
LAMBDA-UPSILON-OMEGA :
AN ASSISTANT ALGORITHMS ANALYZER

iPüißppe TLSMJOLfBÏ
INRIA Rocquencourt

78150 Le Chesnay

'Bruno SftLVj
INRIA et Ecole Polytechnique

91 405 Palaiseau CEDEX

TauC ZlMMT,<RMW&i
INRIA Rocquencourt

78150 Le Chesnay

205

Abstract . Lambda-Upsilon-Omega, Ajpfl, is a system designed to perform automatic
analysis of wdl-defined classes of algorithms operating over "decomposable* data struc­
tures.

It consists of an 4Algebraic Analyzer' System that compiles algorithms specifica­
tions into generating functions of average costs, and an 'Analytic Analyzer' System that
extracts asymptotic informations on coefficients of generating functions. The algebraic
part relies on recent methodologies in combinatorial analysis based on systematic corre­
spondences between structural type definitions and counting generating functions. The
analytic part makes use of partly classical and partly new correspondences between
singularities of analytic functions and the growth of their Taylor coefficients.

The current version AJ^Q of AfJi implements as basic data types, term trees as
encountered in symbolic algebra systems. The analytic analyzer can treat large classes
of functions with explicit expressions. In this way, Ajfl 0

 c a n generate in the current
stage about a dozen non-trivial average case analyses of algorithms like: formal differ­
entiation, some algebraic simplification and matching algorithms. Its analytic analyzer
can determine asymptotic expansions for large classes of generating functions arising in
the analysis of algorithms.

The outline of a design for a full system is also discussed here. The long term goal
is to include a fairly rich set of data structuring mechanisms including some general
recursive type definitions, and have the analytic analyzer treat wide classes of func­
tional equations as may be encountered in combinatorial analysis and the analysis of
algorithms.

1. I n t roduc t i on

Ideally, a system for automatic program analysis should take as input a procedure or
function specification

11. procedure Quicksort { ins t ruct ions} end;

12. procedure Diff { ins t ruct ions} end;
for sorting or computing symbolic derivatives, and produce an "analysis" of the program.
We concern ourselves here with average-case analysis and optimization of programs, and
we would like the system to output something like

O l . Time f o r quicksort on random inputs of size n i s
11.67 n ln(n) - 1.74 n • 0(ln(n))

206

0 2 . Time fo r Diff on random inputs of s ize n is
1/2

n (- 240 • 37 42)
8 + 0(1)

1/2 1/2
(- 13 + 2 42) 42

These two analyses will naturally depend on type specifications that are companion to
(II) and (12), a description of a complexity model (e.g. an 4 i f ' takes 5 units of time),
and a description of a (random input) statistical model. For Quicksort, we could have
some way of specifying that all permutations of n are taken equally likely, while for
Diff we could decide that all expression trees of size n with the proper type are equally
likely.

We shall describe here a system whose current state performs automatic analysis
of a whole class of algorithms in the realm of symbolic manipulation algorithms and
contains a good deal of what is needed in order to.analyze permutation algorithms like
(II)- Result (01) is taken directly from [Knuth 1973], but (02) was literally produced
by our system.

Our system is called A]fft. The name A]fft (Lambda-Upsilon-Omega) comes from
the Greek word \vu which means (amongst other things) CI solve9, and it is from this
verb that "analysis" derives. Implementation was started in mid 1987. We shall describe
here its overall design principles as well as the state of the current implementation A ^ 0 .
There are two major components in Ayfl:

- An Algebraic Analyser System, A L A S , that accepts algorithms specifications in a
suitably restricted programming language. That part produces type descriptors
and complexity descriptors in the form of generating functions.

- An Analytic Analyser System, ANANAS, that accepts generating functions (for
type descriptors and complexity descriptors) and tries to determine automatically
an asymptotic expansion of its Taylor coefficients.

