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MAXIMAL ORDERS IN AN AZUMAYA ALGEBRA OVER A VON NEUMANN REGULAR RING
By
BO STENSTROM

1. Introduction

The classical theory of maximal orders over a Dedekind domain R
was generalized by Auslander and Goldman [1] to the case of a
noetherian integrally closed domain R , and further by Fossum [}O]
to a Krull domain R ., The methods used for these generalizations
depend heavily on a reduction to the classical case by localization
at the prime:ideals of height 1 in R , and they are not practicable
in the case of a more general ground-ring R . More recently,
Kirkman and Kuzmanovich [14] have studied maximal orders over a
hereditary ring R , using the Pierce representation of R as a
sheaf of Dedekind domains to obtain a reduction to the classical
case,

Our aim in this paper is to use the methods of [14] to study
maximal orders over a commutative ring R whose total ring of
fractions K is von Neumann regular, When Q 1s an Azumaya algebra
over K , we shall define an R=-order in Q to be full R=-subalgebra
A of Q such that every element of A is integral over R .
Besides the development of the basic results of maximal orders, we
shall obtain a characterization of Dedekind orders (cf. Robson [ﬁd])

as maximal orders over (generalized) Dedekind rings (Theorem 12,1).
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Part I. General theory of maximal orders
2. Preliminaries

Let R be a commutative ring with total ring of fractions K ,
and let & ©be the set of non=zero-divisors of R . Throughout this
paper we shall assume that K is von Neumann regular and that R
is completely integrally closed in K , i.e. if x € K and there
exists s such that sx* @ R for all i2 0, then x€ R .
Since R is then integrally closed in K , every idempotent of K
lies in R, so R is a p.p. ring, i.e. the principal ideals of R
are projective modules [3].

The rings R and K thus have the same boolean alpgebra B of
idempotents, Let X denote the boolean space of maximal ideals
of B . The stalk at x € X of the Pierce shecaf associated to the
ring R is R, = R/xR ; where XR 1is the ideal of R generated
by the set x of idempotents, Rx is an indecomposable ring, i.e,
its only idempotents are 0O and 1 , More generally, the stalk
at x for an Remodule M 1is

M, = RXQRM = M/xM .

There is a canonical surjection M-» M, s written as nw»m, . If
m, =0 for some x€ X , then m, = O for all y in some closcd-
~and=-open neighborhood of x in X , and me = O for some idem=
potent e of R , Furthermore, @ Rx is faithfully flat as an
R-module, (See []8} or YZE] for dzggils on the Pierce sheaf).

Since K is von Neumann regular, K, is a field for each x€ X .
The ring Rx is an integral domain with Kx as its field of

fractions,

We shall throughout the paper assume that Q 1is an Azumaya

algebra over K . Then for each x € X we have that Q. is a
central simple K, ~-algebra [14]. In t1d] it is shown how the reduced
trace can be defined as a Kelinear mapping Trd:Q-=K , Ve shall

need the following two results:
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Lemma 2,1 The mapping \ :Q—>Homg(Q,K) given by w(a) = Trd(a=)

is a Keisomorphism,

Proof. See [14] (Lemma 2,3) for details, The essential point
is that Wx:Qx'—)Hom}g{(Qx’Kx) is classically known to be an

isomorphism for each x€ X . a

Lemma 2,2 If a € Q is integral over R , then Trd(a) € R.

Proof, It suffices to show this pointwise for each x € X . As is
shown in [14], one is then reduced to the case when R, 1is an

integral domain, which is treated in [2]. (I

3. Relattices

Let V be a finitely genecrated projective K-module, An
R-submodule L of V is called an R=-lattice in V if
1) L is full in V , i,e. LK =1V ;
2) L is contained in a finitely generated R-submodule of _V .

Note that since K is R=flat, one has for every R-submodule
L of V that

Leyk ¥ ik 2 1{z”]

where L[Z"II denotes the module of fractions of L with respect

to Z,

Lemma 3,1 If L 1is an R=lattice in V and M is a full

R=submodule of V , then sL €M for some se€Z .

Proof, L is contained in an R=submodule of V generated by

XyseeesX, o Since M is full, each x; can be written as x; =
= Tk
Then sLe M. (

with xijs M ., Choose s&& such that all sk,.je R .

-

Proposition 3,2 An Resubmodule L of V 1is an R-lattice in V

if and only if there exist finitely generated projective R-gubmodules

P

1°?

