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MAXIMAL ORDERS DT AN AZUMAYA ALGEBRA OVER A VON NEUMANN REGULAR RING 

By 

BO STENSTRÖM 

1• Introduction 

The classical theory of maximal orders over a Dedekind domain R 

was generalized by Auslander and Goldman [1} to the case of a 

noetherian integrally closed domain R , and further by Fossum Qioj 
to a Krull domain R . The methods used for these generalizations 

depend heavily on a reduction to the classical case by localization 

at the prime.ideals of height 1 in R , and they are not practicable 

in the case of a more general ground-ring R . More recently, 

Kirkman and Kuzmanovich jjlfj| have studied maximal orders over a 

hereditary ring R , using the Pierce representation of R as a 

sheaf of Dedekind domains to obtain a reduction to the classical 

case. 

Our aim in this paper is to use the methods of £14] to study 

maximal orders over a commutative ring R whose total ring of 

fractions K is von Neumann regular. When Q is an Azumaya algebra 

over K , we shall define an R-order in Q to be full R-subalgebra 

A of Q such that every element of A is integral over R • 

Besides the development of the basic results of maximal orders, we 

shall obtain a characterization of Dedekind orders (cf# Robson [20
-]) 

as maximal orders over (generalized) Dedekind rings (Theorem 12 #1) # 
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Part I. General theory of maximal orders 

2 . Preliminaries 

Let R be a commutative ring with total ring of fractions K , 
and let ^ be the set of non-zero-divisors of H • Throughout this 
paper we shall assume that K is von Neumann regular and that R 
is completely integrally closed in K , i.e. if x € K and there 
exists s€?X such that sx 1 6 R for all i £ 0 , then x € R . 
Since R is then integrally closed in K , every idempotent of K 
lies in R , so R is a p.p. ring, i.e. the principal ideals of R 
are projective modules [3 l» 

The rings R and K thus have the same boolean algebra B of 
idempotents. Let X denote the boolean space of maximal ideals 
of B . The stalk at x € X of the Pierce sheaf associated to the 
ring R is R__ s R/xR , where xR is the ideal of R generated 
by the set x of idempotents. R is an indecomposable ring, i.e. 
its only idempotents are 0 and 1 # More generally, the stalk 
at x for an R-module M is 

M x = R x © H M = M/xM . 
There is a canonical surjection M-*]yi , written as m*-*m . If 
m x = 0 for some x € X , then m^ = 0 for all y in some closed-
-and-open neighborhood of x in X , and me = 0 for some idem-
potent e of R # Furthermore, © R x is faithfully flat as an 
R-raodule. (See \li8\ or £22] for details on the Pierce sheaf). 

Since K is von Neumann rfegular, K is a field for each x £ X # 

The ring R is an integral domain with K as its field of x x 
fractions. 
We shall throughout the paper assume that Q, is an Azumaya 

algebra over K • Then for each x € X we have that ^ is a 
central simple Kx-algebra [iVJ. In £1/+] it is shown how the reduced 
trace can be defined as a K-linear mapping Trd:Q—»K • V/c shall 
need the following two results: 
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Lemma 2 . 1 The mapping y :Q —*Hom K(Q,K) given by y(a) = Trd(a-) 
is a K-isomorphism« 
Proof . See [14} (Lemma 2.3) for details. The essential point 

is that vfx s^x"^ H o mK x^^x ,^x^ i s c l a s s i c a l l y known to be an 
isomorphism for each x € X • Q 

Lemma 2 . 2 If a € Q is integral over R , then Trd(a) € R . 
Proof. It suffices to show this pointwise for each x 6 X • As is 
shown in [l*f] , one is then reduced to the case when R x is an 
integral domain, which is treated in [ 2 ] . Q 

3# R-lattices 

Let V be a finitely generated projective K-module. An 

R-submodule L of V is called an R-lattice in V if 

1) L is full in V , i.e. LK = V ; 

2) L is contained in a finitely generated R-submodule of V # 

Note that since K is R-flat, one has for every R-submodule 

L of V that 

L«> RK = LK = L [ I - 1 I , 
where L[£~^J denotes the module of fractions of L with respect 

to Z . 

