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ON WEAK CONVERGENCE OF PARAMETER ESTIMATORS
OF GENERAL STATISTICAL PARAMETRIC MODELS

L. Vostrikova. Computing Center of E&tvds Loradnd University,
Budapest, 112. Pf. 157. 1502.

SUMMARY

We consider a sequence of general statistical parametric
models equipped with filtrations and the corresponding
likelihood ratio processes. Using theorem about weak
convergence of the likelihood ratio processes to the like-
lihood ratio process of the Gaussian model we obtain
conditions for weak convergence of maximum likelihood

estimators and Bayesian estimators.

KEYWORDS: general statistical parametric model, likelihood
ratio process, Gaussian statistical parametric model,
maximum likelihood estimator, Bayesian estimator, Hellinger
process, jump measure, compensator of jump heasure, weak

convergence.
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INTRODUCTION

We consider a sequence of general statistical
n
el

filtrations EJI, n>1. Here (Qn,Fn) are measurable

parametric models En = {(‘Qn,Fn,]Fn), P 6 € 0"} with

spaces, the filtrations F" = (Fi)t>0 are such that

n

n _ .n n _ n
V F_=F", F, = {¢, @}, and (Pe)ee oh

are
[
t>0 °©

probability measures depending on the parameter 6
which belongs to a closed convex set Gn_g Rm, @ng 6n+1,

m=>1.

Suppose that {O}é@n and for every 6 € 0" the measure
Pg is absolutely continuous with respect to a o-finite
measure un. Then for the general statistical parametric

moded.$n we can construct the likelihood ratio process

n _ n , n .
Z (Zt(e))tzo,eeen of the measure Py with respect to
Py with

n dPg T dP? T

2°(8) = L=/ L (here 2/0 = «)
T dun dun
T T
n . . n n
for every F -stopping time 1 where Pe o P, . and
’ ~r

n n

un are the restrictions of P PO and un to the

T 6’

og-algebra F?.

As the "limit model" to<£n we consider the Gaussian

one with a likelihood ratio process 2 = (z,(9))

t £20,8eR™

of the form
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2,(68) = exp(N_(8) - 2<N(8)>} (1)

£ £

where N = (Nt(e))t>0 genm is an a.s. continuous Gaussian
£ 7 N

field such that N(8) = (Nt(e))tzo

every 0 e R™ with No(8) = 0, <N(8)>_ = DN, (8) and N(0)=0.

is a martingale for

In this paper we formulate conditions for the weak

convergence of the maximum likelihood and the Bayesian

estimators 87 = (éz)t>0 of the parameter 6 based on 7,
to the corresponding estimators 8 = (ét)t>0 of the

parameter 6 of the Gaussian model. We also give condi-

tions for the weak convergence of the likelihood ratio

onoo_ n . .
process 7= = (Zt(et))t>0 with 6 substituted by the
estimator to the likelihood ratio process Z = (Zt(et))t>~0

of the Gaussian model.

In particular, considering the Gaussian model having

the special form:

z,(8) = exp{oW_ - 5 8 t) (2)

1
t 2
where W = (Wt)tZO is the standard Wiener process, we
obtain conditions for the weak convergence of the maximum
likelihood estimators and the Bayesian estimators to the
process (Wt/t)t>O and also conditions for the weak
convergence of the likelihood ratio process En with ©
substituted by the estimator to the process (Wi/t)t>0'
It should be noticed that these results about weak

convergence together with the results of §9 of chapter

1 in [2] immediately give conditions for the asymptotic
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efficiency of the estimators of 6.

ON WEAK CONVERGENCE OF THE LIKELIHOOD RATIO PROCESSES

To obtain the theorems about weak convergence of

estimators first we formulate the theorem about weak

convergence of the corresponding likelihood ratio

pProcesses.

