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Mesire Gauvain esgarde le vaissel, si le prise plus que rien
qu'il eust veue, mais il ne puet savoir de quoi il est, kar de fust n'est
il pas ne de nule maniere de metal, ne de pierre ne rest il mie de cor
ne d'os, et de ceu est il tos esbahis. Apres regarde la pucele, si se
merveille plus asses de sa bialté que del vaissel, kar onques mes ne
vit il feme qui de bialté s'apareillast a ceste: si muse a li si durement -
qu'a autre rien ne pense. Et ensi com la damoisele passe par devant
le dois, si s'agenoille chescuns devant le saint vaissel et tantost
sont les tables replenies de tos les bials mengiers que l'en porroit
deviser; et li palés fu raemplis de si bones odors com se totes les
espieces terrienes i fuissent espandues.

Quant Ia damoisele fu une fois alee par devant le dois, si s'en
retorne et entre en la chambre dont ele vint. Et mesire Gauvain le
convoie des iex tant com il puet et quant il ne la voit mes, si regarde
devant lui a la table ou il seoit, mes il ne voit chose qu'il puisse
mengier, ains est la table vuide devant lui, et il n'i a nus qui n'ait
autresi grant plenté de viande comme s'ele sorsist. Quant il voit ce,
si en est si esbahis qu'il ne set qu'il doie dire ne que fere, kar bien set
qu'il a mespris en aucune chose, por quoi il n'a eu a mengier ausi
come li autres.

Lancelot, LXVI, 13-14, Ed. Micha, Geneve, Droz, 1978

INTRODUCTION
Many properties and invariants of ideals in a polynomial ring can be effectively and efficiently obtained
once a Grobner basis of the ideal has been computed by means of Buchberger Algorithm. This has made
feasible a computational algebraic approach to the global study of varieties in the complex affine and
projective spaces.
As polynomial ideals provide an algebraic setting for the global study of varieties, the study of local
properties of a variety finds an algebraic intepretation in local algebra (i.e. the theory of local rings). In
this setting an exact counterpart of the notion of Gribner bases has been long since defined under the
name of standard bases; standard bases however don't share the same good computational propertics, since
Buchberger's Algorithm often fails to terminate when applied to this situation.
While a general algorithm for standard basis computations is still lacking (for instance in the ring of
formal power series, also under suitable notions of computability), there are situations in which a simple
variant of Buchberger's Algorithm, the Tangent Cone Algorithm (1), is sufficent for the computation of
standard bases. While the Tangent Cone Algorithm properly applies only to the case of the localization of
a polynomial ring to the origin, elementary algebraic manipulations allow to apply it at least in the
following two situations:

1) the localization at a prime ideal of a coordinate ring

2) the ring of algebraic formal power series
Both cases have important geometrical interpretations:

1) let 1} c Iz cI3 ck(X},...,Xp] be prime ideals; let B := k[X1,...,Xp}/I1, p < B the image of I3
and let A be the Ioélhaﬁon of B at p; let I be the prime ideal in A, which is the extension of the image
of I2 (each prime ideal in A is such for a suitable 12 < k[X},...,Xqpl, with I} c 12 cI3).
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The geometrical meaning of this situation can be roughly described as follows: we have three affine
varieties V3 c V2 c V1 (V] being defined by I;); A describes a neighborhood of V3 in Vj; I defines the
vaﬁety V7 "locally”, i.e. in such a neighborhood; by studying I we are attempting a description of the
local behaviour of V2.

2) The study of algebraic formal power series is related instead with the study of analytically
irreducible branches at the origin of an algebraic variety and comes out naturally when studying singular
points of algebraic varieties: for instance in Newton-Puiseux algorithm [***] for determining the analytic
branches of a curve at a singular point and, more generally, in the study of analytic components of a
complex algebraic variety.

The Tangent Cone Algorithm can therefore be used as a computational tool for local algebra, at least in
the two cases discussed above. The aim of this paper is to give a survey of such an approach.

We start with a discussion of the local description of a variety at a point (§1), thus producing a first
example of computational problems to which the Tangent Cone Algorithm can be successfully applied.

In Section 2 we will recall the basic notions and the basic results realted with the Tangent Cone
Algorithm. Then (§3) we will show how it can be used to effectively solve the problems posed in § 1.

§4 will describe a computational model for rings of algebraic formal power series based on the Implicit
Function Theorem and on the Tangent Cone Algorithm, which has been recently introduced and which
allows to give effective versions of classical theorems from Weierstrass Preparation Theorem to Noether
Normalization Lemma and which gives an algorithm for computing elimination ideals in a ring of
algebraic power series

Then we will enter local algebra proper: after a recall of the basic notions from local algebra we will need
(85), we will give a computational model for localizations of cooordinate rings at prime ideals, based on
the Tangent Cone Algorithm, which gives an effective description of the topological notions involved and
allows for standard basis computations (§6).

In particular the associated graded ring is explicitly presented as a polynomial ring modulo a homogeneous
ideal given by a Grbner basis. Because of this, algorithms relying on Gribner bases can be applied and
the classical "method of associated graded rings” is tumed into a computational tool (§7). .
Finall we briefly discuss the applications of the Tangent Cone Algorithm to the theory of isolated
singularities, proposed by Luengo, Pfister and Schtnemann (§8).

None of the results presented in the paper is original (2), but we hope to have improved their presentation
with respect to the original research contributions and to provide an updated survey of the applications of
standard basis techniques in computational local algebra.

1 AN INTRODUCTORY PROBLEM
Let P denote the polynomial ring k[X},....Xn] with coefficients in a field k.
Iff € P- {0}, it can be uniquely written as a finite sum of non-zero homogeneous polynomials:

f=Zi-1...tfi , fi homogeneous and non-zero, deg(f}) < ... < deg(fy) < deg(f;+1) <...
To the polynomial f we can associate its order, ord(f) := deg(f1) and its initial form, in(f) := f}.
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The order of f is the infinitesimal order at the origin of f as an analytic function; its initial form is the
lowest order non-zero Taylor approximation of f at the origin.

IfI c P = k[Xj,...,Xp] is an ideal, we define in(I) := (in(f) : f € P), the initial form ideal of I, to be the
homogenebus ideal in P generated by the initial forms of the elements in I. Geometrically, (when the base
field k is C) it is the ideal which defines the cone of the tangents at the origin (counted with the correct
multiplicity) to the variety in C® defined by I (3): we are clearly assuming that the origin isin V, i.e. I ¢
X1.,....Xp); otherwise in(]) is the polynomial ring and the cone of tangents is void (as it should be).

It gives therefore a kind of "lowest order approximation™ to such variety.

Let V be the variety in C™ defined by the radical ideal I. Let fe P;if ge Pisst.f-ge I,thenfand g
define the same polynomial function f(xj,...,Xp) = g(x1,...,Xp) on V. What are the infinitesimal order at
the origin and a lowest order non-zero Taylor approximation at the origin of the polynomial function

f(X1,0.,Xn)?

LEMMA 1 Consider the set Rf:= (g€ P: g-fe I}. Assume there is g € Res.t. in(g) € in(I) and let
n := ord(g).
Then the following hold:

i) if h € R, ord(h) < n, then in(h) € in(I).

ii) if h € Ry, ord(h) 2 n, then ord(h) = n, in(g) - in(h) € in(]).
Proof: i) since ord(h) < ord(g), in(h - g) = in(h); since h - g € I, in(h) = in(h - g) € in(]).

ii) If ord(h) > n, then inth - g) = in(g) ¢ in(I); since h - g € I, in(g) = in(h - g) € in(I), a
contradiction.
Then if ord(h) 2 n, necessarily ord(h) = n, in(h - g) = in(h) - in(g); then, since h - g € I, in(h) - in(g) =
inth - g) € in(l).

It is then clear that the answer to the questions above is: ord(g) and the residue class of in(g) mod. in(I).
However there are cases in which a g as required by the Lemma doesn't exist.

In fact consider P := C[X,Y], f = X, I the ideal generated by X - X2, V the variety defined by I, which 1s
the union of the two lines x=0,x = 1.

The polynomial function f(x,y) = x vanishes identically in any point of V which is sufficiently near to the
origin, so it actually coincides locally with the polynomial function g(x,y) = 0.

This is reflected by the fact that in the set Ry there is no g s.t. in(g) ¢ in(T) = (X): in factif g - f € I, then
g-X=h(X-X2) forsomepolynomxalh,sog:X+h(X-X2)=X(1+h(l - X)) and in(g) is a
multiple of X. However X ¢ L.

Remark however that the vanishing of the polynomial function x is reflected by the fact that X = (1 - X)!
(X - X2) so X belongs to the ideal generated by X - X2 in any ring containing the inverse of (1 - X);
introducing the inverse of (1 - X) makes sense, since "near the origin” 1 - X never vanishes so i_t is an
invertible function.