Lemma 3 . 1 If L is an R-lattice in V and M. is a full 
R-submodule of V , then sL C M for some s € Z • 

Proof. L is contained in an R-submodule of V generated by 
x-j,...,xn . Since M is full, each x^ can be written as x i = 
= Z k. .x- . with x. . € M • Choose s& Z such that all sk.. € R • 

j -L J 1 J -LJ -*- o 
Then sL C M . Q 

Proposition 5 .2 An R-submodule L of V is an R-lattice in V 
if and only if there exist finitely generated projective R-gubmodules 
P 1 » P 2 £ L V such that P̂  C L C and rank R P 1 = rank R V . 
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Proof. Suppose L is an R-lattice. Since K is regular, we may 
write V = ® K u i , where each Ku.̂  is isomorphic toa principal 
ideal of K , i.e. Ku^ is isomorphic to Ke^ for some idempotent 
e^ € R • Since L is full, we may assume that u^ € L • Then 
P 1 = 0 RUĵ  is a finitely generated projective R-module in L 
and of same rank as V # By Lemma 3»1 there exists sfeZ such 
that sL C P.j , and then L C s^P-j = ? 2 • 
The converse is clear, for if P̂  is a finitely generated 

projective R-module of same rank as V , then P̂  is full in V . Q 

Remark Similar arguments show that if M is an R-lattice in V , 

then an R-submodule L of V is an R-lattice if and only if 

rM C L C s~1M for some r , s € Z . 

4. Reorders 

An R-subalgebra A of the Azumaya K-algebra Q is an R-order 
in Q if A is full in Q and every a 6 A is integral 
over R . 

Lemma 4.1 If A is an R-order in Q , then A is a central 
R-algebra. 
Proof. If a € cen(A) , then a 6 cen(AK) = cen(Q) = K . Since a , 
is integral over R , and R is integrally closed in K , it 
follows that a € R • Q 

The ring Q may thus be described as the ring A[£"^J of 
central fractions of A • Of course Q is.also the total loft 
and right ring of fractions of A , since every non-zero-divieor 
is invertible in an Azumaya algebra. 

Proposition 4 .2 There exists an R-order in Q . 

Proof. As in the proof of Prop. 3 .2 we may write Q = © Kû . , with 
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u 1 = 1 • Then u±u^ = 2Taij.kuk for some a ^ e . K . Let s € £ 

k 

with all sa i ; j k € R • Put v 1 = 1 , v± = s\x± for i ^ 1 # Then 

Iîv1 + Z R V ^ is a full R-algebra, and it is an R-order since it 

is a finitely generated R-modùle # Q 

Proposition 4 »5 An R-subalgebra A of Q is an R-order in Q 

if and only if A x is an Reorder in for each x € X • 

Proof. A is full in Q if and only if A x is full in for 

each x € X i since © R is faithfully flat. If an element a € A 
x 

is integral over R f then of course a € A is integral over R 
X X X 

at each x € X • Suppose on the other hand that A is an R r-order 
x x 

for all x 6 X • F o r each a € A and x 6 X there is then an 

equation of integral dependence for a holding at all y in a 

neighborhood of x . Because of the compactness of X one can 

multiply together finitely many of these equations to get an 

equation of integral dependence for a holding at all y€ X , 

i.e. holding globally for a . Q 

Theorem k.k An R-subalgebra A of Q is an R-order in Q if 

and only if A is an R-lattice# 

Proof. Suppose A is an R-order in Q . V/rite Q = © Ku i with 

Ku i = Ke i for idempotents e^€ R , and with u i 6 A . Define 

g-^Q-^K as g i(u 1) = e± , S-* (Uj) = 0 for i ^ j • By Lemma 2.1 

there exist v ± e Q such that g^a) = Trd(v^a) for all a € Q • 

Since the gj/s generate the K-module Hom K(Q,K) , the v / s 

generate Q over K . Similarly e.g. = g. implies e.v. = v. . 
I l l 1 -1. X 

For each a 6 A we write a = £k .v . with k. € K . Then 
3 3 3 

7rd(au±) = Trd(Ik ; jv ju i) = Ik. g j(u.) = k±e± , 
3 3 

so k j ^ é R by Lemma 2 . 2 . Then 

a =Zk ±v i =£k ie iv j L€ ZRv ± , 

and hence A is contained in the finitely generated R-module ZRvn. 
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Suppose conversely that the R-algebra A is an R-lattice in Q . 
By Prop, k.3 it suffices to show that A x is an Reorder for 
each x 6 X • We m a y therefore assume that R is an integral 
domain with field of fractions K . Let B be any 
R-order in Q (it exists by Prop. Jf.2). By Lemma 3.1 there exists 
s £ l such that sA C B . One may now proceed by arguing as in 
the proof of Prop. 1 .2 of £ 7 ] , and one obtains that a is integral 
over R . Q 