We consider the Skorohod space L(R , C

the functions Z:

in the space C

loc

m
loc(R )) of

m where t€ R

))eeR with values

t"’“"(zt(e 4!
(Rm) of real continuous functions with

local uniform metric. The weak convergence of the likeli-

hood ratio processes will be considered in the subspace

(Dal), ={z€ D (R,

of the Skorohod

To formulate

(hl(6,87))

n n
Pe, Pe,

t>0
and Em

and define

cp(8)=dp

, (I:loc(Rm)):lim sup sup  2,(8)=0, ¥ N>0}
Lo 1/N<ts<N |6]>L
space I)(R+, @loc(Rm)).

the theorem we denote by nh'(6,8’) =

the Hellinger process corresponding to

(see [51, £71, C41). We set Q" = (P2+P2)/2
and fz(x,e) = IJT—X/EE_(G) - VT+X/CE_<O)|

with x/0=» for every 6,6’ € 0™, t>0 and x € R. We will

denote by vn(e)

the compensator of the jump measure [33],
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£8] of the process ™(0) = (;E(o)) with respect to

t20
n ny

(@7, T and by the sign "x" the integral with respect
to a compensator. The symbols €(-) and I(-) will be used
for the Doleans-Dade exponential function [31 and the

indicator function respectively.

We consider functions wg(y) where y>0, t>0, n>1 and

wt(y) = 1lim mi(y), which satisfy the conditions:
n-»OO
m+r-1, n 1-m/R
(p (y))
t

decrease with respect to y and are integrable at (3)

the functions y monotontically

infinity for t>0 and 1<n<» wphere r20 and B>0 are

constants.

THEOREM 2.1 ({see [111). Suppose the following condi-
tions are satisfied:

o]

n
1) for every e>0, t>0 and 6 &0 with no=1

n
Po
((£20x,00)" T(£](x,0)2e)x0™(8)), — 0,

n
2) for every t>0 and 6,0' €0 ° with no>1

n

1 ’
8 <N(B8) - N(®6 )>t

hg(e,e')

3) there exist comstants B>m, r=0, d=0 and D=0 such that

for every t>0 and sufficiently large L>0

P2(nl(e,07 200 100" 1%)
sup sup < dL < =,
n |61<L,18"|<L |e-e'|25
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4) there exist constants c¢20, C20 and functions WE(Y)
satisfying the conditions (3), such that for every

t>0 and sufficiently large L>0

n n 8!
P2(8(-n"(0,0)) 2col(101))

[o]
sup sup <c <o

n 1012k (2(161))°

Then there exist likelihood ratio processes z" having

(PS-a.s.) paths in (DatC)_ and

o w(Po)

where Z is defined by (1).

REMARK 2.1. The conditions 1) and 2) of theorem 2.1
provide the convergence of the finite dimensional
distributions of z" to the ones of Z. The condition 1)
is the conditional variant of the Lindeberg condition,
and the condition 2) is the one about convergence of the
triangle brackets of the martingale parts of &n z%(9).
The conditions 3) and 4) provide the tightness of the
distributions of z™ in (I)&E)w. The meaning of these
conditions is the following: the condition 3) guarantees
sufficiently quick convergence in variation of the
difference pY - p@

5 9, when 6'-8, and the condition 4)

provides sufficiently good separability of the measures

- 151 -



Pg and Pg, when the value of |6-6’] is large. Notice

also that the questions concerned with the calculation
of the Hellinger process which appears in the conditions

of theorem 2.1. were considered in [7] and [67].

REMARK 2.2. From the analysis of the proof of theorem
2.1 given in 0111 we get that the additional conditions
as PS<<P?, Yoe @n, and the completeness of the filtration
F? with respect to the measure Pg used there, can be

omitted.

REMARK 2.3. From the proof of theorem 2.1 we have
the following: if we make the reparametrization 6 w—=0+6,
with some 08, € o%o and suppose that the conditions of
theorem 2.1 are satisfied uniformly over eoeJZs@n°
where ¥ is a compact set, then the weak convergence of

n

Z7 to Z will be uniform over Ooéﬁt.