P2 of V such that P1 cCLC P2 and rankR P.I = ran}-;KV .
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Egggg. Suppose L is an Re=lattice, Since K 1is regular, we may
write \f::C)Kui , Where each Kui is isomorphic toa principal
ideal of K, i,e. Ku; is isomorphic to Ke;, for some idempotent
e; € R, Since L is full, we may assume that u; € L . Then
P1==€DRui is a finitely generated projective Re-module in L

and of same rank as V . By Lemma 3,1 there exists se€&Z such
that sLC P, , and then L& s 'P, =P, .
The converse is clear, for if P1 is a finitely generated

projective R-module of same rank as V , then 131 is full in V . [J

Remark Similar arguments show that if M is an Relattice in V ’
then an Resubmodule L of V 4is an Relattice if and only if

1

™Mecles™'M for some r,s €2 .

L, Reorders

An Resubalgebra A of the Azumaya Kealgebra Q 1is an R-order
in Q@ 4if A is full in Q and every a€ A 1is integral

over R .

Lemma 4,1 If A is an Reorder in Q , then A 1is a central

Realgebra.
Proof, If a € cen(A) , then a € cen(AK) = cen(Q) = K . Since a

is integral over R , and R 1is integrally closed in K , it

follows that a€ R . Q

The ring Q may thus be described as the ring A[Z"]] of
central fractions of A , Of course Q 1s also the total leoft
and risht ring of fractions of A , since every nonezero=divicor

is invertible in an Azumaya algebra,

Proposition 4,2 There exists an Reorder in Q .

Proof, As in the »roof of Prop. 3.2 we may write @ = @Kui , With
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u; = 1 . Then uzuy = Eaijkuk for some aijke K.Let se€eX
with all saj . € R.Put vy =1, v, =su, for i#1, Then
Rv1 + ZRVi is a full R=algebra, and it is an Reorder since it

is a finitely generated Remodule . 0

Proposition 4,3 An Re-gubalgebra A of Q is an Reorder in 9

if and only if Ax is an Rx-order in Qx for each xe€ X .,

Proof, A is full in Q 1if and only if Ax is full in Q,x for
each x € X , since @Rx is faithfully flat., If an element ag A
is integral over R ,Xthen of course a, € AX is integral over Rx
at each x € X . Suppose on the other hand that AX is an Rx-order
for all x€ X . For each a € A and x € X there is then an
equation éf integral dependence for a holding at all y in a
neighborhood of x , Because of the compactness of X one can'
multiply together finitely many of these equations to get an
equation of integral dependence for a holding at all y€ X ,

i.e., holding globally for a . Q

Theorem 4.4 An R-subalgibra A g_f Q@ is an Reorder in Q 1_f

and only if A 1is an Re=lattice,

Proof., Suppose A is an Reorder in Q . Write @Q =®Kui with

Ku; = Ke; for idempotents e, € R, and with u, € A, Define

gi:Q-’K as gi(ui) = e; , gi(uj) =0 for 1 # j . By Lemma 2.1
there exist v; € Q@ such that gi(a) = Trd(via) for all ag€ Q .

Since the g.'

;& generate the Kemodule Homp(Q,K) , the v.'s

1

generate Q@ over K , Similarly e;8y = By implies e;Vy = V5 .

For cach a€ A we write a = ijvj with kj € K , Then
Trd(au;) = Trd(Z kv.u,) = g kjgj(ui) = kye;

. 1 1
J J J 3

SO kieie R by Lemma 2.,2. Then

a =Zkivi =2 k.e.v,

i~i 1eZRVi 4

and hence A is contained in the finitely generated R=module ZRv,
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Sﬁppose conversely that the R=-algebra A is an R=-lattice in Q .
By Prop. 4.3 it suffices to show that A, 1is an R, -order for
each x € X . We may therefore assume that R 1is an integral
domain with field of fractions K , Let B be any
R-order in q (it exists by Prope. 4.2). By Lemma 3,1 there exists
S€ 32 such that sAC B, One may now proceed by arguing as in
the proof of Prop. 1.2 of [7], and one obtains that a is integral

over R, (@

Remarks. 1. By Schelter [21](p. 253) there exists a noetherian
R-order over a Krull domain R , such that A is not a finitely
generated Remodule,

2. Kirkman and Kuzmanovich [14] show that if R is hereditary,
then every Reorder in @Q is finitely generated as an Remocdule,

but that this no longer holds if R 1is only semihereditary.