Remarks. 1. By Schelter £2 13(p# 253) there exists a noetherian 
R-order over a Krull domain R f such that A is not a finitely 
generated R-module. 
2 . Kirkman and Kuzmanovich [^k] show that if R is hereditary, 
then every R-order in Q is finitely generated as an R-module, 
but that this no longer holds if R is only semihereditary. 

5« The left and riaht orders of a lattice 

Lemma 5.1 If I is a full R-submodule of Q , then I n X A 0 . 

Proof. We have 1 =Zx J Lk i with I , k^ G K . Choose s€ Z 
with all sk ±€ R . Then s = Z x ± s k i € I . Q 

For the converse we have: 

Lemma 5 .2 If A is an R-order in Q and I is a left 
A-submodule of Q such that If\X ^ 0 , then I is full in 3 . 
Proof. Suppose s 6 I O l . If q 6 Q , then q = with 

a ± € A , k ± € K . But then q = =I?a is • s"1!^ €. IK . Hence 
I is full. Q 

Let A be an R-order in Q # A left A-submodule I of Q , 
such that I also is an R-lattice, is called a left A-lattice. 
Similarly rifiht A-latticos and (two-sided) A-B-latticcs arc 
defined. 
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If I and J are R-submodules of Q , put 
I-. J = f q 6 Q J q J C i] , I.-J = Jqe q| Jq C i] • 

Lemma 5.3 If I and J are R-lattices, then also I*. J and 
I. • J are R-lattices» 

Proofs I contains elements x 1,..#,x n which generate Q over 

K , and J C Rq 1 + ... + Rq^ # 7/e may v/rite x±q^ = £ cijk xk v ; i t h 

c i j k 6 K • c h o o s e s C ^ w i t h a 1 1 s c i j k e R • T l i e n s : c j q j ^ 1 ' 
so sx^ €, I*. J for i = 1,...,n , and it follows that I-.J is 

full. 
If te JnIL (Lemma 5.D, then (I-.J)tCl , so I'. J C t ~ 1 I , 

which is contained in a finitely generated R-submodulc of Q • 
Kence I J is an R-lattice. Q 

For each R-lattice I we define the left. resp. right, order 
of I as 

O ^ D = f q | q I C l } , o r(I) = f q l I q C 1 } , 

which by Lemma 5#3 and Theorem ^.4 are R-orders. We also put 
I"1 ={ql IqlC 1 } = O x(I).-I = 0 r ( I ) % ! , 

which by Lemma 5»3 also is an R-lattice. Note that while I is 
an o 1(I)-o r(I)-lattice f I""1 is an o^D-o-^D-lattice. In the 
usual way one shows: 

Proposition 5.4 Let A be an Reorder in Q . If I and J are 
left A-submodules of Q and J is full, then 

I.-J = HomA(J,I) . 

In particular one obtains for every R-lattice I in Q that 
Hom 0 i ( I )(I,I) * o r ( I ) , 

Hoa ( I ) ( I , 0 l ( D ) ^ I - 1 . 
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6. Maximal orders 

An R-order A in Q is maximal if there is no R-order & 

in Q such that A j B • It is immediate from the definition of 

orders, and Zorn's lemma, that every R-order in Q i s contained 

in a maximal R-order. 

Proposition 6.1 An R-order A in_ Q is maximal if and only if 

A is a maximal R-order in 0 for each x £ X • 
Proof. Suppose each k is a maximal R^-order. If B is an 

• X A 

R-order containing A , then A„ = B v for all :: € X by Lemma Zf.3, 
and the faithfulness of © R implies that A = B • Hence A is 

x A 

a maximal R-order. 
Suppose on the other hand that A is a maximal R-order, and 

consider any x 6 X . Suppose k c C for some R^-order C . 
Put B = cf~1£c3 under the mapping <f t Q - * ^ . So B is an R-algebra 
containing A . Let b g B . Then b x £ C is integral over R x , 
so e ( b n + r -b n"^ + ... + r ) = 0 for some idempotent e of R , 

n— I O - t i 

V a i l 

and hence eb is integral over R . It follows thatielements of 
A + eB = (1-e)A©eB are integral over R , and hence A + o3 is 
an R-order. The maximal!ty of A implies 3 = A and thus C = 
= A , so also A__ is maximal. Q 

Proposition 6.2 The following properties of an R-order A in Q 
arc equivalent: 

(a) A is a maximal R-order. 

