PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

P. BOLLEY

J. CAMUS

THE LAIPHAM

On a Class of Weighted Sobolev's Spaces

Publications des séminaires de mathématiques et informatique de Rennes, 1978, fascicule 3

« Séminaire d'analyse fonctionnelle », , exp. nº 1, p. 1-23

http://www.numdam.org/item?id=PSMIR_1978___3_A1_0

© Département de mathématiques et informatique, université de Rennes, 1978, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON A CLASS OF WEIGHTED SOBOLEV'S SPACES.

P. BOLLEY

Institut de Mathématiques et Informatique Université de Nantes

44 000 - NANTES

J. CAMUS

UER Mathématiques \$ Informatique Université de Rennes

35 000 - RENNES

PHAM THE LAI

Institut de Mathématiques et Informatique Université de Nantes

44 000 - NANTES

ON A CLASS OF WEIGHTED SOBOLEV SPACES

I - CASE OF THE HALF-LINE R.

For an integer $m \in \mathbb{N}$, two real numbers α and $\beta > 0$ and an interval I of \mathbb{R}_+ , we consider the space :

$$V_{\alpha,\beta}^{m}(I) = \{u \in \mathcal{J}'(I) ; t^{\alpha}u \in L^{2}(I) , t^{\beta}D_{t}^{m}u \in L^{2}(I)\}$$

equipped by the canonical norm.

Proposition I.1:

If $u \in V_{\alpha,\beta}^{m}(0,T)$, where T is a real number strictly positive, we have :

(i)
$$t^{\beta-j}D_t^{m-j}u \in L^2(0,T)$$
 for $0 \le j \le Min(j_0,m)$ with $j_0 = \left[\beta + \frac{1}{2}\right]_-$;

(ii)
$$t \stackrel{\beta-j}{=} 0 D_t^{m-j} u \in L^2(0,T)$$
 for $j_0+1 \leq j \leq m$ if $j_0+1 \leq m$;

(iii)
$$u \in H^{m-\beta}(0,T)$$
 if $\beta-m \neq integer + \frac{1}{2}$.

The notation [A] means the greatest integer <A.

<u>Proof</u>: Let Ψ be an indefinitely differentiable function such that $\Psi(t) = 1$ if $t < \frac{T}{2}$ and $\Psi(t) = 0$ if $t > 3\frac{T}{4}$. Put $v = \Psi u$; then $v \in V_{\alpha,\beta}^m(\mathbb{R}_+)$ with bounded support.

Using the Hardy's inequality, we obtain (i).

Again for (ii): we have $t \to D_t^{\beta-j} \circ v \in L^2(\mathbb{R}_+)$, also $t \to D_t^{\beta-j} \circ v \in L^2(\mathbb{R}_+)$ and by the Hardy's inequality, we get $t \to D_t^{\beta-j} \circ v \in L^2(\mathbb{R}_+)$; repeating the same argument, we obtain (ii).

If $\beta > m$, it results from (i) that $t^{\beta-m}u \in L^2(\mathbb{R}_+)$ and consequently

if $\beta-m \neq \text{integer} + \frac{1}{2}$, we have ([4]) $u \in H^{m-\beta}(\mathbb{R}_+)$.

If $\beta < m$, then $j_0 < m$ and $-\frac{1}{2} < \beta - j_0 < \frac{1}{2}$. Then, two cases must be distinguish according to $-\frac{1}{2} < \beta - j_0 < 0$ and $0 < \beta - j_0 < \frac{1}{2}$.

First case: $0 < \beta - j_o < \frac{1}{2}. \text{ We have : } t \qquad D_t \qquad v \text{ and } t \qquad D_t \qquad v \in L^2(\mathbb{R}_+) \text{ (see that } 0 < \beta - j_o \text{ and } \beta < m \text{ implies } j_o + 1 < m \text{)}. \text{ Then, we have } t \qquad v \text{ and } t \qquad v \text{ a$

Lemma I-1:
$$([1]). \text{ If } u \in V_{1/2,1/2}^{1}(\mathbb{R}_{+}), \text{ then } u \in L^{2}(\mathbb{R}_{+}).$$

Proof:

If $u \in \hat{\mathcal{J}}(\mathbb{R}_{+})$, we can write :

$$|u(t)|^2 = 2 \operatorname{Re} \int_{t}^{+\infty} u(\sigma) \overline{u'(\sigma)} d\sigma$$

and using the Fubini's theorem, it comes:

$$\int_{0}^{+\infty} \left| \mathbf{u} \right|^{2} dt \leqslant -2 \operatorname{Re} \int_{0}^{+\infty} \sigma \ \mathbf{u}(\sigma) \overline{\mathbf{u}'(\sigma)} \ d\sigma \leqslant \int_{0}^{+\infty} t \left| \mathbf{u}(t) \right|^{2} dt + \int_{0}^{+\infty} t \left| \mathbf{u}'(t) \right|^{2} dt.$$

At last, by the density of $\mathcal{D}(\mathbb{R}_+)$ in the space $V^1_{1/2,1/2}(\mathbb{R}_+)$, we get the lemma I.1.

Now, we prove that D_t $v \in H^{\epsilon}(\mathbb{R}_+)$ with $\epsilon = 1 - (\beta - j_0)$. For that, put D_t v = f and D_t v = F and compute :

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{|f(x) - f(y)|^{2}}{|x-y|^{2\varepsilon+1}} dx dy = \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{|f(x+t) - f(x)|^{2}}{t^{2\varepsilon+1}} dx dt.$$

But,

$$f(x+t) - f(x) = \int_0^t F(x+\sigma) d\sigma$$
.

Then.

$$\int_{0}^{+\infty} \frac{|f(x+t) - f(x)|^{2}}{t^{2\varepsilon+1}} dt = \int_{0}^{+\infty} \frac{1}{t^{2\varepsilon+1}} |\int_{0}^{+\infty} |f(x+\sigma)| d\sigma|^{2} dt,$$

and using the Hardy's inequality,

$$\leq C \int_{0}^{+\infty} \frac{1}{t^{2\varepsilon-1}} |F(x+t)|^2 dt$$
.

(C is a constant).

But.

$$\int_{0}^{+\infty} \frac{1}{t^{2\varepsilon-1}} |F(x+t)|^{2} dt = \int_{x}^{+\infty} \frac{1}{|y-x|^{2\varepsilon-1}} |F(y)|^{2} dy$$

$$= x^{-2(\varepsilon-1)} \int_{1}^{+\infty} \frac{1}{|\sigma-1|^{2\varepsilon-1}} |F(\sigma x)|^{2} d\sigma$$

and using the Fubini's theorem, it comes:

$$\int_{0}^{+\infty} x^{-2(\varepsilon-1)} \left(\int_{1}^{+\infty} \frac{1}{\left|\sigma^{-1}\right|^{2\varepsilon-1}} \left| F(\sigma x) \right|^{2} d\sigma \right) dx = \int_{1}^{+\infty} \frac{\sigma^{2(\varepsilon-1)-1}}{\left|\sigma^{-1}\right|^{2\varepsilon-1}} d\sigma \cdot \int_{0}^{+\infty} y^{-2(\varepsilon-1)} \left| F(y) \right|^{2} dy$$
 then,
$$D_{t}^{m-j} \int_{0}^{-1} v \in H^{\varepsilon} \left(\mathbb{R}_{+} \right) \text{ and } v \in H^{m-\beta} \left(\mathbb{R}_{+} \right).$$

Second case :

$$\begin{split} &-\frac{1}{2}<\beta-j_o<0. \text{ The case }\beta-j_o=0 \text{ being trivial, we can assume that}\\ &-\frac{1}{2}<\beta-j_o<0. \text{ Then, }\frac{1}{2}<\beta-j_o+1<1 \text{ and we have }D_t^{m-j}\circ v\in L^2(\mathbb{R}_+)\\ &\text{and }t &D_t &v\in L^2(\mathbb{R}_+). \text{ By the same calculus as before we get that}\\ &D_t &v\in H^\epsilon(\mathbb{R}_+) \text{ with }\epsilon=-(\beta-j_o) \text{ and finally }v\in H^{m-\beta}(\mathbb{R}_+). \end{split}$$

The proposition I.1 is proved.

