P. Bolley

J. Camus

Powers and Gevrey's Regularity for a System of Differential Operators

Publications des séminaires de mathématiques et informatique de Rennes, 1978, fascicule 3
«Séminaire d'analyse fonctionnelle», , exp. n ${ }^{0}$ 2, p. 1-21
http://www.numdam.org/item?id=PSMIR_1978__3_A2_0
© Département de mathématiques et informatique, université de Rennes, 1978, tous droits réservés.

L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

POWERS AND GEVREY'S REGULARITY FOR A SYSTEM OF
 DIFFERENTIAL OPERATORS

by

P. BOLLEY

Institut de Mathématiques §
Informatique
Université de Nantes
44000 - NANTES
J. CAMUS
U.E.R. Mathématiques §

Informatique
Université de Rennes
35000 - RENNES

The purpose of this paper is to give some results about powers and Gevrey regularity in the interior and up to boundary for a system of differential operators, which is, in particular, an extension of those of Kotake-Narashiman [8] and Nelson [11].

I - POWERS AND G ${ }^{\text {P }}$ REGULARITY.

At first, we recall the definition (or characterization) of the analyticity of a function :

Definition $I-1$:
A function u, C^{∞} in an open set of \mathbb{R}^{n}, is analytic in Ω if, for every compact set K of Ω, there exists a constant $L=L_{K}>0$ such that, for every $\alpha \equiv \mathbb{N}^{n}$, we have :

$$
\left|\left|D_{u}^{\alpha}\right|\right|_{L^{2}(K)} \leqslant L^{|\alpha|+1}(|\alpha|!)
$$

where we have written, for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$,

$$
|\alpha|=\alpha_{1}+\ldots+\alpha_{n} \quad \text { and } \quad D^{\alpha}=i^{-|\alpha|} \frac{\partial^{|\alpha|}}{\partial x_{1}{ }_{1} \ldots \partial x_{n}{ }_{n}} \text {. }
$$

We denote by $a(\Omega)$ the space of analytic functions in Ω.

In [8], Kotake-Narashiman characterize the analyticity with the help of the powers of an elliptic operator in the following manner :

[^0](i) $u \equiv \alpha(\Omega) ;$
(ii) $u \in C^{\infty}(\Omega)$ and, for every compact set K of Ω, there exists a constant $L=L_{K}>0$ such that, for every $k \subseteq N$, we have:
$$
\left\|P^{k} u\right\|_{L^{2}(K)} \leqslant L^{k+1}((m k)!)
$$

In [11], Nelson characterizes the analyticity with the help of the powers of n real vector fields linearly independant in the following manner :

THEOREM O':

Let P_{1}, \ldots, P_{n} be some real vector fields, with analytic coefficients and linearly independant in every point of an open set Ω of R^{n}, the two following propositions are equivalent :
(i) $u \in a(\Omega)$;
(ii) $u F C^{\infty}(\Omega)$ and, for every compact set K of Ω, there exists a constant $L=L_{K}>0$ such that, for every $1 \leqslant i_{j} \leqslant n, 1 \leqslant j \leqslant k$ and $k \geqslant 1$, we have :

$$
\left\|P_{i_{1}} \ldots P_{i_{k}} u\right\|_{L^{2}(k)} \leqslant L^{k+1}(k!) .
$$

The purpose of this paper is to extend these results for more general operators and in the Gevrey's classes of order $s \geqslant 1$ in the interior and also up to the boundary.

We recall the definition of the Gevrey's classes :

Definition 2 :
Let K be a compact set of \mathbb{R}^{n} and S a real number $\geqslant 1$. We mean by Gevrey's class of order s in K the space $G_{S}(K)$ of the restrictions over K of C^{∞} functions u in a neighbourhood of K such that there exists a constant L > 0 such that, for every $\alpha \in \mathbb{N}^{n}$, we have :

$$
\left\|\mathrm{D}^{\alpha} \mathrm{u}\right\|_{L^{2}(K)} \leqslant \mathrm{L}^{|\alpha|+1}(|\alpha|!)^{\mathrm{s}}
$$

Let Ω be an open set of R^{n}; we mean by Gevrey's class of order s in the space $G_{S}(\Omega)$ of the functions which are in $G_{S}(K)$ for every compact subset K of Ω.

If K is "smooth enough", we can replace the $L^{2}(K)$-norm by the $L^{\infty}(K)$-norm. For $s=1$, we get, of course, the analytic functions.

Let Ω be an open set of \mathbb{R}^{n} with boundary $\partial \Omega$ and $P_{j} \equiv P_{j}(x ; D), j=1, \ldots, N$, some differential operators of order $m_{j} \in \mathbb{N}$. let be denote by $P_{j}^{\prime}=P_{j}^{\prime}(x ; D)$ the principal part of order m_{j} of P_{j}; we introduce the two following conditions :
(A) for every $x \equiv \Omega$, the polynomial $P_{j}^{\prime}(x ; \xi)$, for $1 \leqslant j \leqslant N$, have no common non trivial real zero ;
(B) for every $x=\partial \Omega$, the polynomials $P_{j}^{\prime}(x ; \xi)$, for $1 \leqslant j \leqslant N$, have no common non trivial complex zero.