The algebraic component is currently implemented in Lisp, though ML is also consid­
ered for later implementations. In its present form, it permits to analyze a class of
symbolic term (tree) manipulation programs and comprises about 500 Lisp instructions
(in the LeJiisp dialect). The analytic component is already a fairly large set of symbolic
"algebra" routines written in Maple and comprising about 3000 instructions.

Both components encapsulate a fair amount of mathematical expertise at a rather
abstract level.

- The algebraic system is based on research in combinatorial analysis developed
mostly during the 1970's regarding correspondence between structural definitions of
combinatorial objects and generating functions, together with some new extensions
to program schemes.

- The analytic system is based on some recent developments of late 19th and early
20th century complex asymptotic analysis concerning the correspondence between
singularities or saddle points of functions and the asymptotic order of coefficients
in Taylor expansions.

The Affi system has of course no claim of being universal, since program termination
is in general undecidable. Its interest lies in consideration of a restricted class of purely
"functional" procedures that operate through recursive descent over a large class of
"decomposable" structures defined by powerful type structuring mechanisms. Such a
class contains algorithms and data structures, like binary search trees, unbalanced heaps
for priority queues, quicksort, digital tries and radix exchange sort, merge sort, several

207

versions of hashing, pattern matching, recursive parsing. Our long term objective is to
have a system that will perform automatically analysis of a non-negligible fractions of
these algorithms as well as many other of the same style. The current system implements
a complexity calculus on term trees along the lines of [Flajolet, Steyaert 1987] and the
analytic analyzer is already appreciably more general.

For an interesting alternative approach to automatic complexity analysis, the reader
is referred to [Hickey, Cohen 1988] and references therein.

2 . A Sample Session

A typical Afto sessionf starts with by calling a script, which (using Unix virtual tty's)
initiates a joint Lisp and Maple session. We then load ALAS, apply it to the program
to be analyzed. This generates a set of equations over generating functions, that are
passed to Maple initialized with ANANAS.

The example considered is a program that computes symbolic derivatives (without
simplification) of expressions (terms, trees) built from the operator set

1<°>, *<°>, exp<», +<2>, *<2>, * W

with superscripts denoting arities. The key steps are
1. The recursive definition of the type 4term' is reflected by a quadratic equation for

its generating function t(z).
2. The recursive structure of the Diff procedure is reflected by a linear equation for

its complexity descriptor rdiff (generating function of average costs).
These two steps are completed automatically by ALAS, which also uses a small Maple
procedure to derive explicit expressions. At the next stage, ANANAS is used on those
generating functions:

3. Both t(z) and rdiff (z) are recognized as having singularities at a finite distance
of a so-called 'algebraico-logarithmic' type. Local singular expansions are then
determined (through Maple's Taylor capability).

4. Using general theorems from complex asymptotic analysis, singular expansions can
be transformed automatically into asymptotic expansions of the coefficients. This
is achieved by means of the versatile 'equivalent' command of ANANAS.

Dividing the asymptotic form of the coefficients of [z n] in t(z) and rdiff (z), we obtain
the asymptotic average complexity of symbolic differentiation in an either algebraic or
floating point form. The same device may be used to analyse the variant DiffCp of Diff
that proceeds by copying subexpressions instead of sharing them.

In this way we obtain average case analyses which we summarized here, compared
to the obvious best case and worst case results.
Algorithm Best Case Average Case Worst Case

Diff [sharing] 0(n) c.n + 0(1) 0(n)
DiffCp [copy] O(n) c.n2'2 + 0 (n) 0 (n 2)

The order of the cost for Diff was to expected. The 0(n3'2) result for DiffCp is
harder to guess, and it is related to the behaviour of the average path length in trees as
discussed in [Knuth 1968] or [Meir, Moon 1978].

t The necessary concepts will be developed in Sections 3 (Algebraic System) and 4
(Analytic System). The script that follows has been slightly edited and a few commands
have been decomposed for the sake of readability.