REMARK 2.4. Suppose that the conditions 1) and 2)
of theorem 2.1 are satisfied for 0<t<T and the conditions
3) and 4) are fulfilled for t=T. Then using the methods
of the proof of theorem 2.1 and theorem 5 in [£10] we

get the weak convergence in the space E(Rm):

Zn W(Po) .

T T
where 72 = (z2(9)) and 2. = (2.(8)).. .m
T T g<RM A T T DeRrR ™"
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3. WEAK CONVERGENCE OF MAXIMUM LIKELIHOOD ESTIMATORS

We consider the maximum likelihood estimators of

6 based on Zn and 7Z:

n -~
6, = arg sup_ Z,(8), 6, = arg sup_ Z,(6), t>0,
ge R™ t t ge R™ t

where they are equal to any point of the maximum with

respect to 6 if there are several such points and

§E = o and ét = o if the supremum with respect to

8 is not achieved. In the same way we define 52_ and

6) by z» (8) and Z, (9)

6, _ substituting z7(8) and z - £—

t- t t(

respectively.

THEOREM 3.1. Suppose that for every t>0 the maximum

an  an A A .
et, et_, et and Gt_ are unique.

Then under the conditions of theorem 2.1 for

likelihood estimators

pn = (éz)t>0 and 8 = (5t)t>0 we have
WD
(67, z2°°) ——(0,2) (5)

in the Skorohod space D((0,x), RMac (R™)) .

PROOF. Since Z° and Z belong to (Dal)_ we have

An An , -~ . -~
that Iet|<w, (et_|<w and !6t|< ' I@t

t>0 and also that the processes 6" and 8§ have paths

_|<» for every

in the space D((0,»), Rm).

By (4) and the Skorohod representation theorem we

can find a probability space (R, F, P) and the processes
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7z and Z with the same distributions as 2" and 2

respectively such that for every N>0 (P-a.s.)

sup sup 1Z(8) - Z,.(8)] -~ 0 (6)
1/N<t<N 9eR™

as n>~. If we suppose that at the same time

sup 152—§t1+0 as n—-~ then there exists the

1/N<tsN “n ~

sequence (t_) 1/N<t_<N, such that |6 -8, 1 40
n n tn tn

n=1’

as n»». Since the sequence (tn) belongs to the set

n=1

L1/N, NI we can suppose tn»to and thto or tn<to for
every n21. If tnzto then by right-continuity of the

process § we have lén -8, 1 + 0 as n-»o; if t_<to
t to n

-~

then IBE - ét | # 0 as n>». Since .this contradicts to
n [¢]

(6), we have (5).!

COROLLARY 3.1. Suppose that the limit process 1in
(4) has the form (2) and the maximum likelihood estimator
éi and @2_ are unique. Then under the conditions of

theorem 2.1 we get

w(Pg)

(Wt/t)t>0 (7)

where W = (W_) is the standard Wiener process.

£t t20

PROOF. In this case the maximum likelihood estimators
6. and ét— for the limit process in (4) are unique,

6. =8 = Wt/t and the result follows from theorem
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Consider now the weak convergence of the likelihood

n,an
R(50))

substituted by the maximum likelihood estimators.

ratio processes 2" = (Z with the parameter ©

t>0

THEOREM 3.2. Assume the conditions of theorem 3.1.

Then we have the weak convergence

n
“n w(Po) 5
in the Skorohod space D((0,»), R) where Z = (Zt(et))t>0.

PROOF. If %z €&(Da €)_ and 8eD((0,»),R) then the

-~

process Z = (Zt(ét)) has path in D((0,»), R).

t>0

Because of (5) we need to prove only the continuity
of the map (8, 2) ~~ (Z) for the Skorohod metric when

the limit processes in (5) are continuous with respect

to t.

n n)

Suppose that (X7, Y -~ (X, Y) as n—-» where

n n

Y', Y € DeC)_, X, XeD((0,#»), R) and the functions X

and Y are continuous with respect to t. Then for every

h>0 and N>0 such that sup IXE - th < h we have
1/N<t<N
sup IYE(XE) - Y (X)) < sup sumeYg(G) -y (8)1 +
1/N<t<N 1/N<t<N 0¢R
+ sup sup lYt(e) - Y. (67)1 (8)
1/N<t<N |6-6'|<h
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and the right-hand side of this estimation tends to

zero as h~0. Hence, Y (x") - Y(X) as n»» for the

Skorohod metric. s

COROLLARY 3.2. Assume the conditions of corollary

3.1. Then

n
~n w(Po)

