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ON THE POINTWISE ERGODIC BEHAVIOUR 

OF TRANSFORMATIONS PRESERVING INFINITE MEASURES 

Jon Aaronson 

Abstract : 

We consider situations in which the asymptotic type of a 

measure preserving transformation manifests itself in a pointwise 

manner. 

Abstrait : 

Nous considérons des situations où le type asymptotique 

d'une transformation préservant la mesure est relié à son compor­

tement ponctuel. 

Rennes, 

January 1978 





1) 

§0 - Introduction 

In [2j , we considered rationally ergodic measure preserving 

transformations, and we found that the asymptotic behaviour of such 

transformations depended rather heavily on their asymptotic types. 

Here we consider pointwise manifestations of these asymptotic types. 

Let (X,6>,y,T) be a conservative measure preserving transfor­

mation. We will be considering properties of the form 3 a
n
 > ^ s.t. 

^ n-1 ^ 
(0.1) — I f o T /x fdy Vf e L ? in some "pointwise sense". 

c n k = 0 

If y (X) < «, then the Birkhoff ergodic theorem states that 

the convergence (0.1) occurs a.e. for a^ = y^X) " J t f ° l l o w s ^ r o m 

theorem 2 of [l] that if the convergence (0.1) holds a.e. for some cons­

tants a^> 0, then y (X) < °° and a„ ^ T T T ^ T • This means that the Hopf 
n n M I -K- J 

ergodic theorem ([7]p.49) : 
n-1 , n-1 , 
I f(T x) / I g(T Kx) -> /y fdu / f Y gdy for u a.e.x, f, g e L' Jg * 0 

k=0 k = 0 K K 

is the best possible a.e. ergodic theorem for transformations preserving 

infinite measures. 

We will investigate weaker forms of (0.1) which are not enti­

rely eliminated by the condition y(X) = 0 0 . These properties are homo-
n=1 k 

geneity properties, since they will imply that \ p(T x) has uni-
k=0 1 

form asymptotic behaviour on X (in the sense that (0.1) holds)for p e L +. 

We will need to consider some weakened modes of pointwise 

convergence of measurable functions. 

Let {f } and f be real valued measurable functions defined n 
on X. We will say that f converges to f in y measure (f n ^ f) 

if for some, (and hence all) finite measures P ^ y : 
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( 0 . 2 ) Ve > 0 : P( | f n-f | * O - 0 

We note that f n ^ f does not necessarily mean that (0 . 2 ) 

holds with P = y when y(X) = oo . An equivalent way of defining 

f ]i f would be : 
n 

( 0 . 3 ) Vn v

 00 3 m o = n v ~* 00 such that f -> f y.a.e. on X 

We will say that f^ converges feebly to f (f--^^ f) if : 

1 n 

( 0 . 4 ) Vn v ^
 00 3 m o = n v 00 such that - I f f y.a.e. on X. 

K * K£ n ¿ = 1 m£ 

Feeble convergence (weaker than convergence in measure) can 

be obtained by 

Komlos' Theorem ( [ 4 ] , [ 9 ] ) 

If f £ L !(X) and sup / |f | dy < - then : 
n n>1 X n 

Vn^. + 00 3 m# = n y - ~* 00 a n c* f e L T such that 

f -vw f 

In particular, if f -> f weakly in L 1, then f n f . 

In §1, we prove that if T is rationally ergodic (see [ 2 ] 

for the definition, and [2] , [i] for examples) then 3 a

n

 > 0 s u c h t h a t 

1
 n ~ 1 k 

(0.5) ~- I f 0 T -AA> / x fd u Vf E L f 

n k = 0 

This property, dubbed weak homogeneity, is in fact 

characterised by slight rational ergodicity -a very weak form of 

rational ergodicity : 

We say that T is slightly rationally ergodic if there are 

constants a > 0 such that : 
n 
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Vn v °° 3 m = n v ~* °° a n (* A e |i , 0 < y(A) < 00 , such 

that 

" V 1 

(0.6) J y ( B f) T _ : ,C) -> M ( B ) y(C) V B , C e feO A . 
a m , j-0 

It is evident that the sequences {a^} in (0.6) and (0.7) 

are uniquely defined up to asymptotic equality, and it will follow 

from theorem 1.1 that they are asymptotically equal to each other 

(when the same transformation T is involved). No ambiguity arises, 

therefore, if (as in [2]), we fix one such sequence a^ = a^(T), and 

call it a return sequence for T . The collection of all sequences 

asymptotically proportional to . a
n(T) will.be called the asymptotic 

type of T and denoted by C3.(T) . 

