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The purpose of this paper is to give some results about powers 

and Gevrey regularity in the interior and up to boundary for a System of 

differential operators, which is, in particular, an extension of those 

of Kotake-Narashiman (jSj and Nelson [\ l] . 

I - POWERS AND G s REGULARITY. 

At first, we recall the définition (or characterization) of the 

analyticity of a function : 

Définition 1-1 : 

oo n . 
A function u, C m an open set of (R , is analytic in Q if, 

for every compact set K of there exists a constant L = L^ > 0 such that, 

for every a -£»Nn, we have : 

!|D au|| < I>l + ,(|a|!) 

IT(K) 

where we have written, for a = (ctj,...,a ) , 

I l A n« a 1 " 1 

a = a, + ...+a and D = 1 1 1 — . 
1 1 1 n a, a 

1 n 

We dénote by a(Q) the space of analytic functions in Q. 

In [8] , Kotake-Narashiman characte rize the analyticity with the help of 

the powers of an elliptic operator in the following manner : 

THEOREM 0 : 

Let V be an elliptic différentiel operator of order m ^ 1 with analytic 

n 

coefficients in an open set Q of' f? 3 the two following propositions are 

équivalent : 
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(i) u = a(Q) ; 

(i%) u ÇL C (0.) andj for every compact set K of Q3 there exists a constant 

L - LK > 0 such thatj for every k s ffi, we have : 

\\Pku\\ 9 .< Lk+1((mk)>). 
ÎT(K) 

In Ql], Nelson characterizes the analyticity with the help of 

the powers of n real vector fields linearly indépendant in the following 

manner : 

THEOREM 0' : 

Let P^3... 3P be some real vector fields 3 with analytic coefficients and 

linearly independ.ant in every point of an open set Q of F?n

3 the two follo

wing propositions are équivalent : 

(i) u G- a(Q) ; 

(%i) u r C (Q) and3 for every compact set K of Q3 there exists a constant 

L - L^ > 0 such that3 for every 1 S i - ̂  n3 1 < j s k and k > 13 we have : 

\\P ...P^W .< Lk+1(k!). 
%1 %k FOC) 

The purpose of this paper is to extend thèse results for more 

gênerai operators and in the Gevrey's classes of order s ^ 1 in the interior 

and also up to the boundary. 

We recall the définition of the Gevreyfs classes : 

Définition 2 : 

Let K be a compact set of R n and S a real number >J . We mean by Gevrey's 

class of order s in K the space G g(K) of the restrictions over K of C°° 

functions u in a neighbourhood of K such that there exists a constant 

L > 0 such that, for every a £T lNn, we have : 
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||Dau|| . < J a l + I ( | a | ! ) S . 
l/(K) 

Let Q be an open set of R n ; we mean by Gevrey's class of order s in 

the space Gg(Œ) of the functions which are in Gg(K) for every compact 

subset K of Q. 

If K is flsmooth enough", we can replace the L (K)-norm by the L (K)-norm. 

For s = 1, we get, of course, the analytic functions. 

Let Q be an open set of (Rn with boundary dQ and Pj 5 Pj(x;D), j = 1,.,*,N, 

some differential operators of order m. € iN • let be dénote by Pj = Pj(x;D) 

the principal part of order mj of Pj ; we introduce the two following con

ditions : 

(A) for every x <£: Q, the polynomial Pj(x;Ç), for 1 ̂  j ̂  N, have no common 

non trivial real zéro ; 

(B) for every x 9fi, the polynomials Pj(x;£), for 1 j £ N, have no common 

non trivial complex zéro. 

At first, we have the following theorem on powers in the Gevrey's 

classes Gg(ft), which generalizes the Kotake-Narashiman and Nelson's theorems : 

THEOREM 1 : 

If the operators P . , j = l3.».yN3 have coefficients in Gq(Q) and satisfy 

the condition (A) 3 the two following propositions are équivalent : 

(i) u ~- Gs(çi) ; 

(ii) u €. C°(çi) and for every compact subset K of Q3 there exists a constant 

L - Lv > 0 such thatj for every l < i . < N 3 l ^ j < k and k > 13 we have : 

| | P . . . . P . «M 2 <Lk+1 mi}l)
S. 
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Also, we have the following resuit which is a resuit on powers in the 

Gevrey's classes Gg(fi) : 

THEOREM 2 : 

