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BASIC PROPERTIES OF REAL ANALYTIC AND SEMIANALYTIC GERMS. 

Jesús M. Ruiz. 
Dto. Alg. y Fund., F. Matemáticas, U. Complutense. 
28040 Madrid, Spain. 

We give an expository account of the basic features of 

analytic and semianalytic germs. The main results treated 

here are: Risler's Nullstellensatz , the Curve Selection Lemma 

and the Finiteness Theorem for semianalytic germs. The method 

to prove them consists of a real Local Parametrization Theorem 

and an analytic version of Thorn's General Lemma. Finally, 

all these properties suggest that real spectra behave for 

analytic algebras as properly as for finitely generated 

algebras over IR. 

1. Let us recall first some definitions. Consider an open 

set ft cz JRn . 

An analytic function f: ft TR is a mapping with a conver­

gent power series expansion at each point of ft. Then f is 
oo 

differentiable (C ) in ft. 

An analytic set X CI ft is one such that for each x 6 ft 

there are analytic functions f^: U ]R (defined in a neighbor­

hood U of x) with 
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(i.D x r\ u = {f1 = o a... ,fr=o} 

(and, of course, one single function suffices: f = Ef|). 

Then X is closed in Q. 

A semianalytic set Z C 0, is one such that for each 

x 6 there are analytic functions g..,f.: U 1R with 
r 

(1.2) x n u = U { g ± 1 > o,.,.,g i r > o,fi=o} 

i -1 

Let M be a subset of ft. A regular point of dimension d 

of M is one x 6 M such that there are analytic functions" 

f_̂ : U -> ]R as in 1.1 verifying also 
' 3 f i (1.3) rank -r (x) = r = n-d. <3 x . 
L : J 

This number d is well defined and only depends on the couple 

M,x. It is denoted by dim^M. The set of all regular points 

of M is open in M, and denoted by M°. The function x H- dim^M 

is constant on each connected component of M°. 

An analytic manifold is a subset M C ^ such that M = M°. 

The basic results of the calculus on differential 

manifolds can be translated for analytic manifolds, with two 

essential differences: 

- Partitions of unity are not available in the analytic 

category. This affects to globalization problems and we shall 

not enter in such questions here. 

- The identity principle, which is at the basis of the 

precedent lack. It can be formulated as follows 
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(1.4) Let X be an analytic subset of Q. and M a connected 

analytic manifold. If X f\ M has non-empty interior in 

M, then X 3 M, 

2. Analytic germs.- In order to study functions and sets 

at a given point, say the origin 0 G lRn, we introduce the 

notion of germ. 

(2.1) Two analytic functions f: U -MR, g: V + 1R defined in 

some neighborhoods of 0 are identified if they coincide on 

another neighborhood W C U f\ V. This way we define the germ 

of f at 0, which is denoted by f . These analytic function 

germs form an R-algebra-, 0 canonically isomorphic to the 

ring of convergent power series, IR{x}., in the variables 

x — (x^,...,x^). 

(2.2) Two sets, X , Y O 3Rn are equivalent if X f\ U = Y f\ U for 

some neighborhood U of 0. The class of X for this relation 

is called germ at 0 of X and denoted by X . Finite unions, 

intersections, are well defined for set-germs via represen­

tatives. Also the complements and the inclusion relation, 

and the standard•properties -are checked immediately. Just 

the same for topological notions like closure, interior, etc. 

Now we introduce two operators: 

(2.3) If E C O , then E.O = {f. ,...,f }C> for some 
n n 1 ,o r , o n 

analytic functions f , . . . , f : U R and we put V( E) = germ 
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at 0 of { = 0 f^ = 0} . (This does not depend on the choice 

of generators). 

(2.4) If X is a set-germ, we denote by I(X ) the ideal of o o 
all germs of analytic functions f: U IR with f |x f\ U = 0 . 

Thus we turn our attention to analytic germs, i.e. the 

germs of analytic sets of open neighborhoods of 0. They are 

the germs X = V ( E ) for E C 0 , and verify X = V I ( X ). An to o n J o o 
analytic germ is irreducible if it is not a union of proper 

analytic subgerms. It is easy to see that X q is irreducible 

if and only if I ( X q ) is prime. Besides, by means of the 

associated prime ideals of I(X ) , we decompose in a unique 

way every analytic X q into a finite union of irreducible 

germs, none of which is contained in the others. 

