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ON A CLASS OF WEIGHTED SOBOLEV SPACES

I - CASE OF THE HALF-LINE R, .

For an integer m & N, two real numbers a and B > O and an inter-

val I of R+, we consider the space :
v‘;’ 8(1) = {ued @ ; t2 €L2(I) , tBD‘E‘u e LZ(I)}

equipped by the canonical norm.

Proposition I.]

If u E‘Vz B(O,T), where T is a real number strictly positive, we have :
b

. -j.m=] 2 . . . . . 1
() P73 u & 17(0,1) for 0 < § < MinGy,m) with j = [Bry]_ s

B-] .
(ii) t OD‘S Ju € 1.2(0,T) for jrleismif jo+1gm;

(iii) u € B B(0,T) if g-m # integer +% .

The notation [A]_ means the greatest integer <A.

Proof : Let Y be an indefinitely differentiable function such that y(t) = |

A

T ) )
if t <5 and ¥(t) = 0 if t > 3%3 Put v = $u ; then v e:VZ B([R+) with bounded

support.
Using the Hardy's inequality, we obtain (i).
. B‘jo m-jo 2 3—j0+l m—jo
Again for (ii) : we have t Dt ve Ll (R+), also t Dt v
2 . B"j o m—j 51 2
€ L"(R,) and by the Hardy's inequality, we get t D, vel ®R) ;

repeating the same argument, we obtain (ii).

) . B-rr 2
If g > m, it results from (i) that t el (R+) and consequently



BGR ).

o
if B8~m # integer + %, we have ([4]) ue H R,

. . 1
If B ¢« m, then i, < m and - %-< B - 1, S 7 Then, two cases

must be distinguish according to - %—< B - j0 < 0and O < B - jo g %.
First case :
B=j m—j -1 B-j m-j 9
0 < B - jo NS %u We have : t th © v oand t ODt °y e L (84) (see that
1/2 m"jo_l

0 < B - jo and 8 ¢ m implies jo+l € m). Then, we have t ' "I v and
172.™ 3o 2 .. .

t D v & L°(R,), and now we prove that these two conditions imply
m-jo*] )

D, vEL R).

Lemma I-1 :

([]]). If u e:v:/z,l/z(m+), then u ETLZ(R+)- ¢

Proof :

If u EiiXR+), we can write :
2 e e
lu(t)|“ = 2 Re J u(o)u'(o) do
t

and using the Fubini's theorem, it comes :

+00 2 +c0 +eo 2 +© 2
f lu]“dt <« -2 Re J o u(o)u' (o) do ¢ J tlu(t)|“dt + J tlu’ ()| “de.
(o] o o] [o]

. . 1
At last, by the density of«jXR+) in the space V1/2,l/2(R+)’ we get the

lemma I.t1.
m—jo—]
Now, we prove that D, v E:HE(R+) with € = 1’(3‘30)- For
m—jo—l m—jo
that, put Dt v = f and Dt v = F and compute :

+ (4o .
x) - f(y T e - £(0)]2
[£(x) - £(y) |2

2€+] dX dy = — w9€+] dX dt .
(8] (o) lx_yl o o t-—



But,

t
f(x+t) - £(x) = f F(x+o) do .
o

Then,

+oo 2 o e
f | £(x+t) = £(x)] dt = J 1 | f F(x+0) do‘z dt
2e+] o

+ - +
o t2€ 1 €

and using the Hardy's inequality,

+co
< C __l-1 F(x+t)|2 dt .
N $2e-1

)

(C is a constant).

But,

+oo oo

1 1 ‘ 2
f Tem] |F(X+t)l2 dt = f TTTToesT IF(Y)l dy
ot x |y=x

I ICHD f*” j F(ox) |2 do
_112e~1
I Io ]I

and using the Fubini's theorem, it comes :

oo - +oo +oo 2(8_1)-1 e - 2
f x 2 ')(J o |F(o0) | “d0) dx =J b do-f y 2D R | “ay

0 1 ]o-1]2871 1 o-1]287

m~j —1

then, Dt v e H® (R+) and ve Hm—B(R+).