If is a bounded open set of with Lipsohitzian boundary if the operators 

for 1 $ Q $ N3 have coefficients in Ggfiï) and satisfy the conditions 

(A) and (B)3 the two following propositions are équivalent : 

(i) u e: Gs(tt) ; 

(ii) u~ C (Q) and there exists a constant L > 0 such that3 for every 

l$i.$N3l^j<k and k > 13 we have : 

"V-VU >*lM
 "hmi-'"s • 

1 k L (Q) Q=1 Û 

We recall that an open set Œ of R n with Lipschitzian boundary 8ft 

is an open set such that, for every point x QS. 8Œ, there exists a real number 

r > 0 , a system of local coordinates ( X j , . . . , x ) and a Lipschitzian func

tion h = h(xt,...,x .) such that : 

1 n-1 

Q O B(x ,r) = {(x. ,. • . ,x ) ; x > h(x, ,... ,x .) } n B(x ,r) 
o I n n 1 n-1 o 

where B(xQ,r) is a bail of center X q and radius r. 

The implications (i)=>(ii) always are true and are easy to prove. 

The method used to prove the theorem 2 (like for the theorem 1) 

in the implication (ii)-==r^>(i) is an adaptation of this of Kotake-Narashiman 

[j}J using the tools of Morrey-Nirenberg \j6] . 

At first, we can only consider the operators with the same order m. 
m. 

In fact, for j = 1,...,N, we put m. = n m. and Q. = P. J . The operators 
J i î t j i 
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N 
Q. = Q.(x;D)>for 1 £ j ^ N^have the order m = n m. and satisfy the con-

J J j = l 3 

ditions (A) and (B) if and only if the operators Pj for j = 1,...,N sa-

oo — 

tisfy the conditions (A) and (B). And more, if u C (fi) and if there 

exists a constant L > 0 such that, for every 1 ̂  ij< N, 1 ̂  j <̂  k and 

k >, 1 , we have : 

| | P . ... P i u|| < L k + ,(( l m. ) ! ) S . 
1 k j=l j 

then also we have : 

I |Q, ...Q.- U| I .< L f k + 1((km)!) S 

Xl \ l/(fi) 

with L f = (max(L,1))™. 

Then, for the following, we assume that ail the operators Pj have the same 

order m. 

The point of the begining of the proof is a global a priori estimate 

which is given in Aronszajn [2j , Smith [l2] (cf. also Bolley-Camus [ 3] ) : 

Proposition 1-1 : 

Under the assumptions of the theorem 2, for every k ^ 1, there exists a 

oo — 

constant L > 0 such that, for every u B C (fi), we have : 

I M I k « C ( f I I P . u M k _ n + ||u|| 2 } . 

HK(fi) j = l J H ^ m l / ( f i ) 

By localization, we are going to deduce two others a priori estimâtes. At 

first : 

Proposition 1-2 : 

Under the assumptions of the theorem 2, for every x £. fi, for every open 

neighbourhoods W and W 1 of x in fi, W 1 being relatively compact in W, there 
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00 

-30-

exists a constant A > 0 such that, for every u C (W), we have : 

Mu|| m « A. { f | | P . u | | 2 + | |u| | 2 } . 
H m(W f) j-1 J l/(W) IT<W) 

Proof : 

From the proposition 1-1, then exists a constant C > 0 such that, for every 

oo 

u £ C (W) , and 1 £ k £ m, we have : 

l l u H k * C ' { " I I P j u l l .
 + I N I • 

H K(W) j = l J
 H T W L (W) 

We are going to deduce the proposition 1-2 of this estimate in proving by 

induction on p, for 1 < p £ m, that there exists a constant > 0 and a 

function 0 ^ £1 C Q (W ) equal to 1 on W' such that, for every function u «El C (W) 

we have : 

N 
(P) ||u|| S C . i l ||P.u|| 9 + ||u|| 9 + | | 4 > u|| } . 