5. The left and right orders of a lattice

Lemma 5,1 If I is a full R-submodule of Q , then INX £ 4,
Proof. We have 1 =Zx;k; with x;€& I,k € K. Choose s€Z

with all sk;€ R ., Then s =inski€ I. 0

For the converse we have:

Lemma 5,2 If A is an Reorder in Q@ and I dis a left

A~submodule of Q such that INZL # ¢ , then T 4is full in 9

Proof. Suppose s& IOL , If q€ Q , then q =Zaiki with
a; € A , k; € K, But then q = Zaiki =Zais . s-1ki€. IK , Hence
I is full. Q

Let A be an Reorder in Q , A left A-submodule I of 2,

such that I also is an R=lattice, is called a left A=lattice,

——

Similarly right A=lattices and (twoesided) A=Re=latticcs arc
defined,
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If I and J are Resubmodules of Q , put
1~J=Jae glatc 1}, 1.0 =Jqe q|ige1}.

Lemma 5,3- If I and J are R=-lattices, then also I-.J and

I.*J are R=lattices,

Proof. I contains elements Xygeses¥) which generatc §Q over

X, with

K, and J&€ Rqq +...+Rq, o We may write X094 = ‘14'_' S5 51

¢;jx€ K « Choose s@ T  with all sc € R . Then o5x;q,€ I,

ijk
so ox; € IdJ Jor i =1,.,0eyn, and it follows that I-.J 15
full.

If t€ JnT (Lemma 5.1), then (I*.Jd)te I , so IwJc&Q ‘6-1

I,
wihich is contained in a finitely generated Regsubmodulec cf Q .

Hence I J is an Relattice. {

ror each Relattice I we define the left, resp, rignt, order

of I as

op(D =falale 1}, oD =faltaerl,
which by Lemma 5.3 and Theorem 4,4 are Reorders. We also put

T ={qlIqle 1} = 0)(I)e"I = o (I)+ I ,
which by Lemma 5.3 also is an Relattice, Jote that while I 1is
an  01(I)=o,(I)-lattice, ™! ig an 0,(I)=0;(I)=lattice. In the

usual way one shows:

Proposition 5.4 Let A be an Re-order in Q . If I and J are

left Ae~submodules of Q and J 1s full, then

I.-J ¥ Hom,(J,I) .

In particular one obtains for every R=lattice I in §

<l
vy
)
s

Homol(I)(I,I) 3 OI‘(I) ’

Homol(I)(I,ol(I)) > =1

- 45 -




6. Maximal orders

. . . . . , . I ! s o
An Reorder A in Q is naximal if there is no r=OTr¢er o

j ; . : . ) 1 S 1S S A

in Q such that Ag B . It is immediate from the definition of

ordcrs, and Zorn’s lemma, that every Re=order in @ 1S contained

in a maximal Re-order,

Proposition 6,1 An Reorder A in Q is maximal if and only if

A, 1is a maximal R, -order in Q, for each X € £ .

Proof. Suppose each AX is a maximal Rz-order. If B is an
R=order containing A , then A, = B, for all € £ by Lemma 4.5,
and the faithfulness of @R, implies that A = B . Hence A 1is
a maximal Re-order, *

Suppose on the other hand that A is a maximal Reorder, and
conzider any %x€ X . Suppose Axc: C for some Rx-order C .
Put B =q»"'1[C] under the mapping @:Q=2»Q, . So B is an R=algebra
containing A ., Let b‘e B.. Then bxe C is integral over R, ,
so c-:(bn+r-n_1}.>n'1 *eee+r ) = 0 for some idempotent e of R,
and hence eb is integral over R . It follows "chatdt:lements of
A+eR = (l-e)A@)eB are intcgral over R , and heonce A+c¢D 15

an Reorder., The maximalily of A d1mplies B = A4 and thus C =

= A, so also A, is maximal. {1

«

Proposition 6.2 The followinz vroperties of an Reorder A

[EX
o)
D

arc ecquivalents

(a) A is a maximal Reorder,

(2) o04(I) = A for every locft "A-lattice I , and o (J) = A for

avery right A-lattice J .