. Second case :

< B - j0 < 0. The case B - jo = 0 being trivial, we can assume that

2
1 1 wi, 2
——2-<B—J <0.Then,-2-<6-jo+l<landwehaveDt VEL(R+)
B_joH m—j0+l 2
and t D, . veL (IR+). By the same calculus as before we get that

Dt °v € HE(R+) with € = -(B-jo) and finally v E:Hm_BGR+).



The proposition I.1 is proved.

Remark I.1 :

We can improve the result of the proposition I.l‘when B-a > m)in fact we
have : if B~a > m and if u VZ’B(O,T), then ta*ﬁ(B-Q)Dgu e:Lz(o,T) for
j = 0,...,m. The proof is analogous to that of the following proposition

1.2,

Proposition I.2 :

If B~ < m and if u & VZ B(T,+oo) where T is a real number >0, then :
bl

J
a+=(B-a) .
t ™ Diu €;L2(T,+w) for j =0,...,m.

Proof :

It will be made in two steps.

First step :

Reduction to the case a = 0.

Lemma I.2 :

m
If u E:VQ’B(T,+m), then :

Proof :

If 8 s% , obviously we have u € H'(T,+) and then tB_JDI:—Ju e L2(T,+w)

for j = 0,...,m.
] . ..
If B8 > 3 then, as in the proposition I.1, we get that

B"j m-j 2 . . . . 1
t Dt ue L (T,+0) for 0 ¢ j € Mm(JO,M) with I, ° [3*3]_ At last,

-

. m—]j 2 . s
since Dy "u € LT, %) for j = 0,...,m, we get that tP7IM Ty & 1(1,4a)

for j = jo+l,...,m if j0+1 ¢ m (B~) is negative).



Lemma I.3 :

The map u —>t% is an isomorphism from ' (T,+=) onto v (T,+=) .
a,B 0,8-a
Proof :
B_

o..m
Let u be an element of Vz B(T,+W), we put v = tau ; then t DtV(t) =
>

m . .
X aj.tB JD? Ju(t) and by the lemma I.2, it results that v'E.Vﬁ 8-a
. s

J=o

(T’+oo) .

. -l .
Conversely, let v be an element of VS B_a(T,+w), we put u = ¢ v
’
8. m m ot s .
then t Dtu(t) = Z a-.tB * JDT Jy(t) and by the lemma I.2, it results

j=o
that u e VI: B(T,+°°).

Seconde step :

We assume a = 0.
m-f3

———

We use the change of variable y = t © and of function w(y) =
yB/Z(m—B)u(t).
By induction on p, we show that, for O < p ¢ m, we have :
j-p+ 8

P— .
‘g ajp' t n Dﬂu(t) .
J=o

5
>

?

where app # 0. By the lemma I.2, we get D?w €:L2(Y,+w) where Y = T
. 2

and consequently w € H(Y,+») since w & L2 (Y,+°). Then, Diw e L7 (Y,+)

for p = 0,...,m and using the precedent fo&yula, we get, by induction on

d si . Be i f . Jﬁﬁ 2 .
p and since j-p+p_< jp for j < p, that t ;ue L (T,+=) for j = 0,...,m.

The proposition 1.2 is proved.

We now apply these results to a sub~class of Sobolev spaces
with weights which we will be ygefy] for the following : let be me W,
-0 and 8§ two real numbers >0 such that o+m > O and o+6ém > O, we consider

the space:



- -0, o+8k+]j]
wI;’d((R+) luen "®) ;t D}

u eIL20R+) for o+8k+j > O and k+j g m}

equipped by the canonical norm.

By the propositions I.l and 1.2, this space coincide with the

space Vm
c
P c+dm,o+m

®,).

