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An elasto-plastic contact problem

Claes Johnson
77.07 R

Introduction

Duvaut [1] has studied the problem of finding the stresses in ah
elastic-perfectly plastic body & in frictionsless contact with a
rigid body B which is pressed against E . In this note we extend
the study of Duvaut and look also for the displacements of £ and
CB. Since the displacements in an elastic-perfectly plastic body
may be discontinuous, we shall assume a suitable type of hardening
of the elasto-plastic material in which case the displacements are
more regular (cf. [4]). We shall consider a stationary case corre-
sponding to Henky's law. The evolution case, corresponding to the
Prandtl-Reuss' law, seems to be more difficult and is not treated
here.

In Section | we prove existence and uniqueness of a solution
of the elasto-plastic contact problem. Then, in Section 2 we study
a finite element method for finding an approximate saolution of the
contact problem and we prove a convergence result. Finally, we give
an algorithm for solving the discrete problem.

By C we shall denote a positive constant not necessarily the

same at each occurence.



1. ~ THE CONTACT PROBLEM

We shall assume that initially the elasto-plastic body £ occupies

3

the bounded region Q@ < /R” with boundary I' and that T contains an
open set f] in the plane {x = (x],xz,x3) €lR3: x3 = 0}. Moreover,
we shall assume that initially the rigid body &3occupies the region

- 3. . ;
B={x €R”: X3 2 w(x1,x2), (x1,x2) EFO}, where Fo is a compact set

contained in %1 with smooth boundary and : FO + IR is smooth, non-

negative and @(X) = 0 for some X € T (see Fig. 1.).

Fig. 1.

Let the boundary of £ be fixed on the portion I, = T ~ %1 and free

on F],~where the surface measure of F2 is posit?ve. Let B be acted
upon by the vertical force F and assume that B is free to move verti-
cally, whereas rotation and horisontal displacement are prevented.

We want to find the vertical displacement U of 8 and the stress

o= {oij},‘i,j, = 1,2,3, and displacement u = {ui} of €, where |

Ui, i =1,2,3, is the displacement in the xi-direction. The reference
configuration is the one in fig. 1. We shall assume that the displace-
ments are small, i.e., the nonlinearity due to change in geometry is

neglible.



Supporf of 033 is contained in FO u Fz. tn this case it follows from

(1.4 b) that also

]. - =
(1.7) { 033ds F,

F]
(1.8) { 033(u3 +@ - U)ds =0

1
Since

0

(1.9) u; + @ - U >0 on F] ,

the relation (1.8) implies that formally

(1.10) Y =0 ifu

33 + @ - U>10.

3
We note that (1.7), (1.9) and (1.10) is the intuitive way of formulating
the contact conditions. Conversely, if (1.5) = (1.9) hold then (1.4 b)

follows. Finally, (1.4 a) is one way of formulating the constitutive law

for the elasto-plastic material relation & and e(u).

Remark 2. Let us observe that (&,(u,U)) can equivalently be characterized

as a saddle point for the Lagrangian L : PxK R defined by

1

(LD LE W) = 2 - (e, + v

We shall make the following assumption:

(1.12) There is a constant C such that for all GEP and <€ H
. 2 .
there is £€[L() 1" with || ¢ || < C||% || such that
o+ (%,c)ep.

Lemma 1 If (1.12) holds and (5,3) = ((5,£),0)€EPxW satisfies

AA

(1.13) [o,T - 8] - (e(u), T - o) >0, vgep,

then u is uniquely determined by ¢ and

le@] <clloj.



Proof For arbitrary %€H we shoose cE[LZ(Q)]m according to the
above assumption and we take T = g + (%,z) in (1.13). If then follows

e

that
(€(@,%) < @, (%) <cli&l %],

which proves the lemma.

ExamEel With m = 1 and

10

D= {(c,E)ER Is| <1+ ¢},

- where s = {Sij}'sij = Oij - (ckk/B)Gij, one can easily verify that
(1.12) holds. This choice corresponds to von Mise's yield condition and
isotropic hardening (c.f. [4]).

The result of this section is the following:

Theorem 1 If (1.12) holds, then there exists a unique element
(G, (u,U))EPxK satisfying (1.4).

Proof We introduce the regularized Lagrangian Lu: Px (Wx IR)
defined by

LG ) =g 1T - w0 - g [ Ly v o= 01
0

- l-?f-He(v)I]2 - %-VZ + FV,

where

and u is a positive constant. By [3, Theorem ] we obtain existence

of a saddle point (3“, (uu,Uu))- The extremality relations are

(1.14)  [o,7 - 3u] - (ew)t-0) >0, Viep,

1 -
(1.15) (ou,e(w)) = - ?0'5 (uu3 + @ - Uu) wads - u(e(uu),e(w)), YWEW,
(u +¢ - uu)' =F -,

1
(1.16) - { T us



We shall now derive an priori estimate for (Ou.(uu,Uu)) and then
pass to the limit as u tends to zero. Taking T = 0 in (1.14) and

using (1.15) with w = u» we get

~ 2
o 17 < (e(u),0)

u
< - f 1 (u.,+©-U) uds
- 7 W w3 VAT
0
] - -
=S - (u ., +@-U +¢@~-U) ds
SEATEETE I LA TE I
0
1 - 1 -
+ — - —_ + - U) ds
{ " (uu3 + @ Uu) Uu + g T (uu3 ® L ©
0 0

1 -
<J --= +p-U) U,
- T u (uu3 g u) u

where the last inequality follows from the fact that ¢ is nonnegative.

