PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

E. ANDRONIKOF

Matrices carrées sur l'algèbre de Weyl

Publications de l'Institut de recherche mathématiques de Rennes, 1985, fascicule 4 « Séminaires de mathématiques - science, histoire et société », , p. 1-9

http://www.numdam.org/item?id=PSMIR_1985___4_1_0

© Département de mathématiques et informatique, université de Rennes, 1985, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MATRICES CARREES SUR L'ALGEBRE DE WEYL

E. ANDRONIKOF

Introduction

On notera ici W_n l'algèbre de Weyl des opérateurs différentiels linéaires sur \mathbf{C}^n à coefficients polynomiaux; $W_n = \{P = P(x, D_x) = \sum_{\substack{|\alpha| \leq m \\ |\alpha| \leq m}} \mathbf{a}_{\alpha} D_{\mathbf{x}}^{\alpha} ;$ $\mathbf{m} \in \mathbb{N}, \ \alpha = (\alpha_1, \dots, \alpha_n), \ \mathbf{a}_{\alpha} \in \mathbb{C}[x_1, \dots, x_n], \ \mathbf{D}_{\mathbf{x}}^{\alpha} = \mathbf{D}_{\mathbf{x}_1}^{\alpha_1} \dots \mathbf{D}_{\mathbf{x}_n}^{\alpha_n} \}$, avec les relations $[x_i, x_j] = [D_{\mathbf{x}_j}, D_{\mathbf{x}_j}] = 0$, $[x_i, D_{\mathbf{x}_j}] = -\delta_{ij}$.

Soit a et a' deux matrices carrées, a $\in M_{\hat{k}}(W_n)$, a' $\in M_{\hat{k}}(W_n)$: on dira que a et a' sont équivalentes si pour r >> 1 il existe b,c $\in GL_r(W_n)$ telles que $b(a \oplus I_{r-\hat{k}}) = (a' \oplus I_{r-\hat{k}'})c$. (Pour r entier ≥ 0 I_r désigne la matrice unité $r \times r$). Par exemple toute matrice inversible est équivalente à $1 \in W_n$. Ce point de vue K-théorique est usuel dans la théorie des équations aux dérivées partielles ("les solutions du système au = f ne dépendent que du conoyau de l'action de a sur $W_n^{\hat{k}}$ comme morphisme à gauche").

Une matrice a $\mathbb{E} \ \mathbb{M}_{\ell}(\mathbb{W}_n)$ est dite déterminée si elle n'est pas diviseur de zéro dans $\ \mathbb{M}_{\ell}(\mathbb{W}_n)$: on montre qu'il y a dans sa classe d'équivalence une matrice 2×2 (§.2) mais pas en général de matrice normale (§.3): en particulier a ne sera en général pas équivalente à une matrice triangulaire (§.4).

La première assertion résulte facilement de théorèmes de J.T. Stafford ; la deuxième utilise des techniques microlocales et d'algèbre filtrée, ce qui justifie le cadre un peu plus général qu'on adopte dans la suite.

Exposé n° au Colloque d'Algèbre de Rennes (20-25 mai 1985).

1 - Notations et rappels (Voir par exemple [1])

Soit (X, \underline{O}_X) une variété algébrique lisse sur \mathbb{C} , dim X = n, $T^*X \xrightarrow{\pi} X$. le fibré cotangent à X; soit \underline{D}_X l'Anneau (i.e. le faisceau d'anneaux) des opérateurs différentiels linéaires sur X à coefficients \underline{O}_X , filtré par le degré des opérateurs : $\underline{D}_X(j) = \{P = \sum_{\alpha} a_{\alpha}(x)D_{\alpha}^{\alpha}\}$. Si $X = \mathbb{C}^n$ on a

$$\begin{split} &\Gamma(X, \ \ \underline{D}_X) = W_n) \ . \ \text{On note} \ \ \text{gr} \ \ \underline{D}_X \ \ 1' \text{Anneau (commutatif) gradué associé} \\ &\text{gr} \ \ \underline{D}_X = \bigoplus_X (j+1) / \ \ \underline{D}_X(j) \ \ \longrightarrow \ \ \underline{0}_{T^*X} \ , \ \sigma_j \ \ 1' \text{application canonique} \\ &\sigma_j : \ \underline{D}_X(j) \longrightarrow \text{gr}^j \ \ \underline{D}_X \ \ \text{et} \ \ \sigma \ \ \text{le symbole principal} \ \ \sigma : \ \underline{D}_X \longrightarrow \text{gr} \ \ \underline{D}_X. \end{split}$$