At first, we have the following theorem on powers in the Gevrey's classes $\mathrm{G}_{\mathrm{S}}(\Omega)$, which generalizes the Kotaké-Narashiman and Nelson's theorems:

THEOREM 1 :

If the operators $P_{j}, j=1, \ldots, N$, have coefficients in $G_{S}(\Omega)$ and satisfy the condition (A), the two following propositions are equivalent :
(i) $u=G_{S}(\Omega)$;
(ii) $u \in C^{\infty}(\Omega)$ and for every compact subset K of Ω, there exists a constont
$L=L_{K}>0$ such that, for every $1 \leqslant i_{j} \leqslant N, 1 \leqslant j \leqslant k$ and $k \geqslant 1$, we have :

$$
\left\|P_{i_{1}} \ldots P_{i_{k}} u\right\|_{L^{2}(K)} \leqslant L^{k+1}\left(\left(\sum_{j=1}^{k} m_{i_{j}}\right)!\right)^{S}
$$

Also, we have the following result which is a result on powers in the Gevrey's classes $\mathrm{G}_{\mathrm{S}}(\bar{\Omega})$:

THEOREM 2 :
If Ω is a bounded open set of n^{n} with Lipschitzian boundary if the operators P_{j}, for $1 \leqslant j \leqslant N$, have coefficients in $G_{S}(\bar{\Omega})$ and satisfy the conditions
(A) and (B), the two following propositions are equivalent :
(i) $u \in G_{S}(\bar{\Omega})$;
(ii) $u-C^{\infty}(\bar{\Omega})$ and there exists a constant $L>0$ such that, for every
$1 \leqslant i_{j} \leqslant N, 1 \leqslant j \leqslant k$ and $k \geqslant 1$, we have :

$$
\left\|P_{i_{1}} \ldots P_{i_{k}}\right\|_{L^{2}(\Omega)} \leqslant L^{k+1}\left(\left(\sum_{j=1}^{k} m_{i_{j}}\right)!\right)^{S} .
$$

We recall that an open set Ω of \mathbb{R}^{n} with Lipschitzian boundary $\partial \Omega$ is an open set such that, for every point $x_{0} \in \partial \Omega$, there exists a real number $r>0$, a system of local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ and a Lipschitzian function $h=h\left(x_{1}, \ldots, x_{n-1}\right)$ such that:

$$
\Omega \cap B\left(x_{0}, r\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) ; x_{n}>h\left(x_{1}, \ldots, x_{n-1}\right)\right\} \cap B\left(x_{0}, r\right)
$$

where $B\left(x_{o}, r\right)$ is a ball of center x_{o} and radius r.

The implications (i) \Rightarrow (ii) always are true and are easy to prove.

The method used to prove the theorem 2 (like for the theorem 1) in the implication (ii) \Rightarrow (i) is an adaptation of this of Kotaké-Narashiman [8] using the tools of Morrey-Nirenberg [10].

At first, we can only consider the operators with the same order m. In fact, for $j=1, \ldots, N$, we put $\hat{m}_{j}=\prod_{i \neq j} m_{i}$ and $Q_{j}=P_{j} \hat{m}_{j}$. The operators
$Q_{j}=Q_{j}(x ; D)$ for $1 \leqslant j \leqslant N$, have the order $m=\prod_{j=1}^{N} m_{j}$ and satisfy the conditions (A) and (B) if and only if the operators p_{j} for $j=1, \ldots, N$ satisfy the conditions (A) and (B). And more, if $u \in C^{\infty}(\bar{\Omega})$ and if there exists a constant $L>0$ such that, for every $1 \leqslant i_{j} \leqslant N, 1 \leqslant j \leqslant k$ and $\mathrm{k} \geqslant 1$, we have :

$$
\left\|P_{i_{1}} \cdots P_{i_{k}} u\right\|_{L^{2}(\Omega)} \leqslant L^{k+1}\left(\left(\sum_{j=1}^{k} m_{i_{j}}\right)!\right)^{s},
$$

then also we have :

$$
\left\|Q_{i_{1}} \cdots Q_{i_{k}} u\right\|_{L^{2}(\Omega)} \leqslant L^{k+1}((k m)!)^{s}
$$

with $L^{\prime}=(\max (L, 1))^{m}$.

Then, for the following, we assume that all the operators P_{j} have the same order m.

The point of the begining of the proof is a global a priori estimate which is given in Aronszajn [2], Smith [12] (cf. also Bolley-Camus [3]) :

Proposition $I-1$:

Under the assumptions of the theorem 2 , for every $k \geqslant 1$, there exists a constant $L>0$ such that, for every $u \in C^{\infty}(\bar{\Omega})$, we have :

$$
\left||u|_{H^{k}(\Omega)} \leqslant C \cdot\left\{\left.\sum_{j=1}^{N}| | P_{j} u\right|_{H_{(\Omega)}^{k-m}}+\left||u|_{L^{2}(\Omega)}\right\}\right.\right.
$$

By localization, we are going to deduce two others a priori estimates. At first :

[^1]exists a constant $A>0$ such that, for every $u \in C^{\infty}(W)$, we have :
$$
\|u\|_{H^{m}\left(W^{\prime}\right)} \leqslant A \cdot\left\{\sum_{j=1}^{N}\left\|P_{j} u\right\|_{L^{2}(W)}+\|u\|_{L^{2}(W)}\right\}
$$

Proof :
From the proposition $I-1$, then exists a constant $C>0$ such that, for every $\mathrm{u} \in \mathrm{C}^{\infty}(W)$, and $1 \leqslant k \leqslant m$, we have :

$$
\|u\|_{H^{k}(W)} \leqslant C \cdot\left\{\left.\sum_{j=1}^{N}| | p_{j} u\left\|_{H^{-m} \cdot k_{(W)}}+\right\| u\right|_{L^{2}(W)}\right\}
$$

We are going to deduce the proposition $I-2$ of this estimate in proving by induction on p, for $1 \leqslant p \leqslant m$, that there exists a constant $C_{p}>0$ and a function $\phi_{p} E C_{o}^{\infty}(W)$ equal to 1 on \bar{W}^{\prime} such that, for every function $u \in C^{\infty}(W)$ we have :
(p) $\quad\|u\|_{H^{m}\left(W^{\prime}\right)} \leqslant c_{p} \cdot\left\{\sum_{j=1}^{N} \mid\left\|P_{j} u\right\|_{L^{2}(W)}+\|u\|_{L^{2}(W)}+\left\|\phi_{p} u\right\|_{H^{m}}^{m-p_{(W)}}\right\}$.