Hm(W') P j-1 J L 2(W) L 2(W) P H m^(W) 

i 00 

For p = 1, we consider a function <pQ <=: C Q(W) , equal to 1 on W
1 ; then, if 

u \T C°°(W) , from the précèdent estimate written with k = m, we have : 

N 

Hm(W') ° H m(W) j-1 J ° L 2(W) ° L 2(W) 

However, P̂  (<$QU) = $ 0

P j u ~ [ P j » ^ 0 l ^ i u
 w h e r e G C^(W) f equal to 1 on the 

support of and [ P j » 0 o l means the commutator of P_. and 0 q . Hence, 

||P.«|)0u)|| « c ; . { ||P u|| 2 + ||<j> u|| } 

J ° L 2(W) 1 J l/(W) 1 H m l ( W ) 

for 1 £ j ^ N ; then we get (1). 

http://SC.il
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Suppose (p) is true and show (P+l) if P+l ^ m, 

From the précèdent estimate written with k = m-p, we get, for 

oo 

every u C C (W) : 

P H m P(W) j-1 J P H P(W) P l/(W) 

Writting P j ( 0 p u ) = ^PjU + [ P j . ^ ^ j u where < f » p V ] e , equal to. 1. 

on the support of 0 . Hence, 

I I W > M _p «c; . { ||Pu|| 2 + ll* D + Iu|| m , D + n } 

J P H (W) P + 1 J l/(W) p l H m l p + , ) ( W ) 

for 1 £ j < N , from where we get (p+1). 

In particular, the inequality (m) is exactly the inequality of 

the proposition 1-2. 

In the second step, we establish an other a priori estimate loca-

lized for some paritular open sets W and W f. For that, we need some nota

tions : let x be a point in fi", o ^ p < R < Rj ; 

W = fi nB(x;Rj) W = fi nB(x;Rj) 

W p = fi OB(x;R -p) Wp = fi OB(x;R-p). 

Then, we have the following refined a priori estimate : 

Proposition 1-3 : 

Under the assumptions of the theorem 2, for every x e fi and 0 < R < R^, 

there exists a constant C > 0 such that, for every u eC°°(W)f for every 

a e. I N n with | a | < m, p and p f > 0 with p+p 1 < R and p ^ 1 1 we have : 
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p m||D au|| 2 « C {pmf ||Pu|| 2 . J pl6l||D6u|| }. 

L j = 1 L (Wp») I e | ̂m—l L (w i ) 

Proof : 

We consider a function H C C (W f) such that 0 ̂  V ̂  1, f = 1 on W , ., 
1 o —p i * l p+p 

I |D°Y| I £ C p where C is a constant which dépends on a and not 
1 L (Wo) ° 

on x, p and p T • 

00 

We apply the proposition 1-1 to the function ̂ u for u fc- C (W) : 

N 

||Da(fu)|| N< A. { l | | P . W | | 2 + || u|| 2 > 
IT(W ) j = l 2 IT(W ) IT(W ) v o o o 

for j ot | £ m. 

Elsewhere, if we put : 

P. = P.(x;D) = T a j X ( x ) I ) X ' 

we have : 

|x|«m 

But, there exists some constants C . D > 0, indépendant in p, such that : 
J J A > P 

Then, 

M ° a w u ) | | < A . . { | ||p «n + y P-l
xl*lBl|, D« u|, } 

L 2(W ) j-i J i/(w ,) |e|<|x| l/(W ,) 

° P |X|«m p 

and, since p ̂  \ % w e h a v e . 

1 1 ^ ) 1 1 2 « A ' U Ï | |P « | | 2 * h P ^ l ^ l ^ u H 2 > 
L (W ) j-1 J l/(W ,) |Ç|<|X| L ( W , ) 
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that gives the inequality of the proposition 1-3. 

We now do an induction on this inequality to obtain an estimate on one 

derivative of u in terms of some powers of PjU : 

Proposition 1-4 : 

Under the assumptions of theorem 2 , for every x " fi, 0 < R < Rj there 

exists a constant A >. 1 such that, for every p with 0 < p < min(l,R), 
0 0 n . i i 

every u ~ C (W) , every a r iN with |a| .< km and k > 1 , we have : 

p N s i i D a u | i * A i
t t i + , . { y p ( v " , ) m S y. I I P . ...p. 2 +iiu|i 2 i. 

l/(Wi r ) v=l l<i.<N 1 v L (W) L (W) 

_ 1 < j <v 

Proof : 

The coefficients a ^ of the operators Pj being in the class Gg(fi), there 

exists a constant B > 0 such that, for every a ~ INn, we have : 

f }' i K a . J I < Blal + 1 ( a ! ) S 

I I ' ' 1 \ 1 1 o o , 

j = 1 I A | < m L (WQ) 

then 

v r i i J Ï i l r»l a I +1 , , xS "~ I a I S 
) ) I ID a. I | < B1 1 ( a ! ) p 1 1 . 

j = 1 | A | < m J A L œ(W p) 

We put : 

S k(u) = S R(u ; p ) = 

- I P ( V H ) m S l llPi - M 2

 + Mu l l 2 . 
v=l Ui.^N 1 \) L (W) L (W) 

J 

then we have : 

p m S s

k (
p j u > * s k + .