Une filtration $(M_k)_{k\in\mathbb{Z}}$ d'un \underline{D}_X -Module à gauche \underline{M} est une filtration croissante, exhaustive de \underline{M} telle que $\underline{D}_X(j)$ $\underline{M}_k \subset \underline{M}_{k+j}$; on dit qu'elle est filtrée-libre s'il existe des entiers N et m_j , $1 \le j \le N$; tels que $\underline{M} \cong \underline{D}_X^N$

et $\underline{\underline{M}}_k = \underbrace{\underline{D}}_X(k-\underline{m}_j)e_j$. On ne considère dans la suite que des Modules à j=1

gauche. Une suite exacte filtrée $\underline{\underline{M}'} \longrightarrow \underline{\underline{M}} \longrightarrow \underline{\underline{M}''}$ de $\underline{\underline{D}_X}$ -Modules induit par définition une suite exacte $\underline{\underline{M}'_k} \longrightarrow \underline{\underline{M}'_k} \longrightarrow \underline{\underline{M}''_k}$ en chaque degré $k \in \mathbb{Z}$. Une bonne filtration de $\underline{\underline{M}}$ est la donnée d'une suite filtrée-exacte

 $\underline{L} \longrightarrow \underline{M} \longrightarrow 0 \text{ avec } \underline{L} \text{ filtr\'e-libre ; alors } \underline{M} \text{ est } \underline{D}_X\text{-coh\'erent et}$ $gr \ \underline{M} = \underbrace{\theta}_{ZZ} \ \underline{M}_{j+1} / \ \underline{M}_j \text{ est } gr \ \underline{D}_X\text{-coh\'erent. Si } \underline{M} \text{ est } \underline{D}_X\text{-coh\'erent, il}$ admet des bonnes filtrations locales et, une bonne filtration étant choisie, on pose : Car $\underline{M} = \text{Supp gr } \underline{M} \subset T^*X \text{ (variét\'e caract\'eristique de } \underline{M} \text{) ; alors si } V$ est une composante irréductible de Car \underline{M} , on définit la multiplicité mult $_V \ \underline{M}$ comme étant celle du \underline{O}_X -Module \underline{O}_X gr \underline{M} le long de V.

Soit $\underline{\underline{M}}$ un $\underline{\underline{D}}_{\underline{X}}$ -Module cohérent.

Théorème 1.1. ([S.K.K.], Gabber [3]) : Car M est un ensemble algébrique involutif.

En particulier codim Car $\underline{M} \le n$.

Théorème 1.2. (J.E. Ross [4]). On a :

- (i) codim Car $\underline{\operatorname{Ext}}_{\underline{D}_{\underline{X}}}^{\underline{j}}(\underline{M},\underline{D}_{\underline{X}}) \geq \underline{j}$.
- (ii) $\underline{\operatorname{Ext}}_{\underline{D}_{\underline{X}}}^{\underline{j}}(\underline{M},\underline{D}_{\underline{X}}) = 0$ pour $\underline{j} < \operatorname{codim} \operatorname{Car} \underline{M}$.

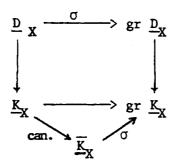
Corollaire 1.3. On a l'inégalité de Bernstein : dh $\underline{D}_{\overline{X}} \leq n$, (où dh désigne la dimension homologique).

<u>Corollaire 1.4.</u> ([5], théorème des Syzygies). Localement $\underline{\mathbf{M}}$ admet des résolutions libres de longueur $\mathrm{Sup}(1,\,\mathrm{dh}_{\underline{\mathbf{D}}_{\underline{\mathbf{X}}}}\underline{\mathbf{M}}) \leq n$. En particulier un $\underline{\mathbf{D}}_{\underline{\mathbf{X}}}$ -module projectif est localement stablement libre.

