
PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

CLAES JOHNSON
An Elasto-Plastic Contact Problem
Publications des séminaires de mathématiques et informatique de Rennes, 1977, fasci-
cule S4
« Journées éléments finis », , p. 1-16
<http://www.numdam.org/item?id=PSMIR_1977___S4_A5_0>

© Département de mathématiques et informatique, université de Rennes,
1977, tous droits réservés.

L’accès aux archives de la série « Publications mathématiques et informa-
tiques de Rennes » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PSMIR_1977___S4_A5_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A n e l a s t o - p l a s t i c c o n t a c t p r o b l e m 

C l a e s J o h n s o n 

7 7 . 0 7 R 

Introduct ion 

Duvaut [1] has studied the problem of findîng the stresses in an 

elastic-perfectly plastic body•£ in frîçtionsless contact with a 

rigid b o d y i B w h i c h is pressed against £ . In this note we extend 

the study of Duvaut and look also for the displacements of £ and 

Since the displacements in an elastic-perfectly plastic body 

may be discontinuons, we shall assume a ^uitable type of hardening 

of the elasto-plastic matériel in which case the displacements are 

more regular (cf. [4]). We shall consrder a stationary case corre-

sponding to Henky's law. The évolution case, corresponding to the 

Prandtl-Reuss 1 law, seems to be more difficult and is not treated 

here. 

In Section 1 we prove existence and uniqueness of a solution 

of the elasto-plastic contact problem. Then, in Section 2 we study 

a finite élément method for finding an approximate solution of the 

contact problem and we prove a convergence resuit. Finally, we give 

an algorithm for solving the discrète problem. 

By C we shall dénote a positive constant not necessari]y the 

same at each occurence. 
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1. THE CONTACT PROBLEM 

We shall assume that initially the elasto-plastic body £ occupies 

the bounded région Çl c/R^ with boundary T and that T contains an 

open set in the plane {x = (x^x^.x^) £ IR : x^ = 0}. Moreover, 

we shall assume that initially the rigid body (B occupies the région 

B = {x 6/R^: -x^ cp(x1 ,x 2) , {xyX^) €TQ}> where TQ is a compact set 

o 

contained in 1̂  with smooth boundary and cp: IR is smooth, non-

negative and cp(x) = 0 for some x £ (see Fig. 1.). 

B 

- x = cp(x1 »x2)-sA / 

-i 1 \ — ' 1 — i — x i > x 2 

( : v 3 / 

Fig. 1. 

o 

Let the boundary of £ be fixed on the portion = T ^ and free 

on , where the surface measure of is positive. L e t d B b e acted 

upon by the vertical force F and assume t h a t ® is free to move verti-

c a l l y r whereas rotation and hôrisontal displacement are prevented. 

We want to find the vertical d é p l a c e m e n t U of /8 and the stress 

o • {a. j}, i , j , = 1,2,3, and displacement u = {u.} of £ , where 

u., i • 1,2,3, is the displacement in the x.-dîrection. The référence 

configuration is the one in fig. 1. We shall assume that the displace­

ments are small, i.e., the nonlinearity due to change in geometry is 

neglible. 
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support of is contained in TQ U I^. In th ï s case it follows from 

(1 .4 b) that also 

( 1 . 7 ) - / o „ d s = F, 
0 5i 
rl 

(1.8) / a.,(u, + cp - U)ds = 0. 
o 55 5 
n 

' 1 

S i nce 
o 

( 1 . 9 ) u 3 + (p - U j> 0 on T | , 

the relation • ( 1 . 8 ) implies that formally 

( 1 . 1 0 ) 033 = 0 if u 3'+ cp. - U > 0 . 

We note t h a t ( 1 . 7 ) , ( 1 . 9 ) and ( 1 . 1 0 ) is the intuitive way of formulating 

the contact conditions. Converse!/, if ( 1 . 5 ) - ( 1 . 9 ) hold then ( 1 . 4 b) 

follows. Finally, ( 1 . 4 a) is one way of formulating the constitutive law 

for the elasto-pl^stic material relation a and e(u). 