(c) ol(I) = Or(I) = 4 for cvery A-A=lattice I ,

(d) If J is an A-A=latticc and there exists se¥  such .nab

"€ A for all n2 1, then J&€ A .
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S
Proof. (a) = (b) is clear since ol(I) and Or(J) are R=orders
containing A , while (b) & (c) is trivial,
() (d): It si'e A for all nd 1, put J°= .>Z J% . Then
alco J° 1is an A=A=lattice, and we have J & 01(3,',; = A .
(d) =» (a): Suppose AQ B , where B 1is an Reorder in Q . Then
B is an A=A=-lattice by Theoren L.4, and by Leuma 3.1 there exists
5€ & such that éB C A . Since B is a ring, condition ()

therefore gives B Q A , ﬂ

Ve give two examples of nmaximal orders:

Exanple 1 If A is an Azumaya algebra over R , then A
maxzimal Reorder in the Azumaya Kealgebra AQQK .

r~

Proof: See c.z. (14], Prop. 1.5. 0O

Ezample 2 If A is a maximal Reorder in Q , then Ho(4) is

a maximal Reorder in Mn(Q,) .

Proof (cf, [19], Pe 110). Suppose B is an Reorder in lin(Q)
with 1 _(A)C B2 . Let C be the set of elements q € § such that
{here exXists a matrix M = (mij) in B with soxe cntry m,. = q

In that case also the matriiz I,.ME i velongs ©o B
14 d9q &

i1 ’
wnere Eij denote the matrix units. Hence C = {Ol qz11 € 3} ’
and tnereiore C 1is5 an Reorder in Q with ACQ C , iionce 4 = C

ard it follows that 3 =il (&) . Qa

fiote that both these examples imply that i~In(R) is a naximal

=

Reorder in Mn<K) .

7. The crouvoid of divisorial lattices

de shall bLriefly indicate how the usual foundations for a nult

plicative idcal theory can he developed in this peneral ceniont,

An  Re=latiice I is pormal if 0,(I) and o (I) arc uaiiaal

, , - . . -1
Reorders. In that case also I™) is normal, with ol(I ) = 0,(I)
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and or(I-1) = 09(I) . A normal R-lattice I is divisorial if
I = (I"1)"1 « Thc operation Iv (""" is a closure operation
on normal R=lattices. Every normal R=latticc I is contained
in a smallest divisorial Re-lattice, namely (1=H=1 . For any
maximal R-orders A and B in Q we let K(A,B) denote the
set of R=lattices I with ol(I) = A and or(I) =B, If
I€ N(A,B) and JE& N(B,C) , then IJ€ N(A,C) . With this
"proper multiplication", i.e, with IJ defined defincd when
0.(I) = 0;(J) , the set N of all normal R-lattices becomes an
abstract category.

If I,J€ H(A,B) , we put I< J when ~le gt , and wec call

I and J Artin eguivalent if I"1 = J-1 o The preordering £ is

compatible with proper multiplication in [ , and

D = N/Artin equivalence
becomes an ordered category under the relation £ induced from £
The image of I€ [ in D will be denoted by [I] . Bach equi-
valence class contains precisely one divisorial katkiXzmx R-lattice,
Actually D is a groupoid, where the inverse of [I] is [1'1] .

For each maximal R=-order A we put

pa) =§(11] 1€ nea,m}b
which is a subgroup ("vertex group') of the groupoid D + As usual
one concludes (by a theorem of Iwasawa) that thc sroup D(A)  ig
comnautative ([4], Pe 317)s If A and B are maximal R-orders,
then D(A) and D(B) arc isomorphic groups; the isomorpnisn is
given by [J]\-)[I-1JI] for any I€ L(A,B) , e.ge I = A®.3,

and it 1is independent of the choice of I since the vert:xy groups

are commutative,

Hle note?

roposition 7,1 Every maximal proper divigorial ideal o1 a

maximal Reorder A is a uninimal full prime ideal of A .
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Proof. (Cf. (8], Th. 1.6). Let P be a maximal divisorial ideal

of A . Suppose I ,J are ideals 2 P with IJ€ P ., e nust have

-1

I™" =4, for (I")"'1 is a divisorial ideal properly containing

=1 _ A . For each q € P~ we have

-1 -1

P . Likewise we have J

-1

qglieqPCc A, so gl € J = A and qe I = A 4, Hcnce P &

¢ A , which is impossible., This shows that P 1is prime,

Suppose now Q is a full prime ideal with Q$ P . Then QP-IC
c pp~' € A . But we also have QP"]-P € Q , and since Q is
prime, this gives QP € Q . So P~ € o_(R) = 4 , which is im=

possible, @

8. Prime ideals

Since the Azumaya algebra Q is a PI-ring (it satisfies all
polynomial identities holding in some matrix ring over a spliiting
algebra for Q@ ) , also every Reorder is a PI=-ring. Therefore
there are available several results on the lifting of prime idecals,
For the convenience of the reader we reproduce them here (see {5],

[12];[13] for proofs):

Proposition 8,1 Let A ©be an R-order in Q . Then:

(1) For every prime ideal p of R there exists a prime iceal

P _o_f A such that PAR =7p .