To an analytic germ X O \RU there is associated an 
o o 

analytic algebra 0[X q] = R{x}/I(X ). The correspondence 

X^ H- 0[x^] gives in fact an equivalence of categories. For 

instance: X q is regular (i.e. 0 is a regular point of X ) if 

and only if 0[Xq"] is a regular ring. In that case dim 0 [x "] = 

= dim QX. This suggest the following 

Definition (2.5).- dim Z = dim 0 [X 1, X = VI(Z ) , Z o L o1 o o 
s emianalyt ic. 

(Later on we shall find a geometric characterization of the 

dimension). 

32 



- 5 -

3. Risler T s Nullstellensatz ( [R]).- Like in the complex 

case the interesting question about V and I is to compute 

IV(I) for I C 0 . In the real setting this computation is 

more complicated, and was done by Risler. He proved: 

Theorem (3.1),- IV(I) = real-radical of I. 

To deduce this result one must obtain first a good 

parametric description of an analytic germ: the Local 

Parametrization Theorem. Then a common topic in Real 

Geometry comes to the stage: Orderings on function rings and 

Specialization Criteria, which bring naturally to our study 

the semianalytic germs , i.e. the germs of semianalytic sets 

of open neighborhoods of 0. 

4: Local Parametrization ( [M] , [N] ) . - It is a refined geo­

metric version of a purely algebraic result concerning analytic 

algebras. 

Let p be a prime ideal of 0^ = IR{x}, set r = htp, 

d - n-r, x 1 - (x . . j X ^ ) . 

Noether's normalization lemma (4.1).- After a (generic) linear 

change of coordinates the following conditions hold true: 

(1) The canonical homomorphism A = ]R{x !} -> lR{x}/p = B 

is finite and injective. 

(2) x = x«3 + i Tnod p is a primitive element of L = qfB 

over K = qfA and the polynomial P = Irr(x ,K) G K[x^ + ^] ^ s 
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actually a Weierstrass polynomial in A[X^ + ^ ] 5 i.e. 

P = .+a. (x T )x5"J+- • •+aT^(x! ) 9 a.(x !) G A , a.(0) = 0, 
d + 1 1 d + 1 p l l 

p = degree (P) . 

(3) The discriminant 6 G A ^ { 0 } of P is a universal 

denominator: 

6 . B C A + A . +. . . + A . p-1 
X x F 

( A proof can be found in. [TJ ) . 

To translate this into geometric terms, set X q = V(p) 

and choose representatives X , 6, P of all involved data, 

defined in some open polycylinder U C. TRn • The inclusion 

IR{x!} IR{x} is, of course, represented by the linear 

projection TT : lRn = |Rd x |R n~ d -* IRd and we put W = TT (U) . Then 

Local Parametrization Theorem (4.2).- The polycylinder U can 
1 f 

be chosen arbitrarily small verifying: 

(1) The restriction TT : X W is proper and finite-to-one 

(although not necessarily onto). 

(2) X \ { 6 = 0 } has finitely many connected components and 

each one of them is an analytic manifold of dimension d, 

adherent to 0. 

(3) The restriction of IT to each connected component D 

of X ^ { 6 = 0 } is an analytic diffeomorphism onto a connected 

component of W\{ 6 = 0 } , 

Sketch of proof.- The main part of the argument, which we 
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hint here, refers to item (2). We start by finding some 

suitable equations for X^-{6 = 0}. This is done as follows. 

Since 6 Is an universal denominator, 4.1.3, there are poly­

nomials Qj G ^[ x
(j + ̂ l' j=d+2,...,n, such that 

6(x!)x_. = Q j ( x t > x d + 1 ) m o d p; 

but also P ( x ! , x ^ + 1 ) = 0 mod p, 

and from this system we deduce, after some technical reductions 

of U and W a description forX^{6 = 0}: 

(4.3) X^{6 = 0} = {x G WxiRn~d:P(xt,x,^,) = 0,6(xt)x.=Q.(xt,x^ J,6(x T)^0} 
Q+l ] 3 Q+l 