Remark 2 . Let us observe that (0,(u,U)) can equivalently be characterized 

as a saddle point for the Lagrangian L : PxK -> |R defined by 

( 1 . 1 1 ) L ( T , ( V , V ) ) = 1 || T | i 2 - ( S ( V ) , T ) + FV. 

We shal) make the following assumpt i on : 

(1.12) There is a constant C such that for ail oEP and ^ £ H 

there is Ç£[L2(fl) ] m wi th || ç || <_ C||?t || such that 

a + (gt.c)€P. 

Lemma 1 If ( 1 . 1 2 ) holds and (p,û) = ( (5,Ç) tû)ePxW satisfies' 

(1.13) [ô,ï - a] - (e(û), T - 5 ) _> 0 , V T € P , 

then u is uniquely determined by o and 

Il e(û)|| 1 C H 0 i|. 
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Proof For arbitrary 96£H we shoose Ç€[L 2(ft)] m accordîng to the 

above assumption and we take T = a + in ( 1 . 1 3 ) . If then follows 

that 

(e(G),96) < (5,(96,?)) < C | f 5 | | || * || , 

which proves the lemma. 

Exampel With m = 1 and 

D = { ( a , Ç)€IR 1 0 : |s| < 1 + Ç } , 

where s = {s.j} fs.j = a.j - (0^/3)&j - » o n e c a n easily verîfy that 

(1.12) holds. This choice corresponds to von Mise's yield condition and 

isotropic hardenîng ( c f . [4]). 

The resuit of this section is the following: 

Theorem 1 If (1.12) holds, then there exists a unique élément 

(a ,(u,U))€PxK satisfying (1.4). 

Proof We introduce the regularized Lagrangian L^: Px(Wx|R) 

defined by 

L y ( î,(v,V)) - 1 | | î | | 2 - ( e(v),T) - I j - / [(v 3 + tp - V)']
2ds 

- f | | e ( v ) | | 2 - £ V 2 + F V , 

w h e r e _ |w if w < 0, 
w = 

0 if w > 0, 

and y is a positive constant. By [ 3 , Theorem ] we obtain existence 

of a saddle ppint (a , ( % > u

u ) ) .
 T h e extremality relations are 

( 1 . 1 4 ) [ô , T - a^3 - ( e ( u Y ) , T - a y ) _> 0, V T € P , 

( 1 . 1 5 ) (o y,e(w)) = - / £ ( u y 3 + <p - U y ) ' w 3 d s - u ( e(u ),e(w)), Vwetf; 
r o 

( 1 . 1 6 ) - S l % s + » - V " ' F " yUp * 
0 
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We shall now dérive an priori estimate for (a , ( u

y ' U

y " a n d t h e n 

pass to the limit as y tends to zéro. Taking T = 0 in (1.14) and 

using ( 1 . 1 5 ) with w = u f we get 

< - / i ru y 3 + CP - u u r u y d s 

0 

= / - - f u , + ( p - u ; ~ r u . + cp - u ; ~ d s 

r y n3 y y 3 y 

+ / - - eu _ + cp - u )~u + s - r u - + <p - u ;~cp ds 
r y u3 ^ y y r y v 3 u 

o r? 

< / - - ru , + tp - u j ~ u , 
- r y y3 ^ y y' 

0 

where the last inequalïty follows from the fact that cp is nonnegative. 

Thus using also ( 1 . 1 6 ) , we have 

( 1 . 1 7 ) l i a I I 2 < F U - y U 2 < F U . 
11 u " — y H y — y 

To proceed we now need the following estimate: 

Leroma 2 There is a constant C independent of y, 0 < y < 1 , such that 

0 < U y < C ( 1 + H e(u y)|| ). 