For $p=1$, we consider a function $\phi_{0} \in C_{o}^{\infty}(W)$, equal to 1 on \bar{W}^{\prime}; then, if $u E C^{\infty}(W)$, from the precedent estimate written with $k=m$, we have :

$$
\left|\left|u\left\|_{H^{m}\left(W^{\prime}\right)} \leqslant\right\| \phi_{o} u\right|_{H^{m}(W)} \leqslant C \cdot\left\{\sum_{j=1}^{N}| | p_{j}\left(\phi_{o} u\right)\left\|_{L^{2}(W)}+\right\| \mid \phi_{o} u \|_{L^{2}(W)}\right\}\right.
$$

However, $P_{j}\left(\phi_{o} u\right)=\phi_{o} P_{j} u-\left[P_{j}, \phi_{o}\right] \phi_{1} u$ where $\phi_{1} \in C_{o}^{\infty}(W)$, equal to 1 on the support of ϕ_{0} and $\left[P_{j}, \phi_{0}\right]$ means the commutator of P_{j} and ϕ_{0}. Hence,

$$
\left\|P_{j}\left(\phi_{o} u\right)\right\|_{L}^{2}(W) \leqslant C_{1}^{\prime} \cdot\left\{\left\|P_{j} u\right\|_{L}{ }^{2}(W)+\left\|\phi_{1} u\right\|_{H^{m-1}(W)}\right\}
$$

for $1 \leqslant j \leqslant N$; then we get (1).

Suppose (p) is true and show $(p+1)$ if $p+1 \leqslant m$.

From the precedent estimate written with $k=m-p$, we get, for every $u \in C^{\infty}(W):$

$$
\left\|\phi_{p} u\right\|_{H^{m-p}(W)} \leqslant C \cdot\left\{\sum_{j=1}^{N}| | P_{j}\left(\phi_{p} u\right)\left\|_{H^{-p}(W)}+\right\| \phi_{p} u \|_{L^{2}(W)}\right\}
$$

Writting $P_{j}\left(\phi_{p} u\right)=\phi_{p} P_{j} u+\left[P_{j}, \phi_{p}\right] \phi_{p+1} u$ where $\phi_{p+1} \in C_{o}^{\infty}(W)$, equal to. 1 . on the support of ϕ_{p}. Hence,

$$
\left\|P_{j}\left(\phi_{p} u\right)\right\|_{H^{-p}(W)} \leqslant C_{p+1}^{\prime} \cdot\left\{\left\|P_{j} u\right\|_{L} 2_{(W)}+\left\|\phi_{p+1} u\right\|_{H^{m}-(p+1)}\right\}
$$

for $1 \leqslant j \leqslant N$, from where we get $(p+1)$.

In particular, the inequality (m) is exactly the inequality of the proposition I-2.

In the second step, we establish an other a priori estimate localized for some paritular open sets W and W^{\prime}. For that, we need some notations : let x be a point in $\bar{\Omega}, o \leqslant \rho<R<R_{1}$;

$$
\begin{array}{ll}
W=\Omega \cap B\left(x ; R_{1}\right) & \underline{W}=\bar{\Omega} \cap B\left(x ; R_{1}\right) \\
W_{p}=\Omega \cap B(x ; R-\rho) & \underline{W}_{p}=\bar{\Omega} \cap B(x ; R-p) .
\end{array}
$$

Then, we have the following refined a priori estimate :

Proposition I-3 :
Under the assumptions of the theorem 2 , for every $x \in \bar{\Omega}$ and $0<R<R_{1}$, there exists a constant $C>0$ such that, for every $u \in C^{\infty}(W)$, for every $\mid \alpha \in \mathbb{N}^{\mathrm{n}}$ with $|\alpha| \leqslant m, \rho$ and $\rho^{\prime}>0$ with $\rho+\rho^{\prime}<\mathrm{R}$ and $\rho \leqslant 1$, we have :

$$
\rho^{m}| | D^{\alpha} u| |_{L^{2}\left(W_{\rho+\alpha^{\prime}}\right)} \leqslant C \cdot\left\{\rho^{m} \sum_{j=1}^{N}| | P_{j} u \|_{L^{2}\left(W_{\rho},\right)}+\left.\left.\sum_{|\beta|_{\leqslant m-1}} \rho|\beta|| | D^{\beta} u\right|_{L}\right|_{\left(W_{\rho},\right)}\right\}
$$

Proof:
We consider a function $\psi \in C_{o}^{\infty}\left({\underset{W}{p}}^{\prime},\right)$ such that $0 \leqslant \psi \leqslant 1, \psi=1$ on $W_{\rho+\rho}$, $\left|\left|D^{\alpha} \varphi\right|\right|_{L^{\infty}\left(W_{0}\right)} \leqslant C_{\alpha} \rho^{-|\alpha|}$ where C_{α} is a constant which depends on α and not on x, ρ and ρ^{\prime}.

We apply the proposition $I-1$ to the function u for $u \in C^{\infty}(\underline{W})$:

$$
\left\|D^{\alpha}(\psi u)\right\|_{L}^{2}\left(W_{o}\right)<A .\left\{\sum_{j=1}^{N}| | P_{j}\left(\psi_{u}\right) \mid\left\|_{L^{2}\left(W_{o}\right)}+\right\| u \|_{L^{2}\left(W_{o}\right)}\right\}
$$

for $|\alpha| \leqslant m$.
Elsewhere, if we put :

$$
P_{j}=P_{j}(x ; D)=|\lambda|^{\sum} \leqslant a_{j \lambda}(x) D^{\lambda}
$$

we have :

$$
\begin{aligned}
& P_{j}(\psi u)-\psi p_{j} u= \sum_{\beta<\lambda} a_{j \lambda}\binom{\lambda}{\beta} D^{\lambda-\beta} \quad D^{\beta} u . \\
&|\lambda| \leqslant m
\end{aligned}
$$

But, there exists some constants $C_{j, \lambda, \beta}>0$, independant in ρ, such that :

$$
\left|\left|a_{j \lambda}\binom{\lambda}{\beta} D^{\lambda-\beta} \psi\right|\right|_{L{ }^{\infty}\left(W_{o}\right)} \leqslant C_{j, \lambda, \beta} \rho^{-|\lambda-\beta|} .
$$