2P ——— (exp(W_/(2£))) (¢

REMARK 3.1. Note that under the conditions of

remark 2.4 and the assumption about uniqueness of 5T’

T>0, we also have

n n
o) ~ o V(PG <
8, Z Z

@)
=3

n
T T T’

and in the special case (2) we get

w(P?)

an
eT T

4. WEAK CONVERGENCE OF FUNCTIONALS OF INTEGRAL TYPE OF z"

Let %(8), 6 ¢R™

, be a nonnegative continuous function
of polynomial growth with 2(0)=0. Let (Qn)n>1 be

probability measures on R™ admitting the densities
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m

a™(8), 8 €R™, with respect to the Lebesgue measure.

Assume that sup sup_ g (8)<= and that g (6)-q(8),
n 0eR

¥ 6 e R™. For every t>0 we set

2]
o
]

n n n
‘ ém 2(u-6) Zt(G) g (8)ds,

We are interested in conditions for the weak conver-

n _ ,yn -
gence of ¥© = (¥ (u)) g gt to ¥ = (Wt(u))t>0, uer™

in the Skorohod space D((0,x), L (R™) .

loc

As in the condition (3) we introduce functions

pe(y) with y>0, 0, n21 and ¢3(y) = Tim ¢}(y)
n—»oo

satisfying the conditions:

m+r—1(mn(y))8/(8+m)

the functions y n

monotonically
decrease with respect to y and are integrable at (10)

infinity for t>0 and 1<ng> where r=0 and B>0 are

constants.
We set
pD (u) = f 2(u-8) z1(8)g"(6)as,
€L 161>L t
(11)
wt,L(u) = J 2(u-6) 2,(6)q(6)ds

[61>L

and prove the following lemma.
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LEMMA 4.1. Suppose the conditions I1I1) and IV) of
theorem 2.1 with B>1 and substitution of (3) by (10).

Then for every N>0, L>O0, ueRrR" and £>0

o]

B D )se)ele) £ (v+)™E R () BB g (12)
° 1/N2E2N b ptzeIsete L2 Y T Y

p( sup v, . (wze)scle) [ (yrn)™E e (NP B (43
1/N<t<N 7V L/2 C1/m

where r 18 the degree of the polynomial growth of 2(-)

and c(e) <8 a postitive constant.

n
£, 1. % s

process and for every N>0, L>0, u ¢ R™ and >0 consider

PROOF. Note that wg(u) = (¢ is an optional

the stopping time

T = inf{1/N € t < N: 9] (u) 2 €} (14)

with inf {§}=N. Then

(u) 2e) <P

P?( sup wg L <P (Y, (a) 2 €e/2) . (15)

1/N<t<N

Using the fact that 2(u-6) is smaller then a polynomial
of degree r and also the estimation (37) of theorem 2

in £9] we obtain

[o0]

(u)2e/2)< cle) [(y+1
L/2

)m+r4( n

w1/N(y))B/(B+m)

1
o 'T,L dy . (16)

for every stopping time t21/N and, hence, (12).
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Using the weak convergence (4), the Skorohod repre-
sentation theorem and Fatou’s lemma, from the estimation

(12) we obtain (13).