(i1) If peq are prime ideals of R and P is a prime ideal

of A with PNR = p , then there exists a prime ideal @

of A with PC€C @ and QﬁR:ci.

5 in A with
o i1 Mith

(iii) There cannot exist prime ideals P1 5 P

It follows in particular that if ¢m 1s a maximal ideal ol R
and P ig a prime ideal of A with PAR =13 , then P is 2
naximal ideal of A . Similarly it follows that if P is a maxinal
ideal of A , then PMAR is a maximal ideal of R ,
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9. Invertible lattices

-1

An Relattice I in @Q is called invertible if II = ol(I)
and I"I = Or(I) ., In that casc there is a iorita context

derived from the obvious mappings

-1 -1
I Qor(I) I —,Ol(I) Iy I Qol(I) I —’OI‘(I) .

HJencc an invertible Relattice I 1s a finitely generated
projective generator for toth left ol(I)-modules and risht
or(I)-modules, and the rings ol(I) and Or(I) are Morita

equivalent, In particular onc has as usual:

Lemna 9,1 Let I be an Relattice in Q . Then I'1I = o, (I)

if and only if I is projective as a left ol(I)-module; in that

case I is also a finitely generated left ol(I)-module.

If I 4is an invertible R=lattice, then I"1 is invertivle
with ol(I"1) = 0,(I) and or(I"1) =04(I) o« If I and J are
invertible R=~lattices with or(I) = ol(J) s then IJ is invertible
with 0q(IJ) = 09(I) , 0,(IJ) = 0,(J) . Hencc the invertible
R=lattices form a groupoid under proper multiplication,

Let A bec an R-order in Q o An Relattice I is called

I‘(I) = A,

A=-invertible lattices form a multiplicative group I(a) . I?

A=invertible if it is invertible and ol(I) = 0

[N

is a maxinal R-order; then I(A) 1s a subgroup of 2(A)  since
every invertible lattice is divisorial,

The group I(A) may be compared with the Picard group Pic,(4)
of igomnorphism classes over 1 of invertible A=jA=bimodulcs. Theiro
is the usual exact sequence of groups

-
1 —> R* k%L, I(a) —\t-) PicR(A) —_— PicK(Q)
%

are the subgroups of invertible clecueris of

where 3* and
R resp. K , and ¢ () = Az , $(I) = [I} , 'C([I»Z]) - t®x .
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But Picp(Q) = Pic(X) since Q is an Azunmaya K-z2lgebra,
and Pic(K) = 0 since K is von Neumann regular (ifarot [17]).

Hence:

Proposition 9.2 The scquence
*

1= R* k" 1(8) — Pic (1) =0

is exact,

FPart II. Mayimal orders over Krull rings

10. Krull rings

The results on nmultiplicative ideal theory in § 7 uway Lc apnlied

r

o the case when the Kealgebra Q 1s equal tc K o Cne tien

outains a generalization of the classical theory of divisors (ac
developed in [6], Chane 7). In particular this leads to a study
of Krull subrings of the von lleumann regular ring K ;3 a study

which has been undertalken by J. ilarct [16], [17](cf. also G.i. Derg-

this scction reocapitulate relcevant parts ol Lt
Let R ©be a completely integrally closed subring of Thc von
Uoumann regular ring K . Yo shall always assuie R # K o An

Resubnmodule a of X is full if and only if gni 9 .

Leina 10,1 If x € R and 5€2 , then there oxists vy € R

zuch that X +ysS €2 .

l

3

roof. There is an idempotent e such that = = eX ana e =

P

for soze uU€ K ., We assert that z+ (l-¢)s€2 . For sugpose
zz+72(l=e)s = 0 for coe 2 € R, Then ozx =0 , 50 2z =(

Rut sei then duplics 2z(l=c) = ¢ and z

li
SN
(]
I
]
Nt
’
i
*
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Lemma 10,2 Every full Resubmodulc of K 1is generated by

non=zZero=divisors,

Proof. Let a be an R-submodule of K with s € and . To find
non-zero~-divisor generators for a , it suffices to do so for

Rs+Rx for each X € a , and this is easily done by Lemma 10,1, Q

An Resubmodule a of K 1is an R=lattice (also called a

fractional Reideal) if and only if there exist s,t €2 with

s€ a and ta € R . A fractional R-ideal a 1is called divisorial

hate 4
if a = R:(R:a) ,\ bia in general denotes the set {x€ K|xac n?}.