We now give the Sobolev's theorem for the spaces W? 6(R+).
]

Proposition 1.3 : we have

. m . . .
i) If u EIWO 6(R+)’ u is continuous on R _ and there exists a constant
bl

C > O such that for every u e:wz 6(1R+), for every t > 0, we have
’
+
—%{—nﬂ 1/
(1.1) lu(t) < c. t | Tul |
wm

6,6

2 1-1/2m

iy
al
L2 ’

(ii) We assume -¢ > %3 then : 1f u e-w? 6(R+)’ u is continuous and bounded

on R+ and there existsa constant C > O such that for every u E'WZ 60R+)’
b

for every t > 0, we have

1
1+—
-1/2 2
(1.2) lu(e) |« c. []u]] m/ 7 Jull 9 73
ag,§ L

-(o+6m)+;_-(<s-1)

(1.3) lu(e)|< c. ¢ H””wm

0,98

Proof :

(i) At first, we apply the usual Sobolev's theorem : if v & Hm(m+) with
ms3 1, then v is continuous on ﬁ: and there exists a constant C > O such
that for every v €.Hm(R+), for every t > O, we have :

400 $oo
Iv(t)l2 g C{ J lD?V(T)‘Z dt + J Iv(T)l2 dt }.
o o



Ifwe W[:; 6(tR+)’ the function v defined by v(t) = w(t+t) belongs to
Hm(lR+) for every t > 0. Since -0 > O and o+m > O, then m > 1 and for

m
every w €ZwO 60R+), for every t > 0, we have :
14

+w

ID?W(T)IZ dt + I |W(T)|2 dt }.

+
lv(e)]? < c. { I
t

t

Now, let u be an element of W? G(R*) and we apply the precedent inequality
b

to the function w defined by w(t) = u(A1) where )\ is a positive constant.

Then, there exists a constant C > O such that, for every u E:W? 5(R+), for
’

every t > 0, for every A > 0, we have :

. +00 4o
(1.8 Juw)]? s e o f |am DTu(T)IZ dr + f luc)|? ar 31,
t ) t

and since t & T, we get :

400 +oco
lu(e) |2 < c/r ¢ I S Eae AT Y e ta J lagry % ar 3.

o+m t t

. m R .
Choosing A = t , a fortiorl we obtain :

o+m

—_— —— +co 400
lu) > sc. e ™ ¢ J lT0+mD?u(T)|2 dt + f lucr)|? dt .
(] (]

Now, we apply this inequality to the function v defined by v(t1) = u(A1)
where A is a constant >0 :

o+m

' - == +oo0 +oo
|u(>\t)|2 g C. t //E//{ J A 720 |TO lI)I::lu|2 dt + J |u(T)|2 dt }.
A o o

1/20, we get for every u e:wﬁ 6(R+), for every t > 0, for every

»

Putting X = r
r > 0, we have :

~gtm !
1/2 m 2m +° o+ +oo
c. (tr ' r {J |< mDTU‘sz+rI |y () [2ar}e

1/20)|2 )
T

|u(t r
)
0



Finally, there exists a constant C > O such that, for every t > 0, for

every r > 0, for every11€;W§ 6(R+), we have
]

o+m 1

1
lu?scoe ™ ¢ {;|u||§m +r||u||i2}

0,8

g » We obtain the inequality (1.1).

Taking r = ||u]]?
W o/ lull

(ii) If -o > %3 the Sobolev's theorem imply that if v E:H—OGR+), then v

is continuous and bounded on ﬁ: and there exists a constant C > 0 such

L2

that for every v E:H—G(R+), for every t > 0, we have :

v 2 < e [Ivl®, \
H " (

R,)

But, from the proposition 1.1, the space v

o,0+m(R+) is continuously imbedded

in H_OGR+), then, for every t » 0, for every v €:W§ 6(R+), we have :
s

+

400
|v(t)|2 g C. { J ITO+mD?u|2 dr + f |u(r)|2 dr }.
) )

Using the same change of functions as before, we get that for every
u E:W? 60R+)’ for every t > 0, for every r > 0, we have
bl
_ 1

_] ——
2 2
lu(t)]2 f£C.r 20 { {]ull +r ||ul]] 2 3.
W L
0,06

We obtain-the inequality (1.2) in taking r = llullzm 9
W, 1112
’ L

To have the inequality (1.3), we start from the inequality (1.4) in which

4% 400
we choose A = ([ ]u(‘f)lsz)]/2m (J |DTU(T)[2dT)_l/2m, that gives :
t . t



4 400
lu(t)lz < C. (J 'D?ulz dT)]/zm (J IU(T)IZ dT)I—I/Zm .
t t

after that, we remark that, since t s 1, we have :