THEOREM 4.1. Suppose the conditions of theorem 2.1

with B>1 and the substitution of (3) by (10). Then

n w(Pg)

b4 k4

as n»° in the Skorohod space D((0,»), T (R™)).

loc

PROOF. To prove the convergence of the finite
dimensional distributions we use the Kramer-Wold method
and show that for every cie R,IH_eRm, tie,R+ with

1£i<gk, k=1, we have

k N w(Ph) k
121 cy Tti(ui) 121 c; Wti(ui) . (17)
For every L>0 we set
o k- n n k .
= Lo (¥ (u))-vy, (u)), £. = T c. (¥, (w)-=¥_ _(u,))
L j=1 L ti i ti,L i’ L j=1 1 ti i ti,L i

From (4), the Skorohod representation theorem and the
convergence qn(e) - g(e), Yo ERm, and also from the
uniform boundedness of the functions 2(8), qn(e),

n
zt(e) on compact sets of 6 we get by the Lebesgue
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dominated convergence theorem that fz»fL as n—-». Hence,
for all continuity points y of the distribution of fL

we obtain

lim Py (£ 2 y) = P(f 2 y) . (18)

N>

Note that for every L>0, y>0 and >0

k k
ey n n . n n
0<lim Po( E c; Tt_(ui)2y) - lim PO(.Z ciTt'(ui)Zy)s
n--o i=1 i n->o i=1 i
=—— N, /N . n, .n
< lim P (£72y-€) - lim P (fy2y+e) + (19)
n-—»x n—>°
=— N k n
+ 21im Po(.E lcilwt.,L(qi)ZE)
n—~»° i=1 i
and by lemma 4.1
— g, K n
élm lim Po(_Z lc, | wt.,L(ui) >e) = 0. (20)
—»00  )-»00 i=1 i

Then checsing €40 such that y-¢ and y+e are points of
continuity of the distribution of fL’ from (18), (19)

and (20) after taking lim lim we obtain (17).

For the weak convergence of v to ¥ in D((0,»),

T (R™)) we have to prove the weak convergence in

loc

D{C1/N,NY, Ty (R™)) for every N>0. For that in turn

ocC
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according to [11] and the finite dimensional conver-

gence proved before it is sufficient to show that

i) lim sup Pg(wu (Wn)ZE) = O,thelgn YN>0 ,

h-0 n

0, Yix1, ¥ N>0 ,

v
m
il

ii) lim sup PS(K; N(W
h-0 n !

where w- (Wn) is the modulus of continuity in

h,N
D(C1/N,NJ, R) for ?n(u) and

K; N(Wn) =  sup sup IWE(G) - WE(G’)I
! 1/N<t<N IS-G'ISh,e,G’Qxi
where (JCl)i>1 is an increasing sequence of compact sets,

m
u K. =r"
i=1 1

To obtain i) we note that for every L>0, N>0 and

u € R™

u n u n n n

w (¥7) < w (v = ) + 2 sup ¥ (u). (21)

h,N h,N L 1/N<t<N t,L

By theorem 2.1 and the estimation
wo (™ - ) < o(L) w, (2™)
h,N L~ h,N

where c(L) is a positive constant and Wy Nt ) is the
modulus of continuity in D(C1/N, N3, Eloc(Rm)), we get
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n N

. n, u — m
Illirg S;lp Polwy (¥ vp) 2 e) =0, Yu e R". (22)
In turn by lemma 4.1
lim sup P sup ({)E L(u) >¢) =0, Yue R,
I~ n % 1/N<t<N y
that together with (21) and (22) gives i).
For ii) we have for every L>0 and N>O0
i n i n ) n
K (¥7) <k (5 = yo) + 2 sup sup Y, .(u),(23)
b, h,N L 1/Nst<N ueX, ©'"
G Y - D) < sup 12(8)-2(6")1 sup  sup Z.(6)
! |e—e'|sh,e,e'ejcj 1/Nst<N 181<L

where Jlj is defined by f{u-8:18l< L, ueld} & th. Since

the function 2(°) is continuous and the sequence

sup sup zﬁ(e) is tight we obtain
1/N<t<N 101<L
lim sup Pg( K;(Wn - ¢E) > ) =0 .

h-0 n

For the second term on the right~hand side of (23) we

use the estimator of lemma 4.1 and get ii).®
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WEAK CONVERGENCE OF BAYESIAN ESTIMATORS