Proof The fact that is nonnegative follows îmmedeately from 

( 1 . 1 7 ) , since F > 0. To prove the other inequality, we défi ne 

r ô = { x € r 0 : u y 3 + ( p ~ U y ± 0 } ' 

T+0 " { x £ r 0 : u y 3 + c p " U y > 0 } > 

where we suppress the dependence on y . By ( 1 . 1 6 ) we have 

/_ ( u y 3 + cp - U y)ds = / ( u y 3 + c p - U y ) - d s 

= y 2 U y - yF > -yF. 
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Let now 6 = ÏÏ\{Tq)/2, where m dénotes twodimensional Lebesque measure. 

Then 6 > 0 and either m ( r " ) > 6 or m ( r * ) > 6. If m ( r " ) > ô, then we 
0 — u — u — 

have by the above înequality 

6U < /. U ds £ yF + fv |u J d s + / cp ds. 
A 0 0 

Thus, using the trace inequality (see [2]), 

(1.18) / |v|ds < c|| e (V)|| , v e ^ , 
r o 

we have 

U y < C(F 4- / cp + || e(u u)|| ), 
r o 

if ni(rp) j> 6. On the other hand, if md 1*) J> 6, then we rely on the 

following resuit: There exists a constant C such that if (v^Vj^ V * x IR, 

and V <̂  Vj + (p on E, m(E) >_ 6, then 

V < C(l + || e(v) || ). 

To prove this we argue by contradiction. Thus, we assume that there 

are séquences {C.}, {(v.,V.} and {E.} such that (v.^V.) €Wx|R , 

E. c r n and 
i 0 

(1.19) V, £ v. + cp on E, , 

(1.20) m(E.) > 6 

(1.21) C. -> co, 

(1.22) V. > C.(1 + || e(v,)|| ). 

Setting v. = v./V., we see using (1.22) that 

I > C, || £(v.)|| , 

so that by (1.21), 

II e(v.)||- 0. 
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It follows by the trace inequality ( 1 . 1 8 ) that 

/ | v. | ds -+ 0 . 

E. ' 

i 

But ( 1 . 2 1 ) and ( 1 . 2 2 ) imply that V. -> <» and thus we obtain from 

( 1 . 1 9 ) and ( 1 . 2 0 ) , 

lirriinf / v.ds > 1 iminf / (I - rr- ) ds > ô, 
E. 1 - E. V i ~ ' 
1 I 

which leads to a contradiction. This complètes the proof of the 

1emma. 

End of p r o o f o f Théo rem 1 : 

By Lemma 1 , the hardenîng assumption ( 1 . 1 2 ) and ( 1 J 7 ) , we now 

obtain t he followi.ng a priori estimâtes: 

I! 3 „ i i i C 

I! E ( U . ) il - c . 

0 < u < c. 

— Il — 

We also have by (1 . 16) , 

/ # ds : F, 

where 
. 9̂  = - - ( u o + i p - l l ) " > 0 . 

' • u m y3 y -

|t follows f rom thèse estimâtes that there exists (a, (u ,11) )€PxK and 

fiEM * where M ib the set of positive measures on Tg, such that for 

some séquence {yj tending to zéro, 
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( 1 . 2 3 ) + a weakly în H , 

( 1 . 2 4 ) u weakly in W*9 

( 1 . 2 5 ) U - U , 

y 

( 1 . 2 6 ) 96 •> 96 weak star inii. 

We shall now prove that ( a,(u,U)) satisfies ( 1 . 4 ) by passing to the 

limit in ( 1 . 1 4 ) - ( 1 . 1 6 ) . Note that since we have only weak conver­

gence, we cannot guarantee that ( e( u^)> °y) tends to (e(u),a). First, 

for any T € P , we have by ( 1 . 1 4 ) , ( 1 . 2 3 ) and ( 1 . 2 4 ) , 

0 £ limsup { [c . . T - a ] - (e(u ), x - a )} 
M M M M 

<_ [a,T - a] - ( G ( u ) , T ) + limsup (e(u ) ,a ). 