208

Script started on Fri Jan 29 12:08:24 1988
'/, maplelisp {.Initialize Lisp and Maple"]
; Le-Lisp (by INRIA) version 15.21 (25/Dec/87) [sun]

I W I
• l / L . INRIA - Rocquencourt
\ MAPLE / Version 4.1 — May 1987
< > For on-l ine help, type he lpO;

I

[Load Algebraic Analyzer, Alas]
? (load luo)
Function to analyse : (d i f f copyl d i s t r ib size simpl countl f i l t e r
copy evalf d i f fcp)
? d i f f {.Diff with subexpression sharing]
(de d i f f (x)

(caseroot * (maketree
{etc.]

Analysis of d i f f on trees formed with . . .
symbol x of ar i ty 0 e t c . . .

Calling analyse . . .
? (maple)
* * * I n i t i a l system * * * {Equations Produced by Alas]

2 2
phi = 2 + 3 z + z , t s 2 + 3 z t + z t ,

2
tau_diff = 21 z t • 6 z t tau_diff + 4 z t + z tau_diff + 2 z

*** Expl ic i t expression(s) *** [e t c .]

{Start Analytic Analyzer, Ananas]
> tn : -equivalent (t) ; {Asymptotic number of inputs: 16 sec on sunS/60]

1/4 1/2 1/2
42 (13 - 2 42)

tn := - 1/6
1/2 3/2 1/2 1/2 n

(-" 13 • 2 42) n Pi (13 - 2 42)
1/2 (- n)

(13 - 2 42)
+ Q()

5/2
n

> {etc.] {average diff time]
1/2

n (- 240 + 37 42)
av.diffn := 8 • 0(1)

1/2 1/2
<- 13 + 2 42) 42

> evalf (av .d i f fn) ; {Floating point evat]
6.82942 n • 0(1)

> suspend, maple;
? (analyse ' d i f f c p) {Diff with copy of arguments]
> {etc ...]
> eva l f (av .d i f f cpn) ;

3/2
16.6226 n 4 0(n)

> suspend.maple;
? (end) {The whole thingf]
Que Le-Lisp s o i t avec vous.
X -D

sc r ip t done on Fri Jan 29 12:44:51 1988

Figure 1. A Afîî session showing the automatic analysis of symbolic differentiation.

209

3 . T h e A l g e b r a i c Ana lyzer S y s t e m

3.1 Combinatorial Principles

The algebraic part of our system - ALAS - relies on recent research in combinatorial
analysis. Till the mid twentieth century, the field of combinatorial enumerations was
mostly conceived as an art of obtaining recurrences for the counting of combinatorial
structures, with generating functions entering as an ad hoc solution device in more
complex cases. The books by Riordan, and many of the analyses in Knuth's magnum
opus are witnesses of this approach.

From research conducted by Rota, Foata, Schutzenberger and their schools, there
has emerged a general principle:

A rich collection of combinatorial constructions have direct translation into
generating functions.

More precisely, let A be a class of combinatorial objects, with An the subclass consisting
of objects of size n, and An = card(*4n). We define the ordinary generating function
(OGF) and exponential generating function (EGF) of A by

n>0 n>0 n *

A combinatorial construction, say C = $[.4,5] is said to be admissible if the counting
sequence { C n } n > o of the result depends only on the counting sequences {An} and {Bn}
of the arguments. An admissible construction then defines an operator (or a functional)
on corresponding generating functions:

C(z) = ¥[A(z), B(z)] and C{z) = *[A(z),B(z)].

For instance the cartesian product construction is admissible since

n

C = AxB = • C n = £ AkBn-k and C(z) = A(z) • B(z).

Combinatorial enumerations are developed systematically within a comparable frame-
work in the book by Goulden and Jackson [1983]. The tables in Figure 2 summarize a
collection of admissible constructions borrowed from [Flajolet 1985, 1988].

In this context, the primary object for combinatorial enumerations is no longer
integer sequences but rather generating functions. Furthermore, that approach fits
nicely with asymptotic analysis, the main tool for asymptotic analysis being analytic
function theory rather than explicit integer sequences. It is on the conjunction of these
two principles that our system is built.