In fact we can actually find a natural solution to our problem by considering the "local” nature of both our
problem (infinitesimal orders, lowest order approximations at a point) and of our data (functions defined
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near a point) and so by carrying on the machinery we have developed to the larger ring of the rational
functions which are defined in O,
Loc(P) := {(1+g)’1 f: £, g € P, g(0) = 0} c k(X1,...,Xn)
where we define, for h = (1+g)-! f, and for an ideal I ¢ Loc(P):
in(h) := in(f), ord(h) := ord(f), in(I) := (inth) : he ) cP
preserving the geometrical meaning of these notions.
As we will establish later, the following holds:

FACT If I c Loc(P) is an ideal and h € Loc(P), then there is hgp € Loc(P) s.t.
i) either hg = 0 or inhg) ¢ in(l)
ih-hpel

As a consequence we have:

PROPOSITION 1 Let I ¢ Loc(P) be an ideal. Let F < I be s.t. in(F) = in(I). Let h € Loc(P).
Lethg € Loc(P) be s.t. h - hg € I and either hg = 0 or in(hg) ¢ in(T) (whose existence is gnaranteed by
the above Fact)
Then:

i)he lif and only if hg =0

ii)ifhg#0, g - he I and ord(g) < ord(hg), then in(g) € in(I).

iii) if hg# 0, g - h € I and ord(g) = ord(hp), then ord(g) = ord(hp), in(g) - in(hg) € in(I).
Proof: i) Ifhg=0,thenh=h-hge L If hg # 0, then hg ¢ I, otherwise in(hg) € in(I); so h -
hp € Iimpliesh ¢ 1.

ii)andiii): The proof is the same as for Lemma 1.

As a consequence, the infinitesimal order at the origin of the rational function h(xj,...,xp) is ord(hp), its
lowest order Taylor approximation at the origin is the residue class of in(hg) in P/in(J).

To go back to the example we are discussing, in Loc(P) we have X = (1 - X)'1 (X-X2) e (X - X2), s0 hg
= 0, reflecting the fact that x vanishes identically in any point of V which is sufficiently near to the

origin.

* In the same way we could have considered PA := k[[X},...,Xp]]. It is clear that all the notions and the
considerations we have carried out for P and Loc(P) could have been developped for formal power series
too.
In fact any f € PA - {0}, it can be uniquely written as a (perhaps infinite) sum’ of non-zero homogeneous
polynomials:

f=Zi-1...1 i , f; homogeneous and non-zero, deg(f) < ... < deg(fy) < deg(fi+1) <...
and so we can associate to it its order, ord(f) := deg(f1) and its initial form, in(t) :=fy;alsotoanideal I
PA, we can associate the homogeneous ideal in(I) := (in(f) : f € I) c P; all these concepts have the same
analytical meaning as in the polynomial case (4),
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So now we are considering an ideal I = (g1,...,&) < PA, s.t. I c (Xi,...,Xpn), some neighbourhood U of
the origin where the analytic functions g1(x1,...,Xn)s.--»8r (X1,....Xp)are defined and the set V :=
{(x1,...,Xp) € U : gi(x1,...,.Xn) = 0}. Then we consider f € PA, some neighbourhood W of the origin s.t.
the analyﬁbal function f(x1,...,Xp) is defined in W and we would like to speak of the infinitesimal order at
the oﬁgin and a lowest order non-zero Taylor approximation at the origin of the analytical function
f(x1,....xp)on VAW )

By extending Prop. 2 to ideals in PA (having earlier extended also the corresponding Fact), we obtained
that there is hg € PAs.t. h - hg € 1, and either hg = 0 or in(hg) ¢ in(I). Then the infinitesimal order at the
origin of the analytical function f(xi,...,xp) on V. N W is ord(hg) and a lowest order non-zero Taylor

approximation is the residue class of in(hg) mod. in(T).
2 RECALLS: THE TANGENT CONE ALGORITHM ()

The discussion above should have made clear the interest of being able to explicitly compute a set F ¢ I
E Loc(P) (or PA) s.t. in(F) = in(I) and for each h € Loc(P) (resp. PA) an element hg s.t. h - hg € I and
either hg = 0 or in(hg) € in(l).

We remark immediately that the existence of such an algorithm in PA is at present an open problem (6),
but there is a solution, based on the tangent cone algorithm, both for Loc(P) and for rings of algebraic
formal power series [AMR1, AMR2]. .

We are going therefore to introduce the tangent cone algorithm, which will be our main tool for such

computations.

Let P :=k[X],....Xp] be a polynomial ring over a field, let T = <X{,...,.Xp> denote the free commutative
semigroup generated by {Xj,...,Xp}, let < be a semigroup total ordering on T.
Then each polynomial f € P - {0} can be written in a unique way as:
f=2Zj=1...tcimj,cie k*, mje T, m; >my > ... >my.
Denote : T(f) := mp, M(f) :=cy m;.
T(f) is the maximal term, M(f) the maximal monomial of f.
When we need to specify the ordering < on which the definitions above depend, we will use either the
notation T¢, Mg, or <g, Tg, Mg.
IfF c P, denote M{F} := {(M(f) : f € F - {0}}, M(F) the ideal generated by M{F}. Therefore if I is an
* ideal, M(T) is the monomial ideal generated by the maximal monomials of the elements in I.
We say f € P-{0} has a Grobner representation in terms of F < P - {0} if and only if it can be represented:
f=1X gjfi, gi € P- (0], fj e F, T(gj) T(f}) < T(f) for every i
(such a representation will be called a Gribner representation).
Givenfe P- {0),FcP- (0}, anelementh € Ps.t. f-he (F)and either h = 0 or M(h) ¢ M(F) will
be called a normal form of f wr.L F. '
Let NF(f,F) := {h € P: his a normal form of f w.r.t. F}.
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In case < is a well-ordering, the result below is well-known and gives a definition of Grbner bases; we
just recall that an algorithm (Buchberger algorithm) is known to compute Grébner bases, whose

termination is proved using, in an essential way, the fact that < is a well-ordering.

THEOREM 1 IfI c P is an ideal, and F c I - {0}, the following conditions are equivalent:
1) M{F) generates the ideal M(I)
2) f € 1 - {0) if and only if it has a Gribner representation in terms of F
3)foreachfe P- {0):
i)if f e I, then NF(f.,F) = {0)
ii) if f I, then NF(f,F) # @ and Vh € NF({,F),h #0.

DEFINITION 1 A set F c I - {0} is called a Grobner basis for the ideal I if and only if it satisfies the

equivalent conditions of Theorem 1.

We recall here an important property related to Grébner bases (more exactly to the ideal M(I)) which we
will use later:

LEMMA 2 LetB:={te T:te M(I)} and let k[B] denote the k-vector space with basis B.
Then Vh € P, there isa unique ge k[B]s.t. h-ge L ‘

Such a g is called a canonical form of the residue class of h mod. I and denoted Can(h,I).

Moreover Can(h,I) = 0 if and only if h € I, Can(hg,I) = Can(hy,l) if and only if hg - hy € L.

Also Can(h,I) can be computed if a Grébner basis of I is known.

For our applications, we must however consider a larger class of orderings, the "tangent cone orderings”,
which don't cover all possible orderings but a class sufficient for most applications. We don't give here
the definition (for which cf. [MPT]) but we limit to explicitly present those tangent cone orderings we
will need in the applications discussed in this paper:
if <is an ordering on T, the variables can be divided in two classes and renamed, denoting by

{Zy,...,Zmm} the set of variables s.t. Z; > 1

(Y1,...,Yq) the set of variables s.t. Yj < 1;
each term m € T is then the product m = mz my of a term mz in the Z's only and of a term my in the
" Y's only (one can consider also the case in which {Z1,....Zm]} is empty (7)),
The restriction <z of < to <Zj,...,.Zy> is a well-ordering; for the restriction <y of < to <Y1,...,Y4> we
require that a semigroup morphism w: <Y3,...,Y¢> — Z is given s.t.

Dwm)<0ifm=1

ii) w(m1) < w(m3) implies mj <y mj.
Moreover we require that:

m < m' if and only if my < m'y or (my = m'y and mz < m'z)

From now on < will be a tangent cone ordering.
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Denote by Loc(P) the following subring of k(Xj,...,Xn):
Loc(P) := {(1 + g1 f, s.t. T(g) < 1}.

We can define forh = (1 + g)1 f and for an ideal I < Loc(P):
T(h) := T(f), M(h) := M), MT) = M(h): he ) cP

DEFINITION 2 Given f € Loc(P) - {0}, F c Loc(P) - {0}, an element h € Loc(P) is called a normal
form of f wrt. Fif

f-h=ZXg;f;, gie Loc(P)- {0}, fie F

either h = 0 or M(h) ¢ M(F).
Nf(f,F) will denote the set {h € Loc(P): h is a normal form of f w.r.t. F}

DEFINITION 3 We say h € Loc(P)-{0} has a standard representation in terms of F c Loc(P) - (0} if
and only if it can be represented:

f=ZXgif; gie Loc(P) - {0}, fj € F, T(g) T(f) < T(f) for every i
(such a representation will be called a standard representation).

DEFINITION 4 A set F c I - {0} is called a standard basis for the ideal I < Loc(P) if and only if M {F}
generates the ideal M(I).

THEOREM 2 The following conditions are equivalent:
1) F is a standard basis of 1
2) f € 1if and only if f has a standard representation in terms of F
3) for each f € Loc(P) - {0}:
i) if f € I, then NF(f.F) = {0}
ii) if f ¢ I, then NF(f,F) # @ and Vh € NF(f.F), h #0.

PROPOSITION 2 Let F be a standard basis for the ideal I c Loc(P), then:
1) let h € NF(g,F); then:
ifh=0,thengel
ifh=20,gel
2) if h e NF(g,F), h #0, then T(h) = min{T(g") : g'- g€ I}
3)ifg,g' € Loc(P) - I are s.t. g - g' € I, then M(h) = M(h") for each h € NF(g,F) and h' €
NF(g'F).