Then,

$$
\left.\left.\left|\left|D^{\alpha}(4 u)\right|_{L^{2}\left(W_{o}\right)} \leqslant A^{\prime} \cdot\left\{\sum_{j=1}^{N}| | P_{j} u| |_{L^{2}\left(W_{\rho},\right.}\right)+\sum_{|\beta|<|\lambda| \leqslant m}^{|\lambda| \lambda \mid} \rho^{-|\lambda|+|\beta|}\right|\left|D^{\alpha} u\right|\right|_{L^{2}\left(W_{\rho},\right.}\right)
$$

and, since $\rho \leqslant 1$, we have :

$$
\|\left. D^{\alpha}\left(\varphi_{u}\right)\right|_{L^{2}\left(W_{o}\right)} \leqslant A^{\prime} \cdot\left\{\sum_{j=1}^{N}| | p_{j} u| |_{L^{2}\left(W_{\rho}\right)}+\sum_{|\beta|<|\lambda|^{|\lambda| \leqslant m}}^{\rho^{-m+|\beta|}| | D^{\beta} u| |_{L}^{2}\left(W_{\rho},\right)}\right\}^{\mid}
$$

that gives the inequality of the proposition $\mathrm{I}-3$.

We now do an induction on this inequality to obtain an estimate on one derivative of u in terms of some powers of $P_{j} u$:

Proposition I-4 :
Under the assumptions of theorem 2, for every $x-\bar{\Omega}, 0<R<R_{1}$ there exists a constant $A \geqslant 1$ such that, for every ρ with $0<0<\min (1, R)$, every $u-C^{\infty}(W)$, every $\alpha=N^{n}$ with $|\alpha| \leqslant k m$ and $k \geqslant 1$, we have :

Proof :

The coefficients $a_{j \nu}$ of the operators P_{j} being in the class $G_{S}(\bar{\Omega})$, there exists a constant $B>0$ such that, for every $\alpha-\mathbb{N}^{n}$, we have :

$$
\sum_{j=1}^{N}|\lambda| \leqslant m \sum_{m}| | D^{\alpha} a_{j \lambda}| |_{L^{\infty}\left(W_{o}\right)} \leqslant B^{|\alpha|+1}(x!)^{S}
$$

then

$$
\sum_{j=1}^{N}|\lambda| \leqslant m<\sum_{j}| | D^{(\alpha} a_{j}| |_{L}^{\infty}\left(W_{\rho}\right) \leqslant B^{|\alpha|+1}(\alpha!)^{S} \rho^{-|\alpha| S}
$$

We put :

$$
\begin{aligned}
S_{k}(u) & =S_{k}(u ; \rho)= \\
& =\sum_{v=1}^{k} \rho(v-1) m S \sum_{\substack{1 \leqslant i_{j} \leqslant N \\
1 \leqslant j \leqslant v}}| | P_{i_{1}} \ldots P_{i_{v}}^{u}\left\|_{L^{2}(W)}+\right\| u \|_{L}{ }^{2}(W)
\end{aligned}
$$

then we have :

$$
\sum_{j=1}^{N} \rho^{m S} S_{k}\left(P_{j} u\right) \leqslant S_{k+1}(u)
$$

and

$$
S_{k}(u) \leqslant S_{k+1}(u)
$$

We now prove the inequality of the proposition $\mathrm{I}-4$ by induction on k . At first, the inequality of the proposition I-2 gives :

$$
\left\|D^{\alpha} u\right\|_{L{ }^{2}\left(W_{0}\right)} \leqslant A .\left\{\sum_{j=1}^{N}| | P_{j} u\left\|_{L^{2}(W)}+\right\| u \|_{L^{2}(W)}\right\}
$$

for $|\alpha| \leq m$.

We can choose $A \geqslant 1$ and since $\rho \leqslant 1$, we have the inequality of the proposition I-4 for $k=1$.

Let $\alpha=\mathbb{N}^{\mathrm{n}}$ such that $\mathrm{km}<|\alpha| \leqslant(\mathrm{k}+1) \mathrm{m}$ and assume proved the inequality of the proposition $I-4$ for every $\beta \equiv \mathbb{N}^{n}$ such that $|\beta| \leqslant|\alpha|-1$. We put $\alpha=\alpha_{0}+\alpha^{\prime}$ with $\left|\alpha_{0}\right|=m$. We use the inequality of the proposition I-3 with $(|\alpha|-1)$ insteed of $\rho^{\prime}, \alpha_{o}$ instead of α and $D^{\alpha^{\prime}} u$ instead of u, that gives :

$$
\begin{aligned}
\left.\rho^{|\alpha| S}| | D^{\alpha} u\right|_{L}{ }^{2}\left(W_{|\alpha| \rho}\right) & \leqslant C \cdot\left\{\left.\rho|\alpha| S \sum_{j=1}^{N}| | P_{j}\left(D^{\alpha \prime}{ }_{u}\right)\right|_{L^{2}\left(W_{(|\alpha|-1) \rho}\right)}\right. \\
& \left.+\left.{ }_{|\beta|} \sum_{\leqslant m-1} \rho^{|\alpha| S-m+|\beta|}| | D^{\beta+\alpha^{\prime}}{ }_{u}\right|_{L^{2}{ }^{2}\left(W_{(|\alpha|-1) \rho)}\right.}\right\} .
\end{aligned}
$$

But, we have :

$$
\begin{aligned}
& D^{\alpha^{\prime}}\left(P_{j} u\right)-P_{j}\left(D^{\alpha^{\prime}} u\right)=\sum_{|\lambda|^{2} \leqslant m \gamma \leqslant \alpha^{\prime}\left(\begin{array}{l}
\alpha^{\prime}
\end{array}\right) D^{\alpha^{\prime}-\gamma_{a}} j_{\lambda} n^{\gamma+\lambda} u}^{u}, \\
& \sum_{j=1}^{N}\left\|D^{\alpha^{\prime}-\gamma} a_{j_{\lambda}}\right\|_{L^{2}\left(W_{k m \rho}\right)} \leqslant B^{\left|\alpha^{\prime}-\gamma\right|+1}\left(\left(\alpha^{\prime}-\gamma\right)!\right)^{S}(m k \rho)^{-\left|\alpha^{\prime}-\gamma\right| S}
\end{aligned}
$$

and

$$
\left(\begin{array}{l}
\alpha^{\prime}
\end{array}\right) \frac{\left(\left(\alpha^{\prime}-\gamma\right)!\right)^{s}}{m_{k}^{\left|\alpha^{\prime}-\gamma\right| S}} \leqslant\left(\left(_{\gamma}^{\alpha^{\prime}}\right) \frac{\left(\alpha^{\prime}-\gamma\right)!}{(m k)^{\left|\alpha^{\prime}-\gamma\right|}}\right)^{\text {S }} \leqslant\left(\frac{\left|\alpha^{\prime}\right|}{m k}\right)^{\left|\alpha^{\prime}-\gamma\right| S} \leqslant 1
$$

since $\left|\alpha^{\prime}\right|=|\alpha|-m \leqslant k m$.

