PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

GUY RENAULT

Introduction aux actions de groupes

Publications des séminaires de mathématiques et informatique de Rennes, 1980, fascicule S3

« Colloque d'algèbre », , p. 113-118

http://www.numdam.org/item?id=PSMIR_1980___S3_113_0

© Département de mathématiques et informatique, université de Rennes, 1980, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

INTRODUCTION AUX ACTIONS DE GROUPES

Guy RENAULT Université de Poitiers

Soit R un anneau unitaire et G un groupe fini d'automorphismes $\mbox{de R . R}^{\mbox{G}} \mbox{ désigne l'anneau des points fixes :}$

$$R^G = \{x \in R/x^G = x \text{ quel que soit } g \in G\}$$
.

A partir de ces données, deux principales directions de recherche se sont développées : étude des propriétés de transfert entre R et \mathbb{R}^G , étude des différentes situations où R est un \mathbb{R}^G -module de type fini.

I .- RESULTATS GENERAUX.

|G| désigne l'ordre du groupe G et on dit que R est sans |G|-torsion si la relation |G|x=0, $x \in R$, implique x=0.

La plupart des résultats obtenus découlent des deux théorèmes clefs suivants :

THEOREME 1.1 (Bergman-Isaacs)— Soit R un anneau et soit G un groupe fini d'automorphismes de R tel que R soit sans |G|-torsion. Si I est un idéal (bilatère ou non) G-invariant, il est nilpotent dès que I \cap \mathbb{R}^G l'est.

En particulier, si R est un anneau semi-premier et $I \neq 0$ est un idéal (bilatère ou non) G-invariant on a $R \cap I \neq (0)$.

THEOREME 1.2. (Kharchenko)—Soit R un anneau réduit et soit G un groupe fini d'automorphismes de R. Si I est un idéal (bilatère ou non) G-invariant $\neq 0$, on a I \cap R^G \neq (0).

On remarquera que dans ce dernier cas, il n'y a aucune condition sur l'ordre du groupe $\, G \,$.

Exemple d'idéaux invariants.

Soit I un idéal à droite essentiel dans R . Alors

$$J = \bigcap_{g \in G} I^g$$

est un idéal à droite G-invariant essentiel dans R.

Dans les "bons cas", l'étude de l'anneau des points fixes R^G, se déduit de l'étude des invariants de l'enveloppe injective de R; on peut se ramener aussi parfois à l'étude des anneaux semi-simples ou plus généralement des anneaux réguliers auto-injectifs, ce qui simplifie souvent l'étude des propriétés de transfert.

THEOREME 1.3 (A. Page)— Soient R un anneau à idéal singulier à droite nul, \hat{R} l'enveloppe injective de R_R , G un groupe fini d'automorphismes de R. Alors

- a) G s'étend canoniquement à \hat{R} .
- b) Si R est semi-premier sans |G| -torsion, $(\hat{R})^G$ est l'enveloppe injective à droite de R^G .

Exemple (Kharchenko). Soit R un anneau semi-premier sans |G|-torsion. Alors R est de Goldie, si, et seulement si R^G est de Goldie (le cas semi-simple est supposé connu).

Pour tout sous-ensemble $\land \leq G$ on pose

$$t_{\Lambda}(x) = \sum_{g \in \Lambda} x^{g} .$$

On dit que t_{λ} est une trace partielle non triviale si l'on a

$$0 \neq t_{\Lambda}(R) \leq R^{G}$$

On a les résultats suivants (S. Montgomery-Cohen-Montgomery)

THEOREME 1.4.— 1) Soit G un groupe fini d'automorphismes d'un anneau intègre R. Il existe alors une trace partielle non triviale définie sur R.

2) Soit G un groupe fini résoluble d'automorphismes d'un anneau réduit ${\tt R}$. Il existe alors une trace partielle non triviale définie sur ${\tt R}$.

Ce dernier résultat caractérise les groupes résolubles. En effet, utilisant des résultats très profonds de la théorie des groupes, Isaacs et Passman ont montré que si G n'est pas résoluble, il existe un anneau R, somme directe finie de copies de \mathbf{Z}_2 , sur lequel agit G et tel que toute trace partielle soit triviale.

On peut compléter les résultats sur l'existence des points fixes, par les théorèmes suivants qui montrent l'importance des idéaux G-invariants.

THEOREME 1.5 (Fisher)— Soit G un groupe fini d'automorphismes d'un anneau R. Si le treillis des idéaux (à gauche ou bilatères)G-invariants de R vérifie la condition de chaîne ascendante (resp. descendante) alors le treillis des idéaux (à gauche ou bilatères) vérifie la même condition.

THEOREME 1.6 (Kharchenko)— S'il n'existe pas dans R de somme directe infinie d'idéaux à gauche $\neq 0$ et G invariants, alors R n'admet pas de somme directe infinie d'idéaux à gauche $\neq 0$.