Co) o-f(I) = A for every left ' A-lattice I , and o (J) = A for 

every right A-lattice J . 

(c) o 1(I) = o (I) = A for every A-A-lattice I # 

(d) If J is an A-A-lattico and there exists s e Z such ohat 

sJ n C A for all n £ 1 , thon J C A . 
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Proof, (a) (b) is clear since o-^(I) and o r(J) are R-orders 

containing A , while (b) ̂  (c) is trivial. 

(c)s* (d): If s J n C A for all n £ 1 , put J' = Z J n • Then 
n>/l 

also J' is an A-A-lattice, and we have J c o1(J*) = A . 

(d) (a): Suppose A C B , whore B is an R-ordor in Q . Then 

B is an A-A-lattice by Theorem and by Leioraa 3«1 there exists 

s € Z such that sB C A . Since B is a ring, condition (d) 

therefore gives B C A . Q 
7/e give two examples of maximal orders: 

Example 1 If A is an Azumaya algebra over R , then A is a 

maximal R-order in the Azumaya K-algebra A ® ^ K • 

Proof: See e.g. [l';], Prop. 1.8. Q 

Example 2 If A is a maximal R-order in Q , then M (A) is 

a maximal R-order in • 

Proof (cf. [19], p. 110). Suppose B is an R-order in 11 C 

with M (A) C 3 . Let C be the set of elements q € Q such that 

there exists a matrix M = (m. .) in B with some entry m.. . = q # 

In that case also the matrix S ^ M E ^ = qlil̂  belongs to 3 , 

where E.. . denote the matrix units. Hence C = £ q | qS-j ̂  € 3} , 

and therefore C is an R-order in Q with A C G • Hence A = C , 

and it follows that 3 = M^CA) . Q 

Mote that both these examples imply that l I
n ^ ) i c a maximal 

R-order in ^"n(K) • 

7. The .̂ rou'ooid of divisorial lattices 

7e shall briefly indicate how the usual foundations for a multi­

plicative ideal theory can be dove].oped in this general context. 

An S-latticc I is normal if 0-^(1) and 0^(1) arc maximal 

R-orders. In that case also I""1 is normal, with c^Cl""1) = o^(l) 
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and o (I*"'') = o^(I) # A normal R-lattice I is divisorial if 
1 —1 1 1 

I = (I ) • The operation Iv-*(I ) is a closure operation 
on normal R-lattices. Every normal R-lattice I is contained 

—1 —1 

in a smallest divisorial R-lattice, namely (I ) . For any 
maximal R-orders A and B in Q we let N(A,B) denote the 
set of R-lattices I with o 1(I) = A and o r(I) = B . If 
I G N(A,B) and J G N(B,C) , then IJ € N(A,C) . With this 
"proper -multiplication11, i.e. with IJ defined defined when 
0^(1) = o^(J) , the set N of all normal R-lattices becomes an 
abstract category. 

1 1 
If I , J € N(A,B) , we put I ̂  J when I C J , and wc call 

- 1 - 1 

I and J Artin equivalent if I = J . The preordering ^ is 
compatible with proper multiplication in N , and 

D = N/Artin equivalence 
becomes an ordered category under the relation 4; induced from ^ • 
The image of I € N in D will be denoted by £l] # Each equi­
valence class contains precisely one divisorial ia±i±ss R-lattice. 
Actually D is a groupoid, v/here the inverse of [l| is £l""^J • 

For each maximal R-order A we put 
D(A) = $[l] | I € N(A,A)? , 

which is a subgroup ("vertex group") of the groupoid D . As usual 
one concludes (by a theorem of Iwasawa) that the group 0(A) 
commutative (jVI, p. 317 )• If A and B are maximal R—orders, 
then D(A) and D(B) arc isomorphic groups; the isomorphism is 
given by [j] t-^OT1 Jl] for any I C N(A,B) , e.g. I = A-.3 , 
and it is independent of the choice of I since the vertex groups 
are commutative. 