Then take a point a ! = T T ( a ) , a G X\{6 = 0} and let C 

stand for the connected component of a T in W\{ 6 = 0 } . To find 

the component D lying over C via IT we only need to solve 

P(x !,x, „ ) = 0 for x \ G C, since the coordinates x, ^ , . . . ,x 1 5 d + 1 - d + 2 5 5 n 
are easily obtained then. But we can solve P(x T,x^ +^) = 0 

locally by the implicit function theorem, because 

(x',x, ,) i 0 if S(x') i 0 and P(x',x, .) = 0. To 

3 x d + 1 d+1 d+1 

glue together these local solutions we use the fact that for 

all x T G C, the polynomials in + 1 , P ( x ! , x ^ + 1 ) G ^ L x d + i l 

have the same number of real roots, and so we can label them. 

This way we have analytic functions h^: C -> 1R such that 
P(x !,h^(x !)) = 0, x T G C. Clearly 

D £ = {x: x ! G C, x d + 1=h £(x'),x.=Q.(x',h £(x'))/6(x')} 

are the connected components of X^{6 = 0} lying over C and 

D = for some I. 
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Finally we must prove that there are finitely many C T s . 

This is an assertion on W\{6=0} and is deduced by induction 

on d with an argument similar to the precedent one with the 

D^ !s (some standard use of Weierstrass T theorem is needed 

previously, see [M] or [N] ) . 

Let us remark here that the method above can be consider 

ed the initial step to stratify the set of zeroes of a 

Weierstrass polynomial: we drop all multiple roots and work 

with the implicit function theorem. This analysis can be 

carried on to get more precise descriptions of semianalytic 

germs (cf. n°8). 

Before continuing we get an important consequence of 4 . 2 : 

Semicontinuity of the dimension ( 4 . 4 ) , - Let X be an analytic 

set, 0 6 X. Then: 

dim X = upper lim dim X 
x+0,x G X° X 

Indeed, one reduces to I ( X q ) = p prime, using the decom­

position into irreducible components. Then 6 0 I(X ) and 
o 

X ^ V ( 6 ) i 0. So 0 is adherent to X \ { 6 = 0 } , and 4.4 follows 

immediately. 

Let us only remark that the same holds true for a semi-

analytic set Z and the proof is the same, after some mani­

pulations with the local equations of Z. 
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5. Proof of Ri'slerTs Nullstellensatz.- It is clear that the 

statement in 4.2 has no meaning if X \ { 6 = 0 } = 0. As a matter 

of fact this is a key aspect of the proof of Risler's theorem. 

Let us first remark a useful reality criterion (compare with 

the proof of this lemma given in [R]). 

Lemma ( 5 . 1 ) . - If dim X = d, then p = I(X ) . o ' o 

In other words, if the germ V(p) has the right dimension, 

then p = IV(p). For, in any case: n-d = htp < h t I ( X Q ) = 

= n - dim X j so that under that hypothesis on the dimension 

we conclude htp = h t I ( X Q ) ; p being prime, both ideals coincide. 

Now we notice that dim X = d is just the same that 
o J 

X CL. {6 = 0 } . Otherwise, we would have: dim X = o / o 
= dim V(p+6. fR{x}) < n - ht (p+6 .1R{ x} ) < n - htp = d, since 

6 g p. Thus dim X q = d is equivalent to X^'{6 = 0 } i 0 (for 

arbitrarily small U, as usual). 

Finally, in view of 4.3, the latter condition can be 

written: 

( 5 . 2 ) There are x T G W^{6 = 0 } arbitrarily close to 0 T G lRd 

such that the polynomial in x ^ + ̂  •> P(x ! 5 x ^ + :j_) ̂  I R[ xd + ll 3 

has some real root. 

So, assume p is real. To prove Risler's Nullstellensatz 

we only need to check 5 . 2 . This turns out to be a speciali­

zation problem. Indeed, P ( x ! , x ^ + ^ ) , as a polynomial in 
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lR{x T}[x d + 1 ] = A L x

d + 1]> has the root X = x d + 1

 m o d P e B = 

= ]R{x}/p and B is formally real. By means of Sturm's theorem, 

the existence of real roots is tested by looking at the signs 

of some series in A = 3R{x !}. Thus 5.2 follows from a standard 

specialization criterion: 

(5.3) Let f^ , . . . G lR{xf} be positive in some total ordering 

in IR{x f}. Then there are x T G 1R^ arbitrarily close to 

0 T G ]Rd such that, f . (x 1 )>0 , . . . 5f (x T)>0. 

1 m i 

The proof of this lemma is most similar to the one in 

the algebraic case. As usual in dealing with analytic germs, 

Weierstrass* theorem makes possible an induction on d (see [R]). 