A variant of Buchberger algorithm, the Tangent Cone Algorithm (8), allows to compute standard sets of

ideals. More precisely:

THEOREM 3 Given g, f1,...,ff € Loc(P), there is an algorithm (the Tangent Cone Algorithm) which computes

polvnomials u, h such that
u is a unit in Loc(P)
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u~lh is a normal form of g in terms of {fi,....fr}

As a consequence, it is possible, given g, f1,...,fr € Loc(P):
1) to compute polynomials gi,--..gs such that {gi,....8s} is a standard basis for (fi,....fr).
2) to decide whether g € (f1,....£;).

The notion of standard bases can be extended to submodules of Loc(P)! in two different ways (9), where <
is a fixed ordering on T for which it is possible to apply the tangent cone algorithm.
First of all, for any arbitrary choice of t terms my,...,m; € T, we can define for each ¢ := (f1,..., fp) €
Loc(P)t:

T(¢) := max{T(fp) + mj}

M) := (P1..... pp € PY, where p;j := M(f;) if T(f;) + mj = T($), pi:= O otherwise.
If ® < Loc(P)t, let us denote M{®) := {M(9) : ¢ € ® - {0}} < Pt, M(®) the submodule of Pt generated
by M{®)}.
If U is a submodule of Loc(P)!, we say ® c U is a T-standard basis for U if M(®) = M(U). '
This notion ({G-Z]) is more suitable from an algebraic point of view but not from a computational one,
however a suitable generalization of the tangent cone algorithm allows to compute T-standard bases.
We can also consider ([P-S], [G-Z]) the set of terms T of Pt to be the set of elements (p1,...,.pp) € Pts.t
there is j with pj € T,pj=0if i # j and impose an ordering <¢on T s.t.

fort,'e T,¢,¢0'e T, t<t and ¢ <¢ ¢ implies to S t' &',
Then each ¢ € P! - {0} can be written in a unique way as:

¢=Zi=1...sCi ¢}, G € k*, ¢j € T(, 01 > ¢2> ... > ¢5.
Denote : Hterm(¢) := ¢;, Hmon(¢) :=cq ¢;.
The two functions can be obviously extended to Loc(P)t.
If ® ¢ Loc(P)!, denote Hmon{®} := {Hmon(¢) : ¢ € ® - {0)}, Hmon(®) the ideal generated by
Hmon({®]).
If U is a submodule of Loc(P)t, we say @ is a standard basis for U if Hmon(®) = Hmon(U).
A generalization of the Tangent Cone Algorithm allows to compute standard sets of submodules of
Loc(P)! at least in the following two cases (10);

Dtiej<gr2¢jifandonlyifi <jor (i = j and t1< 12) [P-S]

2) For given my,..., mge T,t1 ej <gt2 ejif and only if t] mj <t mj or(ty mi =2 mj and i<
i) [G-Z].
We will refer only to the second case, in which case we will say that <; is compatible with < and
mi,...,mg.

We remark that in this case a standard basis is a T-standard basis too.

Let us now restrict to an ordering s.t. for eachi X; < 1.
Each f € PA - (0} can be uniquely written as an ordered (possibly infinite) sum of monomials:
f=Xmjcie k-{0),mje T,m>my>...>m;>mjy > ... '
We can extend our definitions, denoting:
T(f) .= my, M(f) :=cy my
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and remarking that the definitions agree with the one previously given for elements in Loc(P) < PA: in
fact (1+g) -1 £ has the power series expansion 2‘.120 gt f and it is easy to verify that M((1 + g)"1 f) = M(f)
= M(Z gt f).

Also if F c PA, we denote M{F) := {(M(f) : fe F - {0} }, M(F) the ideal generated by M{F}.

Then the generalizations of defs. 2-4, Th. 2 and Prop.2 hoid for PA too.

However no algorithm is presently known to actually compute a standard basis of a given ideal I, also
under suitable computational restrictions, unless I is 0-dimensional [FKS,MPT].

3 AN INTRODUCTORY SOLUTION

We started the previous section with the remark that it was interesting to explicitly compute aset FcI <
Loc(P) s.t. in(F) = in(I) and for each h € Loc(P) an element hg s.t. h - hg € I and either hg = 0 or in(hg)

¢ in(T). Here is a solution:

Let < be a semigroup orderingon T s.t.
for mj, my € T, deg(my) < deg(my) = mp > mjy.
This is equivalent to say that the function w: T — Z defined by w(m) = -deg(m) is s.t.
w(mj) < w(my) = m) <m)
so < is in the class of orderings we are considering.
We will consider also the well-ordering <w on T which agrees with < on terms of the same degree but is
compatible (instead of anticompatible) with the degree, i.e.
mj <y m2 if and only if deg(m) < deg(my) or (deg(m)) = deg(m3) and m; < mp)
Finally remark that the definition of Loc(P) we gave (w.r.t. < in §2) and the one we gave in §1 agree,
since w.r.t. <, T(g) < 1 if and only if g € (X},...,Xp) if and only if g(0) = 0.

PROPOSITION 3 Let I c Loc(P) be an ideal. Let F c I be a standard basis of 1.
Leth € Loc(P) and let hg € Loc(P) be 2 normal form of h.
Then:

i) {in(f) : f € F) generates in(I).

ii) {in(f) : f € F) is a Gréibner basis of in(I) w.r.t. the well-ordering <.

iii)ifhp=0,thenhe I

iv) if hg # 0, in(hg) ¢ in(T)

v)ifhg#0, g - h e Iand ord(g) < ord(hp), then in(g) € in(l).

vi)if hg 20, g - h € I and ord(g) 2 ord(hg), then ord(g) = ord(hg), in(g) - in(hg) € in(l).

vii) Can(hg,in(I)) is a canonical form
Proof: i) and ii): Since Vh € Loc(P), M(h) = M(in(h)), we can easnly conclude that both M(I) =
M(in(D)) and M(F) = M(in(F)), so that M(in(F)) = M(in(I)).
Also, if f is a homogeneous element of P, M(f) = My(f). Therefore My (in(F)) = M(in(F)) = M(in(I)) =
My (in(D)). '
So {in(f) : f € F}) is a Grtibner basis, and.therefore a basis, of I.
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iii) It is obvious
iv) If in(hg) € in(T), then M(hg) = M(in(hg)) € M(in(D)) = M(I)
v)and vi):  The proof is the same as for Lemma 1.

This solves completely the problem we posed, since we are able to compute standard bases and normal
forms in Loc(P) by means of the Tangent Cone Algorithm.

We just make the further remark that the residue class of hy mod. in(I) (i.e. the least non-zero
approximation of f(xj,...,Xp)) can be represented by Can(hg, in(T)) c k(B].

We are going now to show that it is possible to do the same, and more, also in the ring of algebraic

formal power series.
4 COMPUTING WITH ALGEBRAIC SERIES

In two joint recent papers ((AMR1], [AMR2]) with M.E. Alonso and M. Raimondo, a computational
model for algebraic formal power series has been proposed which relies on a symbolic codification of the
series by means of the Implicit Function Theorem, introduced in [ALR] and on the Tangent Cone
Algorithm. What follows is a short summary of the main results which can be obtained.

We will use the following notation: for a ring B s.t. k[Z;,...,Z;] € B c k[[Z1,...,Z;]], denote Bjoc := {f
g‘l : f, g € B, g invertible in k[[Z;,...,Z,]]}, and remark that for B = k[Zi,...,Z,], and for each ordering <
s.t. m £ 1 Vm, Bjoc = Loc(B). We will also use "Z" as a shorthand for "Z;,...,Z;"

Let k be a computable field; k[[X),...,Xnllalg denotes the ring of algebraic formal power series (i.e. the
ring of algebraic functions vanishing and developpable in Taylor series at the origin).
Let us fix an ordering < on the semigroup T = <Xj,...,.Xp> s.t.

for mj, ma € T, deg(mj) < deg(my) = m; > my. (11)
Let us consider polynomials Fj,..., Fr € k'[x,,...,x,., Y1,....,Yr] vanishing at the origin and s.t. the
Jacobian of the Fj's with respect to the Yj's at the origin is a lower triangular non singular matrix. Under
this assumption, by the Implicit Function Theorem, there are unique fy,..., fy € k[[X},...,Xnllalg s.t
£j(0) = 0 Vj, and Fi(X.f1,....fr) = 0 Vi.

DEFINITION 5 (Fi,..., F;) is called a locally smooth system (LSS) defining fi,..., f; €
k[[Xl,...,Xn]]a]g if:

the Jacobian of the Fj's with respect to the Yj's at the origin is a lower triangular non singular
matrix.

f1,..., fr are the unique solutions of Fy = 0,..., F; = 0 which vanish at the origin.

Given the LSS F := (Fy,... Fy) defining fy,..., f;, let P := k[X1, ..., Xp, Y1, ..., Y}, KX, Fljoc = k{X,
f1,--» frhioc € kl[X1lalg. To compute in it, we consider the evaluation map OF : Loc(P) = k[X,Flioc
defined by OF(Y;) = fj, for which Ker(OF) = (F1,....Fr) Loc(P), so that k[X,Fljoc = Loc(P)/(Fi,....Fr).
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If an algebraic series g is given by assigning a polynomial GX,T) s.t. G(X.g) = 0 and an algorithm to
compuie any truncation of g, it is possible to compute a LSS F s.t. g € k[X,Flioc (cf. [A-M]).