T <

I*” m, |2 (2 (o+m) [*“ 20 w2

D u|“ dt < t t—2(c+m)llullz
t

t t m
0,8

and

m

40 +00
J lu(ry | 2ar ¢ ¢2(0+0m) f [2(0+m) luco) |2 ar < t—z(o+am)Hqu
0,8

t t

hence the inequality (1.3).

II - CASE OF THE HALF SPACE RE, n> 1.

Let m be an integer, -0 and § two real numbers >0 such that

o+m > 0 and 0+8m > O, we consider the space :

0+6|a|+j

m n, _ 2 0., ind 2.0 . .
Wy, s®) = luel”®); ¢ DD ueL®,) for o+é|a|+j>0 and |a|+j <m}

equipped by the canonical norm.

The spaceéD(Rz) is dense in the space W? 6(&3) (cf[iZ]for example) and also

we have :
We d(mz) = {u €<ﬂ'(Rf): tMaX(°’0+6|u|+J)DgDZu €.L20R2) for |a|+j< m}.

T,

Proposition II.l. we have :

oy s . m n . .
i) if m > n/2 and if LlG.WO G«R+)’ then u is continuous on RE and there
3
exists a constant C > O such that, for every u ew G(RE), for every
0’

(t,x) & lRil, we have :
_"—+m — n=1 ( +
2.1 et )| cc. e A Tm C Gm)Han/Zm | [u] [1m0/2m
2 b ]
g’é L



I-10

(i) If Min (-0 ,-0/5) > /2 and if ug Wy ((®}), then u is’continuous
’
and bounded on [Ri1 and there exists a constant C > O such that for every

m n n
u €W6’6(3+), for every (t,x) & R , we have :

1+8 (n-1) 1+8 (n-1)
T T =
(2.2) luce, )| < e o] _ Hull
wc 8

Proof :

The proof is analogous to those made in the chapter I. (i) ; at first, we
apply the usual Sobolev's theorem : if ve Hm(tRil) with m > n/2 then v is
continuous on RE and there exists a constant C > O such that for every

v E Hm(R_t:) , for every (t,x) & lR:}, we have

[y

IU(t,X)|2 sC. { ) f |D‘tiD V(T,y)|2 dt dy + f |v(1,y)l2 dr dy 1.
j+l(x,=m n % n
R, R,

1f WEWICI; 6(R:_l), the function v defined by : v(t,y) = w(t+t,y) belongs to

Hm(le) for every t > 0. Hence, for every w EWI;I 6([Rr+l), for every (t,x) E.(Ril,
bl

we have :

+co . +co
|w(t,x)|2 <c. { ) J [ |D‘t]:Daw(T,y)|2dey + [ J Iw(r,y)]szdy}
la|+j=m t go-l X t go-l

Let now u an element of WICI; G(IRS) and apply the precedent inequality to the
b
function w defined by : w(Tr,y) = u(At,uy) where X and u are two constants.

. m n
Hence, there exists a constant C > O such that, for every u e;w0 6(R+)’
]

for every (t,x) & [R:_l, for every A and p > O, we have :

+0 . .

2 2] 2(m-j) | Jp0 2

lu(t,x) |7 < ¢C RCIO) f f Y [D:D_u(t,y)|® dr dy
: _/A.un ! la|+i=m 't Jn-1 tx

4o 5
AT el e e,
t Rrr-l
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and since t £ T, that gives:

2
lu(t,x)|© < ?/; n-1 ¥

+oo . . . . PR
x {7 J j AZJuZ(m—J)t-2(0+6(m-J)+J)|TG"(?lOtl+JDiDj:u|2dey
t

o] +5=m

Rn-]
+o 2
+ J J ]u(T,y)I dt dy}.
Lt
Rn+]
o+m o+8m

. m ..
choosing A = t ™ and =t ».a fortioti we get :