^• General Specialization Criterion.- The ideas in Risler 1s 

proof can be extended a bit to formulate a specialization 

result that includes the Nullstellensatz and 5.3. 

Consider a prime ideal p d lR{x} and X q = V(p). Let 

X* stand for the maximum dimension locus of X : o o 

X* = germ at 0 of {x G X: dim X = dim X} 

O X o 

(Later on we shall see that X* is semianalytic. By now 

we remark that X ̂ {6 = 0} is a representative of X*. The 
o 

result we are to state could be equivalently formulated with X v V ( { ) instead of X * ) . o o 
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Specialization lemma (6.1).- Let f,,...,f G1R{x}. Their 1 m 
classes mod p are positive in some total ordering of )R{x}/p 

if and only if the germ {f^ > 0,...,^ > 0} f\ X £ is not empty. 

The proof consists of applying the Nullstellensatz to 

the germ 

Y = ( X x \R*) n {t ? = f . , i = l , . . . ,m} C lRn x " JRm , 
0 o o 1 1 l l o o 

where t. ,...,t are the coordinates in TR™. This gives an 
1 m o & 

implication, and the converse follows from Serre's criterion. 

As a consequence also Risler ?s solution to Hilbert fs 

17th Problem for X q = IR̂  can be generalized to any singular 

X : 
o 

HilbertTs~ 17th Problem.- Let f G 0 £X ] be an analytic function 

germ on an irreducible X . Then; f is a sum of squares of 

meromorphic function germs on X if and only if f is > 0 on X*. 

o = o 

This can have further generalizations (non-negativity 

criterions, McEnerney [McE*] , Ruiz [RzJ ) , which translate to 

germs the algebraic results by Stengle ( [ s t ^ ) . 

7. The Curve Selection Lemma.- A very interesting aspect of 

the Specialization lemmas and Nullstellensatz is their connec­

tion with that essential keystone in analytic geometry. 
o s 

In the end the contents of n — 5 and 6 are a step before the 

curve selection. We shall present here a proof that shows 

. clearly this connection. 
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First of all, according to Merrien [Mn] and Lassalle, 

^LsJ, we may-very easily repeat all proofs in the.previous 

sections to get. 

Lemma (7.1),- Let p C |R{x} be a prime ideal and 

f , f 6TR{x}. The classes mod p of f„ ,. . . ,f are positive 1 3 3 m ' 1 3 3 m r 

in some total ordering in lR{x}/p if and only if there is an 

analytic homomorphism \p: JR{x} + IR{t} such that 

(1) k e r ^ O P ; (2) ty( f ± ) >0 , . . . , f ̂ ) >0 

(IR{t} is endowed with the ordering t > 0 ) . 

The idea supporting this is quite natural. In a germ 

we do not have any points, except the 0, which is useless 

because it is always there. Consequently, dimension one 

appears as the smallest dimension of a subgerm. One realizes, 

thus, that in our context "points" are curve germs; or more 

accurately, homomorphisms JR{x} •> lR{t}, like ijj in 7.1. Since 

the real closure of lR{t} is well-known (Puiseux 1 theorem), a 

good theory can be developed for these "points". 

Now we deduce the classical Curve Selection Lemma from 

7.1: 

Curve Selection (7.2).- Let Z be a semianalytic subset of 

an open set ft C lRn , and 0 G a point adherent to Z. Then 

there is an analytic curve [o,e) •+ lRn such that: 

c(0) = 0 ; c ( t ) G Z , all t i 0 
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For the proof we may suppose Z = {g^>0 , . . . ,g^>0,f = 0 } 

for some analytic functions g^,f. Set X = {f=0}. Without 

loss of generality we can also assume 

p = I(Z ) = I(X ) and X irreducible, o o o 

Then, apply Local Parametrization , and 

zo^{ô=o} = {g1>o3...,gni>o} n x M 6 = o } c{gi>o5...5gm>o}n X* 

Z \ {6 = 0} ï 0 
o 

For, if 0 were not adherent to Z^{6 = 0}, 6 would belong to 

I(Z ) = p, contradiction. Hence, by 6.1, there is a total 

ordering in JR{x}/p making positive the classes of the g^'s. 