Hence,

$$
\begin{aligned}
& D^{\alpha^{\prime}}\left(P_{j} u\right)-P_{j}\left(D^{\alpha^{\prime}} u\right)| |_{L}{ }^{2}\left(W_{(|\alpha|-1) \rho}\right) \leqslant \\
& \leqslant\left|\lambda \sum_{\mid \leqslant m} \int_{\gamma<\alpha \alpha^{\prime}}\right| \alpha^{\prime}-\left.\gamma\left|+1 \rho^{-\left|\alpha^{\prime}-\gamma\right| S}\right|\left|D^{\gamma+\lambda} u\right|\right|_{L} ^{2}(W(|\alpha|-1) \rho)
\end{aligned}
$$

then, for $k m \quad|\alpha| \leqslant(k+1) m$, we have :

$$
\begin{aligned}
& \rho^{|\alpha| S}| | D^{(\alpha} u| |_{L_{-}\left(W_{|\alpha| \rho}\right)} \leqslant C .\left\{\rho^{|\alpha| S} \sum_{j=1}| | D^{\left(\alpha^{\prime} P_{j} u| |_{L}^{2}\left(\left.\left.W\right|_{\alpha}\right|_{\rho}\right)\right.}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\sum_{|\lambda| \leqslant m} \sum_{\gamma^{<\alpha} \alpha^{\prime}} \rho(m+|\gamma|) S B_{B}^{\left|\alpha^{\prime}-\gamma\right|+1}| | D^{\gamma+\lambda} u| |_{L}^{2}\left(W_{(m+|\gamma|) \rho}\right)\right\} .
\end{aligned}
$$

We now can apply the assumption of our induction to estimate each term of the member of the right side of this inequality; the first term ie:

$$
\leqslant \rho^{m S} A^{\left|\alpha^{\prime}\right|+1} \sum_{j=1}^{N} S_{k}\left(P \cdot j^{u)} \leqslant A^{\left|\alpha^{\prime}\right|+1} S_{k+1}(u)\right.
$$

the second term is:

$$
\leqslant \sum_{\leqslant m} A^{\left|\beta+x^{\prime}\right|+1} S_{k+1}(u)
$$

and the third term is :

$$
\leqslant \sum_{|\lambda| \leqslant m \gamma^{\prime} \alpha \prime} \sum^{\left|\alpha^{\prime}-\gamma\right|+1} A^{m+|\gamma|+1} S_{k+1}(u) .
$$

then, we have :

$$
\left.\rho^{|\alpha| S}| | D_{u}^{\alpha}| |_{L}^{2(W|\alpha| \rho}\right) \leqslant A^{|\alpha|+1} S_{k+1}(u)\left\{C A^{-m}+C \sum_{|B|<m} A^{-1}+\sum_{|\lambda| \leqslant m} \sum_{\gamma^{\prime} \alpha^{\prime}} B^{\left|\alpha^{\prime}-\gamma\right|+1} A^{-\left|\alpha^{\prime}-\gamma\right|}\right\}
$$

But,

$$
\text { C } \sum_{|\lambda| \leqslant m} \sum_{\gamma<\alpha} B^{\left|\alpha^{\prime}-\gamma\right|+1} A^{-\left|\alpha^{\prime}-\gamma\right|} \leqslant \operatorname{C.m}^{n} B^{2} A^{-1} \sum_{|B| \geqslant 0}\left(B A^{-1}\right)|B| \text {; }
$$

We can choose A large enough, independent of α and ρ, in order to the term between the brackets be $\leqslant 1$, that achieves the proof of the proposition $I-4$.

Then, we can give the property about the powers "locally up to the boundary" :

Proposition I-5 :

Under the assumptions of theorem 2, if $x \in \bar{\Omega}, u \in C^{\infty}(\bar{\Omega}) \cap B\left(x ; R_{2}\right)$ and such that, for every open neighbourhood U of x in $\bar{\Omega}$ with U relatively compact in $\bar{\Omega} \cap B\left(x ; R_{2}\right)$, there exists a constant $L=L_{U}>0$ such that, for every $1 \leqslant i_{j} \leqslant N, 1 \leqslant j \leqslant k$ and $k \geqslant 1$, we have :

$$
\left\|P_{i_{1}} \ldots P_{i_{k}}^{u}\right\|_{L}{ }^{2}(U) \leqslant L^{k+1}(k m!)^{S}
$$

then $u \in G_{S}\left(\bar{\Omega} \cap B\left(x ; R_{2}\right)\right)$.

Proof:
We fixe $R^{\prime}<R_{2}$ and put $U^{\prime}=\Omega \cap 3\left(x ; R_{2}\right)$. We want to show that $u \in G_{S}\left(\overline{U^{\prime}}\right)$.
We choose R_{1} and R such that $R^{\prime}<R<R_{1}<R_{2}$ and with the notations used
in the proposition $I-4$, we have :

$$
\left\|P_{i_{1}} \ldots P_{i_{k}} u\right\|_{L(W)} \leqslant L^{k+1}(k m!)^{S}
$$

hence,

$$
S_{k}(u) \leqslant \sum_{\nu=1}^{k} \rho^{(\nu-1) m S} N^{v} L^{v+1}((v m)!)^{S}+L
$$

for every ρ such that $0<\rho<\operatorname{Min}(1, R)$.
We choose $\rho=\frac{R-R^{\prime}}{k m}$, $R-R^{\prime}$ being sma11 enough ; then we get :

$$
((v m)!)^{S} \rho^{(v-1) m S} \leqslant(k m)^{m S}
$$

for $v \leqslant k$.