Remark I.1:

We can improve the result of the proposition I.1 when $\beta-\alpha > m$, in fact we have : if $\beta-\alpha > m$ and if $u = V_{\alpha,\beta}^m(0,T)$, then $t^{\alpha+\frac{1}{m}(\beta-\alpha)}D_t^ju \in L^2(0,T)$ for $j=0,\ldots,m$. The proof is analogous to that of the following proposition I.2.

Proposition I.2:

If $\beta-\alpha < m$ and if $u \in V_{\alpha,\beta}^m(T,+\infty)$ where T is a real number >0, then :

$$t \xrightarrow{\alpha + \frac{j}{m}(\beta - \alpha)} D_t^{j} u \in L^2(T, +\infty) \quad \text{for } j = 0, \dots, m.$$

Proof:

It will be made in two steps.

First step:

Reduction to the case $\alpha = 0$.

Lemma I.2

If
$$u \in V_{\alpha,\beta}^{m}(T,+\infty)$$
, then : $t^{\beta-m+j}D_{t}^{j}u \in L^{2}(T,+\infty)$.

Proof:

If $\beta \leqslant \frac{1}{2}$, obviously we have $u \in H^m(T, +\infty)$ and then $t^{\beta-j}D_t^{m-j}u \in L^2(T, +\infty)$ for $j=0,\ldots,m$.

If $\beta > \frac{1}{2}$, then, as in the proposition I.1, we get that $t^{\beta^{-j}}D_t^{m-j}u \in L^2(T,+_\infty) \text{ for } 0 \leqslant j \leqslant \text{Min}(j_0,m) \text{ with } j_0 = \left[\beta + \frac{1}{2}\right]_-. \text{ At last,}$ since $D_t^{m-j}u \in L^2(T,+_\infty)$ for $j = 0,\ldots,m$, we get that $t^{\beta-j}D_t^{m-j}u \in L^2(T,+_\infty)$ for $j = j_0+1,\ldots,m$ if $j_0+1 \leqslant m$ (\$\beta^{-j}\ is negative\$).

Lemma I.3

The map $u \longrightarrow t^{\alpha}u$ is an isomorphism from $V_{\alpha,\beta}^{m}(T,+\infty)$ onto $V_{0,\beta-\alpha}^{m}(T,+\infty)$.

Proof:

Let u be an element of $V_{\alpha,\beta}^{m}(T,+\infty)$, we put $v=t^{\alpha}u$; then $t^{\beta-\alpha}D_{t}^{m}v(t)=\sum_{j=0}^{m}a_{j}.t^{\beta-j}D_{t}^{m-j}u(t)$ and by the lemma I.2, it results that $v \in V_{0,\beta-\alpha}^{m}(T,+\infty)$.

Conversely, let v be an element of $V_{o,\beta-\alpha}^m(T,+\infty)$, we put $u=t^{-\alpha}v$; then $t^\beta D_t^m u(t) = \sum\limits_{j=o}^m a_j.t^{\beta-\alpha-j} D_t^{m-j} v(t)$ and by the lemma I.2, it results that $u \in V_{\alpha,\beta}^m(T,+\infty)$.

Seconde step:

We assume $\alpha = 0$.

We use the change of variable $y = t^{\frac{m-\beta}{m}}$ and of function $w(y) = y^{\beta/2(m-\beta)}u(t)$.

By induction on p, we show that, for $0 \le p \le m$, we have :

$$D_{y}^{p}w(y) = y^{\beta/2(m-\beta)} \sum_{j=0}^{p} a_{jp}. t^{j-p+p\frac{\beta}{m}} D_{t}^{j}u(t).$$

where $a_{pp} \neq 0$. By the lemma I.2, we get $D_y^m \in L^2(Y, +\infty)$ where Y = T and consequently $w \in H^m(Y, +\infty)$ since $w \in L^2(Y, +\infty)$. Then, $D_y^p w \in L^2(Y, +\infty)$ for $p = 0, \ldots, m$ and using the precedent formula, we get, by induction on p and since $j-p+p\frac{\beta}{m} < j_{\overline{m}}$ for j < p, that t $\frac{j\frac{\beta}{m}}{D_t^j} u \in L^2(T, +\infty)$ for $j = 0, \ldots, m$.

The proposition I.2 is proved.

We now apply these results to a sub-class of Sobolev spaces with weights which we will be useful for the following: let be $m \in \mathbb{N}$, $-\sigma$ and δ two real numbers >0 such that $\sigma+m > 0$ and $\sigma+\delta m > 0$, we consider the space:

 $W_{\sigma,\delta}^{m}(\mathbb{R}_{+}) = \{ u \in H^{-\sigma}(\mathbb{R}_{+}) ; t^{\sigma+\delta k+j} D_{t}^{j} u \in L^{2}(\mathbb{R}_{+}) \text{ for } \sigma+\delta k+j > 0 \text{ and } k+j \leq m \}$ equipped by the canonical norm.

By the propositions I.1 and I.2, this space coı̈ncide with the space $V^m_{\sigma+\delta m,\sigma+m}(R_+)$.

We now give the Sobolev's theorem for the spaces $\mathbb{V}^m_{\sigma,\delta}(\mathbb{R}_+)$.

Proposition I.3: we have:

i) If $u \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, u is continuous on \mathbb{R}_+ and there exists a constant C > 0 such that for every $u \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, for every t > 0, we have :

(1.1)
$$|u(t)| \le C. t^{-\frac{\sigma+m}{2m}} \frac{1/2m}{|u||_{W_{\sigma,\delta}^m}} \frac{1-1/2m}{|u||_{L^2}};$$

(ii) We assume $-\sigma > \frac{1}{2}$, then : if $u \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, u is continuous and bounded on \mathbb{R}_+ and there exists a constant C > 0 such that for every $u \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, for every t > 0, we have :

(1.2)
$$|u(t)| \le C. ||u||_{W_{\sigma,\delta}^{m}}^{-1/2\sigma} ||u||_{L^{2}}^{1+\frac{1}{2\sigma}};$$

(1.3)
$$|u(t)| \leq C.$$
 t $|u(t)| \leq W_{\sigma, \delta}^{m}$

Proof:

(i) At first, we apply the usual Sobolev's theorem: if $v \in \operatorname{H}^m(\mathbb{R}_+)$ with m > 1, then v is continuous on $\overline{\mathbb{R}_+}$ and there exists a constant C > 0 such that for every $v \in \operatorname{H}^m(\mathbb{R}_+)$, for every t > 0, we have:

$$|v(t)|^2 \le C \left\{ \int_0^{+\infty} |D_t^m v(\tau)|^2 d\tau + \int_0^{+\infty} |v(\tau)|^2 d\tau \right\}.$$

If $w \in W_{\sigma, \delta}^m(\mathbb{R}_+)$, the function v defined by $v(\tau) = w(\tau + t)$ belongs to $H^{m}(\mathbb{R}_{+})$ for every t > 0. Since $-\sigma > 0$ and $\sigma + m > 0$, then m > 1 and for every $w \in W_{\sigma,\delta}^{m}(\mathbb{R}_{+})$, for every t > 0, we have :

$$|w(t)|^2 \le C. \left\{ \int_t^{+\infty} |D_t^m w(\tau)|^2 d\tau + \int_t^{+\infty} |w(\tau)|^2 d\tau \right\}.$$

Now, let u be an element of $W_{\sigma,\delta}^m(\mathbb{R}_+)$ and we apply the precedent inequality to the function w defined by $w(\tau) = u(\lambda \tau)$ where λ is a positive constant. Then, there exists a constant C > 0 such that, for every $u \in \mathbb{V}_{\sigma,\delta}^m(\mathbb{R}_+)$, for every t > 0, for every $\lambda > 0$, we have :

(1.4)
$$|u(t)|^2 \leq C/\lambda \left\{ \int_{t}^{+\infty} |\lambda^m D_t^m u(\tau)|^2 d\tau + \int_{t}^{+\infty} |u(\tau)|^2 d\tau \right\},$$

and since $t \leqslant \tau$, we get:

$$\left| \mathbf{u}(\mathsf{t}) \right|^2 \leqslant \mathbf{C}/\lambda \; \left\{ \int_{\mathsf{t}}^{+\infty} \lambda^{2\mathsf{m}} \; \mathsf{t}^{-2(\sigma+\mathsf{m})} \left| \mathsf{\tau}^{\sigma+\mathsf{m}} \mathbf{D}_{\mathsf{t}}^{\mathsf{m}} \mathbf{u}(\tau) \right|^2 \; \mathrm{d}\tau \; + \int_{\mathsf{t}}^{+\infty} \left| \mathbf{u}(\tau) \right|^2 \; \mathrm{d}\tau \; \right\}.$$

Choosing $\lambda = t^{\frac{m}{m}}$, a fortiori we obtain:

$$|u(t)|^{2} \leqslant C. t^{-\frac{\sigma+m}{m}} \left\{ \int_{0}^{+\infty} |\tau^{\sigma+m}D_{t}^{m}u(\tau)|^{2} d\tau + \int_{0}^{+\infty} |u(\tau)|^{2} d\tau \right\}.$$

Now, we apply this inequality to the function v defined by $v(\tau) = u(\lambda \tau)$ where λ is a constant >0:

$$|u(\lambda t)|^{2} \leq C. t^{-\frac{\sigma+m}{m}} \left\{ \int_{0}^{+\infty} \lambda^{-2\sigma} |\tau^{\sigma+m}D_{t}^{m}u|^{2} d\tau + \int_{0}^{+\infty} |u(\tau)|^{2} d\tau \right\}.$$

Putting $\lambda = r^{1/2\sigma}$, we get for every $u \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, for every t > 0, for every r > 0, we have :

$$|u(t r^{1/2\sigma})|^{2} \leq C. (t r^{1/2\sigma})^{-\frac{\sigma+m}{m}} r^{\frac{1}{2m}-1} \{\int_{0}^{+\infty} |\tau^{\sigma+m} D_{t}^{m} u|^{2} d\tau + r \int_{0}^{+\infty} |u(\tau)|^{2} d\tau \}^{\epsilon}$$

Finally, there exists a constant C > 0 such that, for every t > 0, for every $u \in W^m_{\sigma,\delta}(\mathbb{R}_+)$, we have :

$$|u(t)|^{2} \le C. t^{-\frac{\sigma+m}{m}} r^{\frac{1}{2m}-1} \{ ||u||_{W_{\sigma,\delta}^{m}}^{2} + r ||u||_{L^{2}}^{2} \}.$$

Taking $r = ||u||_{W_{\sigma,\delta}^{m},\delta}^{2}$, we obtain the inequality (1.1).

(ii) If $-\sigma > \frac{1}{2}$, the Sobolev's theorem imply that if $v \in H^{-\sigma}(\mathbb{R}_+)$, then v is continuous and bounded on $\overline{\mathbb{R}_+}$ and there exists a constant C > 0 such that for every $v \in H^{-\sigma}(\mathbb{R}_+)$, for every $t \ge 0$, we have :

$$|v(t)|^2 \le C. ||v||_{H^{-\sigma}(\mathbb{R}_+)}^2$$

But, from the proposition I.1, the space $V_{o,\sigma+m}^m(\mathbb{R}_+)$ is continuously imbedded in $H^{-\sigma}(\mathbb{R}_+)$, then, for every $t \geqslant 0$, for every $v \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, we have :

$$|\mathbf{v}(\mathsf{t})|^2 \leqslant C. \left\{ \int_0^{+\infty} |\tau^{\sigma+m} D_\mathsf{t}^m \mathbf{u}|^2 d\tau + \int_0^{+\infty} |\mathbf{u}(\tau)|^2 d\tau \right\}.$$

Using the same change of functions as before, we get that for every $u \in W^m_{\sigma,\delta}(\mathbb{R}_+)$, for every t>0, for every r>0, we have :

$$|u(t)|^{2} \le C. r$$
 $-1 - \frac{1}{2\sigma} \{ ||u||_{W_{\sigma,\delta}^{m}}^{2} + r ||u||_{L^{2}}^{2} \}.$

We obtain the inequality (1.2) in taking r = $||u||^2$ $W_{\sigma,\delta}^{m}/||u||^2_{L^2}$.

To have the inequality (1.3), we start from the inequality (1.4) in which

we choose
$$\lambda = \left(\int_{t}^{+\infty} |u(\tau)|^2 d\tau\right)^{1/2m} \left(\int_{t}^{+\infty} |D_{t}^{m}u(\tau)|^2 d\tau\right)^{-1/2m}$$
, that gives :

$$|u(t)|^2 \le C. \left(\int_t^{+\infty} |D_t^m u|^2 d\tau\right)^{1/2m} \left(\int_t^{+\infty} |u(\tau)|^2 d\tau\right)^{1-1/2m}$$
;

after that, we remark that, since $t \le \tau$, we have :

$$\int_{t}^{+\infty} |D_{t}^{m}u|^{2} d\tau \leq t^{-2(\sigma+m)} \int_{t}^{+\infty} \tau^{2(\sigma+m)} |D_{t}^{m}u|^{2} d\tau \leq t^{-2(\sigma+m)} ||u||_{W_{\sigma,\delta}^{m}}^{2}$$

and

$$\int_{t}^{+\infty} |u(\tau)|^{2} d\tau \leq t^{-2(\sigma+\delta m)} \int_{t}^{+\infty} \tau^{2(\sigma+\delta m)} |u(\tau)|^{2} d\tau \leq t^{-2(\sigma+\delta m)} ||u||_{W_{\sigma,\delta}^{m}}^{2}$$

hence the inequality (1.3).