1t is possible to show that, for suitable orderings <, on P which restricts to < on T, a locally smooth
system (F1,...,Fr) is a standard basis in Loc(P) for the ideal it generates and My(F;.,....Fp) = (Y1,....Y1);
therefore, by normal form computations it is possible to modify the LSS defining tixe f;'s so that it
satisfies the following assumptions, for an explicitly obtained ordering <q:

1) F = (F1,...,Fr) isa LSS for fi,....f;

2) fi 0 Vi

3) Fi = Y; (1+Qy) - R; with Q;, Rj € X.Y), R; € k[X,Y1,...,Yi-1,Yi+1...., Y] and Mg(R;) =
M(f)

4) {Fi....,Fy} is a standard basis for the ideal it generates in Loc(P) w.r.t. <g and M(F;) = Y;

5) <g restricts to < on <X>

Such an F is called a standard locally smooth system (SLSS) over <.

By applying the tangent cone algorithm w.r.L. <g in Loc(P), given Gy,...,Gs € Loc(P) and denoting g; :=
o(GyVi, it is then possible:

1) to compute H € Loc(P) which is a normal foﬁn of Gg w.r.t. {Fy,....,Fy});suchanHisst. H=
0 if and only if go = 0 and, if H # 0 then o(H) = go, Mg(H) € k[X], Mg(H) = M(gp); H is called a
representation of go

2) therefore to decide whether gg = 0, and, if gg # 0, to compute T(gg), M(go) and in(go)

3) to compute a representation of a normal form of go w.r.t. {g1,....8s)

4) to compute Hj,...,H; s.t. Hj is a representation of h; := 6(Hy) and {hy,...,h;} is a standard basis
for I := (g1,...,8s) W.I.L. <.

5) as a consequence {in(hy),....in(hp) are a Grobner basis of in(I) w.r.t. <y

6) also, if H is a representation of a normal form hg of gg w.r.t. {hy,....ht}, then the residue.class
of in(hg) mod. in(T) (which has the analytical meaning discussed in §1) can be explicitly obtained.

By applying the above techniques, one can moreover give computational versions of classical theorems:

" THEOREM 4 Given a local smooth system G := (Gy,..., Gy) € k[X, Z, Y] =: P defining fi,..., fr €
kI[X, Z]]la1g and Go € Loc(P) s.t., denoting g := 6G(Go). 8(0.....0, Z) #0, thei:
(Weierstrass Preparation Th.)
it is possible to compute:

1) an ordering < on <X, Z> s.t. T(g) = Z9, whiose restriction to <X> we denote <'

2) a SLSS F := (F1...., Fy) over < defining fy,..., f; s.t. k[X, Z, F]!oc =k[X,Z, Glijoc and a
representation G € Loc(P) of g

3) aSLSS H cK[X, X, Up,...,Ud-1,U10,---.U1d-1,-+-,Ur0s---,Urd-1] =:Q over <', defining h;, h;j;
€ K[[XIlalg, i=1...r, j=0...d-1
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4)V, Vi e Loc(Q), V a unit s.t.
a) W := (H,F) is a SLSS over <
b) Wei(g) := g OW(V) = Zi=0...d-1 hj Zi = Zj=0...d-1 OH(U)) ZJ € KIXH]locXn]
¢) fi = Ow(V) g + Zj=0...d-1 hij Z.
(Weierstrass Division Th.)
If moreover B € P (12) is given such that 0G(B) =: b # 0, then it is possible to compute A € Loc(Q),
and polynomials A;j € k[X, U], j=0...d-1, s.t.
1) b = Wei(g) + Zj=0...d-1 OH(A)) Z
2) Zj=0...d-1 OH(A;) ZJ is the canonical form of b w.r.t. (g) in k[[XZ]] (13)
3) ow(A), OH(A,) are unique

THEOREM 5 Given a local smooth system G := (Gy,..., Gy) c k[X, Y] =: P defining f,..., fr €
k((X, Z]laig and Hy,...,Hs € Loc(P) and denoting h; := GG(Hj), I = (hy,....hs)  k[[X]laig,
then:
(Noéther Normalization Lemma)
it is possible to compute:
1) a linear change of coordinates C: k[[X1]a1g — k([X]lalg
2)d=dim(])
3) a SLSS H defining algebraic series in k[[Xl,‘...,Xd]]a;g
4) Bi,...,Bn-d» Als-.., At € kiX1,....Xd:Hlioc[Xd+1--++Xn]
s.t. denoting, with a slight abuse of notation oy: k[X1,...,Xd,Hlioc[Xd+1,...,Xn] = kl[X]]alg the
extension of the evaluation morphism oy, b; := GH(B}), aj := GH(A;), one has:
8) C( N k(X1 Xdllalg = (0) '
b) Vi B; € k[Xi.....Xd-Hlioc[Xd+1,---,Xd+i-11[Xd+i] is a monic polynomial in Xq4+; whose
coefficients (in k{X1,....Xd.HlioclXd+1,---.Xd+i-1]) belong to (X1,....Xd+i-1> Y1se--» Y1)
¢) (b1,..-,bn-d, a1...., a k[[XNaig = C()
so that: -
d) k[[X1]a1g/C(T) is an integral extension of k([X1,....Xpllalg
(Algebraic Series Elimination)
Moreover for each j, it is possible to compute:
1) a linear change of coordinates C: k{[X]]aig — k[[X1laig
2) a SLSS H defining algebraic series in k{[X1,....Xjllalg
3) Ay,..., At € kXp,....Xj,H]loc
s.t. denoting J := (Ay,..., Ap ki[Xy,....Xjllalg One has:
J = CO KIXTalg N KIX1,... Xillalg

5 RECALLS: LOCAL ALGEBRA

The analytical notions we have discussed in §1 and §3 can be stated and interpreted in algebro-topological
terms; also they can generalized in order to allow a local study of the ring of rational functions defined on
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a variety V "near" a subvariety V'. The aim of this section is to briefly review the algebraic bases for the

local study of an algebraic variety (14),

Let A be a commutative ring (noetherian and with identity), L < A be an ideal s.t. A LP = (0).
Foreacha e A - {0}, there isn s.t. a e LP - L"*+1, We then define vi_(a) :=n.
The function vL, : A -{0) — N, the order function, satisfies, Vab € A - (0) (13);

v(a+b) 2 min(v(a), v(b))

v(ab) 2 v(a) + v(b)
Let us consider the direct sﬁm GrL(A) := ®p=0...00 LM /LP*1, which is an abelian group, and a graded
one if we consider the elements of L? / LM*! 1o be the homogeneous elements of degree n.
Gr1_(A) is turned into a graded ring by the following multiplication:
ifae LR /L] pe LM /LM+] ihen there are a} € LD, by € LM s.t. a (resp. b) is the residue class of
aj (resp. b)) mod. L1 (resp. LM*1), Therefore aj b) € LM*M_ Define a b € LM+/LM+0+1 (4 pe the
residue class of a] by mod. LM+n+1,
It is straightforward to verify that the above definition doesn't depend on the choice of a] and by and that,
with this definition of multiplication, Gr_(A) is a (commutative, noetherian, with identity) graded ring.
Let us define, fora e A - {0}, in (a) € gri.(A) to be the residue class of a mod. L“"'l, where n = v (a);
and let us define in[ (0) := 0.
The function in[, : A — Grp_(A), the initial form function, satisfies Va,b € A - {0}):

ina+b) =in(a) if v(a) < v(b)

=in(b) if v(a) > v(b)
= in(a) + in(b) if v(a) = v(b) and in(a) + in(b) 2 0

v(a + b) > min(v(a),v(b)) if and only if v(a) = v(b), in(a) + in(b) =0

in(a b) = in(a) in(b) unless in(a) in(b) = 0

v(a b) > v(a) + v(b) if and only if in(a) in(b) = 0

If we choose the set {L: n € N} as a basis of neighbourhoods of 0, then we obtain a ring topology on
A, the L-adic topology, which is Hausdorff (since n L = (0)).
Under this topology the closure of an ideal I (the set of elements of A which are limits of Cauchy
sequences of elements in I) is cI(I) := n (I + L™), which is an ideal too.
A is complete if each Cauchy sequence of elements of A has a limit in A. By standard topological
techniques, we can obtain AA, the completion of A, which is a topological ring under the LA-adic
topology, where LA =L AA = {a€ AA: there is a Cauchy sequence (ap : n € N) c L converging to a}.
Since N LA = (0), we have the associated graded ring Gr_ A(A7) and the functions v] A, in] A; quite
straightforwardly one proves that Gr] A(A*) = Gr1_(A), and, having identified the two rings, that v A and
in[_A coincide on A with v[_ and in] .
For an ideal I c A, the completion of I is the ideal {a € A : there is a Cauchy sequence (ap:n€ N) c 1
converging to a}; it is easy to prove that

cM="NA, IN=TAA=CI(T) AN
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Notwithstanding the obvious importance of completions, they are not an easy object to deal with
computationally, because they are rings of series unless the L-adic topology is discrete ( L™ = (0) for some
n). |
A more suitable (at least for computational purposes) overring of A is the Zariskification A)4+L of A,
i.e. the localization of A at the multiplicative closed system 1+L = (1+g:ge L) (16),
A1+L is the ring of "formal fractions” (14g)"1 h,h e A, g € L, with the usual identification:

(1+g)"1 h = (14+g1)"! hy if and only if (1+g1) h = (1+g) h1 7.
It can be identified with a subring of AA, since in AA, for each g € L, (1-g) has as its inverse the limit of
the Cauchy sequence Zi=0...n gi.
Moreover L® =L A4+ =L* n A14L induces a topology on A]14+L, whose restriction to A is the L-adic
topology; the completion of A4 for this topology is again AA,
Also, it is straightforward to verify that that Gr] ¢(A14L) = GrL.A(AA) = Gr1_(A), and, having identified the
three rings, that v] ¢ and inj ¢ are the restrictions of v] A and in[ A and so coincide on A with v[ and in[..
A1+L is a Zariski ring, i.e. it has the following properties:

a) every ideal is closed for the L®-adic topology '

b) foreachideal Ic A14L. IAA N A4l =1
so that foreachideal Ic A, cl) =1 A14L N A.
Moreover it is the smallest extension of A in A* which is a Zariski ring (18),

To each ideal I c A, the homogeneous ideal inj (I) := (in]_(a) : a € I) c gr1_(A) is associated.
Clearly in(I) = in(cl(T)) = in(I A14L) = in(I*).
An L-standard basis of I is a finite set {g]...., gs} < I s.t. in_(I) = GnL(g1),.... inL(gs)) 19).

Example 1 Let A := k[X},...,Xn], L := (X1,...,Xn)- Then Gr[_(A) = A, with the usual grading;
vL(f) is the order of f; inp (f) is its initial form, inj (I) = in(T) is the ideal defining the cone of the tangents
at the origin of the variety defined by the ideal I; we reobtain therefore the notions of §1, so that the L-
adic topology on A is, very roughly speaking, the algebraic setting for the analytical notion of
"infinitesimal order".

We remark thathe completion A» of A is the formal power series ring k[[X1,...,Xp]], while its
Zariskification A4 is the local ring at the origin Loc(A), which stresses in this first example the
computational advantage of the latter on the former.

Prime ideals in A correspond to irreducible algebraic varieties in the affine space k™; prime ideals in AA
correspond to (germs of) analytic irreducible varieties passing through the origin; prime ideals in A4 to
irreducible algebraic varieties passing through the origin, and can be obtained by extending to Ay, ideals
of varieties in k™ which are not irreducible but have a single and irreducible component passing through
the origin.

So all the notions above, in this simplest case, are related to the "local" behaviour of a variety "near” the
origin; we can also appreciate a major difference betwenn the completion and t}le Zariskification: e.g. I :=
((Y2-X2+X3)(1 + X)) c A is not prime while J = (Y2 - X2 + X3) is such; in A1+, I AjeL =J Aj4L
=(Y2-X2+X3)isa prime ideal, since (1 + X) is invertible (corresponding to a variety not through the
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origin); however in A we have the factorization Y2 - X2 + X3 = (Y + X g(X)) (Y - X g(X)) where g(X)
€ k[[X]] is the formal power series corresponding to the Taylor expansion of the analytical function g(x)
= V(1-x).

Example 2 This leads to a second important case we have already treated (in §4), which is related
(20) with the analytic study of singular points of algebraic varieties, for instance in Newton-Puiseux
algorithm for determininig the analytic branches of a curve at a singular point and more generally when
studying analytic components of a complex algebraic variety. We have A :=k[[X]....,Xnllalg, the ring of
algebraic formal power series (i.e. the ring of algebraic functions which vanish and can be developed into
Taylor series at the origin), L := (X1,....Xp).

Again AA =K[[X},....Xpl], while, A being local with maximal ideal L, A4 = A.

The geometrical interpretation is essentially as in the example above, prime ideals in Q corresponding to
analytically irreducible branches at the origin of an algebraic variety.

Before introducing the next two examples we need the following:

LEMMA 3 Let Q be aring; let Hc J c Q be two ideals, with nJ = (0). Let A:=QH,n: Q- A
the canonical projection, L := n(J). The following conditions are equivalent (21):
DH=n H+ M), ie H=cl(H)
2)NLR=(0)
4) J contains all associated primes to H
3) L contains all zero-divisors of A
Proof: cf. [Z-S] V.1, Ch.IV, Theorems 12 and 12'

Example 3 Let Q := k{Z1,....Zm); let H c J < Q be two ideals. Let A :=Q/H,n : Q — A the
canonical projection, L := x(J).
Let us moreover assume that J is prime and that NL"= (0).
Under this assumption we can localize A at L, obtaining the local ring Al ; we are interested in the
topology on AL induced by its maximal ideal a := L AL. Remark that, A[, being local, it coincides with
its Zariskification.
Let V be the variety defined by H (assuming H is radical) and W the subvariety of V defined by J; then A
is the ring of polynomial functions on V, while the ring of rational functions on V is obtained by
inverting those elements of A which are not zero-divisors, i.e. it is the ring of formal fractions glf, fe
A, g € A g not zero-divisor with the usual identification

glf=gy-lfyifandonlyifgf;-g f=0
and the resulting arithmetics mimicking the one in Q.
A polynomial function f € A identically vanishes on W if and only if f € L (22), therefore a rational
function g-! f is defined on W if and only if it has a representative g;-! f) with g & L. So we have
obtained that A is exactly the ring of those rational functions on V which are defined at each point of W,

while a is the ideal of those rational functions on V defined and vanishing on W.
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The prime ideals of Ar, canonically correspond to those prime ideals of A which contain H and are
contained in J; so (again if H is radical) they describe those irreducible algebraic varieties which are
contained in V and which pass through the subvariety W.

The notions related to the a-adic topology are, in a very rough sense, a generalization of the concepts
invol\.ring the "infinitesimal order” (see Ex.1) in a "neighborhood” of W, for "germs of rational functions”
over the topological space Spec(A) of all prime ideals (irreducible algebraic varieties) of A with the
Zariski topology.

Example 4 More in general, we can avoid requiring that J is prime, so: let Q := k[Z},...,Zm], H
cJ c Qbe two ideals, H=nn (H + JM), A := Q/H, © : Q — A the canonical projection, L := n(J).

We can study the L-adic topology of A; in this case the Zariskification will be given by A14L. If, as it is
the case in applications (related to normalization), J is the radical of H, then A14] is semilocal (i.e. it has
finitely many maximal ideals mj, in which case A14+L = @ Am).

It is important to remark, for the applications below, that if L is maximal, then A1 = AL 23),

If H is not closed for the J-adic topology, one should substitute cI(H) to H in the above setting: the

algorithm we are going to discuss in the next section applies this substitution automatically.
6 STANDARD BASIS COMPUTATION IN LOCAL RINGS

In §3 we have seen that by using standard bases it is possible to explicitly obtain ord(a), in(a) for a €
Loc(P), in(I) for I ¢ Loc(P) and also to compute the order and the initial form of the residue class of a
mod.I (which are resp. the order and the canonical representative.in k[B] of any normal form of a w.r.t. to
a standard basis of I), so covering the situation discussed in Ex.1. In §4 we have extended this to
k[[X1,..-.Xnllalg (Example 2).

We intend here to show that the same technique can be used to cover the situation discussed in Example 3;
we will do so by solving the more general but easier case presented in Example 4.

First of all we remark that if we are able to compute vy (a) and inf (a) for ae A, we have solved also thé
problem of computing "order™ and "initial form™ of elements modulo an ideal, because of the following

result:

PROPOSITION 4 Let A be a commutative ring (noetherian and with identity), L c A be an ideal s.t.
N LA =(0).
LetIcA,S i=cily=n (I +L",R:= A/S, n: A— R the canonical projection, J := n(L). Letae A,

b:=xn(a)=0.
Then:
1) Gry(R) = Gri(A)/in (D)
2) there is ¢ s.t. (c) = b and ing (c) € in (I). Forsuchac
vi(b) = vL(c)

iny(b) is the residue class of inj (c) mod. in_(I)
3) v3(b) = min(vL(c) : n(c) = b}
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Proof: 1) We explicitly define a homogeneous morphism IT : Grp (A) — Grj(R) whose kernel is in (I). It
is sufficient to define IT(ct) for a homogeneous a € Gr(A) of some degree n; so a is the residue class
mod. L"ﬂ of some a € LM - L"*1, Then b := n(a) € J™; let B be the residue class of b mod. J**1; we
define I(c) := B. )

It is clear that the definition doesn't depend on the choice of a (since t(L"*!) c J"*1) and that the
application is a morphism.

We are left to prove that Ker(IT) = iny (I) = iny (3).

In fact if o € inp(3) is homogeneous of degree n, then there is a € (3 N LP) - LM*! 5o that a = inf_(a),
but then n(a) = 0.

Conversely let & € Grp(A), homogeneous of degree n be s.t. TI() =0, and letae L* - L™l be st a=
inp_(a); since I1(cx) = 0, then b := n(a) € J"*1; since x~1("+1) = LN+l 4+ § therearec e L+l de S
s.t. a=c + d, but then iny (¢) < n+1 < n = inf (a), implies a = ing (a) = ing (d) € inL(J).