J.T. Stafford avait déjà remarqué que les modules projectifs sur W_n étaient stablement libres ([6]).

2 - Matrices déterminées

Soit (\underline{K}_{X}) l'Anneau des fractions à gauche de \underline{D}_{X} , muni de sa filtration naturelle de localisé, $\overline{\underline{K}}_{X}$ le demi-Groupe commutatif $\overline{\underline{K}}_{X}$ = $\{0\}$ U $\underline{K}_{X}^{*}/(\underline{K}_{X}^{*},\underline{K}_{X}^{*})$. On a un diagramme commutatif :



Soit a une matrice a $\mathbb{E} \, \mathbb{M}_{\ell}(\underline{\mathbb{D}}_X)$: le déterminant de Dieudonné \det_{∂} a de a définit une section de $\overline{\underline{K}}_X$ et le déterminant de Sato-Kashiwara de a est par définition det a = $\sigma(\det_{\partial}$ a); il a été généralisé dans [7].

Théorème 2.1. (Sato-Kashiwara) [8] .

(i) det a ε gr \underline{D}_{y}

Soit $\underline{M} = \underline{D}_{X}^{\ell}/\underline{D}_{X}^{\ell}$ a.

(ii) $Car M = (det a)^{-1}(0)$.

Ce qu'on précise dans [5] par :

(iii) $\text{mult}_{V} \stackrel{\underline{M}}{=} \text{mult}_{V} (\underbrace{0}_{T} *_{X} / (\text{det a}) \underbrace{0}_{T} *_{X})$, pour toute composante irréductible V de Car \underline{M} .

On identifie a à un morphisme de \underline{D}_X -Module à gauche $P \in \underline{D}_X^L \longrightarrow Pa \in \underline{D}_X^L$ et il est équivalent de dire que ce morphisme est injectif ou que det a $\not\equiv 0$: une matrice vérifiant ces conditions sera dite déterminée. Un \underline{D}_X -Module cohérent \underline{M} sera dit déterminé s'il est localement de la forme $\underline{D}_X^L/\underline{D}_X^L$ a avec a déterminée. On déduit du théorème des Syzygies la caractérisation suivante :

<u>Proposition 2.2.</u> ([5]). Soit \underline{M} un $\underline{D}_{\underline{X}}$ -Moiule cohérent. $\underline{\underline{M}}$ est déterminé si et seulement si $\underline{\underline{Ext}}_{\underline{D}_{\underline{X}}}^{\underline{j}}(\underline{M},\underline{D}_{\underline{X}}) = 0$, $\underline{j} \neq 1$.

Dans le cas global, on a un énoncé plus précis :

Proposition 2.3. Soit M un W_n -module (à gauche) de type fini. Les deux propriétés suivantes sont équivalentes :

- (i) M est déterminé (i.e. $\operatorname{Ext}_{W_n}^{\mathbf{j}}(A,W_n)=0$, $\mathbf{j}\neq 1$).
- (ii) il existe a $\in \mathbb{IM}_2(W_n)$, telle que det a $\neq 0$ et $M \cong W_n^2/W_n^2$ a.

L'implication i ==> ii résulte du :

Théorème 2.4. (Stafford [9]): 1) Tout W_n-module de torsion est image homomorphe d'un idéal projectif.

2) Tout W_n -module projectif de rang ≥ 2 est libre.

Alors si M est déterminé il y a une suite exacte de la forme $0 \longleftarrow M \longleftarrow P \longleftarrow Q \longleftarrow 0 \text{ avec } P \text{ idéal projectif. Comme } dh_W M \le 1 \text{ ,}$

Corollaire 2.5. Soit a $\in \mathbb{M}_{\ell}(\mathbb{W}_n)$ une matrice déterminée. Alors a est équivalente à une matrice déterminée a' $\in \mathbb{M}_{2}(\mathbb{W}_n)$. Plus précisément il existe b,c $\in GL_{2+\ell}(\mathbb{W}_n)$, a' $\in \mathbb{M}_{2}(\mathbb{W}_n)$ telles que b(a \oplus \mathbb{I}_{2}) = (a' \oplus \mathbb{I}_{ℓ})c.