II - CASE OF THE HALF SPACE \mathbb{R}^n_+ , n > 1.

Let m be an integer, $-\sigma$ and δ two real numbers >0 such that $\sigma+m$ > 0 and $\sigma+\delta m$ > 0, we consider the space :

$$W_{\sigma,\delta}^{m}(\mathbb{R}_{+}^{n}) = \{u \in L^{2}(\mathbb{R}_{+}^{n}); \ t^{\sigma+\delta\left|\alpha\right|+j}D_{t}^{j}D_{x}^{\alpha}u \in L^{2}(\mathbb{R}_{+}^{n}) \ \text{for } \sigma+\delta\left|\alpha\right|+j\geqslant 0 \ \text{and } \left|\alpha\right|+j\geqslant 0 \}$$

equipped by the canonical norm.

The space $\widehat{\mathcal{J}}(\overline{\mathbb{R}^n_+})$ is dense in the space $W^m_{\sigma,\delta}(\mathbb{R}^n_+)$ (cf[2]for example) and also we have :

$$\mathbb{W}^{m}_{\sigma,\delta}(\mathbb{R}^{n}_{+}) \ = \ \{\mathbf{u} \in \mathcal{D}^{\dagger}(\mathbb{R}^{n}_{+}) \ ; \ \mathbf{t}^{\mathrm{Max}(\sigma,\sigma+\delta \, \big| \, \alpha \, \big| \, +j)} \, \mathbf{D}^{j}_{t} \mathbf{D}^{\alpha}_{x} \mathbf{u} \ \in L^{2}(\mathbb{R}^{n}_{+}) \ \text{ for } \big| \, \alpha \, \big| \, +j \leqslant \, m \} \, .$$

Proposition II.1. we have:

i) if m > n/2 and if $u \in W^m_{\sigma, \delta}(\mathbb{R}^n_+)$, then u is continuous on \mathbb{R}^n_+ and there exists a constant C > 0 such that, for every $u \in W^m_{\sigma, \delta}(\mathbb{R}^n_+)$, for every $(t, x) \in \mathbb{R}^n_+$, we have :

(2.1)
$$|u(t,x)| \le C. t^{-\frac{\tau+m}{2m} - \frac{n-1}{2m}} (\sigma+\delta m) ||u||^{n/2m} ||u||^{1-n/2m};$$

(ii) If Min $(-\sigma, -\sigma/\delta) > n/2$ and if $u \in W_{\sigma, \delta}^m(\mathbb{R}^n_+)$, then u is continuous and bounded on \mathbb{R}^n_+ and there exists a constant C > 0 such that for every $u \in W_{\sigma, \delta}^m(\mathbb{R}^n_+)$, for every $(t, x) \in \mathbb{R}^n_+$, we have :

(2.2)
$$|\mathbf{u}(\mathbf{t},\mathbf{x})| \leq C. ||\mathbf{u}||_{W_{\sigma,\delta}^{m}}^{\frac{1+\delta(n-1)}{2\sigma}} ||\mathbf{u}||_{L^{2}}^{\frac{1+\delta(n-1)}{2\sigma}}.$$

Proof:

The proof is analogous to those made in the chapter I. (i); at first, we apply the usual Sobolev's theorem: if $v \in H^m(\mathbb{R}^n_+)$ with m > n/2 then v is continuous on $\overline{\mathbb{R}^n_+}$ and there exists a constant C > 0 such that for every $v \in H^m(\mathbb{R}^n_+)$, for every $(t,x) \in \mathbb{R}^n_+$, we have:

$$\left| u(t,x) \right|^{2} \leq C. \left\{ \sum_{j+|\alpha|=m} \int_{\mathbb{R}^{n}_{+}} \left| D_{t}^{j} D_{x} v(\tau,y) \right|^{2} d\tau dy + \int_{\mathbb{R}^{n}_{+}} \left| v(\tau,y) \right|^{2} d\tau dy \right\}.$$

If $w \in W_{\sigma, \delta}^{m}(\mathbb{R}^{n}_{+})$, the function v defined by $: v(\tau, y) = w(\tau + t, y)$ belongs to $\mathbb{H}^{m}(\mathbb{R}^{n}_{+})$ for every t > 0. Hence, for every $w \in W_{\sigma, \delta}^{m}(\mathbb{R}^{n}_{+})$, for every $(t, x) \in \mathbb{R}^{n}_{+}$, we have :

$$\left| w(t,x) \right|^{2} \leq C. \left\{ \sum_{|\alpha|+j=m} \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}}^{+\infty} \int_{t}^{0} u^{\alpha} w(\tau,y) \left|^{2} d\tau dy + \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}}^{1} \left| w(\tau,y) \right|^{2} d\tau dy \right\}.$$

Let now u an element of $W^m_{\sigma,\delta}(\mathbb{R}^n_+)$ and apply the precedent inequality to the function w defined by : $w(\tau,y) = u(\lambda\tau,\mu y)$ where λ and μ are two constants. Hence, there exists a constant C>0 such that, for every $u\in W^m_{\sigma,\delta}(\mathbb{R}^n_+)$, for every λ and $\mu>0$, we have :

$$\begin{aligned} \left| u(t,x) \right|^{2} & \leq C_{\lambda \cdot \mu^{n-1}} \cdot \left\{ \sum_{|\alpha|+j=m}^{\infty} \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}} \lambda^{2j} \mu^{2(m-j)} \left| D_{t}^{j} D_{x}^{\alpha} u(\tau,y) \right|^{2} d\tau dy \right. \\ & + \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}} \left| u(\tau,y) \right|^{2} d\tau dy \right\}, \end{aligned}$$

and since $t \leqslant \tau$, that gives:

$$|u(t,x)|^2 \in C_{\lambda,\mu}^{n-1} x$$

$$x \left\{ \sum_{|\alpha|+j=m} \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}}^{+\infty} \lambda^{2j} \mu^{2(m-j)} t^{-2(\sigma+\delta(m-j)+j)} |_{\tau}^{\sigma+\delta|\alpha|+j} D_{t}^{j} D_{x}^{\alpha} u|^{2} d\tau dy \right\}$$

$$+ \int_{t}^{+\infty} \int_{\mathbb{R}^{n+1}} |u(\tau,y)|^2 d\tau dy \}.$$

choosing λ = $t^{\frac{\sigma+m}{m}}$ and μ = $t^{\frac{m}{m}}$, a fortioti we get :

$$\begin{aligned} \left| \mathbf{u}(\mathbf{t}, \mathbf{x}) \right|^2 \leqslant C. \mathbf{t} & -\frac{\sigma + \mathbf{m}}{\mathbf{m}} - \frac{\mathbf{n} - 1}{\mathbf{m}} (\sigma + \delta \mathbf{m}) \\ \left| \alpha \right| + \mathbf{j} = \mathbf{m} \int_{\mathbb{R}^n_+} \left| \tau^{\sigma + \delta \left| \alpha \right| + \mathbf{j}} \mathbf{D}_{\mathbf{t}}^{\mathbf{j}} \mathbf{D}_{\mathbf{x}}^{\alpha} \mathbf{u} \right|^2 d\tau dy \\ & + \int_{\mathbb{R}^n_+} \left| \mathbf{u}(\tau, \mathbf{y}) \right|^2 d\tau dy \end{aligned} \right\}.$$