2) Since (a) #0,a¢ S=n (I +L"),sothereisnst.ae [+L"andae [+ L0+, by the first
implication we havea=d +c withc € L", d € I, so n(c) = b; if iny (c) € in (), there is dj € Is.t. inf (c)
=inp(dy); but then ¢y :=c-dje L™l a=(d+d))+ce I +Ln+l,

Since in(c) ¢ inL(3).ce S + LMl =g 1(n+l). 5o b e Jn - 0+l yy(b) = n = v (c). Since c € LM -
L+ by the definition above I(ing(c)) = inj(w(c)) = iny(b).

3) Let c as above so that inp (¢) ¢ inL(3), and assume there is d s.t. ®(d) = b and vp_(d) < vL.(c);

thenc-d e S and in (c) = inj (c - d) € in (J), a contradiction.

On the other hand we should be able to give a representation of the associated graded ring which is
suitable for computations. Now if we are given a ring R and an ideal J, then we know that Grj(R) = &
Jn/Jn+1 which is clearly not a representation very suitable for computational purposes. But since J has a
finite basis (bjy,...,by), Grj(R) is generated as an algebra over R/J by the residue classes Bi,...,B; of
bi,...,bt, and so it is isomorphic to the quotient of a polynomial ring (R/J)[X},...,X{] modulo a
homogeneous ideal L. Clearly a representation of Grj(R) obtained by explicitly giving R/, X;,...,X;, and
the homogenous ideal L is quite suitable for cémputations.

If moreover if J is maximal and R is a finitely generated k-algebra, then R/J is a field K, which is an
algebraic extension of k and can be effectively given by means of a Gribner basis of J; in this case we
could like that the homogeneous ideal L is explicitly given by means of a Grisbner basis.

We intend to describe in this section how, by means of standard bases and of the tangent cone algorithm,
it is possible to obtain such an effective a representation for Gry(R) when R =Ap,J=a(AandL asin
Example 3) or R = Aj41,J =L* as in Example 4; and also to effectively compute vj(a) and inj(a) for
eachae R, inj(I) foreach I cR.

First of all, we discuss a very trivial generalization of Example 1, which will however be our main tool

for solving the general problem.
Let P :=k[Z},....Zm,Y1,...,Ys], let @ = (Y}],...,Ys) € P; remark that gr, (P) = P, graded by degy : P

— N, where degy(Zj) = 0, degy(Y;j) = 1.
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We impose a well-ordering <z on <Zj,...,Zm> and an ordering <y on <Y1,...,Ys> which is
anticompatible with the degree i.e.

deg(m1) > deg(m7) implies m; <y mp
and we order T, the semigmup of terms in P, by the tangent cone ordering < s.t.:

m < m' if and only if my < m'y or (my = m'y and mz <m'z)

We will consider also the well-ordering <y on T defined by:

m <y, n if and only if degy(m) < degy(n) or (degy(m) = degy(n) and m < n).
Remark that under <, for f € P one has T(f) < 1 if and only if f € @, so that Loc(P) = P14+ gp.
Clearly if f € P, we can wﬁ& it uniquely as:

f = Zi=1...t i , f homogeneous (w.r.t. degy) and non-zero, degy(f1) < ... < degy(f;) < degy(fi+1)
<...;

then v g (f) = degy(f1), in p(f) = f1. Also:

LEMMA 4 If G is a standard basis for I ¢ Loc(P) w.r.L. <, then it is a g -standard basis for I and
{ing () : f € G} is a Grobner basis for in o (T) wr.L <w.
Proof: the proof of Prop.3 can be applied verbatim

Let now (cf. Ex.4) Q := k[Z},...,Zq]; let Hy c J < Q be two ideals, with Hg := (h1,..., hp), J :=
(f1,....fs), let H = cl(Hg) = n (Hp + J™).

Let R := Q/H, n : Q — R the canonical projection. Let P and & be as above.

Define p : P = Q by p(Z;) = Z;, p(Y;j) = fjand let q : P — R be the composition q = %t p; let A =
Ri+n@), L :=n(J) A.

LEMMA 6 q induces a surjective morphism (which we will still denote by @) q: Loc(P) =P14+ o — A,
so that

Ker(q) = (h1,.... ht, f1 - Y1,.co. fm - Ym) =S

q(p) = (x(f1),....n(fs)) =n(J) A=L
Proof: q: Loc(P) — A is the composition of the extensions of p : Loc(P) > Qi+jand ® : Q147 = A.
The thesis follows since {hj,....h} is a basis of Hg Q147 = H Q147 = Ker(n).

Then, as a consequence of Proposition 4, since gr(A) = grp (P1+p) / ing(3) = P/in(3), after a
standard set G of 8 is computed, gry (A) is explicitly given as a polynomial ring modulo a homogeneous
ideal, which is given through a Gr&bner basis.
More exactly we have:

grL(A) = KIZ1,...ZmY1.....Ysl/in p(3)
Moreover, since we have a Grébner basis of in(S), we know the set B := {t € T : t ¢ My(in e =1{t
e T:te M(3)).
The vector space isomorphism between k[Z1,....Zm,Y 1,...,Ys)/in 5 (S) and k[B] can be used to impose
on the latter vector-space a product which makes it isomorphic to k(Z},....Zm,Y1,...,Ys)/in p(S) and in
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turn to gry (A). It is immediate to verify that this isomorphism is degree preserving if we just assign to
eachbe Bits degiee degy(b) in P. We can therefore identify gfL(A) with k[B].

Also the projection IT: P — k[B] (cf. Prop. 4) can be easily computed by computing the canonical
representative of an element modulo in ;(3).

Therefore we have:

PROPOSITION SLetae Q- (0} < P, and let us compute b € P and a unit u s.t. ul b is a local
normal form of a wr.t. G.
Let I 5 3 be an ideal in P, F a standard set for I w.r.t. <.
Then:
VL(q(a)) = V g(b) = degy(M(b)).
in,(q(@)) =TI(in g (b))
(q(f) : f € F} is a L-standard basis of q(I).

Example § Let Q := k[X,Y,Z], H := (Y2 - XZ), J := (Y2 - XZ, X3 - YZ, X2Y - Z2); since H is prime
and contained in the prime ideal J, then H = cI(H).
Let R := Q/H = k[x,y,z], A := Ri4x(), L := n(J) A = (x3 - yz, x%y - z2), P := k[X,Y,Z,V,T,U]. Then 3
=Ker(qQ) = (Y2-XZ,Y2-XZ-V,X3-YZ-U,X2Y - Z2-T), p := (V.T.U) c Loc(P).
A standard basis of S is given by G := {Y2-XZ, X3 -YZ-U,X2Y-Z2-T,V, YU - XT,ZU - YT} so
that

inp(8)=(Y2-XZ, X3-YZ,X2Y-22,V,YU-XT,ZU - YT)

grL(A) = K{X,Y,ZW [T,U,VIAV, YU - XT, ZU - YT) = K[X,Y,Z)J [T,U)/(YU - XT,ZU - YT)
Iff:=x4- y3 € A, anormal form of X4 - Y3 writ. G is XU, so vi.(f) = 1 and in_(f) = xu.
A standard basis of (XU, 3) is

G u (XU, X2T, XYT, YZT + TU, XZT + U2, Z2T + T2, U3)
so that a L-standard basis of (f) is {xu, x2t, xyt, yzt + tu, xzt + u2, z2t + t2, u3) and

inL((f) ) := (xu, x2t, xyt, yzt, xzt, z2t, ud)

Let us now assume, moreover, that J is prime (cf. Ex. 3). Then denoting, as in Ex. 3, a the maximal
ideal of AL = Ra(Jy:

LEMMA 7 Let K be the field of fractions of Q/J; p : Q = QfJ = R/n(J) = A/L denote the canonical
projection; ¢: P —» Q/J [Yy,...,Ys] € K[Y4,...,Ys] denote the morphism which coincides with p on Q
and s.t. 6(Y{ = Yj. Then:

)J=ing3)NQ

2) if F is a Grtbner basis of in p(S) w.I.t. <w, then F N Q is a Grbner basis of J w.r.t. <z and
p(F) is a Gribner basis for p(in p(S)) w.r.L. the restriction of <y to the terms of K[Y71,...,Ys]

3) Gr(A) =P /ingp(3) = (A/J) [Y1....,Ys]/ p(inp(3))

4) Gra(AL) = K[Y1,....Ys]/ p(in p(3))

5) let I ¢ A1, be an ideal: if G is a L-standard basis for I N A, then it is a a-standard basis for I.
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Proof: 1) V i, fi=ing(fi - Yi), soJ c inp(S) N Q. Conversely assume a € in g (3) N Q. Then there is
be 3NPsting(b)=a,ie.b=a+cwithce (Yq,..,Ys);sincea+c=>b=2Zg; (fi - Yj), by

evaluating at Yi=...=Y;=0weobtaina=X gfisoae J.
2) both facts are well-known properties of Grébner bases (cf. (GTZ])
3) is trivial

4) V= {in_(f) : f ¢ L} is a multiplicative closed system, for if a1, a2 € V, f}, f2 € L are such that
in(f;) = a;, then f] f2 € L, since L is prime, and a1 a3 = in(f) f2) € V.
Clearly vl Gr_(A) = K[Y1,...,Yg] / p(in p(S)), so we have to prove that Gra(AL) = V-1 Gr (A).
In fact we obtain such an isomorphism in the following way: if a € Ap,a=blcwithbe L, we
associate ing(a) with inp (b)-! in.(c). It is easy to verify that the definition doesn't depend on the choice of
a nor on the choice of its representation and that the resulting application is bijective and a morphism.
5)ifae L,a=blcwithbe L,thenc=bae In A, soinL(c) € (inL(g): g € G) < GrL(A) and
ing(a) = inL(b)'1 inp(c)e (inp(g):ge G) c v-1 Gr(A).

