PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

EMILE LE PAGE

Calcul des probabilités - Théorème des grands écarts et théorème de la limite centrale pour certains produits de matrices aléatoires

Publications des séminaires de mathématiques et informatique de Rennes, 1979, fascicule 1

« Séminaire de probabilités », , exp. nº 5, p. 1-8

http://www.numdam.org/item?id=PSMIR_1979___1_A5_0

© Département de mathématiques et informatique, université de Rennes, 1979, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CALCUL DES PROBABILITES. - Théorème des grands écarts et théorème de la limite centrale pour certains produits de matrices aléatoires. Note(*) d'Emile LE PAGE transmise par

Soit $(g_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans $SL(2,\mathbb{R})$, indépendantes et de même loi p à support compact ; on suppose de plus que le sous groupe fermé G_p engendré par le support de p est non compact et a ses sous groupes d'indice fini irréductibles. Notant $\|\cdot\|$ une mesure quelconque sur \mathbb{R}^2 , on étudie pour $\mathbf{x} \in \mathbb{R}^2 - \{0\}$ la suite de variables aléatoires $(Log\|\mathbf{g}_n\|\mathbf{g}_{n-1} \cdots \mathbf{g}_1\mathbf{x}\|)_{n\geq 1}$. On établit un théorème des grands écarts puis un théorème de la limite centrale.

Let $(g_n)_{n\geq 1}$ be a sequence of independent, identically distributed random variables with values in $SL(2,\mathbb{R})$, having a distribution with compact support; moreover we suppose that the closed group G_p generated by the support of p is non compact and such that no subgroup of G of finite index is reductible. If I is some norm on \mathbb{R}^2 we study for all $x\in\mathbb{R}^2-\{0\}$ the sequence of random variables $(Log\|g_n\|g_{n-1}\dots g_1^{|x|})_{n\geq 1}$. We prove a theorem of large deviations, and a central limit theorem.

§1 - Résultats préliminaires

1-1 Considérons une probabilité p à support compact S_p portée par $SL(d,R)d\geq 1$. Nous supposerons de plus que p admet une unique probabilité invariante \vee sur l'espace projectif $P(R^d)$ (condition (U)). Des conditions suffisantes sur le support de p pour que (U) soit réalisé sont données dans [3] et [5]. En particulier si le semi groupe fermé T_p engendré par le support de p est égal à SL(d,R) ou si T_p est un réseau (U) est vérifiée.

Soit maintenant $(g_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi p et soit $(P(x,.))_{x\in P(\mathbb{R}^d)}$ la probabilité de transition définie de $P(\mathbb{R}^d)$ dans les boréliens de $P(\mathbb{R}^d)$ par $P(x,A) = \int 1_A (g x) p(dg)$

Notons de plus σ l'application de SL(d, \mathbb{R}) x P(\mathbb{R}^d) dans \mathbb{R} définie par

$$\sigma(g,\overline{u}) = \frac{\|g\,u\|}{\|u\|}$$

 $g \in SL(d,R)$, $u \in P(\mathbb{R}^d)$ étant l'image dans $P(\mathbb{R}^d)$ de $u \in \mathbb{R}^d$ - $\{0\}$ et I l'étant une norme quelconque sur \mathbb{R}^d .

Avec ces notations nous pouvons énoncer la

Proposition 1

Soit p une probabilité à support compact portée par $SL(d,\mathbb{R}) \text{ et satisfaisant à la condition (U), alors la suite de fonctions } f_n(x) = \frac{1}{n} \ E \ Log \|g_n \dots g_1 x\| \quad converge uniformément sur \\ S_{d-1} = \{x/\|x\|=1\} \quad \text{vers } \gamma = \iint \ Log \ \sigma(g,\overline{u}) \ p(dg \ \nu(d\overline{u}) \ SL(d,\mathbb{R})xP(\mathbb{R}^d)$

Démons tration

La proposition 1 résulte du fait que pour toute suite $(u_n)_{n\geq 1} \in P(\mathbb{R}^d) \text{ la suite de probabilités } (\frac{1}{n} \sum_{k=1}^n P^k(u_n,.))_{n\geq 1} \text{ converge }$ vaguement vers v, car toute valeur d'adhérence de cette suite est une probabilité p invariante et est donc égale à v.