<u>Preuve</u>: Soit $M = W_n^2/W_n^2$ a. Vu la proposition précédente il existe a' ϵ $M_2(W_n)$ telle que $M \cong W_n^2/W_n^2$ a'. On a deux résolutions :

Et on applique le lemme de Schanuel : on peut trouver deux morphismes $\alpha: \overset{\chi^2}{m} \longrightarrow \overset{\chi^2}{m} \text{ et } \beta: \overset{\chi^2}{m} \longrightarrow \overset{\chi^2}{m} \text{ qui font commuter le premier carré du diagramme ci-dessus, et alors le morphisme :}$

$$\mathbf{F} = \begin{bmatrix} \alpha & -\mathbf{1} \\ \mathbf{1} - \beta \alpha & \beta \end{bmatrix} : \mathbf{w}_{\mathbf{n}}^{\ell} \oplus \mathbf{w}_{\mathbf{n}}^{2} \longrightarrow \mathbf{w}_{\mathbf{n}}^{2} \oplus \mathbf{w}_{\mathbf{n}}^{\ell}$$

est un isomorphisme (d'inverse $F^{-1} = \begin{bmatrix} \beta & 1 \\ -1 + \alpha \beta & \alpha \end{bmatrix}$).

On peut écrire le diagramme suivant; où les lignes sont exactes et les carrés commutatifs :

$$0 \longleftarrow M \xleftarrow{(\phi,0)} W_n^{\ell} \oplus W_n^2 \xleftarrow{a \oplus I_2} W_n^{\ell} \oplus W_n^2 \longleftarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

alors G est un isomorphisme et on a a' θ $I_{\ell} = F_0$ (a θ I_2) o G^{-1} .

3 - Matrices normales

Rappelons la :

<u>Définition 3.1.</u> Une matrice $a = (a_{ij})_{1 \le i,j \le \ell} \in \mathbb{M}_{\ell}(\underline{D}_X)$ est dite normale s'il existe des entiers m_i , $n_i \in \mathbb{Z}$, $1 \le i \le \ell$, tels que :

$$a_{ij} \in \underline{D}_{X}(m_{i}^{-n}_{j})$$
, $1 \le i, j \le \ell$

et $\det((\sigma_{m_i^{-n}j}(a_{ij}))_{i,j}) \neq 0$ (et alors cette quantité est égale à det a, [8]).

Exemples: 1) Une matrice triangulaire est normale.

2) Une matrice a ϵ $\mathbb{M}_2(\underline{D}_X)$ est normale ssi $\det(\sigma(a_{ij})) \neq 0$; (cette propriété est inexacte pour une matrice $\ell \times \ell$, $\ell > 2$).

Les modules présentés par des matrices normales admettent la caractérisation homologique suivante en termes de bonnes filtrations, ([10]):

Proposition 3.2.

(i) Soit a une matrice normale a $\epsilon \, \mathbb{I}\!M_{\ell}(\underline{D}_X)$ et $\underline{M} = \underline{D}_X^{\ell}/D_X^{\ell}$ a . Alors \underline{M} a une bonne filtration telle que :

(*)
$$\underline{\operatorname{Ext}}_{\operatorname{gr}}^{\mathbf{j}} (\operatorname{gr} \underline{M}, \operatorname{gr} \underline{D}_{\mathbf{X}}) = 0 , \quad \mathbf{j} \neq 1 .$$

(ii) Soit \underline{M} un \underline{D}_X -Module cohérent, $(\underline{M}_k)_k$ une bonne filtration de \underline{M} telle que l'on ait (*) (i.e. gr \underline{M} est un gr \underline{D}_X -Module de Cohen-Macaulay de codimension 1). Afors,localement,il existe $\ell \geq 0$ et une matrice a $\epsilon \ \underline{M}_{\ell}(\underline{D}_X)$, a normale, tels que $\underline{M} \cong \underline{D}_X^{\ell}/\underline{D}_X^{\ell}$ a.