We now apply this inequality to the function v defined by : $v(\tau,y) = u(\lambda \tau, \mu x)$ where λ and μ are some constants :

$$\left| \begin{array}{l} \left| u(\lambda t, \mu x) \right|^2 \leqslant C \ x \\ \\ \times \frac{-\frac{\sigma+m}{m} - \frac{n-1}{m}(\sigma+\delta m)}{t} \\ \times \frac{t}{\lambda \cdot \mu^{n-1}} \left\{ \left| \begin{array}{l} \sum\limits_{\alpha \mid +j = m} \int\limits_{\mathbb{R}^n_+}^{n} \lambda^{-2\left(\sigma+\delta\left(m-j\right)\right)} \mu^{2\left(m-j\right)} \left| \tau^{\sigma+\delta\left|\alpha\right|+j} D_t^j D_x^\alpha u \right|^2 \mathrm{d}\tau \mathrm{d}y \\ \\ + \int\limits_{\mathbb{R}^n_+} \left| u \right|^2 \mathrm{d}\tau \ \mathrm{d}y \ \right\}. \end{array}$$

Putting $\lambda = r^{1/2\sigma}$ and $\mu = \lambda^{\delta}$, we deduce that for every $u \in W_{\sigma}^{m}, \delta^{(\mathbb{R}^{n}_{+})}$, for every $(t,x) \in \mathbb{R}^{n}_{+}$, for every r > 0, we have :

$$|u(tr^{1/2\sigma},xr^{\delta/2\sigma})|^2 \le C x$$

$$\begin{split} \chi_{(\text{tr}^{1/2\sigma})}^{-\frac{\sigma+m}{m} - \frac{n-1}{m}(\sigma+\delta m)} r^{n/2m-1} \{ \sum_{|\alpha|+j=m} \int_{\mathbb{R}^n_+} |\tau^{\sigma+\delta}|^{\alpha} |+j D_t^j D_x^{\alpha} u|^2 d\tau dy \\ + r \int_{\mathbb{R}^n_+} |u|^2 d\tau dy \}. \end{split}$$

Finally, there exists a constant C > 0 such that, for every $(t,x) \in \mathbb{R}^n_+$, for every r > 0, for every $u \in \mathbb{W}^m_{\sigma,\delta}(\mathbb{R}^n_+)$, we have :

$$|u(t,x)|^2 \le C. t^{-\frac{\sigma+m}{m} - \frac{n-1}{m}(\sigma+\delta m)} r^{n/2m-1} \{ ||u||_{W_{\sigma,\delta}^m}^2 + r ||u||_{L^2}^2 \}.$$

The inequality (2.1) results form this in choosing $r = ||u||_{W_{\sigma,\delta}^{m}}^{2} / ||u||_{L^{2}}^{2}$.

(ii), we begin to show the

Lemma II-! :

We have the algebraic and topologic imbedding:

$$\textbf{W}^{\textbf{m}}_{\sigma,\delta}(\textbf{R}^{\textbf{n}}_{+}) \subset \textbf{H}^{\texttt{Min}(-\sigma,-\sigma/\delta)}(\textbf{R}^{\textbf{n}}_{+}) \ .$$

Proof:

By the chapter I, we know $V^m_{\sigma+\delta m,\sigma+m}(\mathbb{R}_+) \subset H^{-\sigma}(\mathbb{R}_+)$, hence, there exists a constant C>0 such that, for every $v \subset W^m_{\sigma,\delta}(\mathbb{R}_+)$, we have :

$$\int_{-\infty}^{+\infty} (1+\tau^2)^{-\sigma} |F(Pv)|^2 d\tau \leq C. \{ \int_{0}^{+\infty} |t^{\sigma+m} D_{t}^{m} v|^2 dt + \int_{0}^{+\infty} |t^{\sigma+\delta m} v|^2 dt \},$$

where F means the Fourier transform in the variable t and P a linear and continuous extension operator from $H^{-\sigma}(\mathbb{R})$ (for example, P can be taken as the Babitch extension).

If $v \in W_{\sigma,\delta}^m(\mathbb{R}_+)$, the function $u(t) = v(t \Lambda^{-1/\delta})$, where Λ is positive constant, belongs to $W_{\sigma,\delta}^m(\mathbb{R}_+)$; for every $\Lambda > 0$, we have :

$$\int_{-\infty}^{+\infty} (\Lambda^{2/\delta} + \tau^2)^{-\sigma} |F(Pv)|^2 d\tau \leq C. \left\{ \int_{0}^{+\infty} |t^{\sigma+m} D_{t}^{m} v|^2 dt + \Lambda^{2m} \int_{0}^{+\infty} |t^{\sigma+\delta m} v|^2 dt \right\}.$$

Let now u be an element of $\widehat{\mathbb{D}(R^n_+)}$ and for every $\xi \in \mathbb{R}^{n-1}$ {o{, we consider the function $v(t) = \widehat{u}(t,\xi)$, where N means the Fourier transform in the variable $x \in \mathbb{R}^{n-1}$; then $F(Pv)(\tau) = \mathcal{F}Pu(\tau,\xi)$, where $\widehat{\mathcal{F}}$ means the Fourier transform in the variable (t,x) in \mathbb{R}^n and from the precedent inequality, we deduce, taking $\Lambda = |\xi|$ and after integrate in ξ over \mathbb{R}^{n-1} , that there exists a constant C > 0 such that for all $u \in \widehat{\mathcal{D}}(\overline{R^n_+})$, we have : putting $\sigma^* = \text{Min}(-\sigma, -\sigma/\delta)$,

$$||Pu||_{H^{-\sigma}} *_{(\mathbb{R}_n)} \leq C.||u||_{W_{\sigma,\delta}^{m}(\mathbb{R}_+^n)}$$

and then:

$$||u||_{H^{-\sigma^{*}}(\mathbb{R}^{n}_{+})} \leqslant C.||u||_{W^{m}_{\sigma,\delta}(\mathbb{R}^{n}_{+})}.$$

The space $\mathcal{D}(\overline{\mathbb{R}^n_+})$ being dense in the space $W^m_{\sigma,\delta}(\mathbb{R}^n_+)$, we have proved the lemma II-1.

