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BEST ERROR BOUNDS FOR APPROXIMATION 

BY PIECEWISE POLYNOMIAL FUNCTIONS* 

by 
Olof WIDLUND 

Courant Institute of Mathematical Sciences 
251 Mercer Street 

NEW YORK, N.Y. 10012 

1. INTRODUCTION. 

It is the purpose of this paper to study approximation methods which use 
piecewise polynomial functions. Important examples of such methods are 
interpolation, best approximation and finite element approximation by 
polynomials splines, Kermite and finite element functions. They are 
characterized by the use of families of subspaces of functions S*1 such 

. h . q 

that the restriction of any function in S^ to an element, typically an 
interval, a triangle, a simplex or a quadrilateral, is a polynomial of 
a degree no greater than some constant q in each variable separately. 
The superscript h denotes a mesh size, i.e., the maximum distance 
between neighboring spline knots or the largest diameter of any element. 
We denote the corresponding mesh by M and the aDproximating function by 
f h. 

There exists a very large literature on error estimates for approximations 
by piecewise polynomial functions. Many of these results give bounds for 
the error, and its derivatives, for sufficiently smooth functions. A 

q+1 
tyDical result shows that a L -or maximum-norm of the error is 0(h ) 

P 

if the function f which we approximate is sufficiently smooth. We call 
such methods optimally accurate. Such results can of course be anticipated 
from a simple heuristic argument. A good method which uses piecewise poly­
nomials of degree q should, on each element, have an error comparable to 
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that of a Taylor series of the same degree centered at some point of. 
the element. We also expect that any polynomial of degree q should be 
reproduced exactly while some polynomials of degree q+1 should introduce 

_ q+1 v an 0(h n ) error. 

Many approximation methods are also known to be stable. By stability 

we mean that the norm of the difference (f] +^2^~^2 *"S u n ^ o r m ^ y bounded 
in terms of the norm of fj. 

In this paper we study the extent by which the rate of convergence suffers 
when we approximate functions which are not smooth enough to allow the 
use of the standard error estimates. We first give a precise, direct, 
Jackson-type, theorem assuming only that the method is stable, optimally 
accurate and quasi-linear, see Section 3. 

Our main technical tools come from the theory of Fourier multipliers 
and Besov spaces as developed by Hörmander [10], Löf ström [11] and Peetre 
[14,18]. The Besov spaces can be regarded as generalizations of the spa­
ces needed in the precise formulation of the classical theory of best 
approximation by trigonometric polynomials, see Sections 2 and 4. For 
the classical theory, developed by Jackson, Bernstein and Zygmund, see 
Shapiro [20] or Timan [26]. One of our main technical ideas is the use 
of Peetre 1s [15] elegant alternative definition of the Besov spaces, 
see also Peetre [14,18] and Grevholm [8]. For other applications of 
similar ideas in theoretical numerical analysis, see Brenner, Thomee 
and Wahlbin [2] and references listed therein. 

The Besov spaces can also be characterized by interpolation between 
Sobolev spaces. Part of our direct theorem can be derived by such an 
argument, see Hedstrom and Varga [9]. Our proof requires no previous 
knowledge of interpolation in Banach spaces. 

We also give an inverse, Bernstein-Zygmund-type, theorem. This result 
shows that our direct theorem is the best possible when the mesh is 
chosen without regard to the particular function which is approximated. 
For the detailed assumptions and a discussion see Section 3. 
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Proofs of our direct and inverse theorems are not given in this paper, 
since they have recently appeared in Widlund [27]. In the last few 
years a number of papers have appeared which contain these results in 
special cases. For a discussion of this literature see Widlund [27]. 

We believe our contribution primarily lies in that we have shown that 
much of the special structure of the subspaces s|j can be ignored. 

As an illustration we now compare the best approximation of continuous 
2Tf-periodic functions by trigonometric polynomials and periodic splines 
of degree q using the same number of parameters. We assume that the spline 
knots are uniformly distributed and that we take no advantage of possible 
knowledge of the location of singularities of f or its derivatives. In 
other words we allow the poorest possible shift of the mesh. The sub-
spaces of 2iT-periodic functions which give an 0(n ) rate of convergence 
are then identical for the two methods if r < q+1 and it is larger for 
the first method when r = q + 1 . Furthermore the spline method is saturated 
in that it has a rate of convergence with an exponent r>q+l only for 
constant functions while, as is well-known, the subspaces of functions 
which give an order r convergence using trigonometric polynomials are 
dense in the space of continuous functions for all positive r. 

In Section 4, we consider certain additional questions in the important 
special case of p=2. Our direct theorem and a simple inclusion result 

g 
show that any element f in the Sobolev space W^ , 0 < s ^ q + l , can be 

s h . 
approximated to within 0(h ) by elements in S . We refine this result 
and obtain, for 0 <s <q+l, a theorem which is very similar to a theorem 
on the best approximation by entire functions of exponential type. This 
result is closely related to work on nonuniform error estimates for 
finite element methods by Stephens [23] and Babuska and Kellogg [ 1 ] . 