In the light of theorem 1.1, we are able to refine, in §3,-

the results of [Y] §2 on the metric invariance of asymptotic type. 

Not all c.e.m.p.t.s. are weakly homogeneous. In [6] y a 

c.e.m.p.t. (X,£>,|j,T) is constructed, which commutes with a non-singular 

transformation Q : X -> X , which does not preserve y. That is : 

QT = TQ , \i o Q~ 1 * y and y o Q~ 1 ^ y 

In this situation, as was shown in [_6] , Q multiplies the 

measure y , and can be thought of as Msquashing M T into itself. 

We will, accordingly, call any such transformation T squashable. In 

§2, we derive some consequences of squashability, which show that no 

squashable transformation is weakly homogeneous. 

In §4, we consider the stronger property of homogeneity : 

(0-7) —— V f o T k i / Y fdy Vf c L' 
V 1 J k = 0 A 
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It turns out that the homogeneity of a transformation is depen­

dant on whether its return time stochastic processes on sets of finite 
measure satisfy weak laws of large numbers, and that a necessary condi­
tion for the homogeneity of a transformation, is that its asymptotic type 
be regularly varying with index 1. In the case of Markov shifts, this 
condition is also sufficient- The methods of [1] are applicable to homo­
geneous transformations, and have analogous consequences. 

Part of this work formed part of the author's Ph. D. thesis, 
(as did [j] and [ 2 ] ) , which was written at the Hebrew University of 
Jerusalem under the supervision of Professor Benjamin Weiss to whom the 
author is most grateful for many helpful conversations. 
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§ 1 ~ Weak Homogeneity 

We prove : 

Theorem 1.1. 

Let (X,ft,y,T) be a c.e.m.p.t. then 

T is weakly homogeneous iff 

T is slightly rationally ergodic. 

(In this case, the return sequences of T are asymptotically 

equal). 

Proof. 

Assume that T is weakly homogeneous. In particular assume 

that T satisfies the convergence (0.5) with the constants a^ > 0 

(the return sequence). We first show that 

(1.1) lim — I v i(BH T KC) > p(B) y (C) . VB,C e {A e :0 < y(A)« 
n k = 0 

- n->°o 

To see this, we choose B,C e ̂  and let n^ -> 00 and 

n k _ 1 

^ ~ l pfBfl T~ jC) a e [0,»] 

By assumption, 3 mo = nv 0 0 s o t n a t 

n " V 1 

(1.2) - I — J, f 0 T j -> / Y fdy a.e. Vf e L' 
¿ = 1 ™ £ j =0 

We fix f = 1^ , and integrate on B . It follows from Fatou!s 

lemma that a > y (B) y(C). 

We now establish the slight rational ergodicity of T . 

Let m £ 00 be such that (1.2) is satisfied. 

Fix E G ^ , and choose (using Egorov's theorem) A c E 

(y(A) > 0) so that the convergence (1.2) for f = 1 £ is uniform on A. 
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This implies that the convergence (1.2) for f = 1 A is 

bounded on A. Hence by the bounded convergence theorem : 

n " V 1 

d-3) I I ~~ I u (A r~l T~-'A) - y(A) 2 

n ¿=1 \ j=0 

Now, it is easy to check that if x > 0, lim x n > a, 

and — y x v -> a , then 1 im x = a . n i ' -i K ~ n 
k = 1 n->°° 

Using this, we derive from (1.1) and (1.3) that v = m -> 00 

r *r 
such that : 

v r _ 1 

(1.4) - L J. p ( A D T" jA) - y(A) 2 

a v r j=0 

We derive (0.6) (for { v r } ) from (1.1) and (1.4) using the method 

of the proof of proposition 1.1 of [2] . 

Now assume that T is slightly rationally ergodic. In fact, 

assume that -> » and A satisfy (0.6). In particular : 

V - 1 

—— I 1 o + u(A) weakly in L' (A). 

r J 

By Komlos' theorem 3 m

0 ~ v °° such that 

* r l 
n mjT 1 

(1.5) 1 y -L- I 1 o TJ - u(A) v -a.e. on A . 
n a=1

 am% j=0 A 

The set of points on which the left hand side of (1.5) converges 

is T-invariant, and, containing A, it must be (almost all) of X , by 

ergodicity. The Hopf ergodic theorem now establishes (1.2), and hence 

(0.6). • 

Corollary 1.2 : If T is an invertible weakly homogeneous transformation, 

then so is T" 1 and a n(T~
1) % a (T) 

Proof Slight rational ergodicity . 
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§2 - Squashable transformations 

The following lemma shows that no squashable transformation 

can be weakly homogeneous. 