Now, if $\text{Min}(-\sigma, -\sigma/\delta) > n/2$ and if $u \in W_{\sigma, \delta}^m(\mathbb{R}_+^n)$, then u is continuous and bounded on $\overline{\mathbb{R}_+^n}$ and there exists a constant C > 0 such that for every $u \in W_{\sigma, \delta}^m(\mathbb{R}_+^n)$, for every $(t, x) \in \mathbb{R}_+^n$, we have :

$$\begin{aligned} \left| \mathbf{u}(\mathbf{t}, \mathbf{x}) \right|^2 \leqslant C. & \left\{ \sum_{\left|\alpha\right| + \mathbf{j} = \mathbf{m}} \int_{\mathbb{R}^n_+} \tau^{2(\sigma + \delta(\mathbf{m} - \mathbf{j}) + \mathbf{j})} \left| \mathbf{p}_{\mathbf{t}}^{\mathbf{j}} \mathbf{p}_{\mathbf{x}}^{\alpha} \mathbf{u}(\tau, \mathbf{y}) \right|^2 d\tau d\mathbf{y} \right. \\ & + \int_{\mathbb{R}^n_+} \left| \mathbf{u}(\tau, \mathbf{y}) \right|^2 d\tau d\mathbf{y} \right\}. \end{aligned}$$

Then, we do the change of variable of (i), that gives :

$$\begin{split} \left| u(t,x) \right|^2 & < C_{\lambda\mu} n - 1 \\ & \times \left\{ \sum_{\alpha \mid +j = m} \int_{R_{+}^{n}}^{\lambda^{-2}(\sigma + \delta(m-j))} |_{\mu^{2}(m-j)} |_{\tau^{2}(\sigma + \delta(m-j) + j)} D_{t}^{j} D_{x}^{\alpha} u(\tau,y) |^{2} d\tau dy \\ & + \int_{R_{+}^{n}} \left| u(\tau,y) \right|^{2} d\tau dy \; \}; \end{split}$$

we choose $\lambda = r^{1/2\sigma}$ and $\mu = \lambda^{\delta}$, that gives :

$$|u(t,x)|^{2} \le C. r^{-\frac{2\sigma+1+\delta(n-1)}{2\sigma}} \{ ||u||_{W_{\sigma,\delta}^{m}(\mathbb{R}_{+}^{n})}^{2} + r ||u||_{L^{2}(\mathbb{R}_{+}^{n})}^{2} \},$$

and taking $r = ||u||^2$, we get the inequality (2.2). $W_{\sigma,\delta}^{m}/||u||_{L^2}^2$

Proposition II.2

Proof:

It comes, by the chapter I, that there exists a constant C>0 such that, for every $v \in W^m_{\sigma,\delta}(\mathbb{R}_+)$, we have :

$$\left| D_{t}^{\ell} v(o) \right|^{2} \leq C. \left\{ \int_{0}^{+\infty} \left| t^{\sigma+m} D_{t}^{m} v \right|^{2} dt + \int_{0}^{+\infty} \left| t^{\sigma+\delta m} v \right|^{2} dt \right\}.$$

If $v \in W_{\sigma,\delta}^{m}(\mathbb{R}_{+})$, the function $u(t) = v(t \wedge \frac{1}{\sigma})$, where Λ is a positive constant, belongs to $W_{\sigma,\delta}^{m}(\mathbb{R}_{+})$; hence here exists a constant C>0 such that for every

 $v \in W_{\sigma, \delta}^{m}(\mathbb{R}_{+})$, for every $\Lambda > 0$, we have :

Let now u be an element of $\widehat{\mathcal{J}}(\overline{R_+^n})$, and for every $\xi \in \mathbb{R}^{n-1} \setminus \{o\}$, we consider the function $v(t) = \widehat{u}(t,\xi)$, where Λ is the Fourier transform in the variable $x \in \mathbb{R}^{n-1}$; as in lemma II-1, we deduce that :

$$\frac{||\gamma_{\ell}u||}{H} - \frac{2(\sigma + \ell) + 1}{2\delta} \leq C. ||u|| W_{\sigma,\delta}^{m}.$$

It will be very useful for the following to have an inequality of type "compacity" for the spaces $W_{\sigma,\delta}^m$:

Proposition II.3.

Let m be an integer $\geqslant 1$ and put $\delta_1 = \text{Min}(1, \delta)$. There exists a constant C > 0 such that, for every $\epsilon > 0$, for every $u \in W^m_{\sigma, \delta}(\mathbb{R}^n_+)$, with supp $u \subset \{|t| \leqslant 1\}$, we have :

(2.3)
$$||u||_{W_{\sigma+\delta_{1},\delta}^{m-1}} \le C. \{ \epsilon . ||u||_{W_{\sigma,\delta}^{m}} + \epsilon^{-(m-1)}||u||_{L^{2}} \}.$$

Proof:

We begin to establish a lemma:

Lemma II-2

The map
$$u \longrightarrow \{ ||t^{\sigma+m}D_t^mu||_{L^2}^2 + \sum\limits_{|\alpha|=m} ||t^{\sigma+\delta m}D_x^{\alpha}u||_{L^2}^2 + ||u||_{L^2}^2 \}^{1/2}$$
 is an equivalent norm for the space $W_{\sigma,\delta}^m(\mathbb{R}^n_+)$.

Proof:

Let k and j be some integers such that $\sigma+\delta k+j>0$ and $k+j\leq m$. From the chapter I, it results that if $v(t)\in W^m_{\sigma,\delta}(\mathbb{R}_+)$, then $t^{\sigma+\delta k+j}D^j_tv\equiv L^2(\mathbb{R}_+)$ and :

$$\int_{0}^{+\infty} |t^{\sigma+\delta k+j} D_{t}^{j} v|^{2} dt \leq C. \left\{ \int_{0}^{+\infty} |t^{\sigma+m} D_{t}^{m} v|^{2} dt + \int_{0}^{+\infty} |t^{\sigma+\delta m} v|^{2} dt \right\}$$

where C is a constant >0 which does not depend on v.

If $v \in W^m_{\sigma,\delta}(\mathbb{R}_+)$, the function $u(t) = v(t \wedge^{-1/\sigma})$, where h is a positive constant belongs to $W^m_{\sigma,\delta}(\mathbb{R}_+)$; hence, there exists a constant C > 0 such that for every $v \in W^m_{\sigma,\delta}(\mathbb{R}_+)$, for every h, we have :

$$(2.4) \quad \Lambda^{2k} \int_{0}^{+\infty} |t^{\sigma + \delta k + \mathbf{j}} D_{t}^{\mathbf{j}} v|^{2} dt \leq C. \{ \int_{0}^{+\infty} |t^{\sigma + m} D_{t}^{m} v|^{2} dt + \Lambda^{2m} \int_{0}^{+\infty} |t^{\sigma + \delta m} v|^{2} dt^{-} \}.$$

Let now u be an element of $\mathcal{D}(\overline{R_+^n})$ and for every $\xi \in \mathbb{R}^{n-1} \setminus \{o\}$, we consider the function $v(t) = \widehat{u}(t,\xi)$, where Λ means the Fourier transform in the variable $x \in \mathbb{R}^{n-1}$, and from the precedent inequality, we deduce, taking $\Lambda = |\xi|$ and after integration in ξ over \mathbb{R}^{n-1} , that there exists a constant C > 0 such that for every $u \in \mathcal{D}(\overline{R_+^n})$, we have :

$$||u||_{W_{\sigma,\delta}^{m}}^{2} \leq C. \{||t^{\sigma+m}D_{t}^{m}u||_{L^{2}}^{2} + \sum_{|\alpha|=m} ||t^{\sigma+\delta m}D_{x}^{\alpha}u||_{L^{2}}^{2} + ||u||_{L^{2}}^{2} \}.$$

The space $\mathcal{D}(\overline{\mathbb{R}^n_+})$ being dense in the space $W^m_{\sigma,\delta}(\mathbb{R}^n_+)$, the lemma II-2 is a consequence of this inequality and the Banach's theorem.