Therefore, there exists a constant $B_{1}>0$ such that :

$$
S_{k}(u) \leqslant \sum_{v=1}^{k} N^{v} L^{\nu+1}(k m)^{m S}+L \leqslant B_{1}^{k+1}
$$

for $k \geqslant 1$.

And with the proposition $I-4$, there exists a çonstant $B_{2}>0$ such that, for $\alpha \in \mathbb{N}^{\mathrm{n}}$ with $|\alpha| \leqslant \mathrm{km}$ and $k \geqslant 1$, we have :

$$
\left\|D^{\alpha} u\right\|_{\left.L_{\left(W_{R-R}\right.}\right)} \leqslant B_{2}^{k+1} k^{k S}
$$

In particular, if we apply this formula for $|\alpha|=k$, we get, for every $\alpha \in \mathbb{N}^{\mathrm{n}}$:

$$
\left.\left|\left|D^{\alpha} u\right|_{L}^{2}\left(U^{\prime}\right)<B_{2}^{|\alpha|+1}\right| \alpha\right|^{|\alpha| s}
$$

that gives $u \in G_{S}\left(\overline{\mathrm{U}^{\prime}}\right)$.
The theorem 2, for the assertion (ii) $\Rightarrow(i)$, is proved.

Remark I-1 :

In the case where $\bar{\Omega}$ isa C^{∞} compact manifold with boundary, the condition (B) can be replaced, in the theorem 2, by the following condition :
(B^{\prime}) for every $x \in \partial \Omega$, the polynomials $P_{j}^{\prime}(x ; \xi)$ for $1 \leqslant j \leqslant N$ have no common non trivial complex zero with imaginary part orthogonal to $\partial \Omega$ in x.

Remark I-2 :

By the same method, the inequalities of coercivness given in Agmon [1] allow to give some similar results about powers in the classes $G_{S}(\bar{\Omega})$ for boundary value problems associated to some systems ($\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}$; B_{1}, \ldots, B_{p}) where the P_{j} are differential operators and B_{j} are differential operators at the boundary ; the case where the system of P_{j} is reduced to a single operator is the case which was studied by Lions-Magenes 9 and the case where the system of B_{j} is empty is the case that we have studied here.
$\underline{\text { II }-G_{S}-\text { REGULARITY. }}$

It comes from the teorem 1 the following corollary about the $\mathrm{G}_{\mathrm{S}}(\Omega)$-regularity :

Corollary II-1 :
Under the assumptions of theorem 1, the two following propositions are equivalent :
(i) $u \in G_{S}(\Omega)$
(ii) $u \in C^{\infty}(\Omega)$ and $P_{j} u \in G_{S}(\Omega)$ for $1 \leqslant j \leqslant N$.
and from the theorem 2, we get the following corollary about the $G_{S}(\bar{\Omega})-$ regularity :

Corollary II-2 :
Under the assumptions of theorem 2, the two following propositions are equivalent :
(i) $u \in G_{S}(\bar{\Omega})$;
(ii) $u \in C^{\infty}(\bar{\Omega})$ and $P_{j} u \in G_{S}(\bar{\Omega})$ for $1 \leqslant j \leqslant N$.

Remark II-1 :
Using the results of regularity given by Smith [11] (cf. also BolleyCamus [3]), we can replace $u \in C^{\infty}(\bar{\Omega})$ by $u \in \mathcal{D}^{\prime}(\Omega)$ in the corollary II-2. In the same way, we can replace $u \in C^{\infty}(\Omega)$ by $u \in D^{\prime}(\Omega)$ in the corollary I-I, using for that, the ellipticity of the operator $\sum_{j=1}^{N} P_{j}^{*} P_{j}$ in Ω.

It is easy to see that the condition (A) for the corollary
II-1 and the conditions (A) and (B) (or (3')) for the corollary II-2 are not necessary.

When the operators $P_{j}=P_{j}(D)$ have constant coefficients, we introduce the following condition:
(C) The set of the comple common roots ξ of the polynomails $\mathrm{P}_{\mathrm{j}}(\xi)$, for $1 \leqslant \mathrm{j} \leqslant \mathrm{N}$, is finite.

Then, we have the following necessary and sufficient condition of $G_{S}(\Omega)-$ regularity :

THEOREM II-1 :

Let Ω be a bounded open set of \mathbb{R}^{n} wit:l lipschitaion boundary, and P_{j} be some operators with constants coefficients, $1 \leqslant j \leqslant N$; the two fullowing propositions are equivalent:
(i) The space $\left\{u \in \mathcal{D}^{\prime}(\Omega) ; P_{j} u \in G_{S}(\bar{\Omega}), 1 \leqslant j \leqslant N\right\}$ i.s the space $G_{S}(\bar{\Omega})$; (ii) The operators $P_{j}, 1 \leqslant j \leqslant N$, satisfy the condition (C).

The proof made in the case of the space $C^{\infty}(\Omega)$ in Bolley-Camus [3] can be applied for the space $G(\bar{\Omega})$. We recall it here.

Proof :
We assume that (i) is true. We introduce the space :

$$
Y(\Omega)=\left\{u \in \mathcal{D}^{\prime}(\Omega) ; P_{j} u=0,1 \leqslant j \leqslant N\right\}
$$

We denote by $Y^{\circ}(\Omega)$ (resp. $Y^{1}(\Omega)$) the space $Y(\Omega)$ equipped with the $L^{2}(\Omega)$ norm (resp. $H^{l}(\Omega)$-norm). The identity map from $Y^{l}(\Omega)$ into $Y^{\circ}(\Omega)$ being continuous and these spaces being Banach spaces, the two norms $L^{2}(\Omega)$-norm and $H^{1}(\Omega)$-norm are equivalent on $Y(\Omega)$. Then, there exists a constant $C>0$ such that, for every $u \in Y(\Omega)$, we have :

$$
\|u\|_{H^{1}(\Omega)} \leqslant C .\|u\|_{L^{2}(\Omega)}
$$

The unit ball of $Y^{\circ}(\Omega)$ is then compact and therefore $Y(\Omega)$ is of finite dimension.