4 - Image inverse non caractéristique

Soit $U \longrightarrow X$ une sous-variété de X d'idéal de définition $\underline{I}_{\underline{Y}}$ et ρ et $\underline{\sigma}$ les applications canoniques : $\underline{T}^*\underline{Y} \xleftarrow{\rho} \underline{Y} \times \underline{T}^*\underline{X} \xrightarrow{\delta \underline{\sigma}} \underline{T}^*\underline{X}$. Soit \underline{M} un $\underline{D}_{\underline{X}}$ -Module cohérent. On dit que \underline{Y} est non caractéristique pour \underline{M} ssi

Car $\underline{M} \cap T_{\underline{Y}}^{*}X \subset T_{\underline{X}}^{*}X$ et on définit le Module induit $\underline{M}_{\underline{Y}}$ par $\underline{M}_{\underline{Y}} = \rho_{*}(\varpi^{-1}(\underline{O}_{\underline{Y}} \otimes \underline{M}))$, ([s.k.k.]).

Si $(\underline{M}_k)_k$ est une bonne filtration de \underline{M} on définit la filtration induite $F_{Y \to X} \underline{M}$ sur \underline{M}_Y en posant $(F_{Y \to X} \underline{M})_k = \underline{M}_k / \underline{I}_Y \underline{M} \cap \underline{M}_k$, $k \in \mathbb{Z}$; c'est une bonne filtration de \underline{M}_Y ([11]).

Théorème 4.1. ([11]). Supposons de plus que 1 on ait : $\underline{\operatorname{Ext}}_{\operatorname{gr}}^{\mathbf{j}} \underline{\operatorname{D}}_{X} (\operatorname{gr} \underline{\operatorname{M}}, \operatorname{gr} \underline{\operatorname{D}}_{X}) = 0 , \operatorname{pour} \mathbf{j} \neq \mathbf{d} . \operatorname{Alors} \underline{\operatorname{Ext}}_{\operatorname{gr}}^{\mathbf{j}} \underline{\operatorname{D}}_{Y} (\operatorname{gr} \underline{\operatorname{M}}_{Y}, \operatorname{gr} \underline{\operatorname{D}}_{Y}) = 0$ pour $\mathbf{j} \neq \mathbf{d} - \operatorname{codim} Y$.

Corollaire 4.2. Soit a $\epsilon \, \mathbb{M}_{\ell}(\underline{D}_{X})$ une matrice normale , $\underline{M} = \underline{D}_{X}^{\ell}/\underline{D}_{X}^{\ell}$ a , Y une sous-variété de X non caractéristique pour \underline{M} , alors \underline{M}_{Y} est localement libre de rang le degré de det a .

Celà résulte du théorème 4.1. et de ce que, localement, $\underline{M}_{\underline{Y}}$ étant un Module filtré de gradué projectif, il est filtré-libre, ([11]), d'une part ; l'assertion relative au rang résulte plus généralement de la :

Proposition 4.3. Soit a $\in \mathbb{M}_{\ell}(\underline{D}_X)$ une matrice déterminée, $\underline{M} = \underline{D}_X^{\ell}/\underline{D}_X^{\ell}$ a, Y une sous-variété non caractéristique, alors \underline{M}_Y est localement projectif de rang le degré de det a.

L'isomorphisme de [S.K.K.]: $\mathbb{R} \xrightarrow{\text{Hom}} (\underline{M}, \underline{D}_{\underline{Y}})$ dim $\underline{Y} \xrightarrow{\sim} \mathbb{R} \xrightarrow{\text{Hom}} (\underline{M}, \underline{D}_{\underline{X}})_{\underline{Y}}$ dim \underline{X} prouve que $\underline{M}_{\underline{Y}}$ est localement projectif et on applique le théorème 2.1. (iii).