The task of enumerating a class of combinatorial structures is then reduced to
specifying it (up to isomorphism) by means of admissible constructions. Once this is
done, the task of computing a set of generating function equations reduces to performing
simply a purely formal translation. In the context of the analysis of algorithms, data
structure declarations are thus converted to generating functions (GF's), each data type
having its own GF also called its type descriptor. An interesting approach similar to
ours and based on an extension of context-free grammars is presented in Greene's thesis
[1983].

210

O G F :
Disj. Union C = A W B c(z) = a(z) + b(z)
Cart. Product C = A X B c(z) = a(z) • b(z)
Diagonal C = A(A X A) c(z) = a(z 2)
Sequence C = A* c(z) = (1 - a (z)) - 1

Marking C = M c(z) = z£a(z)
Substitution C = A[B] c(z) = a(b(z))
PowerSet C = 2A c(z) = exp (a(z) - £a(z 2) + \a(z*))
Multiset C = M{A} c(z) = exp (a(z) + \a(z2) + la jz 3) + . . .)

EGF:
Disj. Union C = A\dB c{z) = a(z) + b{z)
Label. Product C = A * 5 a(z) = a(z) . b(z)
Label. Sequence C = A<m) c(z) = (1 - a(z)) - 1

Marking C = fiA c(z) = zjra(z)
Label. Subst. C = <4[S] c(z) = a(6(*))
Label. Set C = c(z) = exp (a(z))

Figure 2. A catalog of admissible constructions and their translation to ordinary or
exponential generating functions. The OGF constructions are relative to unlabelled
structures, the EGF constructions are relative to labelled structures.

3.2. Analysis o f Algori thms

Let r be an algorithm that takes its inputs from a data type J and produces some output
of type O. We consider exclusively additive complexity measures, thereby restricting
ourselves to time complexity analyses. Let rT[e] denote the complexity of an execution
of T on input c. By the additive character:

r = (r<l>;r<*>) = > r r - r r W + r r W .

The purpose of average case analysis is to determine the expectation of rT[e] when
e is a random element of I with size n. Thus, assuming J„ is a finite set, that quantity
is a quotient

-j^ where rTn = ^ iT[e],

rTn being thus a cumulated value of rT over I n .
The ordinary complexity descriptor (OCD) of algorithm T is defined as the gener­

ating function
rr(z) = £ r r n z n .

n>0

(There is an obvious analogue for exponential descriptors.)
A program construction T = [̂r̂ r̂̂] is said to be admissible if the cost se­

quence {rr n } of T depends only on the cost sequences of the arguments T i , ^ and the
counting sequences of intervening data structures. An admissible construction again
defines an operator over corresponding generating functions.

Assume for instance that P(z : C) is a procedure that operates on inputs z = (a, 6)
of type C = A x B and is defined by

P(z : C) := Q(a);

211

where Q is of type Q(x : A). Then, is is easy to see that

TP(z) = rQ(z).b(z).

If in addition, we make use of the additivity of r, the scheme

P(x : C) := Q(a); R(b)

translates into

rP(z) = rQ(z) • b(z) + a(z)rR(z).

It turns out that there is a collection of program schemes naturally associated
to constructions described above that are admissible. Corresponding to C — A W B,
C = AxB,C = A',C = 2A,C = M{A}, we find

P(c) = if c € A then Q(c) else R(c) TP(Z) = TQ(Z) + TR(Z)
P((a,6)) = Q(a) rP(z) = rQ(z)b(z)

, • • . , a*)) = QM, • • •; QM rP(z) = TQ(Z)/(I - a(z)) 2

P ({ a i , . . . , a * }) = Q(aiy,...;Q(ak) TP(Z) = a{z){TQ{z) - TQ(Z2) + rQ{z*) - • • •)
P ({ 0 1 , . . . , a f c » = Q (0 l) ; . . . ; (? (0 i k) rP(z) = a(z)(rQ(z) + TQ(Z*) + TQ(Z*) + ...)