II. - THEOREMES DE FINITUDE - LE CAS NOETHERIEN.

Problème : R est-il un RG-module de type fini ?

Si $|G|^{-1} \in \mathbb{R}$ et si \mathbb{R} est semi-simple ou plus généralement si \mathbb{R} est un produit fini d'anneaux quasi-simples la réponse est oui. Voici un schéma de démonstration (Handelman-Renault).

On considère l'anneau de groupe tordu R * G défini de la façon suivante : c'est le R-module à gauche admettant pour base les éléments de G, muni de la multiplication

$$(r_1g)(r_2h) = r_1r_2^{g-1}gh$$
.

On pose e = $|G|^{-1}$ Σ g , c'est un idempotent. R est un R * G module g \in G à gauche :

$$(\Sigma r_g g)r = \sum_g r_g r^{g-1}$$
.

et l'on a un R*G isomorphisme de R sur R*Ge donné par r + r Σ g géG et par suite End_{R*G} R*Ge \cong R G . On prouve alors que R*G est un produit fini d'anneaux quasi-simples et par suite R*Ge est un générateur de R*G/e(R*Ge). Un théorème de Morita montre alors que R est un R G -module projectif de type fini.

Lorsque $|G|^{-1} \in R$, si R est noethérien à gauche, alors R est un R^G -module de type fini (Montgomery). Des résultats plus précis sont obtenus lorsque R est simple et G extérieur. Alors R est un R^G -module libre de rang |G|.

En général R n'est pas un R^G -module de type fini. Chuang et Lee ont donné l'exemple d'un anneau commutatif noethérien intègre de caractéristique 0 et d'un automorphisme σ d'ordre 2 de R tels que R^G ne soit pas noethérien. D'après le théorème d'Eakin, R n'est pas un R^G -module de type fini.

Même si $|G|^{-1} \in \mathbb{R}$, où R est quasi-frobeniusien, \mathbb{R}^G n'est pas nécessairement quasi-frobeniusien (Pascaud-Valette).

Dans le cas réduit, on a le résultat suivant (Renault). Si R est un anneau réduit auto-injectif, alors R est un R^G -module engendré par |G| éléments.

III.- L'ALGEBRE DU GROUPE.

Pour terminer, je vais présenter un objet introduit et étudié principalement par Kharchenko et qui semble une clef fondamentale de la théorie.

Soit ${\mathcal F}$ l'ensemble des idéaux essentiels bilatères d'un anneau semipremier R et soit

$$S = \lim_{\longrightarrow} \operatorname{Hom}_{R} (_{R}^{I}, R)$$

$$I \in \mathcal{F}$$

R se plonge dans S et G se prolonge à S . Le centre C de S est un anneau régulier auto-injectif. Si $g \in A$ Et R on pose

$$\phi_g = \{x \in S/xr^g = rx , \forall r \in R\}$$

on dit que $\,g\,$ est intérieur si $\,\varphi_g^{\,}\neq 0$, extérieur sinon.

 $G_{inn} = \{g \in G/\phi_g \neq 0\}$ n'est pas en général un sous-groupe de G (ceci est vrai si R est premier). On peut prouver que ϕ_g est un C-module monogène. On pose alors

$$B(R,G) = \sum_{g \in G} \phi_g.$$

c'est un sous-anneau de S qui s'appelle l'algèbre du groupe G .

La condition B(R,G) semi-premier est vérifiée dès que R est réduit ou sans |G|-torsion. Cette condition fondamentale est à l'origine des

travaux profonds de Kharchenko, Montgomery, Osterburg, Goursaud, Pascaud, Valette....

On trouvera des exposés complets de la théorie, en consultant les articles suivants :

- J.W. FISHER, J.OSTERBURG Finite group actions on Non Commutative rings.

 A survey serie 1970. Proceedings of 1979 Oklahoma Conference.
- S. MONTGOMERY Fixed rings of finite automorphism group of associative rings. Lecture Notes in Mathematics (à paraître).
- A. PAGE Actions de groupe. Séminaire d'Algèbre Paul Dubreil 1977-1978.

 Lecture Notes in Mathematics n° 740.

Pour les anneaux réduits notamment, on pourra consulter :

G. RENAULT - Actions de groupe et anneaux réguliers injectifs. Ring Theory Waterloo 1978. Lecture Notes in Mathematics n° 734.

Pour la théorie des anneaux réguliers et les anneaux à I.P., des résultats très importants sont dans :

J.M. GOURSAUD, J. OSTERBURG, J.L. PASCAUD, J. VALETTE - Points fixes des anneaux réguliers auto-injectifs. C.R.A.S. et Comm. in Algebra (à paraître).