5 - Contre-exemple et remarques

Exemple 5.1. Soit \underline{P} l'idéal projectif non localement libre de $\underline{D}_{\underline{C}}$, $\underline{P} = \underline{D}_{\underline{C}} \ D_{\underline{X}}^2 + \underline{D}_{\underline{C}} (x \ D_{\underline{X}}^{-1}) ... \text{Soit} \ X = \underline{C} \times \underline{C} = \{(x,t)\} \text{ et } \underline{M} \text{ le } \underline{D}_{\underline{X}} \text{-Module}$ $\underline{M} = \underline{P} \ \hat{\otimes} \ (\underline{D}_{\underline{C}} / \underline{D}_{\underline{C}} \ D_{\underline{C}}) \text{ (notations de } \underline{[S.K.K.]} \text{). C'est le Module engendré par deux}$

générateurs u, v avec les relations $xu = D_x v$, $D_t u = ()$, $D_t v = 0$. On a $\underline{Ext} \frac{j}{D_X} (\underline{M}, \underline{D}_X) = 0$, $j \neq 1$ donc \underline{M} est localement présenté par une matrice déterminée a $\varepsilon \, \underline{M}_{\underline{L}} (\underline{D}_{\underline{X}})$ (proposition 2.2.), mais $Y = \{t : 0\}$ est non caractéristique pour \underline{M} et $\underline{M}_{\underline{Y}} \cong \underline{P}$ n'est pas un $\underline{D}_{\underline{Y}}$ -module localement libre, donc a ne peut être équivalente à une matrice normale vu les propositions 3.2. et corollaire 4.2.

D'autre part \underline{M} est défini globalement et la proposition 2.3. appliquée au W_2 -module $M = \Gamma(\underline{\mathbb{C}}^2, \underline{M})$ dit que a est équivalente à une matrice de $M_2(W_2)$; un calcul explicité dans [5] donne la matrice

$$\mathbf{a'} = \begin{bmatrix} (-xD_x + 1)(D_t - 1) + 1 & x^2(D_t - 1) \\ -D_x^2(D_t - 1) & (xD_x + 2)(D_t - 1) + 1 \end{bmatrix}$$

Remarque 5.2. En dimension 1 on ne connaît pas de matrice a $\in \mathbf{M}_{\ell}(W_1)$, déterminée, qui ne soit pas équivalente à une matrice normale. On peut penser que c'est toujours le cas ; d'ailleurs si $\underline{\mathbf{M}} = \underline{\mathbf{D}}_{\mathbf{C}}^{\ell}/\underline{\mathbf{D}}_{\mathbf{C}}^{\ell}$ a le gr $\underline{\mathbf{D}}_{\mathbf{C}}$ -module gr $\underline{\mathbf{M}} = \mathbf{G} = \mathbf{M}_{\mathbf{C}} + \mathbf{M}_{\mathbf{C}}$ est Cohen-Macaulay de codimension 1 pour j assez déf $\mathbf{k} \succeq \mathbf{j}$ grand ([11]).

Bibliographie

- [1] P. SCHAPIRA: Microdifferential Systems in the Complex Domain.

 Grundlehren, 269, Springer (1985).
- [S.K.K.] M. SATO, M. KASHIWARA, T. KAWAÏ: Hyperfunctions and pseudo-differential equations. Lectures Notes in Math. n° 287, Springer (1973).
- [3] O. GABBER: The integrability of the characteristic variety. Amer. Journ. of math. Vol. 103, 3, (1981), 445-468.
- [4] J-E. ROOS: C.R.A.S. Série A, 274 (1972), 23-26.

- [5] E. ANDRONIKOF: Systèmes déterminés d'E.D.P. in Séminaire Vaillant, Pub. C.N.R.S. (1982).
- [6] J.T. STAFFORD: Weyl algebras are Stably Free. J. Algebra 48 (1977), 297-304.
- [7] K. ADJAMAGBO : C.R.A.S. Série I, t. 294, Série I (14 juin 1982), 681-684.
- [8] M. SATO, M. KASHIWARA: The determinant of matrices of pseudo-differential operators. Proc. Japan Acad. n° 51 (1975), 17-19.
- [9] J.T. STAFFORD: Module structure of Weyl algebras. J. London Math. Soc.(2)
 18 (1978), 429-442.
- [10] E. ANDRONIKOF: C.R.A.S. Série I, t. 293 (5 oct. 1981), 257-260.
- [11] E. ANDRONIKOF: Sur les filtrations de Cohen-Macaulay des modules microdifférentiels. Preprint Université Paris-Nord (1985).

E.A.

Dépt. de Mathématiques
Université Paris-Nord
93430 VILLETANEUSE