Lemma_ 2 . 1 : 

Let (X,6,y,T) be a squashable c.e.m.p.t. and let m k <*> 

and d^ > 0. Then either : 

m1 -1 
1 n 1 k -

lim ± y -T- y f o T J = » a.e. Vf e 
n+~ n k=1 d

k j=0 

m, -1 
1 N 1 

or - J ~ J f o T J 0 a.e. Vf £ L 1 

n k=1 dk j=0 

Pro_of. 

Assume Q:X •> X, y O Q ~ 1 ^ y and QT = TQ. We will show 

that if the lemma is not true, then y o Q ^ - y . If the conclusion 

to the lemma does not hold, we have, using the Hopf ergodic theorem, 

and the T - super-invariance of the Tim, that : 

1 n 1 k 
(2.1) Tim -i I - r 1 y 1. o T J = cp (AI a.e. VA £ li where 0 < G < » 

n+~ n k=1 d k j=0 A 

Now since y o Q ^ ^ y , we have that 

(2.2) lim - -rl I 1. o T j
 o Q = c y(A) a.e. VA e B> 

n — n d k j=0 A 

And since QT = TQ, we have that the left hand side of (2.2) is 
n n k 

T i m - l -À I 1 _ i o T J . Hence, by (3.1) and (3.2), we have 
n->« n k=1 d k j=0 Q A 

u(Q~ 1A) = y(A) VA E (S • 

Theorem 2.2 

Let (X,6,u,T) be a squashable c.e.m.p.t. and let 

A,B e & 0 < y (A) , y(B) < » a n = y y(AriT" kB) . Then : 
n k = 0 
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i_ J £ o T k —> u Vf e L 1 

a n k = 0 

Proof. 

Let •> co ; 

k 

/ ~ - I 1 R o T J dp = 1 Vk > 1 
A

 a n k j=0 B 

By Komlos1 theorem, 3 0 E L 1 ( A ) and m» = n v -»• « such that 

n " V 1 

( 2 . 3 ) 1 I ~ L y 1 0 T J - 0 a.e. on A . 

£=1 m^ j=0 

The set on which this convergence occurs is T-invariant, as is the limil 

function. Therefore, the convergence ( 2 . 3 ) takes place a.e. on X and 

the limit function is constant. The constant must be finite since it is 

integrable on A . But T is squashable, so by lemma 3 . 1 , the only pos­

sible value for this constant is 0 . 

We now choose a subset C of A (y(C) > 0 ) on which the 

convergence ( 2 . 3 ) is uniform. Integrating, we obtain : 
n " V 1 

¿ I ~- I P ( C O T - J B ) - 0 
N £=1

 aml j=0 

This implies that 3 v = m£ °° s u c n that 
r r 

V r " 1 

( 2 . 4 ) - I _ I n ( C O T " J B ) -> 0 
a v j = 0 r J 

From here, we see that -I p = v -»• 00 such that 
n 

( 2 . 5 ) — — I 1 o T J -»• 0 a.e. on C . 

As before, this convergence must take place a.e. on X , and 

using the Hopf ergodic theorem, we have 
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P 

1 1 1 i A — I f o T J - 0 a.e. Vf e L 1 

• 

§3 - Metric invariance of asymptotic type 

In this section, we deduce the invariance of the asymptotic, 

type of weakly homogeneous transformations under the metric equivalences 

defined in [2] § 2 . We will also obtain that homogeneity properties are 

invariant under these equivalences, whose definitions we now recall. 

Let (X i, 6u, y jL>Ti) be m.p.t.s., and let 0 < c < 00 .We 

will say : 
c 

that 7i is a c-map of T , onto T ? OrT^ T 2) if 

TT:X^ -> X 2 , IT ^ 2 <== 1 9 = T^TT and 0 TT ^ = cy 2 

that T 2 is a factor of T 1 (T1 -> T 2) if there is a c-map 

of onto T^ for some 0 < c < 00 

and that T 1 is similar to T 2 (T-j ^ T 2) if and T 2 

are both factors of the same m.p.t. 

The following is immediate from the definitions : 

Proposition 3.1. 
c 

Let T^ , T 2 be c.e.m.p.t.s. and let rr:T^ -> T 2 . Then : 

T^ is homogeneous (weakly homogeneous) <=> 

T 2 is homogeneous (weakly homogeneous), and in either case : 

i - r r - y + c as n + ~ 



10) 

Theorem 3.2 

Let Tj , T 2 be c.e.m.p.t.s., and let T.j ̂  T 2 . Then : 

T^ is homogeneous (weakly homogeneous) iff 

T ? is homogeneous (weakly homogeneous) and in either case Q ( T i ) - a(T 2) 

Proof. 