Lemna 10,3 R:(R:a) is equal to the interscction 2 of all

principal fractional ideals containing a .

Proof. Let x € K . Then x € R:(R:a) if and only if xy € R for
every non-zero-divisor y & R:a (by Lemma 10.2), Thus x € R:(R:a)
if and only if X € R’y"'1 for every y such that ac¢ Ry"1 y Le€e

if and only if x€ a . Q@

Two fractional ideals a and ® b are Artin equivalent if and
03 ~ ~ 3 ~ I3 ~ ]
only if a = b ;3 the equivalence class of a 1s called the
divisor of a and is denoted div a . The divisors form an ordercd

abelijan group D(R) , which is denoted additively so that

div adb =diva +div b .

4

Cne has div a € div b if and only if 3J Db

A discrete valuation on X 1s a mapping u:K%éoin} guch that
vixy) =v(x) +v(y) ,

v(x+y) 2 inffe(x) 0N},

v(1)

O, V(0) =pe ,
V() =1 [for somc nonezcro=divisor x € K .

The ring V = §X€ Kl v(z) > O} is the (discrate) vsluation rins

of VY , and p = ?xe k|l v » 1} ig a full priae jaca) of W
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Clearly X 1s the total ring of fractions of V , and V 1is
completely integrally closed in K . All full ideals of V¥ are
principal and of the form Vp" (n 2> 0) for a certain pe V ,
and Vp dis the unique full prime ideal of  V , |
More generally, a subring V of K , with K as its total ring

of fractions, is a valuation ring in K 1if the full ideals of V

are totally ordered under inclusion. As in the classical case onec

shows (cf, [6], Chap. 6, § 4):

Lemma 10.4 Let V be a valuation ring in X . Then any over=-ring

of V in KX 1is a valuation ring, and the over=rings of V in K

are totally ordered under inclusion.

R is a Krull ring i# there is a family (v of discrete

i)ie I
valuations on K such that
K 1) R is the intersection of the valuation rings of the V. ;

K 2) For every s€XZ , w;(s) =0 except for finitely many i ,

Proposition 10.5 The following properties of the ring R are

equivalent:

(a) R 4is a Krull ring.

(b) R satisfies ACC on divisorial ideals,

(¢c) R, is a Krull domain for each x€ X , and for cach sex ,

8., is invertible in R for all but finitely manvy = .

e
Proof. [3], Prop. 6.2. 0

Let R be a Krull ring, The group D(R) is the free abcliar
group on the set of minimal divisors 7 0, called the priae
divisors., The priwme divisors correspond to the maximal proger
divigzorial ideals in R o For each x € K we can write

div Rx = ZDP(X) P,

with summation over tne set of prime divisors P ; nere
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W, are discrete valuations satisfying K 1-2, and are called

the essential valuations of R .

For each full prime ideal p of R we let R'ﬁ denote the ring

of fractions S™IR with S = A (R~p) .
The following three lemmas deal with a Krull ring R , and they

are proved essentially as in the classical case ([6], Chape 7, § 1).

Lemma 10,6 Let vy (i€ I) Uue the essential valuations of R ,

and let Ri be the valuation ring of \Ji e IT S 1is a multiplica=-

tively closed set in ¥ , then S"R = N Rj , Where J =§ie 1|
—_— T ged —_—
V.(s) =0 forall s€ S}, and S™'R "is a Krull ring,

Lemna 10,7 Let p be the divisorial ideal corresponding to a

prime Xd@maXx divisor P of R . Then p is a minimal full prime

ideal of R , and RP is the valuation ring of Vp .

Leuma 10,8 A full ideal p is a waximal proper divisorial idecl

of R if and only if p is a minimal full prime ideal of R .

There is thus a bijective correspondence between essential

valuations ocn R and minimal full prime ideals of R .

We shall write P for the set of winimal full priue ideals of

¥
L]

Proposition 10,9 The following properties of the ring R are

equivalent:

(a) Zvery full ideal of R 1is projective,

(b) R is a Krull ring where every full prime ideal is maxinal,

(¢) R is a semihereditary Xrull ring.

(d) R, is a Dedekind domain for cach x€ X , and for cach s€%

X !