Thus using also (1.16), we have

HZiFU“—uU2<FU.

1.1 5
(1.17) Ho]J LIFU,

To proceed we now need the following estimate:

Lemma 2 There is a constant C independent of u, 0 <y 5_1, such that

o_<_uuic(1 + He(uu)[[).

Proof The fact that Uu is nonnegative follows immedeately from

(1.17), since F > 0. To prove the other inequality, we define

FO = {xEFO: U3 + @ - Uu < 0},
rt o= (xer.: u ., + w-U >0}
0 0" "3 u !

where we suppress the dependence on . By (1.16) we have

I{_ (uu3 + @ - Uu)ds = go (u“3 + @ - UU) ds
0

2
= U - uF > -uF.



Let now ¢ = m(FO)/Z, where m denotes twodimensional Lebesque measure.
Then § > 0 and either m(P;)'Z § or m(F;) > 8. If m(Fa) > 8, then we
have by the above inequality

duu < [ U, ds < wF + /J;,

lu .|ds + / ¢ ds.
r o M3 r

0 0

Thus, using the trace inequality (see [2]),

(1.18) J o lvlds < clletl, vew
T
0
we have
UuiC(F+§ © + IIe(uu)II),
0

if m(Pa)_z §. On the other hand, if m(Fg) > &8, then we rely on the

following result: There exists a constant C such that if (v,V)€MW% x IR, EcT

and V < vz *@on E, m(E) > &, then

Ve + e ).

To prove this we argue by contradiction. Thus, we assume that there
are sequences {Ci}, {(vi.Vi} and {Ei} such that (Vf’vi) EWXR,
E. cT and

i 0

(1.19)  V; <v. +oonE,
(1.20) m(E.) >§

(1.21) €., »

(1.22) v, > (1 + Jlev)|).

Setting Vi = Vi/vi’ we see using (1.22) that

1> ¢ lIE(V;)ll’
so that by (1.21),

I e@.) |~ o.

0



It follows by the trace inequality (1.18) that

J |Vi|ds—>0.
i
But (1.21) and (1.22) imply that V. » « and thus we obtain from
(1.19) and (1.20),

liminf / V.ds > liminf S (1 - L ) ds > §,
i = V. .
E. E. i
T i
which leads to a contradiction. This completes the proof of the

lemma.

End of proof of Theorem 1:

By Lemma 1, the hardening assumption (1.12) and (1.17), we now

obtain the following a priori estimates:

We also have by {1.16),

J % ds < F,
I‘ u —
0
where
'l -
_ pu-—'a (UU3 + P UU) _>_0.
It follows from these estimates that there exists (0, (u,U))€EPxK and
rEM, where M is the set cf positive measures on PO’ such that for

some sequence {u} tending to zero,
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Q>
4
Q

(1.23) - weakly in H,

(1.24) u -+ u weakly in W,
(]'25) U "*U,

(1.26) xh > % weak star in M.

We shall now prove that (G, (u,U)) satisfies (1.4) by passing to the
limit in (1.14) - (1.16). Note that since we have only weak conver-
gence, we cannot guarantee that (e(uu), cu) tends to (e(u),o0). First,
for any TE€P, we have by (1.14), (1.23) and (1.24),

0 < limsup {[3U,T-cu] - (e(uu), T - ou)}

5_[8,? - o] - (e(u),t) + limsup (e(u ),0 ).

H H
By by (1.15), (1.25) and (1.26),
limsup (E(uu),Gu)
. ) 2

= limsup { g ¢UUU3 UIIE(Uu)ll }
0

< limsup {£ %h(uu3 +@ - Uu)ds + § %h(Uu - p)ds}
0 0

< limsup %0 ’XJU(Uu - @) = <%,U - >,

where <s,+> denotes the pairing between C(Fo). the set of continuous

functions on FO’ and M. Thus,

(1.27) (6,7 - 8] - (e(u),7) + <&,U - @ > 0, VTEP,

Next, passing to the limit in (1.15), we get

(1.28) (o,e(v) = <%,v.>, WEW with v3€C.F0).



1A

Since o€H, this relation implies that we may identify the measure

% with an element in H-1/2(P) also denoted by %. Thus, it follows

from (1.28) that

(1.29) (o,e(v)) = J % v3ds VVE ¥,
T

where the integral on the right hand side is to be interpreted as

the duality pairing between HI/Z(F) and 0 1/2(1). Moreover, % > 0

and supp(%) < To (Note that in order to verify the above properties0

of %, we rely heavily on the fact that FO is compactly contained in F1).