Suppose that for 2(-), qn(-) and g(+) the condi-
tions of the previous section are satisfied. We

denote by 52 and ét’ t>0, the Bayesian estimators

of the parameter 8 corresponding to %(-), g (-), z"
and 2(-), g(-), Z respectively, i.e.
67 = arg inf (¥7(u)), 6, = arg inf (¥, (u)) (24)
t m 't R m "t
uéeR Uu€ER
with 53 = o, 5t = o if the infimum with respect to

u is not achieved and they are equal to any point of

minimum with respect to u if there are several points

of minimum. In the same way we define Eﬁ_ and et_

substituting Wg(u) and Wt(u) by WE_(u) and Wt_(u)

respectively.

THEOREM 5.1. Suppose that the Bayesian estimators

~

52_, éz, 6t and Gt_ are unique for every t>0. Assume

also the conditions of theorem 4.1 , then for

51’1 - ~n)

(et £>0 and 6 = (et)t>0 we have the convergence

in the Skorohod space D((0,»), RmEE(Rm)).

PROOF. For every L>0 and N>0 we consider the

stopping time
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T = inf{1/N € t < N: |§2| > L}

with inf{@} = N. Using the estimation of theorem 2 in

[91 we get

Pg( sup léil = ©) £ lim Pg( sup iéﬁl > L) <
1/N<t<N Lo 1/N<t<N

<lim P§(|é?| > L/2) = 0.
)

xn
Therefore, the sequence (et)1/Nst$N

bounded (P?—a.s.) for every N>0 and since the functional

is uniformly

f(-+) = arg inf (+) is continuous when infinum is
u&eR
achieved in unique point, the process 6" has the paths

in the space D((0,), Rm). In the same way we obtain
that the process 6 has the paths in the space

D((0,»), RY), too.

By (4) and the Skorohod representation theorem one

can find a probability space (Q, F, P) and the processes

sh

7z and Z for every N>0 (P-a.s)

Do) - z,.(8)1 =0

sup sup IZt "

1/N<t<N 6€éR

as n»~. We define gz(u), (u) by

Ve p(w) and ¥ (w), ¥ o

(9) and (11) with replacing z" and Z by Z° and Z. Because
of lemma 4.1 P(lim  sup sup

Lo 1/N<t<N ueX. €L
i>1 and applying the Lebesgue dOminated convergence

(u)>0)=0 for every

theorem we obtain sup sup| @ﬁ(u) - @t(u)l*o as
1/N<t<N uel&

n-~, After that in the same way as in theorem 3.1 we
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- 20 -

prove that  sup 16

- etl»O as n-»» and hence, (25)
1/N<t 4N

n
t
follows.®

COROLLARY 5.1. Suppose that 7 = (zt(e))t>0 has the

form (2) and 6 are the Bayesian estimators for the
continuous nonnegative loss function (+) having at

most polynomial grows and such that 4(0)=0, 2(6)=L(-86)
and the set {L(0)<c} is convex and bounded for every
c>0, and for the a priory demsity q(6)z1, ¥o € R™. Assume
the conditions of theorem 4.1 and the uniqueness of the

~n

Bayesian estimators et, 52_ for every t>0 then

n
5n w(Py,)

(We /%) es0 .

PROOF. Since in this case

2(u-6)exp(6W, - = 0 t)do = exp(W,/(2t))-

N —

. ém 2 (u-6) exp(—t(e—wt/t)2/2)d6

we obtain by setting v=6—Wt/t and using the analog of the
Anderson’s lemma [2] that ét = Wt/t and the result

follows from theorem 5.1. M

THEOREM 5.2. Suppose the conditions of theorem 5.1.

-~

n _ n,xn s _ ~
Then for the processes 7= = (zt(et)) and 72 = (zt(et))

t>0 t>0

we have the weak convergence

.n w(P?) R
2% -2+ 2
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in

the Skorohod space D((0,»), R).

PROOF: the same as in theorem 3.2. ®

COROLLARY 5.2. Assume the conditions of corollary 5.1.

Then
an w(Pﬂ) 5
27— (exp(W _/(2t))) o4 -
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