For instance, a recursive type definition for trees
T = { a } x T;

together with a recursive procedure specification sheme
Q(x : T) := R(x); for y root .subtree jo f x do Q(y);

will result in the system of equations

Observe that T(z) is an algebraic function of degree 2, and owing to the structure
of the algorithm, TQ(Z) is expressed linearly in terms of itself. This is roughly the
situation that we encounter when analyzing symbolic differentiation as well as many
similar algorithms [Steyaert 1984].

The algebraic analyzer of AfJi0 implements a calculus based on previously exposed
principles, but restricted to trees. Nonetheless (cf Fig. 1), it can produce automatic
analyses of versions of matching, simplification, or various types of evaluations etc.

4. T h e A n a l y t i c Ana lyze r Sys t em

At this stage, our task is to take a generating function, defined either explicitly (for
non recursive data types) or implicitly via a functional equation (for most recursive
data types). The current version of AfH treats only functions that lead to explicit
expressions after a possible usage of the 'solve' routine of Maple. We shall therefore
limit ourselves to this case.

212

4.1. Analytic Principles

Let f(z) be a function analytic at the origin. We assume further that J(z) is explicitly
given by an expression, a blend of sums, products, powers, exponential and logarithms.
Most explicit generating functions constructed by the combinatorial tools of Section 3
are of this type.

The starting point is Cauchy's coefficient formula

where [zn]f(z) is the usual notation for the coefficient of zn in the Taylor expansion of
f(z). Two major classes of methods are applicable to determine the Taylor coefficients
of those functions:

- For functions with singularities at a finite distance, the local behaviour of the func­
tion near its dominant singularities (the ones of smallest modulus) determines the
growth order of the Taylor coefficients of the function. Asymptotic information is
obtained by taking T to be a contour that comes close to the dominant singularities.

- For entire functions, saddle point contours T are usually applicable.
Several observations are useful here. First, functions defined by expressions are ana­
lytically continuable - except for possible isolated singularities - to the whole of the
complex plane (though they may be multivalued). Second, by Pringsheim theorem,
functions with positive coefficients (such is the case for our generating functions) al­
ways have a positive dominant singularity, a fact that eases considerably the search for
singularities.

Though a complete algorithm covering all elementary functions is not (yet) available
since the classification of singularities, even for such functions, is not fully complete, a
good deal of functions arising in practice can be treated by the following algorithm.

Procedure equivalent(/ : expression) : expression;
{determines an asymptotic equivalent of [^ / (z) }

1. Determine whether f(z) is entire or f(z) has singularities at a finite distance.
2. If f(z) has finite singularities, let p be the modulus of a dominant singularity. We

know at least that

/ n = [* »] / (*)

Compute a local expansion of f(z) around its dominant singularity (-ies). This is
called a singular expansion.
2a. If a singular expansion is of an 'algebraico-logarithmic' type, namely

/(*) ~ U ~ *IPY W*(l - z/p)'1 as x - p (4.2)

then apply methods of the Darboux-Polya type to transfer singular expansions
to coefficients

/ „ = [, »] / (*) ~ p - ^ 1 log0 n (4.3).

This applies generally to functions that are "not too large" near a singularity.
2b If the function is large near its singularity, for instance

213

then apply saddle point methods like (3) below.
3. If f(s) is entire, then use a saddle point integral. If this succeeds, we get

where hn(z) = - (n + 1) log 2 , and Rn is such that

M l = 0.

This is the outline of the algorithm that we have implemented in Maple, with the
minor exception of step (2b) (saddle point at a finite distance) and with the current
limitation that singularities and saddle points should be within reach of Maple's 'solve'
routine.

It is important to note that a few theorems, whose conditions can be automatically
tested, are used to support this algorithm.

