),w) - f (x,w,t) /e dw 
e J 0 l e c J 

is a non-negative function, applying for instance the variational principle 

(11). 

A second kind of applications developed in [LPT1], is the derivation of 

L ^ (IR n x I R + ) estimates for the solution of (l)-(2) with an initial data in L ^ , 

for some p > 2 depending on the non-linearity of the field A(u). This kind of 

result (variations are possible) relies on the moments lemma which provides 

the integrability of moments in v, locally in space for the solution of 

kinetic equations (see B. Perthame [P], P.L. Lion, B, Perthame [LP]). This is 

related to the dispersion effect of the variable a(v) in (4). 

The most spectacular application of this formulation is still a 

regularizing effect proved in [LPT1]. Under suitable assumptions on the 

non-linearity A(u), the solution of (1), (2) with an initial data in 

L 1 n L°° ( I R n ) , belongs to a Sobolev space in x and t. More precisely for any 

с > о 

5 



197 

(13) M us.l( U,l/emn) £ C^-e>*>V with s - 2 £ 

where M » !lu

0liw»
 K w l u

0li
 a n d a i s & i v e n by the non degeneracy condition 

(14) sup [mes{|vj s M, |x + a(v)-Ç| s 3} ; |Çj 2 + jr| 2 = 1] s C ô a. 

this result is based on the version by R. Di Perna, P.L. Lions, Y. Meyer [DLM] 

of the averaging lemmas [GLPS]. In one space dimension and for a strictly 

convex non-linearity A(u), Oleinik's entropy condition gives 

4 a(u) * C/t 

(see [S] for instance) which implies a BV estimate showing that the 

regularity (13) is not optimal. In this case it gives indeed s = 1/3 (<x=l) 

while any s < 1 works. Finally, let us point out that the condition (14) is a 

multidimensional extension of the non-degeneracy condition introduced in one 

dimension by L. Tartar [T] to prove, using compensated compensation, that a 

£ 2 n 
family of initial data U q bounded in L (R ) gives rise to a compact family of 

solutions u €(x,t) in L? (R n x ER +). 
loc 

III. ISENTRQPIC GAS DYNAMICS 

The above results are due to P.L. Lions, B. Perthame, E. Tadmor [ L P T 2 ] . 

We now consider the 2x2 system of isentropic gas dynamics in one space 

dimension 

s a 

(15) . at p u + s | ( p u 2 + P) » o , t a o, x e (R 
2 

1 P(p) = »cpr, y > i, K = 
4r 

6 
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The unknowns are the density p(x,t) and the momentum q = pu(x,t) which 

are conservative quantities. Following the classification introduced by P.D. 

Lax [L], (15) is a hyperbolic system which eigenvalues are u ± c, c ~ Vp^Tp), 

Thus they are distinct except when p = o . 

III.I. Entropy inequalities 

Let us seek the additonal conservation laws that can be deduced of 

(15) for smooth solutions i.e. the couples (T?,F) such that 

(16) g | T J ( P > U ) + - | F(p,u) = o . 

The natural couple (r),F) is given by the energy 

1 2 ^ к y 
7 1 = 2 P U

 + 7=1 P • 

Lemma III.l. (16) is satisfied iff 

pp 2 uu 
P 

(18) F = UT) + r • K p ) n » F — pi) + UT} . 
p p p u u K p u 

Proof of Lemma III.l. Notice that the equation of conservation of momentum 

can be written 
du ^ du ^ p'(p) 
at ax p x ^ 

and multiply it by TJ . Adding the result to the equation of conservation of 

mass multiplied by T) just yields (16) as soon as (18) is satisfied. Finally 

(18) is solvable iff (17) holds, thanks to Schwartz* equality F^ u = F ^ and 

Poincaré theorem. 

7 
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We are going to consider the so called weak entropies satisfying 

( 1 9 ) 7}(p = o,u) = o , T)^(p = o,u) = g(u) , 

for smooth function u. We say that (p,pu) is an entropy solution of ( 1 5 ) if 

( 2 0 ) y* + ~ F * o in 2 ) ' ( (RxR + ) , 
ot ox 

for any (T?,F) solution of ( 1 7 ) - ( 2 0 ) which is convex in (p,pu) 

(see [Ba, L , S ] for motivations). 

Ill.2. Kinetic formulation. 

[ L P T 2 ] proposes to use the kinetic equilibrium given by 

( 2 1 ) Xip ; v-u) = (p*" 1- (v-u) 2 ) \ , 

where x + denotes the positive part of x, x + = sup(o,x), and 

(22) A = 2TFT7 • 

Finally set 

(23) e = ï^i . 

The kinetic formulation of (15) is given, setting x - *(p(x,t) ; v-u(x.t) ), 

by 

8 
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n + 
(24) there is a non-positive bounded measure m on IR x R^ x R such that 

- | x + _2 { [ev + (l-e)ul x > = 5 m in D f ((R 2x R + ) dt dx vv 

00 + 1 

Theorem III.2. [LPT2]. Let (p,pu) € L (R ; L (R) ) have finite energy i.e. 

~ pu 2+ p r € L C°(R +; L 1(R) ). Then (p,pu) is an entropy solution to (15) if and 
only if (24) holds. 