1-2 On suppose désormais que d=2. On définit sur $P(\mathbb{R}^2)$ la distance δ compatible avec la topologie de $P(\mathbb{R}^2)$

$$\delta(\overline{x},\overline{y}) = |\sin \theta(x,y)| \quad \overline{x}, \ \overline{y} \in P(\mathbb{R}^2) \quad x,y \in \mathbb{R}^2 - \{0\}$$
où $\theta(x,y) = |\arg x - \arg y| \quad 0 \le \arg x < 2\pi$

$$0 \le \arg y < 2\pi$$

On considère également l'opérateur P_{λ} , $\lambda \geq 0$ de l'espace vectoriel $\mathcal{C}(P(\mathbb{R}^2))$ des fonctions continues sur $P(\mathbb{R}^2)$ muni de la topologie de la convergence uniforme sur $P(\mathbb{R}^2)$, défini par

$$P_{\lambda}f(\overline{x}) = \int \frac{1}{|\sigma(g,\overline{x})|^{\lambda}} f(g|\overline{x}) p(dg) |\overline{x} \in P(\mathbb{R}^{2})$$

$$f \in \mathcal{C}(P(\mathbb{R}^{2}))$$

THEOREME 1

Soit p une probabilité à support compact portée par $SL(2,\mathbb{R})$ telle que le groupe fermé G_p engendré par le support de p soit non compact et ait ses sous groupes d'indice fini irréductibles, et telle que la condition (U) soit satisfaite ; et soit $(g_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi p, alors

1°) Il existe un $\lambda_0>0$ telle que pour $0<\lambda\leq\lambda_0$ la norme spectrale de l'opérateur P_λ soit strictement inférieure à 1

2°)
$$\overline{\lim}_{n \to \overline{x}, \overline{y} \to \mathbb{R}^2} [\mathbb{R}^2] \stackrel{E\delta(g_n, g_1 \overline{x}, g_n, g_1 \overline{y})}{\mathbb{R}^2}]^{1/n} = \rho < 1$$

Démonstration

Le 1°) se déduit de ce que pour $n\geq 0$ et $\bar{x}\in P(\mathbb{R}^2)$ on a

$$\frac{d}{d\lambda} \left\{ P^n | 1(\widetilde{x}) \right\} \Big|_{\lambda=0} = -E | Log \| g_n \dots g_1 | x \|$$

et ce que pour n assez grand inf E Log $^{\parallel}g_n$ g_{n-1} ... g_1 x^{\parallel} > 0 $x \in S_1$... résultant de la proposition 1 et du fait que d'après le théorème

(8-6) de [2]

$$Y = \iint_{SL(2,\mathbb{R})\times P(\mathbb{R}^2)} p(dg) \ v(d\overline{u}) > 0$$

Le 2°) se déduit du 1°) à l'aide des inégalités

$$\delta(g\overline{x},g\overline{y}) \leq [\delta(gx,gy)]^{\lambda} \leq \frac{[\delta(\overline{x},\overline{y})]^{\lambda}}{\|gx\|^{\lambda}\|gy\|^{\lambda}}$$

$$\overline{x},\overline{y} \in P(\mathbb{R}^2) \quad x,y \in S_1 \quad 0 < \lambda < 1$$

et de l'inégalité de Schwartz.

Avant d'énoncer 2 corollaires donnons quelques notations. Pour $0 < \lambda \le 1$ et pour toute fonction f bornée sur $P(\mathbb{R}^2)$ nous définissons $m_{\lambda}(f)$ par : $m_{\lambda}(f) = \sup_{\overline{x}, \overline{y} \in P(\mathbb{R}^2)} \frac{f(\overline{x}) - f(\overline{y})}{\left[\delta(\overline{x}, \overline{y})\right]^{\lambda}}$

et
$$\mathcal{L}_{\lambda} = \{y/\|f\|_{\lambda} = \sup_{x \in P(\mathbb{R}^2)} |f(x)| + m_{\lambda}(f) < +\infty \}$$

 $\frac{3}{2}$ ast une algèbre de Banach unitaire muni de la norme li $_{\lambda}$. On a alors

Corollaire 1

Sous les hypothèses du théorème 1 il existe un $0<\lambda_0\le 1$ tel que pour tout $0<\lambda\le\lambda_0$ il existe un réel $0<\rho_1<1$ et un entier N_1 tels que $\forall f\in \mathcal{S}$ $\forall n\ge N_1$ $\forall m\ge 0$ on ait les inégalités :

Corollaire 2

Sous les hypothèses du théorème 1 pour toute fonction $f \in \mathcal{C}(P(\mathbb{R}^2))$ lim $\sup_{x \in P(\mathbb{R}^2)} |P^n f(x) - v(f)| = 0$

§2 - Un théorème des grands écarts

On énonce un théorème de grands écarts pour une chaine semimarkovienne puis nous l'appliquons au cas d'une marche aléatoire sur $SL(2,\mathbb{R})$.