]u(t,x)l2 sct © m { z f |TO+6Ial+ngD:u 2 dt dy
|a|+j=m ’E
+

+ f Iu('r,y)l2 dt dy }.

n
R,

We now apply this inequality to the function v defined by : v(t,y) =

u(At,ux) where X\ and i are some constants :

Iu()t,ux)l2 £ Cx

a+m n-1
~gm _ DEleg4s
(0+6m)

m - -. -a - - 2
X t — { z J A 2(g+8 (m J))u2(m J)|T0+6|ot|+JD_t]:D()1{u‘ drdy
)\.Ll Ial-fj:lnar
+
+ J |u|2 dt dy }.
n
R,
n
Putting A = r1/2% ang u =X6, we deduce that for every u elwﬁ’a(m+)’ for

every (t,x) E‘R:, for every r > 0, we have :

-11-



-12~

I -12

Iu(trl/ZU,er/ZG I2

) § Cx

n
X 1726~ =on - 2lorem) o .
(tr / 9 " " o/ 2m i Y f |TO+6IQ|+JDiDZu 2drdy
n

+r f [u|2dT dy }.

Finally, there exists a constant C > O such that, for every (t,x) E.Rz, for

every r > 0, for every u e:wz 5GR2)’ we have :
b}

g+m n-

1
- —— - ——(o+Sm) R
lue, 0% cco e " " N A H“”zz} .
m L
00
\.
The inequality (2.1) results form this in choosing r = ||u||im /||u|[22.
W L

0,8

(ii), we begin to show the

Lemma II-1 :

We have the algebraic and topologic imbedding :

wg',s(m‘:) c gtin(-0,=0/8) @)

Proof :

m

-0 .
By the chapter I, we know V0+6m,0+m(m4) CH (R,), hence, there exists a

constant C > 0 such that, for every v C:W? 6(R+)’ we have :
b

40

+ +oo
I (l+r2)—0|F(Pv)|2dT ES C.{J |t0+mD?v[2dt + f |t0+6mv|2dt} s
: . o o

-—00

where F means the Fourier transform in the variable t and P a linear and
continuous extension operator from H O ®) (for example, P can be taken as

the Babitch extension).



I-13

1/

. . -1/68 . ..
I1If ve w? 6(R+)’ the function u(t) = v(tA ), where N is positive cons-
9’

tant, belongs to Wg‘ G(IR+) ; for every N > 0, we have :
s

+ +00 +oo
J (A2/6+T2)—GIF(PV)|2dT < C. {J lt0+mDI:vl2dt + I\sz |t°+6mv|2dt} .
[o] (]

-0

Let now u be an element of ;D(Rz) and for every £ & Rn_]\{o{, we consider the

function v(t) = G(t,£), where N means the Fourier transform in the variable
n-1l . .

x & R ; then F(Pv) (1) =$'Pu(‘r,£), where R means the Fourier transform in

the variable (t,x) in R" and from the precedent inequality, we deduce,

1

taking A = |£| and after integrate in & over R""', that there exists a cons-

tant C > O such that for all u e ‘,D(R_r:), we have : putting ¥ = Min(-o0,-0/8),

||Pul] _ * s C.||ull
=0 m n
H™ (R) Wy s (R,)
and then :
|Tul| _ ¢ C.|]ul] :
= n m n
H (R"") 0s8 +

The space Q)(Rf) being dense in the space W[: G(Ril), we have proved the lemma
b

II-1.

Now, if Min(-0,-6/8) > n/2 and if ue w;" 6(R:_1), then u is continuous and
’
bounded on R:_l and there exists a constant C > 0 such that for every

e W (an), for every (t,x) & !Rn, we have :
O 48 + +

luce, 0|2 ¢ c. { ) J 12(0+6(m—j)+j)lDiDzu(T,Y)|2 dt dy
al+j=m In
R,

+ f lu(T,y)I2 df dy 1.