Rather than striving for a maximum in generality we have confined our 
study to the real n-dimensional Euclidean space R n. An extension of our 
results to periodic cases is immediate. Our techniques impose few restric­
tions on the meshes and we therefore believe that our results could be 
extended to more general regions. See further a remark in Section 2. 
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It is well known that the full power of approximation with piecewise poly­
nomial functions can only be realized by varying the relative size of the 
elements of the mesh with the function f. It is also known that polynomial 
splines, see de Boor [ 6l , and finite element methods, see Strang [ 2 4 ] , 
permit estimates of the error at a point in terms of the smoothness of 
the function in a small neighborhood. It would be interesting to develop 
local versions of our theorems. Such results could serve as a guide to 
the choice of local refinement of the mesh in cases when the smoothness 
of the function varies between different parts of the region. We note 
that closely related questions on nonlinear spline approximation are 
considered in Burchard and Hale [ 3 ] , McClure [ 1 2 ] , Peetre [ 1 7 ] and Rice 
[ 1 9 ] . Their results show that for certain families of functions a much 
more rapid convergence can be obtained if the spline knots are chosen in 
an optimal way. 

2 . A CATALOG OF BANACH SPACES. 

In this section we introduce the Banach spaces in terms of which our re­
sults are formulated. The real n-dimensional Euclidean space is denoted 
by R n. For 1 <p <oo^ w e denote by W^(R n) the (R n)-spaces of equivalence 
classes of measurable functions which have integrable p-th power. These 

oo xi 

spaces can also be characterized as the completion of C Q ( R ) , the space 
of infinitely differentiable functions with compact support, with respect 
to the norm 

II flip = ( { R n | f ( x ) l p d x ) , / P . 

By ^ ( R 1 1 ) we denote the completion of C Q ( R n ) with respect to the norm 

P I L = sup n l f ( x ) | . 
xe R 

The space can also be characterized as the linear subspace of continuous 
functions which go to zero as |x| -> °° . For xe R n we always use the Eucli­
dean norm 

|x| = ( Z | x . | 2 ) 1 / 2 . 

We introduce the norms of the Sobolev spaces W^ by 
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Here the semi-norm |f| Q is defined by 

| f | M - , ^ , , r t | l p • 

where a = (otj,...,a^) is a multi-index, the ou are non-negative integers 

and |a| = Ecu. The derivatives 3 a are defined by ( 3 / 3 x ) a ' . . . ( 3 / 3 x ) a n and 
. a a i ou n 

similarly x = x, 1... x u . J 1 n 

s 
For positive, non integer values of s, we define the space W^, in a stan­
dard way, by using Fourier transforms, see for example Peetre [18]. 

Translation operators T^ ^ are introduced by 

T k , h * ( x ) = * ( x + h e k } 

where e^ is the unit vector in the direction of the positive k-th coor­
dinate axis. Wp-moduli of continuity are defined by 

J s ) ( t , f ) = sup sup H (T h - I ) S f | L 
p k o<h<t k ' h P 

where s=I,2,... and I is the identity operator. For a nonnegative integer 
£ + Y Q 

S,, 0 < Y < 1 and 1 < q < 0 0 we introduce the Besov spaces B H as the sub-
P 

spaces of W such that 
P 

p p 

Here the semi-norm |f| is defined by 

B p \r "p* + 1 )(t,f) q d t \ »/q 

P 

for 1 < q < 0 0 and 0 < Y < 1 • 

For Y=\ and 1 < q < °°, the modulus of continuity o/^ +*\t,f) must be 
(£+2) p 

replaced by co (t,f) in the definition of the semi-norm |fI n 

P t

 1
 B

A + Y » q 
while for q=°° the semi-norm is defined by p 
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P 

for 0 < y < 1 and by 

V* + 2 )(t,f) 

| f l A + , oo = S U P o^l 
B ' t>0 tr 
p 

for y=l. 

In this paper we are concerned mainly with the cases q=<» and q=2. It is 

easy to show that for 0 < y < 1, B are spaces of functions with W -Holder 
P P 

continuous £-th derivatives, see further section 4. For y=l we impose only 

a so-called Zygmund condition, in terms of second differences, on the £-th 

derivatives. 

It is easy to show that f o r q ^ q ^ , B S , C*1 is a subspace continuously embedded 

in B S ' q 2 and that B*' 2 = . 
p 2 2 

We also need certain other Lipschitz spaces which we denote by Lip^ +^(R n) 

I a nonnegative integer. They are the subspaces of W such that 
P 

P H . . , - l l ' H ?