2-1 Soient un espace compact X à base dénombrable, P une probabilité de transition de X dans les boréliens \mathcal{B}_{X} de X, F une probabilité de transition de X x X dans les boréliens \mathcal{B}_{R} de R. On considère une chaine semi markovienne (X_n, U_n) à valeurs dans X x R de probabilité de transition Q définie par

$$\begin{array}{lll} \mathbb{Q}(x,u,A,B) &=& \mathbb{Q}(x,0,A,B) &=& \mathbb{Q}(x,A,B) &=& \mathbb$$

Notons $(Q_X)_{X \in X}$ la famille de probabilités associées sur l'espace des trajectoires $\Omega = (X \times \mathbb{R})^{\mathbb{N}}$

Faisons les hypothèses suivantes :

 (H_1) . Padmet une probabilité invariante π et pour toute fonction ϕ continue sur x on a

$$\lim_{n}\sup_{x\in X}|P^{n}_{\phi}(x)-\pi(\phi)|=0$$

(H₂) Il existe un compact C de $\mathbb R$ tel que pour tous $x,y\in X$ le support de la probabilité $F(d\lambda,x,y)$ soit contenu dans C

(H₃) L'application $\alpha(x) = \int\limits_X P(x,dy) \int\limits_{\mathbb{R}} \lambda \ F(d\lambda,x,y)$ est continue sur X

On a alors le

THEOREME 2

Sous les hypothèses (H_1) , (H_2) , (H_3)

 1°) $\forall x \in X$

$$Q_X$$
 p.s. $\lim_{n} \frac{1}{n} (U_1 + U_2 + \ldots + U_n) = \int_{X} \alpha(x) \pi(dx)$

2°) Il existe une constante O<a<l telle que

Vε > 0

$$\frac{\text{Tim}}{n} \left[\sup_{x \in X} Q_{x} \left\{ \left| \frac{U_{1}^{+U} 2^{+ \dots + U} n}{n} - \int_{X} \pi(dx) \alpha(x) \right| > \varepsilon \right\} \right]^{1/n} \leq a^{\varepsilon^{2}} < 1$$

Démonstration

Elle utilise la

Proposition 2

Soit (Ω,\mathcal{F},P) un espace probabilisé et $(Y_n)_{n\geq 1}$ une suite de variables aléatoires réelles définies sur cet espace telles que

a)
$$\forall n \ge 1$$
 $|Y_n| \le L$ Pps

b)
$$\forall n \ge 1$$
 $E(Y_n | J_{n-1}) = 0$ Pps

où $\mathcal{T}_0 = \{\phi,\Omega\}$ et \mathcal{T}_n $n \ge 1$ est la tribu engendrée par les variables aléatoires $(Y_k)_{1 \ge k \ge n}$

alors

1°) Pps
$$\lim_{n} \frac{1}{n} (Y_1 + Y_2 + \dots + Y_n) = 0$$

2°) $\forall \varepsilon > 0$ et $\forall n \ge 1$ $P(\frac{|Y_1 + Y_2 + \dots + Y_n|}{n} > \varepsilon) \le 2e^{\frac{n\varepsilon^2}{2L}}$

et la décomposition suivante par une méthode apparue dans [1] et reprise dans [6] :

Notons $(\mathcal{T}_n)_{n\geq 1}$ la tribu (X_k,U_k) $k\leq n$) et $\mathcal{T}_0=\{\Omega,\phi\}$ pour $x\in X$ on définit alors Q_X ps les variables aléatoires

$$U_n^{(1)} = \begin{cases} U_n - E_x(U_n | \mathcal{T}_{n-1}) & \text{si } n > 1 \\ 0 & \text{si } n = 1 \end{cases}$$

et pour
$$j \ge 2$$
 $U_n^{(j)} = \begin{cases} E_x & (U_n | \mathcal{F}_{n-j+1}) - E_x (U_n | \mathcal{F}_{n-j}) & \text{si } n > j \\ 0 & \text{si } 1 \le n \le j \end{cases}$

$$\frac{S_n}{n} \alpha = \frac{U_1 + U_2 + \dots + U_n}{n} - \int_X \pi(dx) \alpha(x) = \sum_{p=1}^j \frac{1}{n} \left(\sum_{k=j+1}^n U_k^{(p)} \right) + \frac{1}{n} \sum_{k=j+1}^n [E_x(U_k^{(p)}) - \alpha] + \frac{1}{n} \sum_{k=1}^j U_k - \frac{1}{n} \alpha = T_1(n,j) + T_2(n,j) + T_3(n,j)$$

où pour tout $p \ge 1$ $\left(\sum_{k=j+1}^{n} U_k^{(p)}\right)_{n \ge 1}$ est une martingale.