IRn
+

-13-
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Then, we do the change of variable of (i), that gives :

2
u(t,x)|" ¢ C ~
| X I /Mjn—] X
x { J f l_2(0+5(m—j))u2(m-j)IT2(0+6(m—j)+j)DiDiU(T,y)Iszdy
‘Gl+j=mRn
+
2
+ [ [u(t,y)|° dt dy }:
R,
1/20

we choose A = r and 3 = A§, that gives :

_ 20+1+8(n-1)

luct, ) |* < c. = 26 Clall® e [all?, 0,
w0’60R+) \ L"®))
and taking r = Hu||2m 5 » we get the inequality (2.2).

W o/l ]ul]
g,8 L2

Proposition 11.2 :

. A
Let £ be an integer, o g & < -g - %-; then the map u—>y,u = Dtu(t=o) :

QKRE) ————)(Rn—lllcan be extended in a linear and continyous map from

_ 2(a+0)+1

m n, . 28 n-1
wc,d(R+) into H (R ).

Proof :
It comes, by the chapter I, that there exists a constant C > O such that,

for every v eng GGR+)’ we have :

4o

dt }.

g+m_m 2 e
|t Dtvl dt + |t
o

|D§V(0)|2 sc. { J 0+6mV|2

o

af—

S If v E:W? 60R+), the function u(t) = v(t N ), where N is a positive cons-

tant, belongs to wm (m}) ; hence here exists a constant C>0 such that for every
gs8§

~14-
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ve : G(R ), for every A > 0, we have :

_ 2(o+L)+1

—_— ' +00 +o
28 L +
A phvo)|? < c. ¢ j €7y Zge + AZmJ |£o8m,| 24 3.
0 o
Let now u be an element of iKR ), and for every £ & R I\{0}, we consider

the function v(t) = u(t,£), where A is the Fourier transform in the variable

X & Rn-l 3 as in lemma II-1, we deduce that :

IIYQull _ 2(0+£)+l < C. IIUI'

H 28 058

It will be very useful for the following to have an inequality of type

"compacity" for the spaces W: s
E]

Proposition II.3.

Let m be an integer >l and put 6] = Min(1,%). There exists a constant C > O

such that, for every ¢ > 0, for every u e.W? 5(R2), with supp u C:{|t| < 1},
s

we have :

n

-(m—l) .
2.3 ol gy Ml g o, Hull 29

0+6],6

Proof :

We begin to establish a lemma :

Lemma II-2 :
§ 2 2 ,1/2 .
The map u — { ||t0+mD?u||22 + Z ||t0+ mD:ull ) + |iu|| 2} / 1s an
L |o|=m L L

equivalent norm for the space w: 6(R+)'
s

-15-
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Proof :
Let k and j be some integers such that o+k+j » O and k+j < m. From the
o+Sk+ipd. - .2
chapter I, it results that if v(t) & Wg 6(R¥)’ then t Dtv =L (R+)
b
and :
+0 .. + +eo
2 o+ém ;2
[ ]to+<5k+3 D'J:vlzdt s cC. { j It°+mDIgv| dt + J | v|“de }
O

[o] [¢]

where C is a constant >0 which does not depend on v.

1/

m

If v W O), where N is a
J,6

(R,), the function u(t) = v(t A
- - m .
positive constant belongs to W0 6(34) ; hence, there exists & constant
’

C > O such that for every v E.W? 6(R+)’ for every A, we haye :
’
40 R + 0 oo
3 o+8 2. .
(2.4) /\Zkf |t°+6k.+JDiv[2dt < C.{J [t0+mDI:v 24t + Asz [£°7°"y ] “ae ).
o o o

Let now u be an element of ikiza and for every £ & Rn—]\{o}, we consider
the function v(t) = G(t,£), where A means the Fourier transform in the
variable x E.Rn_], and from the precedent inequality, we deduce, taking
A= ]gl and after integration in & over RP-], that there exists a constant

C > 0 such that for every st‘@(RS), we have :

. Sm_a 2 2
< L™ 2+ T [1e7m% %, ¢ []ul |, b
t L2 ld‘=m X L2 L2

2
llllw

ag,8

The space;D(RE) being dense in the space w? 6(IR:_I), the lemma II-2 is a
s

consequence of this inequality and the Banach's theorem.