( u ) 

-33-
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and Sfc(u) ̂
 s

k + 1 (
u > • 

We now prove the inequality of the proposition 1-4 by induction on k. At 

first, the inequality of the proposition 1-2 gives : 

N 
||Dau|| < A. { l ||P u|| + ||u|| > 

L (W Q) j = l J l/(W) l/(W) 

for |a| £ m. 

We can choose A >, 1 and since p ^ 1, we have the inequality of the 

proposition 1-4 for k = 1 . 

Let a N n such that km < |a| £ (k+l)m and assume proved the inequality 

of the proposition 1-4 for every B H. fNn such that |g| £ |a| - 1 . We put 

a = a Q + a
1 with | | = m. We use the inequality of the proposition 1-3 

with (|a|-l)p insteed of p 1, a Q instead of a and D
a u instead of u, that 

gives : 

p H S||D au|| * C . { p i " ' 8 ! ||P,(D a ,u)|| , 

L ( W M P > ' L
 ( W U « | - 0 P > 

+ j p|«|s-«*|e|||DB+«-u|| K 

| 3 U < m - l L ( W(|u|-,) P) 

But, we have : 

Da'(P.u) -P.CD^u) = l l ("') D a ' - V D ^ u , 
J J |X| ̂  m y ^ a 1 J X 

î | | D a ' - V || , ,Bl° ,^l + , ( ( a ' - Y ) ! ) S ( B k p ) - l a , - Y l S 

j = 1 2 X L <%>> 

and 

-34-
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since |a f| = |a|-m < km. 

Hence, 

D a'(P u) - P.(D a'u) I l 
L C H C | « | - , > p > 

, y y I«'-Y| + I p-|«'-y|s | | DY +A U M 

I M < m Y < a ' L ( W(|a|-l)p) 

then, for km < | ot| < (k+I)m, we have : 

P | a | S||D Uu|| , « C. ( J ||D a ,p.u|| 9 

L ( W | a | p ) j = 1 ' L<V|P> 
+ y pl«|s-mHe| i i D ^ ' u U 

+ y l p(m+|Y|)S B|a'-Y|+l||nY+A M ) } 

L ( W(m +| Y|)p 

We now can apply the assumption of our induction t o estimate each term 

of the member of the right side of this inequality•the first term ie • 

the second term i s : 

and the third term is : 

*,I l BI*'-^' A m +^i + 1 S tu). I A I -<m ya» k + 1 

then, we have : 

- 3 5 -
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p' a | sl|D au|| 2 J ^ ' s r u M c A - v y A " 1 , y I *\«'-y\+^-\«'-y\}. 

L (W| a| p)
 k + 1 |6Ï<m |xî x<mY<a' 

But, 

C l l B k - Y | + I A - | a ' - Y | / c > m n B 2 A - l y < B A ~ 1 > I ©| . 

|XJ^m y<a f |g j>o 

We can choose A large enough, independent of a and p , in order to the term 

between the brackets be £l, that achieves the proof of the proposition 1-4. 

Then, we can give the property about the powers "locally up to 

the boundary" : 

Proposition 1-5 : 

Under the assumptions of theorem 2 , if x € . 5 7 , u & C°°(fi) O B(x;R2> and 

such that, for every open neighbourhood TT of x in T7 with 1T relatively compact 

in fi H B(x;R2), there exists a constant L = L̂ . > 0 such that, for every 

1 ^ ij < N, 1 ̂  j < k and k >, 1 , we have : 

u|| 2 S L k + , ( k m ! ) S 

I k L (U) 

then u eGs(fi O B(x;R2>). 

Proof : 

We fixe R1 < R2 and put TT = fi D3(x;R 2). We want to show that u 6 G (ÎT). 

We choose R] and R such that R
F < R < R{ < R̂  a n d w i t h t h e n otations used 

in the proposition 1-4, we have : 

||P. ...P. u|| « L k + 1 ( k m ! )

s 

1 Xk L (W) 

hence, 

Sk(u).< f p ( V - , ) a S j.v+1 ( ( v m ) | ) S + L 

v=l 

-36-
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for every p such that 0 < p < Min(I,R). 