We note: 
Proposition 7 . 1 Every maximal proper divisorial ideal of a 

maximal R-order A is a minimal full prime ideal 0 1 A . 
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Proof. (Cf. £ 8 l , Th. 1 . 6 ) . Let P be a maximal divisorial ideal 
of A . Suppose I , J are ideals J P with IJ C P • V/e must have 

mm] mm] mm] 

I = A . for (I ) is a divisorial ideal properly containing 
P . Likev/ise we have = A . For each q € P~^ we have 
qlJ C q P C A , so ql C J"1 = A and q € I"1 = A . Hence P~ 1C 
C A , which is impossible. This shows that P is prime. 
Suppose now Q is a full prime ideal with Q, ̂  P . Then QP"^C 

C PP""1 C A . But v/e also have QP^.P C Q , and since Q is 
prime, this gives QP~ 1 C Q, . So P~1 C o r(Q) = A , which is im­
possible. Q 
8. Prime ideals 

Since the Azumaya algebra Q is a Pi-ring (it satisfies all 

polynomial identities holding in some matrix ring over a splitting 

algebra for Q ) , also every R-order is a Pi-ring. Therefore 

there are available several results on the lifting of prime ideals. 

For the convenience of the reader we reproduce them here (see £5 J , 

D2] , fl3l for proofs): 

Proposition 8 .1 Let A be an R-order in Q . Then: 
(i) For every prime ideal p of R there exists a prime ideal 

P of A such that PC1R = p . 
(ii) If p C q are prime ideals of R and P is a prime ideal 

of A with P O R = p , then there exists a prime ideal Q 
of A with P C Q and Q O R = q . 

(iii) There cannot exist prime ideals P 1 ̂  P 2 ~ A with 
P ^ R = P 2 n H • 

It follows in particular that if m is a maximal ideal of R 

and P is a prime ideal of A with P O R = m , then P is a 

maximal ideal of A . Similarly it follows that if P is a maximal 

ideal of A , then Pf\R is a maximal ideal of R . 
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9. Invertible lattices 

An R-lattice I in Q is called invertible if II" 1 = 0^(1) 

and I~1I = o p(I) • In that case there is a Horita context 

derived from the obvious mappings 

I f c o ^ I ) 1 " 1 - * 0 ! ^ » I ' 1 * o 1 ( I ) I - * 0 r < I > • 
Hence an invertible R-lattice I is a finitely generated 
projective generator for both left o^(I)-modules and ri^ht 
o (I)-modules, and the rings 0^(1) and o r(I) are Morita 
equivalent. In particular one has as usual: 

Lemma 9*1 Let I be an R-lattice in Q . Then I""11 = o^(I) 
if and only if I is projective as a left o^(I)-module; in that 
case I is also a finitely generated left o^(I)-module. 

If I is an invertible R-lattice, then I"1 is invertible 
with o 1(l" 1) = o (I) and o r(I~ 1) = o 1(I) . If I and J are 
invertible R-lattices with o r(I) = o-̂ (J) , then IJ is invertible 
v/ith o-j^IJ) = o-ĵ Cl) , o r(IJ) = o r(J) • Hence the invertible 
R-lattices form a groupoid under proper multiplication. 

Let A be an R-order in Q . An R-lattice I is called 
A-invertible if it is invertible and o^(I) = o (I) = A . The 
A-invertible lattices form a multiplicative group 1(A) . If A 
is a maximal R-order, then 1(A) is a subgroup of 0(A) since 
every invertible lattice is divisorial. 

The group 1(A) may be compared with the Picard group Pic:.(A) 
of isomorphism classes over Yl of invertible A-A-bimodulc::. There 
is the usual exact sequence of groups 

1 — • R* — • K* 1(A) Pic R(A) ̂  Pic K(q) , 
where R* and K* are the subgroups of invertible demerit of 
R recp. K , and f (x) = Ax , ^(1) = [i] , Z ([l:]) = [ : ® ^ k ] . 
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But Pic K(Q) = Pic(K) since Q is an Azumaya K-algebra, 
and Pic(K) = 0 since K is von Neumann regular (Marot £l7j). 
Hence: 

Proposition 9.2 'The sequence 
1 -*R*—>K*-*I(A)—•+ Pic n(A)-#0 

is exact. 