Proof of the proposition II-3 :

From the inequality (2.4) in which we take j = m-1, k = 1 and A—] = ¢ > 0,

we deduce that :
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+oo
f lto+6+m-1Dmrlv|2

‘. dt £ C x
o
9+ oy (¥ +5
X GJ |t0+mDI§v 2 gp 4+ 2 l)f 174%0y]2 e ).
o o

We apply this inequality to the function v(t) = G(t,&) f0r11€=n(R2) and

£ EIRn—l\{o}, we integrate in £ over Rn-'l, that gives :

(2.5) ||t0+6+m-1D1::1—lull22 n < C. {€2||t0+mDI:u||22 . + e‘Z(m—l)HuHZz n}
L (R+) L™ (R, L7(R))

if supp uel|t] < 13.

Besides, we know that there exists a constant C > O such that for every

€ > 0, for every v(x) e:Hm(Rp—]), we have :

(2.6) 2 f |D:v|2dx < C. {82
-1 ‘n~1

Y IDav|2dx + g 2@l |v|2dx 1.
o | =m =m Jin-1 X

n-1

eiFm g R

Then, we use this inequality to the function v(x) = u(t,x), t > 0, where

dm

lléfixR:); we multiply by £t , and we integrate in t > O over R_, that

gives :

2.7) R Lt e R R P i | P W T
|| =m

|| =m-1 LR Lz(Ri‘)

+ s_z(m—])||u||22 n 1.
L (R+)

if supp u c{ |t| g1 }.

The inequality (2.3), for § < 1, is a consequence of (2.5) and (2.7).

For 6 > 1, we replace the inequality (2.5) by the inequality :

}.

2
[t

2.8) ey |2 e N | R

g C. {e
12 (&%) L2(=") 12

...]7_
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if supp u C {|t| s 1}. This inequality is easy to prove like for (2.5).

After, in (2.7), we multiply by t2(0+]+6(m-])) and we choose

e = nt , n > 0, and we achieve as before.

ITT - CASE OF A BOUNDED OPEN SET Q OF R', n > I.

Let © be a bounded open set of R", with boundary T'. We assume

that © is a compact C° manifold. We give ¥: Rp.___;m.a ¢’ function such

that :
Q0 ={xer'; Hx) > 0},
— S » B
(3.1) ) r ={x=RrR ; Jyx =0},
grad N(x) # 0 for x <. T ,
, 9 3 . . .
Where grad y(x) = (-52—(x),...,§§~(x) is the gradient vector associated to‘f.
1 n .
Let (Xi) be some vector fields with C coefficients on R such that :
0$i$q
(3.2) X, is transversal to I on T, ie : (XO ) (x) # 0 for x €T
(3.3) Xi is tangent to I on I' for i = 1,...,q, ie : (Xi%) (x) = 0 for
x & T
(3.4) for every x = T, the rank of the system (X.(x)) _._ _ is equal
1 os1gq
to n.

Let m be an integer, -o and § two real numbers >0 such that o+m > O and

o+8m > 0, we consider the space:

mos 2
W) = (uel?(q) ;gMax(o,o*<8,000a, —12 0y £or |a| < m )

-18-
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a o
equipped by the canonical noim. We have used the notation Xa =X ° x ¢4

o e
g+l %
fora = (o0 ,...,0a ) N and <8,a> = § a. + o .
o jop 1 o

Proposition III~1,

With the precedent assumptions, we have :

- m m
() W @l (@

(ii) for every ¢ £ ¢”(2) and for every ueE:W? 6(9), we have : ( “'€>W§ 6(9),
’ s

Proof :

(i) With the assumption (3.4), for every X, €& Q, there exists a neighbourhood
V(Xo) of X in © in which we can write :
3 § k
TS L B X
k 1=0
) . . k . o
for k = 1,...,n with some convenien: functions Bi which are C in V(xo) and

we can easily get (i).