R—R' 
Ue choose p = • , R-Rf being small enough ; then we get 

((vm) !) p ^ (km) 

for v £ k. 

Therefore, there exists a constant 3j > 0 such that : 
i 
N 

k 
' < /. N L (km) + L ̂  Bj 

v=l 

for k > 1. 

And with the proposition 1-4, there exists a constant B 2 > 0 such that, 

for a€IiNn with |a| < km and k >, 1 , we have : 

I I D M I 2 « B 2
K + 1 k k S . 

L < V R ' > 

In particular, if we apply this formula for |a| = k, we get, for every 
_,n a £ IN : 

l|D au|| 2 , B 2 l a l + 1 | a | l a l S , 
iron 2 

that gives ueG g(IJ'). 

The theorem 2, for the assertion (ii) ->(i), is proved. 

Remark 1-1 : 
m oo 

In the case where Q isaC compact manifold with boundary, the condition 

(B) can be replaced, in the theorem 2, by the following condition : 

(B 1) for every x e 3ft, the polynomials P^(x;^) for 1 ̂  j ̂  N have no 

common non trivial complex zero with imaginary part orthogonal to M in x, 

-37-
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Remark 1-2 : 

By the same method, the inequalities of coercivness given in Agmon [l] 

allow to give some similar results about powers in the classes Gg(fi) 

for boundary value problems associated to some Systems (Pj,...,P^ ; 

B,,...,B ) where the P. are differential operators and B. are differential 
1 P J J 

operators at the boundary ; the case where the System of Pj is reduced 

to a single operator is the case which was studied by Lions-Magenes 9 and 

the case where the System of Bj is empty is the case that we have studied 

here. 

II - G s - REGULARITY. 

It cornes from the teorem 1 the following corollary about the 

Gg(fi)-regularity : 

Corollary II-l : 

Under the assumptions of theorem 1, the two following propositions are 

équivalent : 

(i) u£G s(fi) 

(ii) u £ C (fi) and P.u £GQ(î]) for 1 < J ^ N, 

and from the theorem 2, we get the following corollary about the Gg(fi)-

regularity : 

Corollary II-2 : 

Under the assumptions of theorem 2, the two following propositions are 

équivalent : 

(i) u£G s(fi) ; 

(ii) u e c B Q and P j U € G S Q for 1 <c j <c N. 

-38-
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Remark II-1 : 

Using the results of regularity given by Smith ]j l] (cf. also Bolley-

Camus [3]), we can replace u €1 C°°(fi) by uÊ*<P'(fi) i n the corollary II-2. 

In the same way, we can replace u £ C (Q) by u (Si) in the corollary 
N % 

1-1, using for that, the ellipticity of the operator \ P. P. in fi. 

It is easy to see that the condition (A) for the corollary 

II-1 and the conditions (A) and (B) (or (Bf)j) for the corollary II-2 are 

not necessary. 

When the operators Pj = Pj(D) have constant coefficients, we 

introduce the following condition: 

(C) The set of the comp]ex common roots £ of the polynomails
 Pj(Ç)> f° r 

1 j £ N, is finite. 

Then, we have the following necessary and sufficient condition of Gg(fi)-

regularity : 

THEOREM [J-1 : 

Let fi be a bounded open set of with Lipschitzian boundary, and P . be 
d 

some operators with constants coefficientsy 1 4 j 3 N; the two following 

propositions are équivalent : 

(i) The space iu€loDr(^) ; P -u e:On(Q)3 1 < j < N} is the space GJ&) ; 

J 0 o 

(ii) The operators P.., 1 < j $ N3 satisfy the condition (C). 
0 

The proof made in the case of the space C°°(fi) in Bolley-Camus 

["3] can be applied for the space Gg(^). We'recall it here. 

Proof : 

We assume thdt (i) is true. We introduce the space : 

-39-



II - 16 

Y (fi) = (ue3)f(ft) ; PjU = 0 , 1 ̂  j ̂  N}. 

We dénote by Y°(fi) (resp. Y1(fi)) the space Y(fi) equipped with the L2(fi)-

norm (resp. H'(fi)-norm). The identity map from Y1(fi) into Y°(fi) being con-

2 

tmuous and thèse spaces being Banach spaces, the two noms L (fi)-norm and 

HI(fi)-norm are équivalent on Y(fi). Then, there exists a constant C > 0 

such that, for every n S Y(fi), we have : 

||u|| 4 C.||u|| . 