+ 1*1 u , < - • 
Lip r Lip 

P P 

Here 

c o a + 1 ) ( t , f ) 

| f |

T - * + 1 = Vtl " ^ T ^ 1 — 
Lip t>0 t 

P 

£+1 £+1 0 0 £+1 
It is easy to show that Lip c B ' , i.e., Lip is a subspace conti-

£+1 oo P P . ^ 
nuously embedded in ' . The reverse inclusion does not hold in general, 

see Peetre [14,18] or Stein [22]. 

£+1 . ¿+1 
The Lipschitz spaces Lip^ are identical to the Sobolev spaces W^ for 

l < q < o b , see Stein [22], p. 135, 139 and 159. The case p=l is different. 

Let f be identically zero except on the interval [0,1] where it takes on 

the value one. It is then easy to show that feLipJcR 1) but that it fails 
1 i 

to belong to W (R ) . • 
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Remark : The main results of the classical theory on best approximation 
by trigonometric polynomials can be formulated in terms of Besov spaces. 
Let us denote by T^ the class of n-th degree trigonometric polynomials 
with period 2TT and by C, throughout this paper, a generic constant. Then 

inf ||t -f || , C n - ( £ + Y ) 

t € T n 0 0 

n n 
£+v 0 0 

if and only if f c B ^ on the unit circle, see Shapiro [20] or Timam 
[26]. For extensions to several variables and entire functions of expo­
nential type, see Section 4, Nikolskii [13] and Peetre [18]. 

Remark : Another classical result, due to Bernstein, see Zygmund [28], 
p. 241, illustrates that results on Fourier series can often be formula-

1/2 1 
ted in terms of Besov spaces : if f e B ' on the unit circle its Fourier 

1 00 
series converges absolutely. 

This result has been extended by Peetre [16] to eigenfunction expansions 
for a quite general family of self-adjoint, elliptic operators. His paper 
illustrates that the Fourier transform, used in our work, can be replaced 
by eigen-function expansions and it therefore suggests possible tools for 
the extension of our results to general smooth manifolds. 

Remark :The Besov spaces play an important role in the theory of elliptic 
£ 

equations. They are trace classes of the Sobolev spaces, W . Denote by 
1 0 P 

Hi the restriction to R n of f £ W p ( R n ) , £ > 1 , 1 < p < « . then 
Rf € B^ * ̂ ( R n J ) . This result was first given, in a special case, by 
Gagliardo [7]. For the general case see Stein [21] or Taibleson [25]. 

Remark : Extending results by Campanato [4,5], Grevholm [8] has shown 
£+y 00 

that f e Bp 9 if and only if it can be approximated in to within 
0 ( r ^ + ^ + n ^ P ) by a polynomial of degree q> £+y-l on any ball of radius r. 

The Besov spaces are systematically studied in Taibleson [25]. For very 
fine introductions to the subject see Brenner, Thomee and Wahlbin [2], 
Nikolskii [13], Peetre [14,18], and Stein [22]. An alternative characte­
rization of the Besov spaces is given in Section 4. 
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3. STATEMENT OF THE DIRECT AND INVERSE THEOREMS. 
In this section we formulate a number of assumptions, which could also 
be regarded as axioms, and state our results. Proofs of these results 
are given in Widlund [27]. 

We denote by S the linear space of functions for which a certain approxi­
mation procedure is defined. The space S typically contains W^ or a dense 
subspace of W as well as all polynomials. Similarly we denote by s|j a 
linear space of approximating functions. In applications s|j will typically, 
but not necessarily, consist of piecewise polynomial functions. 

Assumption 1. The approximation method assigns to each f e S a unique 
f h , s h . 

q 

Assumption 2. The method is stable in W , i.e. 
P 

| | ( f 1 + f 2 ) h - f^||p * C |1 f j 1)^ for all f 1 and f 2 in S n W p . 

Here C may depend on f^ but not on h. 
Assumption 3. The method is quasi-linear in W^, i.e. 

| | < f , . f 2 ) h - ( V f 2 ) | | p , cd l f f - f ^ . l l lS- f j I I , ) 

for all fj and in S, 

Assumption 4. The method is optimally accurate, i.e. 

(|fh-f|| < G h q + 1 | f | 

for all sufficiently smooth f. 

We note that uniqueness is assumed primarily for the sake of conve­
nience. We could have assumed instead that the bounds in assumptions 
2-4 hold for all approximating elements of a function f e S. 