Singularity Analysis. The classical form of the Darboux-Polya method requires
differentiability conditions on error terms. However, from [Flajolet, Odlyzko 1987], we
now know that analytic continuation is enough to ensure the transition from (4.2) to
(4.3), and by our earlier discussion, these conditions are always fulfilled for functions
defined by expressions. Thus, the use of (2a) is guaranteed to be sound. Furthermore,
that approach makes it possible to cope with singularities involving iterated logarithms
as well (not yet implemented).

Saddle Point Integrals. There has been considerable interest for those methods,
due to their recognized importance in mathematical physics and combinatorial enu­
merations. We thus know, from works by Hayman, Harris and Schoenfeld, or Odlyzko
and Richmond, classes of functions defined by closure properties for which saddle point
estimates are valid. Such conditions, that are extremely adequate for combinatorial
generating functions, can be checked inductively on the expression.

4.2. Some Applications

Let us take here the occasion of a few examples to discuss some further features of
ANANAS. The next three examples are all taken from combinatorial enumerations:
(El) Trees of cycles of cycles of beads; (E2) Involutive permutations; (E3) Children's
Rounds of [Stanley 1978]; (E4) Bell numbers counting partitions of n.

lEn> •quivalent(l/2*<l-sqrt(l-4«log(l/(l-logCl/(l-z)))))));
1/2

-1/2 •xpCoxpC-lM)) exp(-3/8>
3/2 1/2

1 / (n (- «xp(«xp(-l/4)) exp(-l) • 1))
n 1/2

/ <(- •xpCtxpC-lM)) «xp(-l) • 1) Pi) • etc ...
(1/2 - n)

<- expCwpC-lM) - 1) «• 1)
4 0 ()

7/2
n

214

[£2]> equivalent(exp(z*z~2/2));
1/2 1/2 2

*xp<- 1/2 - 1/2 (1 • 4 n) • 1/2 (- 1/2 - 1/2 (1 M a)))

1/2 n 1/2 1/2 1/2 1/2
/ ((- 1/2 - 1/2 (l M n)) (-2) Pi (- 1/2 • 1/2 (1 • 4 n)))

1/4
/ (I M a)

LES]> «quivalent((l-z)-(-z),5);
ln(n) gamma 1 ln(n) 1 gamma ln(n)

1 - 1/n • • 5/2 • 0()
3 3 3 4 4 4 5
n n n n n n n

LE41> equivalent(exp(«xp(z)-D);
1/2

1/2 «xp<exp<V(n • 1)) - 1) 2 • etc... tW(z)cxp(W(z))=zl

Example 1 demonstrates the processing of functions with singularities at a finite dis­
tance. The singularity has an explicit form and the function behaves locally like a square
root, whence the final result of the form:

C n - 3 / 2 (l - e « - l , 4 - l) ~ "

Example 2 shows the asymptotic analysis of the Involution numbers (Knuth [1973, p.65-
67] does it by the Laplace method). It is treated here by aHayman admissibility" (a
classical notion bearing no direct relation to our previous usage of this word). Hayman's
Theorem provides a class of admissible functions for which a saddle point argument (Step
3 of procedure 'equivalent') can be applied: If f and g are admissible, h is an entire
function and P is a real polynomial with a positive leading coefficient, then

exp(/) , f + P, P(f)y and under suitable conditions, f + h

are admissible. These conditions can be checked syntactically here.
Example 3 is a further illustration of singularity analysis in a non trivial case. Example
4, the classical asymptotics of Bell numbers [De Bruijn 1981] resembles Example 2. It
is treated here by Harris-Schoenfeld admissibility (which also provides complete expan­
sions), and the corresponding step in the algorithm implements a theorem of Odlyzko
and Richmond relating Hayman admissibility to Harris-Schoenfeld admissibility.

5. Conc lus ions

We have presented here some preliminary design considerations for a system that would
assist research in the analysis of algorithms. There are two benefits to be expected from
such a research.
The first and most obvious benefit is to help an analyst explore some statistical phe­
nomena that seem "tractable" in principle, but too intricate to be done by hand.
The second and most important one in our view is that the design of such a system
creates needs of a new nature in algorithmic analysis methodology. (Thus, our approach
departs radically from "Artificial Intelligence").