But, if $\xi \in \mathbb{C}^{\mathrm{n}}$ satisfies $\mathrm{P}_{\mathrm{j}}(\xi)=0$ for $1 \leqslant j \leqslant N$, the function $u(x)=e^{i\langle x, \xi\rangle}$ satisfies $P_{j} u=0$ for $1 \leqslant j \leqslant N$. Then, necessarily, the set of complex common roots of the polynomials in finite.

We now assume that (ii) is true. Let $\xi^{1}, \ldots, \xi^{\nu}$ be the complex common roots of the polynomials P_{j} for $1 \leqslant j \leqslant N$. For each $1 \leqslant j \leqslant n$, we consider the polynomial :

$$
Q_{j}(\xi)=\prod_{i=1}^{v}\left(\xi_{j}-\xi_{j}^{i}\right)
$$

where we have put $\xi=\left(\xi_{1}, \ldots, \xi_{\mathrm{n}}\right)$.
Then, we have $Q_{j}\left(\xi^{i}\right)=0$ for $1 \leqslant i \leqslant v$; that is, the polynomials $Q_{j}, 1 \leqslant j \leqslant n$, vanish on the set of the complex common roots of the polynomials $\mathrm{P}_{\mathrm{j}}, 1 \leqslant \mathrm{j} \leqslant \mathrm{N}$. From the Nullstellensatz's theorem (cf. Van der Warden $[13]$ for example), there exists an integer $\rho \geqslant 1$ such that the polynomials Q_{j}^{p} for $l_{j}<n$ belong to the ideal spanned by the polynomials $P_{\ell}, 1<\ell<\mathbb{N}$; that is, there exists some polynomials $A_{j_{\ell}}$ such that :

$$
Q_{j}^{\rho}(\xi)=\sum_{\ell=1}^{N} A_{j \ell}(\xi) P_{\ell}(\xi), \quad 1 \leqslant \mathbf{j} \leqslant \mathbf{n} .
$$

The polynomials Q_{j}^{ρ} are polynomials of order vp of which the principal part is equal to $\xi_{j}^{\nu \rho}$: these principal parts have only 0 like complex common root, that is, they satisfy the conditions (A) and (B). Hence, if $u \in D^{\prime}(\Omega)$ and satisfy $P_{j} u \in G_{S}(\bar{\Omega})$ for $1 \leqslant j \leqslant N$, then $Q_{j}^{f} u \in G_{S}(\bar{\Omega})$ for $1 \leqslant j \leqslant n$. And from Smith [12], Bolley-Camus [3], u $\in C^{\infty}(\bar{\Omega})$ and the corollary II-2 gives $u \in G_{S}(\bar{\Omega})$.

From the theorem II-1, in particular, we deduce the following sufficient condition of $\mathrm{G}_{\mathrm{S}}(\Omega)$-regularity :

Corollary II-3 :

Let P_{j} be some differential operators, $1 \leqslant j \leqslant N$, with constant coefficients and satisfying the condition (C) ; the two following propositions are equivalent :
(i) $u \in G_{S}(\Omega)$;
(ii) $u \in C^{\infty}(\Omega)$ and $P_{j} u \in G_{S}(\Omega)$ for $1 \leqslant j \leqslant \mathbb{N}$.

Remark II-2 :
It comes from the precedent theorems that, if the polynomials $P_{j} \equiv P_{j}(\xi)$, $1 \leqslant j \leqslant N$, (with constant coefficients), have principal parts without complex common root different from 0 , that is the condition (B), then, they have only a finite number of complex common roots, that is satisfy the condition (C) : it is a "classical" result in algeabraic geometry.

III - "REDUCED POWERS" AND G $\mathrm{S}^{\text {-REGULARITY. }}$

In [5], Damlakhi gives a refinement about the Nelson's theorem (theorem 0^{\prime}) in the following sense :

THEOREM [5] :
Let P_{1}, \ldots, P_{n} be some real vectors fields, with conalytic coefficients and linearly independant in each point of an open set Ω; the two following propositions are equivalent :
(i) $u \in a(\Omega)$;
(ii) $u \in C^{\infty}(\Omega)$ and, for every compact subset. K of Ω, there exists a cons$\tan t L=L_{K}>0$ such that, for every $k \geqslant 1$ and $1 \leqslant i \leqslant n$, we have :

$$
\left\|P_{i}^{k} u\right\|_{L^{2}(k)} \leqslant L^{k+1}(k!)
$$

In a similar way and, according to the precedent chapters I and II, we are going to put the two following conjectures :

Conjecture 1 :

Under the assumption of theorem 1, the two following propositions are equivalent :
(i) $u \in G_{S}(s t)$;
(ii) $u \in C^{\infty}(\Omega)$ and, for every compact subset. K of Ω, there exists a constant $L=L_{K}>0$ such that, for every $k \geqslant 1$ and $1 \leqslant i \leqslant N$, we have :

$$
\left\|\mathrm{p}_{\mathrm{i}}^{\mathrm{k}}\right\|_{L^{2}(K)} \leqslant \mathrm{L}^{\mathrm{k}+1}\left(\left(k m_{i}\right)!\right)^{\mathrm{S}}
$$

Conjecture 2 :

Under the assumptions of theorem 2, the two following propositions are equivalent :
(i) $u \in G_{S}(\bar{\Omega})$;
(ii) $u \in C^{\infty}(\Omega)$ and there exists a constant $L>0$ such that, for every $k \geqslant 1$ and $1 \leqslant i \leqslant N$, we have :

$$
\left\|\mathrm{p}_{\mathrm{i}}^{\mathrm{k}}\right\|_{L^{2}(\Omega)} \leqslant \mathrm{L}^{\mathrm{k}+1}\left(\left(\mathrm{~km}_{\mathrm{i}}\right)!\right)^{\mathrm{s}}
$$

Then, a positive answer is given in a particular case by Damlakhi [5] who uses for that the notion of analytic wave front set of an hyperfunction and the fundamental theorem of Sato, and also the idea to add an other variable $t(i n \mathbb{R})$ and to consider the evolution operators $P_{j}=\frac{\partial}{\partial t}-i P_{j}, 1 \leqslant j \leqslant N$.