Fart II. Maximal orders over Krull rin^s 

10. Krull rings 

The results on multiplicative ideal theory in § 7 '̂ ay be applied 
to the case v/hen the K-algobra Q is equal to K . One then 
obtains a generalization of the classical theory of divisors (as 
developed in [63, Chap. 7) • In particular this leads to a study 
of Krull subrings of the vori Neumann regular ring K ; a study 
which has been undertaken by J. Marot [16], £l7lCcf. also G.M. Berg­
man [33)• Since Marots work is not easily available, we shall in 
this section recapitulate relevant parts of it. 

Let R be a completely integrally closed snoring of the von 
Neumann regular ring K . 7/e shall always assume R 4 K . An 
R-submodule a of K is full if and only if an'Z ^ 0 • 

Lemma 10.1 If x 6 R and s € T , then there exists y £ a 

such that x + y s 6 X . 

Proof. There is an idempoteut e such that x = ex and e = xu 

for some u £ K . We assert that x + (1-e)sfiX • ? o r suppose 

z:: + z(1-e)s = 0 for some z 6 R • Then ozx = 0 , so z:: = 0 . 

Bui; s €X then implies z(1-e) = 0 and z = zc = sxu = 0 . Q 
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Lemma 10.2 Every full R-submodulo of K is generated by 
non-zero-divisors. 
Proof. Let a be an R-submodule of K with s 6 a n ! .To find 
non-zero-divisor generators for a , it suffices to do so for 
Rs+Rx for each x € a , and this is easily done by Lemma 10.1. Q 

An R-submodule a of K is an R-lattice (also called a 
fractional R-ideal) if and only if there exist s , tel v/ith 
s € a and ta G R • A fractional R-ideal a is called divisorial 
if a = R:(R:a) ,\ b:a in general denotes the set { x € K | xa c b j . 

Lemma 10.3 R:(B:a) is equal to the intersection a[ of all 
principal fractional ideals containing a . 
Proof. Let x e K . Then x € R:(R:a) if and only if xy € R for 
every non-zero-divisor y S R:a (by Lemma 10.2). Thus x € R:(R:a) 

-1 -1 
if and only if x € Ry for every y such that a C Ry , i.e. 
if and only if x G a . Q 

Two fractional ideals a and $ b are Artin equivalent if and 
only if a = b ; the equivalence class of a is called the 
divisor of a and is denoted div a . The divisors form an ordered 
abellan group D(R) , which is denoted additively so that 

div ab = div a + div b . 
One has div a ^ div b if and only if a D b . 

A discrete valuation on K is a mapping \> :K Z o $ o o } such that 
\>(xy) = \> (X) + »(y) , 

\>(x+y)^ inf f o(x),»(y)} , 
V(1) = 0 , U(0) = »* , 
\^(x) = 1 for some non-zero-divisor x £ K . 

The ring V = $ x € K ( V?(x) £ o} is the (discrete) valuation rim-: 
of \> , and £ = j x £ I ( | \ > ( x ) > 1 } is a f u U p r i i r i c : \.L\<:a.l o f V . 
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Clearly K is the total ring of fractions of V , and V is 

completely integrally closed in K . All full ideals of V are 

principal and of the form Vp n (n >, 0) for a certain p V , 

and Vp is the unique full prime ideal of ' V . 

More generally, a subring V of K , with K as its total ring 

of fractions, is a valuation ring in K if the full ideals of V 

are totally ordered under inclusion. As in the classical case one 

shows (cf. [6 ] , Chap. 6, § k)• 

Lemma 10.4 Let V be a valuation ring in K • Then any over-ring 

of V In K is a valuation ring, and the over-rings of V in K 

are totally ordered under inclusion. 

S is a Krull rinfl ifl there is a family (^^i£ X o f c i i s c r e t e 

valuations on K such that 

K 1) R is the intersection of the valuation rings of the L>. ; 

K 2) For every s 6 £ , V^Cs) = 0 except for finitely many i . 

Proposition 10.5 The following properties of the ring R are 

equivalent: 

(a) R is a Krull ring. 

(b) R satisfies ACC on divisorial ideals. 
(c) R is a Krull domain for each x € X , and for each s € X , 

s is invertible in R x for all but finitely many x . 