It follows from 7.1 that there is 

if;: }R{x} +!R{t}, x = ( x ^ . . . ^ ) H- x(t) = ( x ) , . . . X R ) : 

such that 

g i(x(t)) = ip(gi) > 0 S f(x(t))"= ip(f) = 0. 

Clearly, c: to,e) •+ lRn : t H» x(t) is the curve we sought. 

8. Separating families . - We shall describe now the analytic 

version of this useful notion, well known in the algebraic 

context (see [H]). We begin with some terminology, which 

must be very carefully chosen in our setting. 

(8.1) Let f ,...,f m stand for some convergent power series 

in IR{x} as well as for the associated analytic functions 

f ,...,f : U 1R defined in some neighborhood U of 0 G 1RD . 
I ' m 
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For any choice of signs 6 = (8 ,...,0 ): 

6. = {t>0} or {t = 0> or {t<0>, l 
we put 

Z T 1(6) = {x G U: f,(x) G e i 9...,f (x) G 8 } U 1 1 m m 

We shall write: 8~ = ( Q± \j { 0 } , . . . , 8^ \J ( 0 } ) , i.e. 8" is 

obtained from 8 by relaxing inequalities. 

Definition (8.2).- We say that f ,...,f is a separating 

family if there are arbitrarily small neighborhoods U of 

0 G ]Rn such that for any choice of 8 with Ey(6) i 0 it holds: 

(1) E (8) is connected 

(2) The closure of E^(8) in U is obtained by relaxing 

inequalities, i.e. it coincides with E^(8 )• 

Then, the main fact is 

ThornTs general lemma (8.3).- Any finite collection f ,...,f 
, • x s 

can be extended to a separating family. 

We shall sketch a proof of 8.3 in Section 9, and give 

here some interesting consequences. 

Let Z be a semianalytic set of Ji = open in R n . Fix 

a point 0 G Q. Then there are analytic functions 

g.,,h.: U IR in a neighborhood U of 0 with: 

s 
z n u = U (g.--, > o,. . . ,g > 0,h = 0} 

1 = 1 
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Now we can extend the collection of all to a separating 

family f^,. . . ,f^. This means that after a reduction of U 

the sets 

r = z u O ) i 0 

verify the conditions in 8.2 (of course, we only consider the 

non-empty T T s ) . As the functions defining Z C\ U are among 

the f„,...,f , we have: 1 5 9 m 5 

z n u = U r 
rcz 

Furthermore, as there are finitely many T ! s , there is a 

neighborhood W C U of 0 with: 

z n w c (J_r c z f\ u. 
oer 

It follows that when 0 6 Z, U__ T is a connected (not necessari 
OQT ~~ 

ly open!) neighborhood of 0 in Z f\ U. In other words: 

(8.4) Z is locally connected. 

On the other hand, if Z* is a connected component of 

Z we have 

z* O u = U (r O z*) = U r 
TcZ rcZ* 

because each T is connected. This shows 
(8.4) Z* is a semianalytic set of ft. 

Finally, there must be fewer Z ; t ; Ts than r !s and so: 

(8.5) The family of all connected components of Z is 

locally finite. 
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Actually we get more, namely 

(8.6) For U small enough the number of connected components 

of Z P\ U adherent to 0 remains constant , and so we 

have a well defined notion of connected components 

of the semianalytic germ Z q . This connected components 

are, of course, semianalytic germs. 

Now we look at the closure of Z (in ft). Clearly: 

z H u = (J (r n u) 
TcZ 

But by 8.2.2 we see that Z f\ u is semianalytic and defined 

by non-strict inequalities. Thus: 

Finiteness Theorem (8.7).- The closure (resp. interior) of 

Z in ft is semianalytic, and given locally by non-strict (resp. 

strict) inequalities . 1 

(For the "open part" , just take complements). For 

instance, as was quoted in n°6, the maximum dimension locus 

of an analytic germ is semianalytic. Actually we can get 

more : 

(8.8) The set Z^ of d-dimensional points in Z is semianalytic. 