215

a. There is a need for extracting general program schemes that can be analyzed by these
methods. In this way, we wish to attack the analysis of elementary but structurally
complex programs, and we can hope to find general theorems relating complexity and
structure of algorithms (cf [Steyaert 1984]).

b. When making algorithmic some parts of complex asymptotics, we naturally discover
"gaps" that have never been revealed before. For instance, nobody seems to have
considered such a simple asymptotic problem as

(iog»(JL))

In summary, all we hope is that the development of Afft will bring even more questions
than answers!

6. Bibliography

N. G. DE BRU$$N [1981]. Asymptotic Methods in Analysis. Dover, New York, 1981.
L. C O M T E T [1974]. Advanced Combinatorics. Reidel, Dordrecht, 1974.
P. FLAJOLET [1985]. “Elements of a general theory of combinatorial structures”, in
Proc. FCT Conf., Lecture Notes in Comp. Sc, Springer Verlag, 1985,112-127.
P H . FLAJOLET [1988]. “Mathematical Methods in the Analysis of Algorithms and Data
Structures,” in Trends in Theoretical Computer Science, E B$$rger Editor, Computer
Science Press, 1988.
P. FLAJOLET AND A. M. ODLYZKO [1987]. “Singularity Analysis of Generating Func­
tions”, preprint, 1987.
P. FLAJOLET AND J-M. STEYAERT [1987]. “A Complexity Calculus for Recursive Tree
Algorihms”, J. of Computer and System Sciences 19, 1987, 301-331.
I. GOULDEN AND D. JACKSON [1983]. Combinatorial Enumerations. Wiley, New York,
1983.
D . H. GREENE [1983]. “Labelled Formal Languages and Their Uses,” Stanford Univer­
sity, Technical Report STAN-CS-83-982, 1983.
B . HARRIS AND L. SCHOENFELD [1968]. “Asymptotic Expansions for the Coefficients
of Analytic Functions”, Illinois J. Math. 12, 1968, 264-277.
W . K. HAYMAN [1956]. “A Generalization of Stirling’s Formula”, J. Reine und Ange-
wandte Mathematik 196,1956, 67-95.
P. HENRICI [1977]. Applied and Computational Complex Analysis. Three Volumes.
Wiley, New York, 1977.
T . HICKEY AND J. COHEN [1988]. “Automatic Program Analysis”, J.A.C.M. 35,1988,
185-220
D. E. KNUTH [1973a]. The Art of Computer Programming. Volume 1: Fundamental
Algorithms. Addison-Wesley, Reading, MA, second edition 1973.
D . E. KNUTH [1973b], The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley, Reading, MA, 1973.
A. M E I R AND J. W . M O O N [1978]. “On the Altitude of Nodes in Random Trees,”
Canadian Journal of Mathematics 30, 1978, 997-1015.
G. P$$LYA [1937]. “Kombinatorische Anzahlbestimmungen fur Gruppen, Graphen und
chemische Verbindungen”, Acta Mathematica 68, 1937, 145-254. Translated in: G.
Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical
Compounds, Springer, New-York, 1987.
V. N. SACHKOV [1978]. Verojatnostnie Metody v Kombinatornom Analize, Nauka,
Moscow, 1978.

216

R. SEDGEWICK [1983]. Algorithms. Addison-Wesley, Reading, 1983.

R. P. STANLEY [1978]. “Generating Functions,” in Studies in Combinatorics, edited by
G-C. Rota, M. A. A. Monographs, 1978.

R. P. STANLEY [1986]. Enumerative Combinatorics, Wadsworth and Brooks/Cole, Mon­
terey, 1986.

J-M. STEYAERT [1984]. “Complexité et Structure des Algorithmes”, These de Doctorat
ès-Sciences, Université Paris 7, 1984.

Imprimé en France
par

l ' Ins t i tu t Nat ional de Recherche en Informat ique et en A u t o m a t i q u e