5. is invertible in R, for all but finitely many x .
£

~

Proof., (a) & (d): (5], Cors L4a5,
(c) & (a): Prop. 10.4 and [3], The 4.1,
(n) 2 (d) is clear,
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(c) s (b): Let m be a full maximal ideal of R , and consider
the overering Rﬁ of R . Since R is seminereditary, RH is a
flat Remodule (E9], The 5), and as in [15], Prop. 4 one siows
that Rﬁ is a valuation ring in K , But Rﬁ is the intersection
of a far-;ily (RJ.)J of valuation rings of es;entia.l valuations

of R (Lemma 10.,6). From Leumma 10.4 follows that R= = RJ. for
some _j J , and it follows that m must be a mini;al full prime

ideal. U

A ring satisfying the conditions of Prop. 10.9 is called a

Dedekind ring (in K ),

Proposition 10,10 If K is hereditary, then every Decdciind ring

——

R in K 1is hereditary.

Proof. Let a De an ideal in R ., We can write aK = @Ke, ,
I
where (ei)I is a family of orthogonal idempotents, If a€ a ,

then a = ):kiei with k;€ K and almost all k; = 0 . Since

k;e; = ae; € ReyjNa = a; , it follows that a = ? 2 .

Since e; € aK , we see that a contains an element s;e; with

sieZ s for each i€ I , Let xé€ a; « By Lemma 10,1 there exists
y € R such that z = x +ysiez . Then x = xe; = ze, =rs;e, €
€ RS;e; , where S; =§teZT | te,€ a; ¥, and so a; = RS;e; .
Since Rsi is a full ideal of R , it is projective, and s0 is

then also a; . a

11. Xrull orders

Lemma 11,1 Let R be a Krull ring and A an Reorder in Q , If

a 1s a non=zero-=divisor in A , then a, 1is inveriiblec in A

A

for all but finitely wany x .
-1

-1

Proof. One may write a = ©Ss with b€ A and se€Z . Siunce
8. ic invertible in ‘RX for all but finitely many : (Prop, 10.5),

it follows that aX-T € a, for all but finitely mony x . |
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i35 Padivisorial and A

Theorem 11,2 Let A Dbe a maximal R-order in Q . The following

conditions arc equivalent:

(a) A satisfies ACC on divisorial ideals.

(b) D(A) is a free abelian group with the set of maximal proper

divisorial ideals as basis,

(¢) R is a Krull ring.

A naximal Reorder A satisfying these conditions is called a

Krull order,

Prooi. (a) 4y (b) is standard.
(a) s (c): Let a bve divisorial ideal in R , and put I =
=((A_§)"1)"1 o« Then I is a divisorial ideal in A , and it sulfices
to show that IAR = a , because then ACC for divisorial ideals
in R will follow, and we can apply Prop. 10.4. liow
(IAR)+(R:a) € I.(Aa)"'AKC ANK = R ,
Hence INR € R:(R:a) =a , so IAR =a . (Cf. (7], Lennc 1.3).
(c) 3 (a): From Lemma 5.1 follows that A, 1is a maxlmal order
over the Krull domain R

., 3 for each xe€ X . If I is a divi=

sorial ideal of A , then I, = A for all but finitely many x ,

4 X
by Lemma 11.1. Since each A, satisfies ACC on divisorial ideals

({21, ». 151), it follows that also A does so. [}

Let R be a Krull ring. An Re=lattice in § is said to be

P-divisorial if I =()}I= . Similarly to ([2], p. 154) one has:
- P

2

Proposition 11,3 Let R be a Krull ring, and let A e an

Reorder in 4 . Then A is a maximal Reorder if and only ii A4

is a maximal Rﬁ-order for zach 1N € P

= D
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12, Dedekind orders

Theorem 12,1 The following properties are equivalent for a

maximal Reorder A in Q ¢

(a) Every full ideal of A is invertible,

(b) Every full ideal of A is a projective left A-module,

(c) Every A-A=lattice is invertible,

(d) The A=A=lattices form under multiplication a free abelian

group with the set of full maximal ideals as haszis.

(e) A satisfies ACC on full ideals, and every full prime ideal

of A is a maximal ideal.

(£f) BEBvery full left ideal of A 1is a finitely generated projective

left A-module,

(z) R 1is a Dedekind ring.

A maiimal Reorder A satisfying these conditions is called a
Dedeldina order,

Proof. (a) = (c) is clear since for every A~A=lattice I there
exists s€ 3 such that sI is a full ideal in A .,

(c) & (d): The A=A=lattices now form the group D(A) , zince every
A=A=lattice is divisorial, and this group is free albelian on the
set of maximal divisorial ideals.