We now state our, 
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Direct theorem. Let an approximation procedure satisfy assumptions 1-4. 
Then 

l|fh-f|| < c h r l f l 
P Br,oo 

P 
for 0 < r < q + l . Furthermore 

||fh-f|| * ch^'UI . 
r Lip 

P 
In order to formulate a correct inverse theorem we must introduce an 
additional assumption. We have already noted, in Section A, that a very 
small error can be obtained by using many spline knots close to a point 
where a function f(x) is not very smooth, see in particular examples by 
Rice [19]. This leads to a requirement that the mesh should be quasi-
uniform. In one dimension this means that the ratio between the largest 
and smallest mesh size is uniformly bounded. Furthermore, if we obtain 
our liner meshes solely by refinement of a coarser mesh M*1 an element 

of the corresponding space S*1 will be approximated without error by 
. ^ . h 

elements in any subspace with a finer mesh. The elements of S are 
( +1) ^ normally not smooth enough to belong to LiPp . We must therefore 

further restrict our admissible class of meshes. 

Assumption 5. Let h denote the maximum diameter of the elements of a mesh 
h h h h M . The restriction of f e S^ to an element of M is a polynomial of 

degree at most q in each variable separately. There exists constants N 
h * 

and A > V > 0 and for every h meshes M x , i=l,2,...,N, with h. <h, such 
that the elements of M i contain spheres of radius Ah with concentric 
spheres of radius vh the union of which cover the whole of R n. 

Inverse Theorem. Let an approximation method satisfy assumption 5. Then, 
if 

||fh-f||p = 0(h r) , 0< r <q+l , 

then 

|f| r < » . 
Br'°° 
P 

if 

|If h-f|| p - o(h« + I) , 
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then 

p 
and if 

||fh-f'|p - o ( h « + 1 ) 

then f is a polynomial of a degree at most q. 

4. RATES OF CONVERGENCE FOR ELEMENTS IN . 
We now specialize to the case of p=2 and adopt, throughout this section, 

s s 2 s 0 0 

assumptions 1-4. Since according to Section 2, W^ = B^' c ^ 2 , ' ° u r 

direct theorem shows that 11f^—f 11 ̂  = ^(h S) ^ o r a n ^ ^€^2' 0 < s < 1 • 
s 

We now show that this error is o(h ),more precisely, 

s 

Theorem : Let f e W^ , 0 < s < q+1 , and consider an approximation procedure 
which satisfies assumptions 1-4. Then, 

i 1 - H ? 

[ (h s ||f -f |L r dh/h < - . 
V 

We note that an error bound of this type has been given by Babuska and 
KelloggCl]. Our proof is built on a comparison with the best approximation 
by entire functions of exponential type. 
Let f^ denote the best approximation in W of f by entire functions of 
exponential type of order 1/h. These are the functions with Fourier 
transforms with support in a ball of radius 1/h. Peetre [18] has shown 
the following alternative characterization of the Besov spaces : 

f € B S , q if and only if f e W and 
P P 

I 1 (h- s l|f*-f|L ) q dh/h < « . 
J o ^ 

This result provides a natural extension of the classical result on the 
torus to the whole of R n and to a larger family of spaces. For p=q=2 
this condition has a form identical with that of the theorem formulated 
above. 
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To prove the theorem, we estimate ||fh-f ||2 in terms of l l f ^ ~ f l l 2 • 

By the triangle inequality 

ikh-f||2 * i i * K > h - < i i 2 . K - f i i 2 . 

By the stability assumption the first term can be estimated by 
C 11 f^— f|| 2 • To prove the theorem, there only remains to estimate the 
second term. By assumption 4 

K > h - 0 2 " h q + l i < i 2 , q + , • 

For each h we find h Q e (1/4,1/2] and an integer K such that h = h Q 2 
We write 

K 
d f h = 8 f h + ^ d ( f -k " f -k+l } 

h h o k=i h 2 k h n2 k 1 

o ° 
It is easy to see that the different terms of this series are orthogonal 
and that therefore, 

PafX - l | 3 \ II2 . I ||»«<f* „ k - f * _ k + l ) l l 2 . 
h 1 fto 2 k-1 h 2 k h 2 R 1 2 

o o 
The first term will be ignored since it is easy to estimate. For 
IotJ = q+1 we obtain, by using simple arguments, 

H 9 a ( f * _ k - f * _ k + 1 ) l l * C 2 k « + 1 > | | f * _ , - £ * _ k + ] ! | 
h 2 h 2 K I 2 h 2 K h 2 K 1 2 0 0 0 0 

<- C 2 k ( q + , ) || f* _ k + , - f || • 
h 2 k 1 2 o 

The sum above can therefore be estimated by 

I 2 2 k « * 1 ) l|f* . k - f | | 2 , 
k-0 h Q 2 

which in turn can be estimated by 

V ( q + , ) i i f ; - f i i 2 ) 2 dt/t. 
h 



- 12 -

To conclude the proof of the theorem, we multiply this integral by 
h2(q s) + l integrate by parts with respect to h. The two resulting 
terms can be estimated easily by the semi-norm given by Peetre. 
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