2-2 Compte tenu du corollaire 2 la chaine semi markovienne (X_n, U_n) à valeurs dans $P(\mathbb{R}^2)$ x \mathbb{R} définie par

$$(x_n, U_n) = (g_n \dots g_1 \overline{x}, \log \sigma(g_{n+1}, g_n \dots g_1 \overline{x})) \quad \overline{x} \in P(\mathbb{R}^2)$$
 satisfait aux hypothèses du théorème 2 d'où le

THEOREME 3

Sous les hypothèses du théorème 1 il existe 0<a<1 tel que $\forall \, \epsilon > 0$

$$\lim_{n} \left[\sup_{\|x\|=1} P\left(\frac{1}{n} \log \|g_n g_{n-1} \dots g_1 x\| - \gamma \right) > \varepsilon \right]^{1/n} \le a^{\varepsilon^2} < 1$$

§3 - Un théorème de la limite centrale

Le corollaire 1 montre que pour $0<\lambda\leq\lambda_0$ l'opérateur P est un opérateur de Doeblin-Fortet régulier [7] sur \mathcal{E}_λ . Il en est de même pour l'opérateur de transition associé à la chaine semi markovienne $(g_n\ldots g_1\overline{x},\ g_{n+1})$ à valeurs dans $P(\mathbb{R}^2)$ x S_p , agissant sur l'espace L_λ , analogue de \mathcal{E}_λ pour l'espace $P(\mathbb{R}^2)$ x S_p muni de la métrique $d\{(\overline{x},g)(\overline{y},g')\}$ = Sup $(\delta(\overline{x},\overline{y}),\|g-g^{\bullet}\|)$.

En utilisant un théorème de la limite centrale énoncé dans ce cadre dans [7], ou en appliquant un théorème de [6] établi dans le cadre des processus d'apprentissages nous pouvons prouver le

THEOREME 14

Sous les hypothèses du théorème 1

- 1) $\forall x \in \mathbb{R}^2 \{0\}$ la suite $\sigma_n^2(x) = \frac{1}{n} (E \text{ Log } \|g_n ... g_1 x\| n_Y)^2$ converge vers une constante $\sigma^2 > 0$ indépendante de x
- 2) $\forall x \in \mathbb{R}^2 \{0\}$ la suite de variables aléatoires $Z_n(x) = \frac{1}{\sigma \sqrt{n}} \left(\text{Log } \| g_n \dots g_1 x \| n_Y \right)$ converge en loi vers une loi normale N(0,1)
- 3) Il existe une constante C > 0 et un réel $\alpha \ge 20$ tels que $\forall t \in \mathbb{R} \quad \forall n \ge 1 \quad \sup_{\|x\| = 1} \left[P(Z_n(x) \le t) \frac{1}{\sqrt{2\pi}} \right] \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} du \le \frac{c}{n^\alpha}$

§4 - Remarques

- 1) Les théorèmes 3 et 4 s'étendent aux groupes semi-simples de rang 1 en particulier aux groupes du type SO(n,1) et SU(n,1).
- 2) Le résultat du théorème 4 est analogue à ceux établis dans [8] pour d quelconque lorsque la probabilité p admet une densité et également dans [4] dans le cas où la suite de matrices aléatoires est une suite de matrices positives.

- (*) séance du
- [1] BREIMAN L.: The strong law of large numbers for a class of Marko chains Ann. Math. Stat vol 31 (1960), p.801-803.
- [2] FURSTENBERG H.: Non Commuting random products TAMS vol 108 (1963) p. 377-428.
- [3] FURSTENBERG H.: Amer Math Soc Summer Inst on Harmonic Analysis on homogeneous spaces, Williamstown, Massachussets (1972).
- [5] GUIVARC'H Y.: Etude des produits de matrices aléatoires -Cours de Saint Flour (1978).
- [6] KAIJSER T.: Some limit theorems for Markov chains with applications to learning models and products of random matrices -Report Institut Mittag Leffler (1972).
- [7] NORMAN F.: Markov Processes and Learning models Academic Press New York (1972).
- [8] TUTUBALIN V.N.: On limit theorems for the product of random matrices Theory of Probability and its applications, volume 10 number 1 (1965) p. 15-27.

E. LE PAGE Laboratoire de Probabilit L.A. 305 du C.N.R.S., B.P. n° 25 A 35031 Rennes Cédex.