Also, the conjecture 1 is true in the case of operators P_{j} of order 1 , with complex and constant coefficients. The proof of this result is based on the following proposition :

Proposition III-1 :
Let $P_{j}=P_{j}(\xi)$ be some polynomials, $j=1, \ldots, N$, of order 1 with complex and constant coefficients ; we assume that their principal parts have no real common root different from 0 . Then, for every compact sets K_{1} and K_{2} of R^{n}, K_{1} being included in the interior K_{2}^{o} of K_{2}, there exists a constant $C>0$ such that, for every $u \in C^{\infty}\left(K_{2}\right)$ and $\alpha \in \mathbb{N}^{n}$, we have :

$$
\begin{aligned}
& \left|\left|D^{\alpha}{ }_{u}\right|\right|_{L^{2}\left(K_{1}\right)} \leqslant C^{|\alpha|+1} \sum_{i=1}^{N}|\beta| \leqslant|\alpha| \sum_{j=0}^{|\alpha|-|\beta|} C^{|\beta|}|\alpha||\beta| \frac{|\alpha|!}{(|\alpha|-|\beta|-j)!j!\beta!} \\
& \left|\mid \mathrm{P}_{\mathrm{i}}^{|\alpha|-|\beta|-\mathrm{j}_{\mathrm{u}}| |_{\mathrm{L}}^{2}\left(\mathrm{~K}_{2}\right)}{ } .\right.
\end{aligned}
$$

This proposition is obtained in using, in particular, the special function of truncation given in Hormander [7].

Another positive answer to the conjecture 2 has been given for $s=1$, $\Omega=(]-1,+1[)^{n}$ and for the canonical system of the first partial derivatives by Damlakhi [5] who uses for that the spectral theory of the Legendre's operator in n-variables.

The conjecture 2 is also true "locally" in the half-space $\mathbb{R}_{+}^{n}=\{(x, t) ; t \geqslant 0\}$ for the case of a transversal operator P_{1} of order 1 with constant and real coefficients and some tangential operators P_{2}, \ldots, P_{N} with complex and constant coefficients. The proof is based on the following a priori estimate : there exists a constant $C>0$ such that, for all $u \in C_{o}^{\infty}\left(\overline{R_{+}^{n}}\right)$, $u(x, t)=0$ for $t \geqslant 1, k \geqslant 1$ and $\alpha \in \mathbb{N}^{n-1}$, we have :

$$
\begin{aligned}
& \left|\left|D_{x}^{\alpha} p_{1}^{k} u\right|_{L^{2}\left(\mathbb{R}_{+}^{n}\right)} \leqslant C^{|\alpha|+k+1}\left\{| | P_{1}^{|\alpha|+k+1} u| | L_{L_{\left(\mathbb{R}_{+}^{n}\right)}^{2}}+\right.\right. \\
& \left.+\sum_{j=2}^{N}|\alpha|+\sum_{\ell=0}^{\ell+1}\binom{\ell}{|\alpha|+k+1}| | p_{j}^{|\alpha|+k+1-\ell} u| | L_{\left(\mathbb{R}_{+}^{n}\right)}\right\} .
\end{aligned}
$$

We prove such an inequality in using the inequalities given in Cartan [4] and Hardy-Littlewood-Polya [6].

BIBLIOGRAPHIE

[1] : S. AGMON - The coerciveness problem for integro-differential forms. J. Analyse Math. 6 (1958), 183-223.
[2] : N. ARONSZAJN - On coercive integro- differential quadratic forms, Univ. of Kansas, Tech. Report 14 (1954), 94-106.
[3] : P. BOLLEY et J. CAMUS - Régularité pour des systèmes à coefficients constants, C.R. Acad. Sc. Paris 281 (22 Déc. 1975) série A, 1091, 1094.
[4] : H. CARTAN - Fonctions dêfinies par des inégalités sur leurs dérivées, Hermann (1940).
[5] : M. DAMLAKHI - Analyticité et itérés d'opérateurs pseudo-différentiels, Thèse de 3ème cycle, Orsay (1977).
[6] : G. H. HARDY, J.E. LITTLEWOOD, G. POLYA - Inequalities, Cambridge (1967).
[7] : L. HORMANDER - Uniqueness theorem and wave front sets solution of linear differential equations with analytic coefficients, Comm. Pure App1. Math. 14 (1971), 671-704.
[8] : T. KOTAKE, N. NARASIMHAN - Regularity theorems for fractional powers of a linear elliptic operator, Bull.Soc. . Math. France 90 (1962), 449-471.
[9] : J.L. LIONS et E. MAGENES - Problèmes aux limites non homogènes et applications, vol. 3, Dunod Paris (1970).
[10]: C.B. MORREY, L. NIRENBERG - On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure App1. Math. 10 (1957), 271-290.
[11]: E. NELSON - Analytic vectors, Ann. of Math. 70 (3) (1959), 572-615.
[12]: K.T. SMITH - Formules de représentation de fonctions par leurs dérivées, Math. Ann. 188 (1970), 53-77.
[13]: B.L. VAN DER WARDEN - Modern Algebra II, Frederik Ungar Publ. Co..

[^0]: (THEOREM O:
 Let I be an elliptic differentiel operator of order $m \geqslant 1$ with analytic coefficients in an open set Ω of \mathbb{R}^{n}, the two following propositions are equivalent :

[^1]: | Proposition I-2 $:$
 Under the assumptions of the theorem 2 , for every $x \bar{\Omega}$, for every open neighbourhoods W and W^{\prime} of x in $\bar{\Omega}, W^{\prime}$ being relatively compact in W, there