Proof of the proposition II-3:

From the inequality (2.4) in which we take j = m-1, k = 1 and $\Lambda^{-1} = \epsilon > 0$, we deduce that :

$$\int_{0}^{+\infty} |t^{\sigma+\delta+m-1}D_{t}^{m-1}v|^{2} dt \leq C x$$

$$\times \varepsilon^{2} \int_{0}^{+\infty} |t^{\sigma+m}D_{t}^{m}v|^{2} dt + \varepsilon^{-2(m-1)} \int_{0}^{+\infty} |t^{\sigma+\delta m}v|^{2} dt \}.$$

We apply this inequality to the function $v(t) = \hat{u}(t,\xi)$ for $u \in \mathcal{D}(\overline{R_+^n})$ and $\xi \in \mathbb{R}^{n-1} \setminus \{0\}$, we integrate in ξ over \mathbb{R}^{n-1} , that gives:

$$(2.5) \qquad \big| \big| \mathbf{t}^{\sigma + \delta + m - 1} \mathbf{D}_{\mathbf{t}}^{m - 1} \mathbf{u} \big| \big|_{\mathbf{L}^{2}(\mathbf{R}_{+}^{n})}^{2} \leqslant C. \quad \{ \varepsilon^{2} \big| \big| \mathbf{t}^{\sigma + m} \mathbf{D}_{\mathbf{t}}^{m} \mathbf{u} \big| \big|_{\mathbf{L}^{2}(\mathbf{R}_{+}^{n})}^{2} + \varepsilon^{-2(m - 1)} \big| \big| \mathbf{u} \big| \big|_{\mathbf{L}^{2}(\mathbf{R}_{+}^{n})}^{2} \}$$

if supp uc{ $|t| \le 1$ }.

Besides, we know that there exists a constant C > 0 such that for every $\varepsilon > 0$, for every $v(x) \in H^m(R^{n-1})$, we have :

(2.6)
$$\sum_{|\alpha|=m-1} \int_{\mathbb{R}^{n-1}} |D_{x}^{\alpha} v|^{2} dx \leq C. \{ \epsilon^{2} \sum_{|\alpha|=m} \int_{\mathbb{R}^{n-1}} |D_{x}^{\alpha} v|^{2} dx + \epsilon^{-2(m-1)} \int_{\mathbb{R}^{n-1}} |v|^{2} dx \}.$$

Then, we use this inequality to the function v(x) = u(t,x), t > 0, where $u \in \mathcal{D}(\overline{R_+^n})$; we multiply by $t^{\sigma + \delta m}$, and we integrate in t > 0 over R_+ , that gives :

(2.7)
$$\sum_{|\alpha|=m-1} ||\mathbf{t}^{\sigma+\delta m} \mathbf{D}_{\mathbf{x}}^{\alpha} \mathbf{u}||_{L^{2}(\mathbb{R}^{n}_{+})}^{2} \leq C. \{ \varepsilon^{2} \sum_{|\alpha|=m} ||\mathbf{t}^{\sigma+\delta m} \mathbf{D}_{\mathbf{x}}^{\alpha} \mathbf{u}||_{L^{2}(\mathbb{R}^{n}_{+})}^{2}$$

$$+ \varepsilon^{-2(m-1)} ||\mathbf{u}||_{L^{2}(\mathbb{R}^{n}_{+})}^{2} .$$

if supp $u \subset \{ |t| \leq 1 \}$.

The inequality (2.3), for $\delta \leq 1$, is a consequence of (2.5) and (2.7). For $\delta \geq 1$, we replace the inequality (2.5) by the inequality:

$$(2.8) \quad \left| \left| t^{\sigma+m} D_t^{m-1} u \right| \right|_{L^2(R_+^n)}^2 \leqslant C. \quad \left\{ \epsilon^2 \left| \left| t^{\sigma+m} D_t^m u \right| \right|_{L^2(R_+^n)}^2 + \epsilon^{-2(m-1)} \left| \left| u \right| \right|_{L^2(R_+^n)}^2 \right\}.$$

if supp $u \subset \{|t| \le 1\}$. This inequality is easy to prove like for (2.5).

After, in (2.7), we multiply by $t^{2(\sigma+1+\delta(m-1))}$ and we choose $\epsilon=\eta t^{\delta-1}$, $\eta>0$, and we achieve as before.

III - CASE OF A BOUNDED OPEN SET Ω OF \mathbb{R}^n , n > 1.

Let Ω be a bounded open set of \mathbb{R}^n , with boundary Γ . We assume that Ω is a compact C^∞ manifold. We give $\Psi\colon \mathbb{R}^n \longrightarrow \mathbb{R}$ a C^∞ function such that :

(3.1)
$$\begin{cases} \Omega = \{x \in \mathbb{R}^n ; \psi(x) > 0\}, \\ \Gamma = \{x \in \mathbb{R}^n ; \psi(x) = 0\}, \\ \text{grad } \psi(x) \neq 0 \text{ for } x \in \Gamma, \end{cases}$$

Where grad $f(x) = (\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x))$ is the gradient vector associated to φ .

Let (X_i) be some vector fields with C^∞ coefficients on ${\rm I\!R}^n$ such that : $0 \le i \le q$

- (3.2) X_0 is transversal to Γ on Γ , ie : $(X_0 \neq 0)$ (x) $\neq 0$ for $x \in \Gamma$;
- (3.3) X_i is tangent to Γ on Γ for i = 1, ..., q, ie : $(X_i \neq)$ (x) = 0 for $x \in \Gamma$;
- (3.4) for every $x \in \overline{\Omega}$, the rank of the system $(X_i(x))_{0 \le i \le q}$ is equal to n.

Let m be an integer, $-\sigma$ and δ two real numbers >0 such that $\sigma+m$ > 0 and $\sigma+\delta m$ > 0, we consider the space:

$$W_{\sigma,\delta}^{m}(\Omega) = \{u \in L^{2}(\Omega) ; \psi^{Max(\sigma,\sigma^{+<\delta},\alpha^{>})} x^{\alpha} u \in L^{2}(\Omega) \text{ for } |\alpha| \leq m \}$$

equipped by the canonical norm. We have used the notation $x^{\alpha} = x_0^{\alpha} \cdots x_q^{\alpha}$ for $\alpha = (\alpha_0, \dots, \alpha_q) \in \mathbb{N}^{q+1}$ and $<\delta, \alpha> = \delta \sum_{i=1}^q \alpha_i + \alpha_0$.

Proposition III-1.

With the precedent assumptions, we have :

(i)
$$W_{\sigma,\delta}^{m}(\Omega) \subset H_{loc}^{m}(\Omega)$$
;

(ii) for every $\phi \in C^{\infty}(\overline{\Omega})$ and for every $u \in W^{m}_{\sigma,\delta}(\Omega)$, we have $: \phi \ u \in W^{m}_{\sigma,\delta}(\Omega)$.

Proof:

(i) With the assumption (3.4), for every $x_0 \in \Omega$, there exists a neighbourhood $V(x_0)$ of x_0 in Ω in which we can write :

$$\frac{\partial}{\partial x_k} = \sum_{i=0}^{q} \beta_i^k(x) X_i$$

for k = 1,...,n with some convenient functions β_i^k which are C^{∞} in $V(x_0)$ and we can easily get (i).