M1 y 

By by ( 1 . 1 5 ) , ( 1 . 2 5 ) and ( 1 . 2 6 ) , 

limsup ( e(u^ ) ,a ) 

= limsup { / ^ u y 3 - y|| e(u p) j|
2 } 

r o 
<_ limsup {/ ^ u ( u y 3 + V - U )ds + / # (U - ip)ds} 

r o r o 

< limsup / ^.(U - <p) = <#,U - 0 > , 

where <•»•> dénotes the pairing between C ( r Q ) , the set of continuous 

functions on Tg, and Ji. Thus, 

( 1 . 2 7 ) [8,T - a] - (e(u),x) + <96,u - <p> > 0 , V T € P . 

Next, passing to the limit in ( 1 . 1 5 ) , we get 

( 1 . 2 8 ) (cr,e(v) = < # , v 3 > , V v G f with C : r Q ) . 



11 

Since q€H, this relation implies that we may identify the measure 
"1 /2 

# with an élément in H (r) also denoted by Thus, ît follows 

from (1.28) that 

(1.29) (a fe(v)) = / ï v ds V v £ ^ 
r * 

where the intégral on the right hand side is to be interpreted as 

the duality pairing between H 1 ^ 2 ( r ) and H " 1 ^ 2 ( r ) . Moreover, 9̂  >̂  0 

and supp(#) c: T Q . (Note that in order to verify the above propertjes 

of rt, we rely heavily on the fact that T Q is compactly contained in T^). 

1 /2 

Extending U - cp to a function in H (r) again denoted by U - cp, 

we also have 

(1 .30) <#,U - cp> = / 9&(U - cp)ds. 
r 

Now, taking v=u in (1.29), addîng to (1.27) and using also (1.30), 

we find 

(1.31) [a,x - a] - (e(u) ,T - a - / #(u- + cp - U)ds > 0, V T £ P . 

r ^ ~~ 

Taking here x = 0, we get 

/ # ( u + cp - U)ds < 0. 
r * 

But u^ + cp - U is nonnegative on supp(^) and # >. 0» so that 

/ #(u- + cp - U)ds > 0, 

r 3 

and therefore 

(1.32) / #(u + cp - U)ds = 0. 
r * 

Thus, it follows from (1.31) that (a,u) satisfies (1.4 a ) , 
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It remains to prove that ( 1 . 4 b ) holds. Passing to the limit in 

( 1 . 1 6 ) , we see that 

/ i> ds = F. 
r 

Using also ( 1 . 2 9 ) and ( 1 . 3 2 ) ît follows that if ( v , V ) € K , then 

(a.e(v-u)) - F(V - U) 

= / i> ( v - u )ds - (V - U ) / 76 ds 
r i i r 

= / 1* (v. + <p - V)ds - / #(u- + cp - U)ds 
r 5 Y 5 

= / # (v. + tp - U)ds >_ 0, 
r v 

s i nce + cp - U j> 0 on Ty 

Finally, to prove uniqueness assume that (a',(u',U'))€PxK 

also satisfies ( 1 . 4 ) . Then it follows easily that 

| | a - a ' | | 2 < 0, 

so that g = a ' . Thus, by Lemma 1, we have u = u 1 and therefore also 

U = U 1 . This complètes the proof of the theorem. 
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2 . A FINI TE ELEMENT METHOD FOR THE CONTACT PROBLEM 

We shall use the same fini te élément approximation as in [k] and 

[ 6 ] , i.e. stresses and hardening parameters will be approximated 

by piecewise constant functions and the displacements by piece-

wîse lînear continuous functions. 