By means of Lemma 5 we obtain an explicit representation of Gra(AL); in order to get computational
results from it, we need some more insight on the way we present K.

Let us consider Bg := (be B : degy(b) =0} = Q. Because F n Q is a Grébner basis of J w.r.t. <z we
have a k-vector space isomorphism between A/J and k[Bg], which by Grtibner basis techniques allows to
define a domain structure on k[Bg] isomorphic to A/J and therefore to define a field structure isomorphic
to K on the set of formal fractions {f-1 g : f, g € k[B], f # 0}, so that we can identify K with the latter
set.

Let us now consider By := {b € B N k[Y],...,Ys]}. Since p(F) is a Grobner basis for p(in o (3)) w.r.L
the restriction of <w to the terms of K[Y,...,Yg], it is easy to prove that By = {be T :b ¢

M(p(in p(S))}, s0, again, we have a K-vector space isomorphism between Grg(AL) = K[Y1,...,Ys]/
p(in p(S)) and K[B1] and so a ring structure on the latter isomorphic to the one of Grg(AL). As a

consequence:

COROLLARY 1Letag,a; € Q- (0} cP,aj ¢ S, and let us compute bg, b; € P and units ug, uj
s.t. ui1 b; is a local form of a; w.r.t to a standard basis G of 3.
LetI > S be an ideal in Loc(P), F a standard basis for I w.r.t. <.
Then:
va(r(a0)! m(a1)) = v o (b1) = degy(M(b)).
ing(n(ag)! n(a1)) = IN(in g (b)) I(in g5 (b1))
{a(f) : f € F} is an a-standard basis of q(I) AL.

Example 5 (cont.) Actually J is a prime ideal and one can easily remark that J = ing(3) N Q, A/L =
QI = KIX,Y,ZI(Y? - XZ, X3 - YZ, X2Y - Z2) 5o that K = k(En,L) where n2 - £ = £3 - (= &2 - 2
=0.

Since Gri (A) = K[X,Y,Z}J [T,U}/(YU - XT, ZU - YT) one has
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Gra(AL) = K[T,U)/(nU - &T, LU - nT) = K[T] by identifying U with &m T =/ T, since n2 - £
=0.
Since a L-standard basis of (f) is {xu, x2t, xyt, yzt + t, xzt + u2, z2t + 12, u3}, an a-standard basis of (f)
Apis (T).

Already in this easy example, we must remark that L-standard bases can be quite complex also if a-
standard bases are easy, and, especially, that the arithmetics of K, under this presentation, can be easily
become unfeasible for the lack of canonical representatives for elements, which require to perform
arithmetics mod. J (and so normal form computations) just for testing equality.

If however J is a maximal ideal, then K = Q/J and is isomorphic to k[Bg]. Also Af, = A, vg = v],ing =
inp, Gra(AL) = grL(A) so we are reduced to the easier case of Proposition 5.

Moreover if <z is a lexicographical ordering, the (reduced) Grdbner basis of J is given by {g1,..., §m)
where each g; is the minimal polynomial of the class of Z; mod. J, over the field K[Z,,...,Z;.1J/(f1,....f;-
1)- So k[B] is just the canonical presentation of the algebraic extension K over k.

Moreover (in case k is of char. 0), if we are willing to perform a random linear changement of coordinates
substituting Z; with Zy - Zc¢; Z; (c; € Q), the reduced Grébner basis of ] becomes (probabilistically)
{g1(Z1), Z2 - 82(Z1), .... Z; - Bm(Z1)), so that K[B] is the canonical presentation of the simple
algebraic extension K over k.

The interesting fact is that a bit more of algebra allows to show that one can effectively reduce oneself to
this case.

For that we must first compute a Grsbner basis of the prime ideal J.

From it ([CAR, K-W, LOG, G-T]), we can easily obtain a maximal subset (Z;,.....Z;,} of algebraically
independent variables mod. J. Let us further relabel our variables denoting {Uj,...,Uq4} the algebraically
independent ones, and {V1,..., V;} the remaining ones.

PRIMBASISSATZ ([GRO]) Under the assumptions and with the notation above, there aré
polynomials g.,..., g & &i € k{U1,...,Ud,V1,..., Vi.1l[Vi] with leading coefficient in k[Uy,...,Ud], g
€ k[Uy,..., Udl s.t. denoting Q0 := k(Uy,...,Ug)[V1...., V4]

i) each g; is irreducible over k[Uy,...,Uq,V1,..., Vi-11/(81s.--.8i-1)

ii) (81,--..8r) : 8=1J

iii) J0 := (g1,..., gr) QU is a maximal ideal and K ~ Q0/10

iv) (81.....8y) are a reduced Grosbner basis of JO.

V) QUpo=0Q;

PROPOSITION 6 Denote HO := H Q0, RO := QO/HO, =0 : Q¥ — RO the canonical projection. Then

70(J0) is a maximal ideal in RO and R0p0(j0) = AL..
Proof: Both rings are the quotient of Q00 = Qg by the extension of H in Q%0 = Qr
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Example 5 (cont.) A lexicographical Grobner basis of J is {YZ -X3, Z2 - X2Y, XZ - Y2, Y3 - X4},
from which we know that a maximal set of alg. ind. variables is {X]).
So QO =k(X)[Y.Z], HO := (Z - 1/X Y2),10:= (Z - /X Y2, Y3 - X*), RO := QUHO = k(X)[yz], n000) =
(z- /X y2,y3 - X4). .
So K = Q00 = k(X) L) with 03 = X4,{ = X n2.
So we take P :=k(X)[Y,ZUV],3=Z-1/XY2,Z-1/XY2-U,Y3-X4-V), p == (UV).
A standard basis of S is given by G := {Z - I/X Y2, U, Y3 - X4 - V) so that
ing(3)=(Z- X Y2, U, Y3 - X4
gra(AL) =~ KGO[Y.Z)I° [U,VV(U) = K[V].
If f := yz - X3 € QY, a normal form of YZ - X3 w.r.t. G is 1/X V, s0 va(f) = 1 and ing(f) = 1/X V.
A standard set of (1/X V, 8) is
Gu (V)
so that a a-standard basis of (f) is {V].

7  THE EFFECTIVE METHOD OF THE ASSOCIATED GRADED RINGS

The chapter on Local Algebra of the classical treatise [Z-S] begins with a section headed "The method of
associated graded rings”. The basic idea is as follows: even in the most general setting we presented in §5,
GrL(A) is the quotient of a polynomial ring over A/L modulo a homogeneous ideal. Since the structure of
such a ring is more easy to handle, one can hope to get informations on A and its L-adic topology, by
solving related questions on Grp (A).
In the setting we discussed in the previous section, we have something more, namely an explicit
presentation of GrL(A) as a polynomial ring modulo a homogeneous ideal, which is given through a
Grisbner basis.
So, at least in principle, the method of associated graded rings is turned into a computational tool, since,
because of this presentation of Gr1_(A), Gribner basis techniques can be used to find explicit solutions to
a variety of questions on it. '
In what follows, we will mostly restrict to the case of a local ring AL and to the topology of its maximal
ideal a, assuming that Gra(AL) is explicitly given as a polynomial ring P over K := AL/a, modulo a
homogeneous ideal H given through a Grébner basis:

Gra(AL) = K[y1,....ys] =K[Y1,...,Ys)/H
and that we know elements fy,....f, € AL s.t. yj = ing(f}).
In the easiest case of Ex.1, AL = Loc(P)/J, a = (X,...,X) we have (s = n) and:

Gra(AL) = K{yi,...,ynl = K[Y1,...,YnJ/H with H = in(J) and y; = in(X})
In the case A =k{[X1,....Xnllalg/l (§4) we have:

Grg(AL) = K{yi,....yn) = K[Y1,...,Yn)/H with H = in(J) and y; = in(X;)
In the case of Ex.3 (with notation of Prop. 4) we have:

Gra(AL) = Kly1,....¥s] = K[Y1,...,Ys)/H with H = p(in (3)), and y; = in (q(£).

3.1 DIMENSION
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Itis a classical result that dim(AL) = dim(Gra(AL)).

Moreover if H is an ideal in the polynomial ring P = K[Y1,...,Ys] and a Grtbner basis of H is known,
dim(P/H) = dim(P/M(H)) and there are several algorithms [CAR, K-W, LOG, G-T] to compute
dim(P/M(H)).

One can remark that the computation of the dimension is easier if one starts with a lexicographical
Gribner basis, but very often to compute the lexicographical Grobner basis is very hard.

3.2 SYSTEMS OF PARAMETERS

Most of the algorithms for computing the dimension of P/H (and all the ones quoted above) do so by
producing a maximal subset of variables which are algebraically independent mod. 1.