First notice that it suffices to prove 8.8 for the 

maximum dimension d, up to an induction argument. On the 

other hand some manipulations with the local equations of Z 

at a fixed point 0 6ft show that the essential case is the 

following: 
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Z o = { f! > 0^ • ' >f

r*°> H *Q I(X Q) = I(Z o) 

where X q is an irreducible analytic germ. Then one applies 

Local Parametrization and there is some 6 with 

0 t Z Q ^ { ó = 0 } = {f 1>o,...,f r>o} n X Q \ {6=0} 

dim X H {6=0} < dim X = d 
o o 

But in this situation, Z^ = Z Q \ {6 = 0}, because if 

x G Z ̂  Z \ {6 = 0}, there is an open neighborhood W of x with 

z n w c x n {6 = 0} 

and for x close to O^it follows dim Z = dim Z P\ W < 

X X 1 1 = 
< dim X P\ {6 = 0} < d. Consequently, by 8.7, Z^ is semianalytic. 
- X o 

9. Proof of Thom Ts general lemma.- It is essentially the 

same as in the algebraic case over the reals, but here we 

need to control the neighborhoods we consider at each step. 

The argument that follows is due to Fernández-Recio ( £FR] ) . 

We work by induction on the number n of variables. For 

n = 1 the assertion is immediate, because { f f ,t} is 
I ' m 5 

separating. Indeed, take any open interval U with 0 G U C JR, 

such that 0 is the only possible zero of the f\1's (if any) 

in U, The conditions in 8.2 are evident. 

Now assume the result for fewer than n variables. First 

a linear change of coordinates and Weierstrass' Preparation 

Theorem allow us to suppose 
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P, P.-l 
f.(x T,x ) = x +a.,(x')x 1 +...+a. (x T) GlR{x'}[x 1 
• î n n i l n u n J 

where a. n(0) = 0, x
T = (x, . . .x . ) . Of course the a. 's 

i£ 1 n-1 i£ 

define analytic functions in some open neighborhood W of 

n 1 
0 G E . We also consider the derivatives: 

f .. = - ^ 4 - G 3R{x'}[x 1, 
J 3x 

n 

which are Weierstrass polynomials too, defined in W x TR. 

The next step is to produce a suitable partition of W. 

By a nice argument of Lojasiewicz, we find analytic functions 

g^,...,g^: W TR such that for any choice of signs 

9 ! = ( 6 ! 5 . , , , 6
, ) 9 over the set 1 3 r 5 

E w(6<) = {x< G W: g l ( x ' ) G 6 j , . . . , g p(x' ) G 9 M 

any product ¥ = Ilf . . of f..Ts has a constant number of real 

roots, say N = N(¥,8'), i.e.: 

(9.1) For each x T G Z T 7(0
f) the polynomial in x , 

W n 

^(x T,x n) G E[x ] has exactly N = N(^,6 T) distinct real 

roots (eventually N = +°°) . 

We remark that the g^,...,g^ are obtained from the 

coefficients of the ¥ Ts by a suitable linear algebra trick. 

( [i] p.106) . 

Finally, we apply the induction hypothesis and extend 

g 1,...,g r to a separating family g 1»---»g s GTR{x'}. We 

claim that {g^f...} is separating. 
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For, we take an open neighborhood of 0 G ]Rn 

U ' C W C 1 R " , such that the conditions in 8.2 hold for U f 

and the g^ !s. Consider e > 0. We may assume that for each 

x f G U* the polynomials in , f_(x T ,x^) G TR [xj , have all 

their roots in |x | < £ (continuity of the roots and the 
Pin-fact f

i j ( ° 5 x
n ) = x

n )• T h e n s e t u = U fx(-e,G). Obviously 

U can be arbitrarily small, so we only have to study a non­

empty set 

0 i T = Z (6) = {x-(xT,x )GU = UTx(-£,c):g, (x!)G0, ,f. .(x)G9. .} 
u n K K 13 13 

where 9 = (6, ,6..) is a choice of signs. 