Let us now assume for simplicity that Q is a polyhedral domain 

so that fi can be Mtriangulated", i.e., fi can be written as the union 

of a family 7"̂  of disjoint tetrahedrons T: 

fi = U T . 
T e T h 

Let h dénote the maximum of the diameters of the triangles T, 

We défi ne 

= {x€H : T is constant on each T€T^} , 

W, = {w€W : w is lînear on each T€T*,} , 
h h 

U*h = {vGW : v . G W h , i = 1 , 2 , 3 } , 

P h = flh fl P, 

K h = ^ h n K . 

We can now formulate the discrète problem: Find (a. , (u. ,U, ) )çp 
h h h ' h h 

such that 

( 2 . 1 a) I [Ôh>î - 8 h] - (e(uh),x - ah) > 0 ,
 V Î € I V 

( 2 . 1 b) (a h,e(v - u h)) > F ( V - U h ) , V(v,V)€K h 

Existence and uniqueness of a solution of this problem can be 

demonstrated along the lines of the existence proof for the 

continuous problem above. In particular we then obtain the 

following a priori estimate: 

( 2 .2 ) || ah|| < C. 
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Moreover, the passage to the limit is easier in this case, sinçe 

and K, are fini te dimensional. 
n 

We have the following error estimate: 

Theorem 2 There is a constant C independent of h such that 

(2.3) || u - u j | v < CC|| 3 - S j | + H e(u) - e(v ) | J ) , W € * . 

(2.A) H Ô - ô J I < C(|| e(u - v)|| + | U - V | ) 1 / 2 , V(v,V)€K h. 

2 -
Proof Let # h be the L - projection of a onto of H h > i.e., 

Since a(x)€D a.e. in Q and D is convex, it follows that ^ J ^ E D , T € ^ » 

so that # h £
p

h - Taking x = # in (2.1 a) and x = a h in (1.4 a) , we f ind 

that 

[a - a h , a - a h l 

= [0,0 - ah] - [ah, %h - d h ] - [ a h J â - £ h ] 

< reru^a - a h ; - f e o y ^ h - a h ; - [ 6 h , e - fch] 

= feCu - u h ; , a - a h ; , 

since by (2.5), [ a h,a - ^ 1 = 0 and ( e(u h ) , a - # h ) = 0 (recall 

that e ( u ) | T is constant if u h € U^). But, taking (v,V) = (" n»U h) 

in (1.4 b) and adding (2.1 b ) , we see that 

[â - a h , a - o h ] < (a - a h,e(u - u h)) <_ F(U - V) + ( a h , e(v - u)) , 

which together with (2.2) proves (2.4). Finally, (2.3) follows easily 

from our assumption (1.12). 
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C o r o l l a r y || a - a j | + || 

We shall now give an a 1gorithm (Uzawa 1 s method) for solving the 

discrète problem (2.1). We note that the solution (a, , (u. ,U,)) can 
n n h 

equîvalenty be characterized as a saddle point for the Lagrangian 

L : P h x K h R ' w h e r e L i s 9 î v e n (1-11). 't is then natural to 

consider the following i terative method (cf. [ 3 3 , [ 5 ] ) : For n » 0 , 1 , . . . , 

do the following: 

(i) given u^ € , find a î ] + ' e P. such that 
h h h h 

r^n+1 ^ ^n+1, / n\ n + K • n ., 
[ a h , T ' °h ] " * e V ' T " Q h ^ 1 °» V T e f V 

(ii) find ( u j + 1 , u " + 1 ) € K. such that 
n n h 

. ( e ( u h

n + 1 ) , e(v - u h

n + 1 ) ) + ( u ^ \ V - U ^ 1 ) 

> p ( o J + 1 , e(v - u j + 1 ) ) + pF(V - U ^ 1 ) , 

where (u^,U^) G is given and p is a positive constant. One can 

easily prove (see [3], [5]) that 

^n n 
a h - v uh " u

h

 a s n " œ -

if p is suffîciently small. 
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