Proof. [33* Prop. 6.2. Q 

Let R be a Krull ring. The group D(R) is the free aboliar. 

group on the set of minimal divisors > 0 , called the prime 

divisors. The prime divisors correspond to the maximal proper 

divisorial ideals in R . For each x £ K we can write 

div Rx = Z V)p(x) P , 
with summation over the set of prime divisors P ; here 
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v>p are discrete valuations satisfying K 1 - 2 , and are called 
the essential valuations of R . 

For each full prime ideal p of R we let R— denote the ring 
"""" XT 

of fractions S^R with S = Z.O (Bsp) . 
The follov/ing three lemmas deal with a Krull ring R , and they 

are proved essentially as in the classical case (D0> Chap* 7 f § ! ) • 

Lemma 10.6 Let (i€ I) be the essential valuations of R , 
and let R^ be the valuation ring of 0^ . I£ S is a multiplica-
tively closed set in Z » then S~1R = O R i , v/here J = \ i € I I 

I - jeJ J 

^ ( s ) = 0 for all s £ S t , and S R is a Krull ring. 

Lemma 10 .7 Let p be the divisorial ideal corresponding to a 
prime x^tsai divisor P of R . Then p is a minimal full prime 
ideal of R , and R^ is the valuation ring of V > p • 

Lemma 1 0 . 3 A full ideal p is a maximal proper divisorial ideal 
of R if and only if p is a minimal full prime ideal of R . 
There is thus a bijective correspondence between essential 
valuations on R and minimal full prime ideals of R • 

V/e shall write P for the set of minimal full prime ideals of X . 

Proposition 10.9 The following properties of the ring R are 
equivalent: 
(a) Svery full ideal of R is projective. 
(b) R is a Krull ring where every full prime ideal is maximal, 
(c) R is a semihereditary Krull ring. 
(d) R is a Dedekind domain for each x € X , and for each o € Z , 

s v is invertible in R_„ for all but finitely many x . 

Proof. (a)4$(d): [ 3 ] , Cor. h.5. 

(c)**(d): Prop. 10./|. and [ 3 ] , Th. k.U 

(o)s^(d) is clear. 
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(с) 2ф (b): Let га be a full maximal ideal of R , and consider 
the over-ring R- of R • Since R is semihereditary, R- is a 
flat R-module ([9], Th. 5)> and as in [151, Prop, 4 one shows 
that R- is a valuation ring in К . But R- is the intersection 

m m 
of a family (R.)j of valuation rings of essential valuations 
of R (Lemma 10.6). From Lemma 10.4 follows that R- = R. for 
some j J , and it follows that m must be a minimal full prime 
ideal. Q 
A ring satisfying the conditions of Prop. 10.9 is called a 

Dedekind rin/ч (in К ). 

Proposition 10.10 If К is hereditary, then every Dcdelcind ring 
R in К is hereditary. 

Proof. Let a be an ideal in R . V/e can write aK = ® Ke. , 
- " " I 

where (e^i ^ s a family of orthogonal idempotents. If a 6 a , 
then a = Z k^e^ with k^£ К and almost all k^ = 0 . Since 

^i ei = a e i ^ R e i ^ = &± > it follows that a = © a^ . 
Since e^€ aK , v/e see that a contains an element sj_ e-j_ witii 

s ^ Z f for each i £ I . Let x 6 . By Lemma 10.1 there exists 
у € R such that z = x + ys^€ Z • Then x = xe^ = ze^ - rs^e^ € 
£ R S ^ ^ , where S i = £ t € Z I te^€ > a n d s 0 §L± = ^S^.^ • 
Since RS i is a full ideal of R , it is projective, and so is 
then also a^ . Q 

11. Krull orders 

Lemma 11.1 Let R be a Krull ring and A jm R-order in Q # If 

a is a non-zero-divisor in A , then a is invertible in A. 

for all but finitely many x . 

Proof. One may write a""1 = bs"1 with b £ A and s t l . Since 

s., is invertible in it for all but finitely many :•: (Prop. 10.5). 
X X * 

it follows that a x" 1 € A x
 f o r a 1 1 b u t finitely ir-ny x . ft 
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Theorem 1 U 2 Let A be a maximal R-order in Q . The following 
conditions are equivalent: 
(a) A satisfies ACC on divisorial ideals. 

(b) D(A) is a free abelian group with the set of maximal proper 
divisorial ideals as basis. 