k IJ & 

If we put 0 ! = ( 9 k ) 9 then 

T ! = 1^(6') = {x 1 G U 1: g k ( x f ) G 0 R} 3 n(D i 0 

and so it is a connected subset of U T whose closure in U T is 

obtained by relaxing inequalities. We are to built up T from 

T ! using the roots of the polynomial 
V = n{f . . : f. . 2 0 on T !} 

Since U T d W, and V £ 0 on TT , it has by 9.1 N < +« real 

roots all through T !. This T f being connected, there are 

continuous functions 

such that 

(9.2) For each x' S T', ^(x') <...< £ ( x ' ) are the real roots 

of Y(x',x ) 6 R[x ] • (see [i] p.109). 
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Notice that if N = 0, then T = r !x(-e,e) and the 

result is immediate. On the other hand, we know that -e < £ , 

< e: because of the condition on the roots of the f... Put N 13 
£ E -£ , = £ and consider the sets o N + l 

B = {x 6 r fx(-e,e): 5 0 ( x ? ) < x < L ^ ( x ' ) } 0<£<N 
36 n 36 + 1 - = 

B = {x 6 r !x(-£,£): ? 0(x T) = x } 1<£<N. 
36 n = = 

It is easy to check that the roots of every f̂ _. along T f are 

among the ? £ ! s a n <3 so it has constant sign on B. Thus some B 

is contained in T. But from Thorn1s lemma for polynomials in 

one single variable it follows (see p.109) that in fact 

B = T, and so T is connected. We also deduce T T ( D = F !. 

Finally let us show that the closure of T in U is exact­

ly the set r* obtained by relaxing inequalities. The inclusion 

to be seen is, of course, T* C. V. 

Consider a = (a T > a
n ) 6 f\ U. By induction hypothesis 

a f G . We claim ({a 1} x [- £ , e] ) fi 7 f 0. Indeed, otherwise 

by compactness there is an open neighborhood G of a T such that 

G x (-£,£) does not meet T. It follows G f\ T T = 0 , since 

7 r ( D = T ?. Contradiction. 

Now, by Thorn1s lemma for polynomials in one variable, 

t h e s e t 

I = {x G JR: f . .(a1 ,x ) G 8 . . } 
n i] n 13 

is either a point or an open interval with closure 
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I = {x 6 R: f..(a !,x ) G 6.. II {0}} 
n 13 n ±2 

As the polynomials f^_.(a!,xn) G JRJx^] have all their roots 

in (-£,£) it is easy to check that I C I C ( - e , £ ) . To end 

the proof we distinguish two cases: 
> 

( 9 . 3 ) I = T = {a }. 
n 

Take a sequence x^ G T T convergent to x ! . As T T = T T ( D , 

there is a bounded sequence x G IR with (x 1 ,x ) G T. By ^ np . p np J 

compactness, we may assume x
n p converges to some G ]R. Since 

f..(x T,x ) G 6.. we have f..(aT,c ) G 9.. t) {0} 5 and so 
ID p np i] 13 n 13 w 

c G I, i.e. c = a and (a T,a ) is a limit point of V. n n n n r 

( 9 . 4 ) I * {a }. 
n 

Then, as a G I, I is an open interval, and no 6.. is 

the equality. On the other hand a T is the limit of a 

sequence x ! G T ! and a the one of a sequence x G I. Since H q n ^ . n P 
all the 6.. are open conditions, f..(a T,x ) G 6.. and 

a T = lim x ! , there is a subsequence x T of x T with 
q q' P q 

f..(x T,x ) G 6... This means (x T,x ) G T and so a is a 
i] p np 1: p np 

limit point of T. 

10. Final remark on the real spectrum.- Let X C 5Rn he an £ o o 
analytic germ and 0 D^Q] its associated analytic algebra. Then 

we have a correspondence 
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r semianalytic \ • / constructible \ 
subgerms 1 ^ I sets I 
of X Q ) \ of Spec R0[X o] ) 

defined in the obvious way. 

The results quoted in this survey can be used to show 

that 0 behaves like in the algebraic case (see £CR] ): it is 

a bijection that preserves unions, intersections, complements..., 

as well as topological operations: closures, interiors, 

connected components... In particular, it may be interesting 

to point out the following consequence of 8.7: 

(10.1) A constructible set of Spec R0[X Q1 ^as finitely many 

connected components. 
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