Extending U - @ to a function in H]/Z(F) again denoted by U - ¢,

we also have

(1.30)  <%,U - @ =/ %(U - @)ds.
: T

Now, taking v=u in (1.29), adding to (1.27) and using also (1.30),

we find

(1.31)  [6,7-0]1- (eW,t-0-/ #lu3 + @ - Uds >0, viep.
P Z

Taking here T =0, we get

[ %uy +© - U)ds < 0.

Iv -

But u; + © - U is nonnegative on supp(?) and % > 0, so that

J ’)C(u3 + @ - U)ds > 0,

r

and therefore

]
o

(1.32) ) 'Jb(u3 + ¢ - U)ds
T

Thus, it follows from (1.31) that (0,u) satisfies (1.4 a),
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It remains to prove that (1.4b) holds. Passing to the limit in

(1.16), we see that

Using also (1.29) and (1.32) it follows that if (v,V)€EK, then

(o,e(v-u)) - F(V - V)

I (v3 - u,)ds - (V- U)S % ds
3 T

= [ % (v3 + @ - V)ds - S %(U3 + @ - U)ds
r r

+ ¢ - U)ds >0,

=S 2% (v
T 3

[+]
since v3 + ¢ - U 2_0 on F].

Finally, to prove uniqueness assume that (G',(u',U'))€PxK

also satisfies (1.4). Then it follows easily that

so that & = 8'. Thus, by Lemma 1, we have u = u' and therefore also

U=U"'. This completes the proof of the theorem.
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2. __A FINITE ELEMENT METHOD FOR THE CONTACT PROBLEM

We shall use the same finite element approximation as in [4] and
[6], i.e. stresses and hardening parameters will be approximated
by piecewise constant functions and the displacement; by piece-

wise linear continuous functions.

Let us now assume for simplicity that Q is a polyhedral domain
so that Q can be "triangulated', i .e., Q can be written as the union

of a family 7~k of disjoint tetrahedrons T:

Q=UT .
Te'J'h

Let h denote the maximum of the diameters of the triangles T.

We define

gh = {f€H : T is constant on each T€311},
W, = {wEW : w is linear on each TETh} ,
'W; = {vew : viEWh, i=1,2,3} ,

P =fA nvr,

Ky, =W N K.

We can now formulate the discrete problem: Find (ah,(uh.uh))ephnKh

such that
(2.1 a) [[8,,% -8.1-(e(u)t-0.) >0, VEEP, ,
(2.1 b) (o e(v = u)) > Fv-u,), Viv,V)€K

Existence and uniqueness of a solution of this problem can be
demonstrated along the lines of the existence proof for the
continuous problem above. In particular we then obtain the

following a priori estimate:

(2.2) Il o1l <c.
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Moreover, the passage to the limit is easier in this case, since Ph
and Kh are finite dimensional.
We have the following error estimate:

Theorem 2 There is a constant C independent of h such that

@3 e ullg<clis =G0l + [t - e D, wert,
A A 1/2

(2.4) lo -5 Il <cllelw-v| +Ju-v)h'% V(v,V)€K, .

Proof Let %h be the L2 - projection of 8 onto of ﬁh, i.e.,

A l ~
(2.5) ¢h|T T7YI60) 4 O(x)dx, TEgﬁj.

Since G(x)€D a.e. inQ and D is convex, it follows that %hJTeo, Teqd” ,

in (1.4 a), we find

so that ﬁhGPh. Taking T =% in (2.1 a) and %==8h

that

A

(6,6 - 8,1 - [6,, # -81- 10, 0-2%]

I A

(e(u),0 - o) - (elup), %, - o) - [8,,6 - ]

(e(u - ), 0 - o/,

since by (2.5), [ah’a - %h] = 0 and (e(uh),o - ¢h) = 0 (recall

that e(u)lT is constant if uhE’WL). But, taking (v,V) = (uh.Uh)

in (1.4 b) and adding (2.1 b), we see that

[0 -0,,5 - Sh] < (o-0 e - u)) < F(U - V) + (o,elv - u)),
which together with (2.2) proves (2.4). Finally, (2.3) follows easily

from our assumption (1.12).
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Corollary || o - Shll+ ||u - uh||wr-* 0 as h > 0.

We shall now give analgorithm (Uzawa's method) for solving the
discrete problem (2.1). We note that the solution (ah’(uh’uh)) can
equivalenty be characterized as a saddle point for the Lagrangian
L:P xK > R, where L is given by (1.11). It is then natural to

consider the following iterative method (cf. [3], [5]): For n = 0,1,...,

do the following:

(i) given uf €W, find 61"'€ P such that
An+l A An+1 n n+1 v
[ch T -0, 1 - (euh). T - o ) >0, VTEP, ,
Gii) find (u2+], uﬂ*‘) € K, such that
(e(un+l) e(v - un+1)) + (Un+1 v - Un+1)
h /o h ho° h

n+1

z_p(oh , elv - T

n+1
h )

1)) + pF(V - U,

where (uh.Ug) € Kh is given and p is a positive constant. One can

easily prove (see [3], [5]) that

if pis sufficiently small.
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