A system of parameters in the local ring AL, dim(AL) = J, is a set {aj,...,a5} of elements of AL which
generate a primary ideal for the maximal ideal a. It is easy to show that if {aj,...,a5)} are such that
{in(ay),..., in(ag)} are a maximal set of algebraically independent homogeneous elements of degree 1 in
Grg(AL), then {ay,...,a5) is a system of parameters. .

‘So if {Yiy,---.Yig} is a maximal set of algebraically independent variables mod. H, then {fiy,--figl isa
system of parameters.

Also, checking if a given set is a system of parameters can be easily done, checking algebraic

independence of their initial forms.

3.3 HILBERT FUNCTION

If I is a homogeneous ideal in the polynomial ring P = K[Y},...,Y;], the Hilbert function of I, Hilbp(I)
: N — N is defined by letting Hilbp(I,n) to be the dimension as a K-vector space of the degree n
component of the graded module P/H. It clearly coincides with the Hilbert function of M(I), which can be
computed by combinatorial techniques ([M-M],[B-S],[PON]) and it is a polynomial for sufficiently large
n.

If AL is a local ring with maximal ideal a and J an ideal in AL, the Hilbert function HA1.(J)) :N > N is
defined by Hilbaz (J,n) = length(AL / (J+a™)), where the length of an AL-module M is the length r of a
maximal strictly descending chain of AL-modules M=Mg> M) >...o>M;=(0).

It can be easily proved that Hilbap (J,n) = Z;=0...n Hilbp(ing(J) + H.,i). So the Hilbert function (and of
the Hilbert polynomial) of an ideal in a local ring is reduced to the same problem on polynomial rings.
Many interesting invariants (like the dimension, which is the dimension of the corresponding quotient
" ring and the multiplicity) of the ideal J < AL can be directly read off from the Hilbert polynomial.

A more general situation has been studied with similar techniques in [SPA].

3.4 REGULARITY

A local ring is called regular whenever its associated graded ring is isomorphic to a polynomial ring. The
geometrical meaning (in the case of Ex. 3) is quite easy; with the notation of example 3, this means that
the variety defined by J is a regular subvariety of the one defined by H.
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In the representation we obtain for Gra(AL) this doesn't necessarily mean that the ideal H is the zero ideal;
it just mean that it is generated by linear elements. This can be however easily checked and, if the ring is
regular, it is immediate to modify the presentation of Grg(AL) in order to present it as a polynomial ring.

3.5 RESOLUTIONS

Two algorithms to compute (the initial modules of) a free resolution of an ideal I in a loca}l ring Ar, (asin
Ex.3) are presented in [G-Z].

The first algorithm makes use of the fact that (like Buchberger algorithm) the Tangent Cone Algorithm,
while computing a standard basis (g1,...,80) of an ideal in Loc(P), produces also a basis of the module of
syzygies among the g;'s (which is a submodule of Loc(P)!). By the extension of the algorithm to modules
(case 2) the same result holds.

So each module of syzygies can be iteratively computed each module of syzygies by computing a standard
basis of the previous one.

The second is a constructive version of the following theorem in [ROB1]:

THEOREM Each graded Grg(Ar)-free resolution of ing(T) lifts to an Al -free resolution of I
which is obtained by adapting the techniques proposed in [M-M] and uses the notion of T-standard bases.
8 ISOLATED SINGULARITIES

The Tangent Cone Algorithm for modules (case 1) has been applied in [L-P] and [P-S] to the study of
isolated singularities.

Let C be a variety in CP with an isolated singularity at the origin; two important invariants of the
singularity are the Milnor number p and the Tjurina number T of the singularity, the first being a
topological invarient and the second an analytic invariant of the singularity. ‘

In case C is a complete intersection variety with an isolated singularity, both numbers have an easy
characterization as dimensions of C-vector spaces; namely let C be a complete intersection variety in
C? with an isolated singularity at the origin; in particular C is given by equations f] = ... = f; =0,
where fj € C[X],...,Xn] @4, f(0) = 0.

Let I be the ideal in C[[X},...,Xn]] generated by the maximal minors of the Jacobian matrix of fj,...,
" fm; Ig the ideal in C[[X1,...,Xn]] generated by the maximal minors of the Jacobian matrix of fy,..., f;
and by f1,....fm.

Since 0 is an isolated singularity of C, both ideals are O dimensional so that C[[X1,...,Xp]l/Ip and
Cl[X1,....Xnl)/I¢ are finitely dimensional C-vector spaces.

Because of the following easy:

LEMMA 7 Let {f),....fi} € k[X}....,Xn] = P, denote by I the ideal they generate in k[Xj,...,Xp], by J
the ideal they generate in k[[X1,...,Xp]], by Loc() := I Loc(P). If J is a O-dimensional ideal, then:
dimg k[[X,...,Xn]}J = dimg Loc(P)/Loc(I) = dimxkP/M<(T)
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where < is any total semigroup ordering on T s.t. w<(Xj) < O for each i

both p and T can be computed easily by means of the tangent cone algorithm.

Other invariants (related to the Poincaré complex of the singularity) for isolated singularities can be
described in terms of the finite dimension as C-vector spaces of modules C[[X1,...,Xp]]"/U, U a
submodule explicitly given through a basis.

By the generalization of the tangent cone algorithm to modules, such invariants have been extensively
computed and used to derive theoretical results ([L-P],[P-S]) on isolated singularities of curves in C2and

complete intersection curves in c3.
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1 Jf I'm allowed a trivial historical remark, the birth date of the Tangent Cone Algorithm is known, being the
night of January 12, 1981. The birth place is however less precisely known, since the author got the crucial idea
on a night train from Genoa to Antwerpen in a neighborhhod of the Swiss-German border.

2 To the references quoted in the text one should add [MOR1], [MOR2] which contain the original presentation
of the tangent cone algorithm and [MOR3], with its application to localizations of coordinate rings at prime
ideals.

Moreover the pioneering work [GAL)] is rich in applications of standard basis techniques to ideals of power
series.

3 To be precise in order that this geometrical notion makes sense, we should restrict ourselves to radical ideals.

4 Again, to be precise, in order that the analytical notions make sense, we should restrict to convergent series,
but the algebraic formulation can be performed with no restriction.

5 For a detailed introduction to the tangent cone algorithm, the reader can consult the recent survey [MPT].

6 An important exception is when I is O-dimensional (for that case sf. [FKS] and [MPT].

One clearly must introduce computability restrictions (if one allows a single power series whose coefficients are
given by a semirecursive function, then standard basis computation becomes undecidable), but otherwise I'm
unable to figure a general obstruction against the existence of a standard basis algorithm for power series; for
that matter however I'm unable to figure how such an algorithm should work.

71t {Y1,...,Y4) is empty then we have a well-ordering and there is no need of the tangent cone algorithm, which
actually in such instance reduces to Buchberger algorithm

8 For the purposes of this paper, it is not crucial to know how it works. The interested reader can consult the
survey [MPT], where improved versions are presented. There are available implementations: a MODULA-2 one
running under MS-DOS by G.Pfister and H. Schdnemann (Humboldt Univ. Berlin); a Common Lisp one in the
ALPI system by C. Traverso (Pisa). The algorithm is actually under implementation in the MacIntosh system
CoCoA by A. Giovini and G. Niesi (Genova).

Standard bases can also be computed (by Lazard's Homogeneization Technique) on any system with a Buchberger
algorithm.

9 Both ways generalize a corresponding way of defining Grobner bases for submodules of P for a presentation
of them and a comparison of their respective merits cf. [M-M), where they are called T-baseds and G-bases
respectively.

10 where (e1....,e) denotes the canonical basis of Loc(P) i.e. £ f; ¢; := (f},....f)

11 The original result is more general, covering those orderings for which there exists a semigroup morphism w
:T = Zs.t. wim) < 0 iff m # 1 and w(m;) < w(m,) implies m; < m,.

12 B must belong to P, not to Loc(P) in order that the construction holds
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13 je. it is in the residue class of b mod. (g) and no terms with non-zero coefficients in its expansion are
multiple of T(g)

14 Thig section is essentially an abstract from the classical treatise [Z-S], Chap. VIII.

15 We will often omit the subscript L

16 There are no zero-divisors in 14L, in factif g€ L,he Aares.t. (1-g) h=0,thenh=g"he L? Vn, soh = 0.
17 56 A14L is effective, whenever A is such; The same doesn't hold for A which is a ring of series.

18 Because in such a Zariski ring the elements of 1 + L must be invertible.

19 The definitions and the constructions leading to the concepts of Grobner and standard bases can be

interepreted in topological-terms so that they are a generalization of the notions realted to L-adic topologies.
For such a topological theory unifying the notions of Grdbner bases, standard bases and L-standard bases, one

can consult [ROB2]. .

20 ot as easily as the example above could induce to believe

21 Their geometrical meaning in case H and J are radical ideals is that the variety defined by J is contained in
each irreducible component of the variety defined by H.

22 gince this is equivalent to say that Vg € Qs.t.x(g)=f, g e J

23 Since L is maximal, if a ¢ L, then the ideal generated by a and L is the whole ring, so 1 =s a + b for some s €
A,be L then(1-b)y!sa=1inA,, soais invertible in A;,; and Ay € A;,y. Since if a € A can be written 1 +
bwithbe L, thena ¢ L (otherwise 1 € L), the converse inclusion is obvious.

24 Actually one should require the f; to be convergent power series; the (non essential) restriction is due to
computability reasons.
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