H l . ( 0 ) L (fi) 

The unit bail of Y°(fi) is then compact and theref oreY (fi) is of finite 

dimension. 

' But, if Ç G: C n satisfies Pj(Ç) = 0 for 1 ̂  j £ N, the function 

u(x) = e 1 ^ t ,^ > satisfies P^u = 0 for 1 ̂  j N. Then, necessarily, the 

set of complex common roots of the polynomials in finite. 

We now assume that (ii) is true. Let Ç^,...,ÇV be the complex common 

root$ of the polynomials Pj for 1 £ j ^ N. For each 1 ̂  j >< n, we consider 

the polynomial : 

Q:tt) - n ( ç . - d ) 
i = 1 J J 

where we have put Ç = ). 

Then, we have Q.(ç1) = 0 for 1 ̂  i ^ v; that is, the polynomials 

Q'$ 1 < J < n> vanish on the set of the complex common roots of the poly

nomials Pj, 1 ̂  j ̂  N. From the Nullstellensatz1 s theorem (cf. Van der 

Wârden JJ3] for example), there exists an integer p ^ 1 such that the po

lynomials Q? for l ^ n belong to thé idéal spanned by the polynomials 

Pn, 1<£<N ; that is, there exists some polynomials A» such that : 

-40-
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N 

Q P(C) = l A.AO P (Ç) , 1 j < n . 
J £=1 n . 

The polynomials Qj are polynomials of order \>ç> of which the prin

cipal part is equal to çV p : thèse principal parts have only 0 like complex 

common root, that is, they satisfy the conditions (A) and (B). Hence, if 

uçW'(tt) and satisfy P.uGG c(fi) for 1 < j < N, then Q^u eG Q(fi) for 

1 ^ j $ n. And from Smith [l2J , Bolley-Camus [ 3 ] , u G C°°(fi) and the corol

lary II-2 gives uGG s(fi). 

From the theorem II-l, in particular, we deduce the following 

sufficient condition of Gg(fi)-regulàrity : 

Corollary II-3 : 

Let Pj be some differential operators, 1 ̂  j <: N, with constant coefficients 

and satisfying the condition (C) ; the two following propositions are équi

valent : 

(i) u GGs(fi) ; 

(ii) u G C°°(fi) and P.u G Gg(fi) for U j s< N. 

Remark II-2 : 

It cornes from the précèdent theorems that, if the polynomials Pj = ?.(?), 

1 < j ̂  N, (with constant coefficients), have principal parts without 

complex common root différent from 0 , that is the condition (B), then, 

they have only a finite number of complex common roots, that is satisfy 

the condition (C) : it is a ,fclassical'f resuit in algeabraic geometry. 

III - ffREDUCED POWERS" AND G-REGULARITY. 

In [ 5 ] , Damlakhi gives a refinement about the Nelson's theorem 

(theorem 0 f ) in the following sensé : 
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THEOREM C5J : 

Let p2>"-sp

n

 b e s o m e r e a l vectors fields, with analytic coefficients and 

linearly indépendant in each point of an open set fi; the two following 

propositions are équivalent : 

(i) u e a(Q) ; 

(ii) ue:C°°(ïï) and3 for every compact subset. K of fi3 there exists a cons

tant L = LK > 0 such that3 for every k >, 1 and 1 $ i $ n3 we have : 

\\p\ u\\ • 4 Lk+1(k!) . 

In a similar way. and, according to the précèdent chapters I and 

II, we are going to put the two following conjectures : 

Conjecture 1 : 

Under the assumption of theorem 1, the two following propositions are 

équivalent : 

(i) u S Gs(fi) ; 

00 

(ii) u £ C (fi) and, for every compact subset K of fi, there exists a cons

tant L = Ljr > 0 such that, for every k > 1 and 1 < i < N, we have : 

llpJuM 2 < L k + 1((km.)!) S. 
1 l/(K) 1 

Conjecture 2 : 

Under the assumptions of theorem 2, the two following propositions are 

équivalent : 

(i) u C Gs(fi) ; 

(ii) u ec°°(fi) and there exists a constant L > 0 such that, for every 

k > 1 and 1 4 i ̂  N, we have : 

| | P k u | | , .< L k + , ( ( k m . ) ! ) S . 
1 i/(n) 
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Then, a positive answer is given in a particular case by 