(3) 2 (e): Clearly A satisfies ACC on full ideals. Since every
full ideal is a product of maxinal ideals, a full prime ideal aust
be maxinmal,

(e) H (3): R is a Krull ring by Theorem 11,2, and every full
prime ideal of R is maximal by Prop. 8.1, s0 R is Dedeldnd vy
Pron. 10.9. }
(&) 2 (£): Each R

and A, is therefore a hereditary R, -order (Frov. 9.1 2nu [1],

. s+ X€ £, is a Dedeckind dounain by Prov. 10.9»
The 2.9)e Every full left ideal of A is finitely generatsd
rojective by the arpgument used in the proof of Levwia 3.3 of L1k)e
> J
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(£) D (b) is trivial.
(b) D (a): Let I be a full ideal of A , Then I™'I = 4 by

Lemma 9.1, This also gives

(ar~H='r = arhH"ir"l1e 1,

and hence (II"H™1e 0,(I) = & . But -]

-1=A. B

€ A then implies
IT

Proposition 12,2 Let A be a Dedekind Re-order, If I is a left

A=lattice, then or(I) is a Dedekind Reorder, and I is inveriole,
1

Proof, Put J = II™

inveritle, and 55 nl Y y lecs 11770 = 4 . It follows that

=1 =1 -1

sy Which 1s a full ideal in A . Hence dJ 1is

I 'J €1 s SO J"1c or(I-1) = A o Therefore J =4 , and I
is invertible., Also Or(I) is a Dedekind Reorder, since it is

Morita cquivalent to A . ﬂ

Remark 1. If R 1is hereditary ring, then every Dedekdnd
Reorder is a left and right hercditary ring by [14].
Renark 2. One may ask whether every Dedekind Re-order is finitely

senerated as an Renodule,

-58_



hRefercnces:
1., e Auslander and O, Goldman, Maximal orders. Trans, Auer, ath,
Soce 97 (1960), 1"240

2. He. Bass, Algebraic K=theorv. Benjamin 1963,

%, G. Bergman, Hercditary commutative rings and centers of heredi=-
tary rings. Proc. London ifath. Soc. 23 (1971), 214=2306,

L. G. Birkhoff, Lattice theory., AMS Coll. Publ, vol 25 (3:rd ed.),

5. WeDe Blair, Right qooLaerlan rirgs integral over their center,
Je Alze 27 (1973), 187=193,

IT

6. . Bourbaki, Algdure commnutative., Hermann.

7. H. Chamarie, Ordres maxisaux et Reordres aaxinaui. J. Alg. 20
(1979), 143=156.

8. J.He Cozzcns and F,L., Sandowmierski, Maximal orders and local=
ication. J. Alge L4 (1977), 319=338.

9. S8, Indo, On semi=hiereditary rings. J. Hath. Soc. Japan 13 (1331),
109"1190

10. R. Fogssum, Haminmal orders over Krull domains. Jo Alg. 1C (1960),
321=352.

11, Q. Goldman; Quasi~equality in maximal orders. J. Hati. Soc.
Japan 13 (1941), 371-376,

12, A.G. Heinicke, A reiark about noncommutative 1ntegral citensionc,
Canad. Math. Zull. 13 (1970), 359=361.

13, K. Hocchsmann, Liftins ideals in noncommutative integrol
swtensions. Canad. Mathe. Bull, 13 (197C), 129=130.

1, T Kirkoman and J, Xuzmanovich, Orders over herciliary mi--z,

Je AL5e 25 (1978), 1-27.

15, ileDe Larsen, Tquivalent conditiong for a ring =0 8¢ 5 Pepin:
and a note on 7lat overrings. Dwike labh. Je b (1967), 293-20C,
()

_59_



22

16.

17

18.

15.
20,

21.

22

Je. Marot, Extension de la notion d'anneau de valuation. Dept.
de Math, Brest.

J. Harot, Une extension de la notion d®anncau de valuation et
application & 1'8tude des anneaux héréditaires commutatifs.
Partie B de Thdse, Universits de’ Paris=-Sud, Orsay 1977.

ReS. Pierce, Modules over commutative regular rings, lemoirs
Amer, Math., Soc. 70 (1967).

I. Reiner, Maximal orders. Academic Press 1975,

J.C. Robson, Nonecommutative Dedekind rings. J. Alge. 9 (19G8),
249=265,

We Schelter, Integral extensions of rings satisfying a poly-
nomial identity. J. Alg. 4O (1976), 245-257.

O.Es Villamayor and D. Zelinsky; Galois theory with infinitely

many idempotents, Nagoya Math. J. 35 (1969), 83=38.

_60-