.. w® . - 2
(ii) Let ¢ be a C function on § and u e:w: G(Q)' Then ¢ u e L7(Q) and
b}

for [a[ € m, we have :

Xow = ] @ & x* "By

B<a

Max(0,0+<6,u>)xa

it results that Y (Pu) = LZ(Q), that is to say ¢® u 62W2’6(Q)-

Remark IIi-1

It is easy to prove that the space W G(Q) does not depend of the choice of
O>

the vector fields (X;) . satisfying the conditions (3.2) (3.3), (3.4).
ocigqg

_19_



..20_

I-2

Proposition III-2 :

We have :
(i) If m > n/2 and if u e:w: G(Q)’ then u is continuous on § and there
b ]
exists a constant C > O such that, for every u e;w? 6(9), for every
s

x € Q, we have :

(3.5) lu(x)] < €. “(x)

(ii) if Min(-0,-0/8) > n/2 and if Uig-wz 6(9), then u is continuous and
3

. m
bounded on  there exists a constant C > 0 such that for every u vag 5(9),
b

for every x = @, we have

1+8(n—1) |+ 1+8 (n-1)
Sl T 7%
(3.6) lu)] < c. |]u]] Huall 5
w? s -

Proof :

(1) With the proposition III-1 and by a partition of unity the inequality
(3.5) can be only obtained for functions u e;w? 6(Q) with support in a neigh-
»

bourhood of the boundary I of Q.

Let X, be a point of T'; from the properties (3.1), we see that there exists

a neighbourhood V(x ) of x_ in R" and a diffeomorphism ® = 6y ...,0)

with Sn = ‘Y from V(xo) on to the unit ball of Rn such that :

®@nre =3 ={yer ; |yl 1,y >0};
. = —
G ®OAD =3 ={yar ; |yl <1,y =0};

xo(ek) =0 in V for k = 1,...,n-1.

In these conditions, if u & wh 6(9) with supp u =V and if v=u :QD], then
(O]

0 . _ v
v e’.w0 G(RE) with supp Vv CB,. In fact, it suffices for that to remark that
b
by the diffeomorphism (@, the vector fields (X.) are become the vector
. " ogigq
fields (Ii) with :
ogigq

N
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9
(3.8) Io=0t-é*y~—,01(y)#OforyEB={yaiRn;'ylsl};
n
(3.9 I, =1+ [P . @ == fori =1
. 1 i i? - ayn "",q ’

t . . . o
where Ii means an homogeneous differential operator of order 1, with C

coefficients in the variables YyseeesYpoy 3

(3.10) for every ye B = {y g;Rn 3 |y| ¢ 1}, the rank of the system

() is equal to n.
osigq

Hence, the inequality (3.5) comes from the inequality (2.1) and the propo-

sition II-1.
(ii) In the same way, the inequality (3.6), at the boundary comes from the

inequality (2.2) of the proposition II-1.

o

In the interior, it comes from the fact that if u EEW? G(Q)’ then u c,HTOC(Q)
9

m' on . .
t L N +m3
and then too belongs to Hloc(Q) where m %5 (a=1) ° in fact, since o+m30

and o+8m > O, we have m' < m. Then, the inequality (3.6), in the interior,

is a consequence of the classical inequality :

Jue] < c. [ful 220y t5R 2
H

L2

Proposition III-3 :

2.
. 1 9" u
Let £ be an integer, O € £ < - O - g then, the map u—->y,u = ;;Elr : j)(ﬁ)___9

-f(F) can be extended in a linear and continuous map from w: G(Q) into
]

2(o+R) +1

H 25y .

Cﬁa means the derivative along that unit normal vector to T, interior in Q).

This proposition comes from the proposition II-2.

-21=-
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Proposition I1I-4 :

Let m be an integer >1 and 6] = Min(1,8). There exists a constant C > O

such that, for every ¢ > 0O, for every u & W? G(Q)’ we have :
3

(3.1D Hull <o tellull o+ ™D ] L0
W L
o+61,6 g8

Proof :

As before, we see that the inequality (3.11) at the boundary comes from
the inequality (2.3) and, in the interior, from the classical inequality

for the usual Sobolev spaces :

™ 1y

u $C. {elfu + }.
N IIHm_l ! IIHm 2
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