Damlakhi Jjf] who uses for that the notion of analytic wave front set of 

an hyperfunction and the fundamental theorem of Sato, and also the idea 

to add an other variable t (in (R) and to consider the évolution operators 

Also, the conjecture 1 is true in the case of operators Pj of 

order 1, with complex and constant coefficients. The proof of this resuit 

is based on the following proposition : 

Proposition III—1 : 

Let Pj = be some polynomials, j = 1,...,N, of order 1 with complex and 

constant coefficients ; we assume that their principal parts have no real 

common root différent from 0. Then, for every compact sets Kj and of 

R n, Kj being included in the interior K° of IC,, there exists a constant 

C > 0 such that, for every u G C (K^) and a e (N , we have : 

iioMi 2 . c M - ? y |B|ï""ci»i|.|i''i ^ 

L (K,) 1 = 1 | e N | a | j = o ( | a | - | e|-j)!j ! B ! 

I | p i a |" | 6 |" ju|| 2 • 
L Z(K 2) 

This proposition is obtained in using, in particular, the spécial function 

of truncation given in Hormander [7] . 

Another positive answer to the conjecture 2 has been given for s = 1, 

fi = (]-l, + lC)n and for the canonical System of the first partial derivatives 

by Damlakhi [5] who uses for that the spectral theory of the Legendrefs 

operator in n-variables. 
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The conjecture 2 is also true "locally" in the half-space Œt̂  - {(x,t);t^0} 

for the case of a transversal operator P̂  of order 1 with constant and 

real coefficients and some tangential operators P 2 > •.. >PJJ with complex 

and constant coefficients. The proof isbased on the following a priori 

00 

estimate : there exists a constant C > 0 such that, for ail u ^ C Q ( R + ) , 

u(x,t) = 0 for t >, 1, k >, 1 and a €1 (Nn \ we have : 

H Dx p lMl 2 n *d al + k + 1
 { ||p!al+k+,u|| + 

X ' l/(IR̂ ) ' L 2(RJ) 

N lai+k+1 l t i j « j « Q 

j = 2 *=o V l W J
 L < ) 

We prove such an inequality in using the inequalities given in Cartan 

and Hardy-Littlewood-Polya [ô]. 

-44-



II - 21 

BIBLIOGRAPHIE 

[1] : S. AGMON - The coerciveness problem for integro-differential forms. 

J. Analyse Math. 6 (1958), 183-223. 

[ 2 ] : N. ARONSZAJN - On coercive integro- differential quadratic forms, 

Univ. of Kansas, Tech. Report 14 (1954), 94-106. 

[3] : P. BOLLEY et J. CAMUS - Régularité pour des systèmes à coefficients 

constants, C.R. Acad. Sc. Paris 281 (22 Déc. 1975) série 

A, 1091,1094. 

[4] : H. CARTAN - Fonctions définies par des inégalités sur leurs dérivées, 

Hermann (1940). 

[5] : M. DAMLAKHI - Analyticité et itérés d'opérateurs pseudo-différen-

tiels, Thèse de 3ème cycle, Orsay (1977). 

[6] : G. H. HARDY, J.E. LITTLEWOOD, G. POLYA - Inequalities, Cambridge 

(1967). 

[7] : L. HORMANDER - Uniqueness theorem and wave front sets solution of 

linear differential equations with analytic coefficients, 

Comm. Pure Appl. Math. 14 (1971), 671-704. 

[8] : T. KOTAKE, N. NARASIMHAN - Regularity theorems for fractional powers 

of a linear elliptic operator, Bull.Soc.. Math. France 90 

(1962), 449-471. 

[9] : J.L. LIONS et E. MAGENES - Problèmes aux limites non homogènes et 

applications, vol. 3, Dunod Paris (1970). 

[10]: C.B. MORREY, L. NIRENBERG - On the analyticity of the solutions of 

linear elliptic Systems of partial differential equations, 

Comm. Pure Appl. Math. 10 (1957), 271-290. 

[11]: E. NELSON - Analytic vectors, Ann. of Math. 70 (3) (1959), 572-615. 

[12]: K.T. SMITH - Formules de représentation de fonctions par leurs déri

vées, Math. Ann. 188 (1970), 53-77. 

[13]: B.L. VAN DER WARDEN - Modem Algebra II, Frederik Ungar Pub1. Co.. 

-45-