Proof of theorem III.2. The solutions to (17), (19) are given by 

(25) Tl(p,u) = g(v) *(p,v-u)dv , 
J R 

(26) F(p,u) = F g(v)[9v +(l-e)u] x(p i v-u)dv , 
J fD 

(see R. J. Di Perna [DP], Chen [ch] or [LPT2] ). Moreover it is proved in 

[LPT2] that 7] is convex in (p,pu) if g(v) is a convex function. Now 

(24) is equivalent to 

(27) 3. f g(v) *dv + d f [...] g(v) x <*v 
Z J R X J R 

= f g"(v) dm 

2 

for any g € C (R) with subquadratic growth so that, by the assumption on the 

energy, the two integrals on the £.h.s. of (27) are well defined. Finally (27) 

is equivalent to (20) iff m is a non-positive measure. 

9 
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111.3. Remarks. 

i. The energy is recovered using g(v) « v*V2 and gives the estimate 

(28) o , | + 2d»(x,v,t) , ¡2 ( I P 0 u2 + ^ pj )dx 

IR X R R 

where p Q ( x ) ,
 U

Q (
X ) denote the initial data p(x,t = o ) , u(x, t = o) 

2. As in the scalar case, one can easily see that m(x,v,t) = o for 

(x,t) € 0, v € IR if (p,u) is aC 1 solution to (15) on 0 . 

3. The support of x is given by 

Г 111 Hi 1 2 2 
V € u - p , u + p 

then, setting A = 0v + (l-e)u, we have 

X € [u-c, u+c] 

which coincides with the natural speeds of propagation in (15). 

4. Multiplying (24) by (l,v) and integrating dv, we recover the two 

equations of (25). This does not seem to be a general feature (see the 

other example given in [LPT2]. 

5. Notice that x is the fundamental solution of the "wave" equation (17). 

Indeed 

X(o,v-u) = o , x (o,v-u) = 5 . 
P o 

10 
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6. The main difficulty in using this kinetic formulation is that the 

advection in (24) is not purely kinetic. Nevertheless various applications are 

given in [LPT2]. For example it is easy to recover the invariant regions (see 

[S]) giving a priori L°° bounds on p,u depending on \pQ> uJJ ^ . A new estimate 

is also deduced, from the version in [LP] of moments lemma, 

3y-i 

(29) J £p(y,t) |u(x,t)| 3 + p 2 (y,t)jdt 

s C | ^p Q u^ + p*j dx , Vy € R , 

00 
which holds for any entropy solution of (15). Finally, the weak * - L 

stability is obtained for ^ - 3 using compensated compactness, thus completing 

the range of y for which global existence is proved (R.J. Di Perna [DP] did it 
N+2 

for any j = -jj-, N > 3 and Chen [Ch] extended its proof to any 

1 < y * 5/3]. 

11 



203 

REFERENCES 

[Ba] C. BARDOS. Introduction aux problèmes hyperboliques. In CIME Lesson, 

LN 1047, Springer Verlag, Berlin. H.B. Da Veiga Editor. 

[Br] Y. BRENIER, Résolution d'équations d'évolution quasilinéaires. 

J. Diff. Eq. 50(3), (1986), 375-390. 

[Ce] C. CERCIGNANI. The Boltzmann Equation and its applications. Applied 

Math. Sc. 67, Springer Verlag, Berlin (1988). 

[Ch] C.Q. CHEN. The compensated compactness method and the system of 

isentropic gas dynamics. Preprint MSRI - 00527-91, Mathematical 

Sciences Research Institute, Berkeley (1990). 

[DP] R.J. DI PERNA. Convergence of approximate solutions to conservation 

laws. Arch. Rat. Mech. Anal. 82 (1983) pp. 27-70. 

[DLM] R. DI PERNA, P.L. LIONS, Y. MEYER, L P regularity of velocity 

averages. A Paraître dans Ann. IHP Anal. Non Lin., 1991. 

[GLPS] F . GOLSE, P.L. LIONS, B. PERTHAME, R. SENTIS, Regularity of the 

moments of the solution of a transport equation. J. Funct. Anal. 

76(1), (1988), 11°-125. 

[K] S. KRUZKOV, First order quasi-linear equations with several space 

variables. Math. USSR Sb. 10(1970), 217-273. 

[L] P.D. LAX. Hyperbolic systems of conservation laws and the 

mathematical theory of shock waves. CBMS-NSF conference n° 11, SIAM, 

Philadelfia (1973). 

[LP] P.L. LIONS, B. PERTHAME. Moments, averaging and dispersion lemmas. 

C.R. Ac. Sc. Paris (1992) to appear. 

12 



204 

[LPT1] P.L. LIONS, B. PERTHAME, E. TADMOR, Kinetic formulation of scalar 

conservation laws. Note C.R.A.S. t. Série 1 (1991). 

[LPT2] P.L. LIONS. B, PERTHAME, E. TADMOR. Kinetic formulation of 

isentropic gas dynamics in preparation. 

[P] B. PERTHAME, Higher moments for kinetic equations ; Applications to 

Vlasov-Poisson and Fokker-Planck Equations. Math. Methods in the 

Appl. Sc. 13(1990), 441-452. 

[PT] B. PERTHAME, E. TADMOR, A kinetic equation with kinetic entropy 

functions for scalar conservation laws. A paraître dans Comm. in 

Math. Phys. 

[S] J. SMOLLER, Shock waves and reaction diffusion equations. 

Springer-Verlag New York, Heidelberg-Berlin, (1982). 

[T] L. TARTAR, In Research notes in Mathematics, 39, Henriot-Watt Symp. 

Vol. 4 Pitman Press Boston, London (1975), 136-211. 

1 3 