(c) R is a Krull ring. 

A maximal R-order A satisfying these conditions is called a 
Krull order. 
Proof. (a )4^(b) is standard. 

(a) (c): Let a be divisorial ideal in R , and put I = 
= ( (Aa)* 1 • Then I is a divisorial ideal in A , and it suffices 
to show that I O R = a , because then ACC for divisorial ideals 
in R will follow, and we can apply Prop. 1 0 . 4 . Now 

(10 R)#(R:a) C I. (Aa)~ 1 Ci K C A HK = R . 
Hence ins CR:(R:a) = a , so IfiR = a . (Cf. [ 7 l , Lemmo 1 . 3 ) . 

(c)s^ (a): From Lemma 6.1 follows that A % is a maximal order 
over the Krull domain R v , for each x 6 X . If I is a divi-
sorial ideal of A , then I = A v for all but finitely many x , 
by Lemma 1 1 . 1 . Since each A satisfies ACC on divisorial ideals 
([2*1, P. 1 5 1 ) , it follows that also A does so. Q 

Let R be a Krull ring. An R-lattice in Q, is said to be 
P-divisorial if I =f|lr, . Similarly to ( [ 2 ] , p. 154) one has: 

p £ 
Proposition 1 1 . 5 Let R be a Krull ring, and let A be an 

R-order in Q, . Then A is a maximal R-order if and only if A 

is P-divisorial and A- is a oaximal R--order for each P € Z • — - • P_ P ~ 
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12* Dedeklnd orders 

Theorem 12.1 The following properties are equivalent for a 
maximal R-order A in Q : 

(a) Every full ideal of A is invertible. 
(b) Every full ideal of A is a projective left A-module. 
(c) Every A-A-lattice is invertible. 
(d) The A-A-lattices form under multiplication a free abelian 

group with the set of full maximal ideals as basis. 
(e) A satisfies ACC on full ideals, and every full prime ideal 

of A is a maximal ideal. 
(f) Every full left ideal of A is a finitely generated projective 

left A-module. 

(g) R is a Dedekind ring. 
A maximal R-order A satisfying these conditions is called a 
Dedekind order. 
Proof, (a) =^(c) is clear since for every A-A-lattice I there 
exists s 6 X such that si is a full ideal in A . 
(c) ̂  (d): The A-A-lattices now form the group D(A) , since every 
A-A-lattice is divisorial, and this group is free abelian on the 
set of maximal divisorial ideals. 

(d) ̂ ( e ) : Clearly A satisfies ACC on full ideals. Since every 
full ideal is a product of maximal ideals, a full prime ideal must 
be maximal. 
(e) 2? (g): R is a Krull ring by Theorem 11.2, and every full 
prime ideal of R is maximal by Prop. 8.1, so R is Dedekind by 
Prop. 10.9. 

(g) ̂ ( f ) : Each R x , x £ X , is a Dedekind domain by Prop. 10.9* 
and A„ is therefore a hereditary R,r-order (Prop. 6.1 a n ' i £ll, 
Th, 2,9). Every full left ideal of A is finitely ^encrat-a 
projective by the argument used in the proof of Lc'ina 5,5 of (ĵ 3» 



- 58 -

20 

(f) =>• (b) is trivial. 
(b) ̂  (a): Let I be a full ideal of A . Then I"1I = A by 
Lemma 9«1# This also gives 

(rT 1 r 1i = (II" 1)" 1 II" 11 c I , 
and hence (II""1)"1 c o x(I) = A . But II" 1 C A then implies 

II" 1 = A . Q 

Proposition 12.2 Let A be a Dedekind R-order. If I is a left 
A-latticc, then o p(I) is a Dedekind R-order. and I is inverible. 
Proof. Put J = II" 1 , which is a full ideal in A . Hence J is 
invertible, and JJ"1 = A , i.e. II" 1 J"1 = A . It follows that 
I" 1 J"1 C I"1 , so J"1 C o r(I" 1) = A . Therefore J = A , and I 
is invertible. Also o r(I) is a Dedekind R-order, since it is 
Merita equivalent to A . Q 

Remark 1. If R is hereditary ring, then every Dedeliind 
R-order is a left and right hereditary ring by 
Remark 2. One may ask whether every Dedekind R-order is finitely 
generated as an R-module. 
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