(ii) Let ϕ be a C^{∞} function on $\overline{\Omega}$ and $u \in W^{m}_{\sigma, \delta}(\Omega)$. Then ϕ $u \in L^{2}(\Omega)$ and for $|\alpha| \leq m$, we have :

$$X^{\alpha}(\phi u) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} (X^{\beta} \phi) (X^{\alpha - \beta} u)$$

it results that $\psi^{\text{Max}(o,\sigma+<\delta,\alpha>)} \chi^{\alpha}(\phi u) \in L^2(\Omega)$, that is to say ϕ $u \in W^m_{\sigma,\delta}(\Omega)$.

Remark III-1:

It is easy to prove that the space $V_{\sigma,\delta}^{\mathbf{m}}(\Omega)$ does not depend of the choice of the vector fields $(X_i)_{0 \le i \le q}$ satisfying the conditions (3.2), (3.3), (3.4).

Proposition III-2:

We have :

(i) If m > n/2 and if $u \in W_{\sigma,\delta}^m(\Omega)$, then u is continuous on Ω and there exists a constant C > 0 such that, for every $u \in W_{\sigma,\delta}^m(\Omega)$, for every $x \in \Omega$, we have :

(3.5)
$$|u(x)| \le C. \quad \forall (x) - \frac{\sigma + m}{2m} - \frac{n-1}{2m} (\sigma + \delta m) ||u||_{W_{\sigma, \delta}^{n}}^{n/2m} ||u||_{L^{2}}^{1-n/2m};$$

(ii) if $Min(-\sigma, -\sigma/\delta) > n/2$ and if $u \in W^m_{\sigma, \delta}(\Omega)$, then u is continuous and bounded on Ω there exists a constant C > 0 such that for every $u \in W^m_{\sigma, \delta}(\Omega)$, for every $x \in \Omega$, we have :

(3.6)
$$|u(x)| \le C. ||u||_{W_{\sigma,\delta}^{m}}^{-\frac{1+\delta(n-1)}{2\sigma}} ||u||_{L^{2}}^{1+\frac{1+\delta(n-1)}{2\sigma}}.$$

Proof:

(i) With the proposition III-1 and by a partition of unity the inequality (3.5) can be only obtained for functions $u \in W_{\sigma,\delta}^{m}(\Omega)$ with support in a neighbourhood of the boundary Γ of Ω .

Let x_0 be a point of Γ ; from the properties (3.1), we see that there exists a neighbourhood $V(x_0)$ of x_0 in R^n and a diffeomorphism $\Theta = (\theta_1, \dots, \theta_n)$ with $\theta_n = \mathcal{T}$ from $V(x_0)$ on to the unit ball of \mathbb{R}^n such that :

(3.7)
$$\begin{cases} \bigoplus (V \cap \Omega) = B_{+} = \{y \in \mathbb{R}^{n} ; |y| \leq 1, y_{n} > 0\}; \\ \bigoplus (V \cap \Gamma) = B_{0} = \{y \in \mathbb{R}^{n} ; |y| \leq 1, y_{n} = 0\}; \\ X_{0}(\theta_{k}) = 0 \text{ in } V \text{ for } k = 1, ..., n-1. \end{cases}$$

In these conditions, if $u \in W^m_{\sigma,\delta}(\Omega)$ with supp $u \in V$ and if v = u \bigoplus^{-1} , then $v \in W^m_{\sigma,\delta}(R^n_+)$ with supp $v \in \overline{B}_+$. In fact, it suffices for that to remark that by the diffeomorphism \bigoplus , the vector fields (X_i) are become the vector fields (I_i) with:

(3.8)
$$I_0 = \alpha \frac{\partial}{\partial y_n}$$
, $\alpha(y) \neq 0$ for $y \in B = \{y \in \mathbb{R}^n ; |y| \leq 1\}$;

(3.9)
$$I_i = I_i^t + [(X_i \varphi) \quad \bigoplus^{-1}] \frac{\partial}{\partial y_n} \text{ for } i = 1, ..., q$$

where I_i^t means an homogeneous differential operator of order 1, with C^{∞} coefficients in the variables y_1, \dots, y_{n-1} ;

(3.10) for every $y \in B = \{y \in \mathbb{R}^n ; |y| \le 1\}$, the rank of the system $(I_i) \qquad \text{is equal to n.}$ $0 \le i \le q$

Hence, the inequality (3.5) comes from the inequality (2.1) and the proposition II-1.

(ii) In the same way, the inequality (3.6), at the boundary comes from the inequality (2.2) of the proposition II-1.

In the interior, it comes from the fact that if $u \in W_{\sigma,\delta}^m(\Omega)$, then $u \in H_{loc}^m(\Omega)$ and then too belongs to $H_{loc}^{m'}(\Omega)$ where $m' = -\frac{\sigma n}{1+\delta(n-1)}$; in fact, since $\sigma + m \geqslant 0$ and $\sigma + \delta m \geqslant 0$, we have $m' \leqslant m$. Then, the inequality (3.6), in the interior, is a consequence of the classical inequality:

$$|u(x)| \le C. ||u||_{H^{m'}}^{n/2m'} ||u||_{L^{2}}^{1-n/2m'}.$$

Proposition III-3:

Let ℓ be an integer, $0 \le \ell < -\sigma - \frac{1}{2}$; then, the map $u \longrightarrow \gamma_{\ell} u = \frac{\partial^{\ell} u}{\partial n^{\ell}}|_{\Gamma} : \mathcal{D}(\overline{\Omega}) \longrightarrow \mathcal{D}(\Gamma)$ can be extended in a linear and continuous map from $W_{\sigma,\delta}^{m}(\Omega)$ into $\frac{2(\sigma+\ell)+1}{\sigma}$

$$H = \frac{2(\sigma + \ell) + 1}{2\delta} \qquad (\Gamma) .$$

 $(\frac{\partial}{\partial n})$ means the derivative along that unit normal vector to Γ , interior in Ω).

This proposition comes from the proposition II-2.

Proposition III-4:

Let m be an integer >1 and $\delta_1 = \text{Min}(1,\delta)$. There exists a constant C > 0 such that, for every $\epsilon > 0$, for every $u \in W^m_{\sigma,\delta}(\Omega)$, we have :

(3.11)
$$||u||_{W^{m-1}_{\sigma+\delta_1,\delta}} \le C. \{ \epsilon ||u||_{W^{m}_{\sigma,\delta}} + \epsilon^{-(m-1)}||u||_{L^2} \}.$$

Proof:

As before, we see that the inequality (3.11) at the boundary comes from the inequality (2.3) and, in the interior, from the classical inequality for the usual Sobolev spaces:

$$||u||_{H^{m-1}} \le C. \{ \epsilon ||u||_{H^m} + \epsilon^{-(m-1)}||u||_{L^2} \}.$$

BIBLIOGRAPHIE

- [1]: M.S. BAOUENDI C. GOULAOUIC -Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés. Arch. Rat. Méc. Anal. 34, n. 5 (1969), pp. 361-379.
- Anal. 34, n. 5 (1969), pp. 361-379.

 [2]: P. BOLLEY J. CAMUS "Espaces de Sobolev avec poids" Fascicule des séminaires du Laboratoire d'Analyse Fonctionelle Rennes 1968-1969.
- [3]: A. KUFNER O. JOHN S. FUCIK Function spaces Academia Prague 1977
- [4]: J.L. LIONS E. MAGENES Problèmes aux limites non homogènes et applications Tome I Dunod, Paris 1968.