We will show that if 7^ is homogeneous, then so is T 2
 a n d 

fit(T^) = Cl(T2). The proof for weak homogeneity is analogous. So we assume 
that : 

V 1 

n k
U 1 J j=0 1 X I 1 

and that ^ : S 5 T 1 , TT2 : S d T 1 where (Y,£,v,S) is a m.p.t. 

necessarily conservative since T^ is conservative. 
The Hopf ergodic theorem applied to S states that 
n-1 , /n-1 . 

(3.2) J f(S Kx) / I g(S x) -> h v.a.e. Vf,g e L A(Y) , g > 0 a.e. 
k=0 / k=0 

where h 0 S = h, / | hg | dv < °° and / Yhg dv = / Yfdv 
Y 1 1 

Combining (3.1) with (3.2) and the fact that T 1 is a c-factor 
of S yields that 

n k _ 1 

(3.3) I f o - h v.a.e. Vf e L'(Y) 
n k

U 1 J j=0 

where h 0 S = h and Vp e L 1 ^ ) : h.p o 1 ^ e L*(Y) and 

/ Y hp 0 T T 1 dv = J x pdy., Jyfdw 

In particular, if h is constant, then 

(3.4) h - -r / fdv 
c y 
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Now choose q c L 1(X 2) . We have from (3.3) that 

1
 n k ~ 1 . 1

 n k ~ 1 

(3.5) pr-y I q o o TT = ^ I q o 7T 2 o S J ^ h v-a.e. 
n k 1 j=0 2 n k J = 0 

where h e L°° , h o S = h . The sequence of functions on the 

left hand side of (3.5) are all n ^ & 2 - measurable, and hence, so is 

h . This means that there is a k:X2 -> R such that h = k o ^ . 

Thus k is a constant, and so is h. By (3.4) : 

h = 1 / xq o TT2 dv = | qdy 2 . 

The fact that y o n ^ = dv>2 implies that 
n k _ 1 

a n K

( T 1 ) j=0 2 C X 2 2 2 2 

• 

§4 - Homogeneity 

In this section, we consider homogeneity. The homogeneity of 

a transformation is dependant on whether its return time stochastic pro­

cesses on sets of finite measure satisfy weak laws of large numbers. 

By a stochastic process, we mean a quintuple (ft,fi,P»a*<fr) where 

(ft,6t,P,a) is a m.p.t. , P(ft) = 1 and <|> is a real valued measureable 

function. In this section, we will only be considering ergodic N-valued 

stochastic processes (i.e. where a is ergodic and $ :n +N). We will 

say that an stochastic process (fl ,Q.,P, a, has a weak law of large 

numbers (W.L.L.N.) if there are constants b n > 0 such that : 
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1 n ; 1 k p 

(4.1) -L- I * o o K -> 1 
n k=0 

Now let (x,6,y,T) be a c.e.m.p.t. and let ft e & 
0 < y(ft) < oo . we define the return time stochastic process of T on ft ; 
(ft CL,P,a,*) by 

a =kOft , P(A) = P ( A rift)A(ft) , 
<()(x) = inf {n>1}: T nx eft} - the return time function 

ax - T 9 1 Jx (- T^x - the induced transformation) . 

It follows ([8]) that a is ergodic and that any (IN-valued, 
ergodic) stochastic process is the return time stochastic process of a 
c.e.m.p.t. The formula of Kac states that /^dP = y(X) . In case this 
quantity is finite, then by Birkhoff's ergodic theorem, T is homoge­
neous and (̂ ,a, P,a, <()) satisfies a strong law of large numbers. The 
main result of this section is : 

i 

Theorem 4.1 
Let (X,6,]j,T) be a c.e.m.p.t., ft and (ft.&,P,a,(j>) be 

the return time stochastic process of T on ft . 
Then : T is homogeneous (with return sequence { a

n>) iff 
(ft,a,P,o, d>) satisfies a W.L.L N 0 (with constants { b

n}) * I n t h i s 

case, { a
n ^ a n d ^b n) are regularly variying with index 1 , and 

i 
(4.2) y(ft) ar, — — b r -r* n as n -> » 

LDnJ y(ft) LanJ 

A function a:R+ R + is termed regularly varying with index 

a e IR if 

i Q t ) > Aa VA > 0 
t -
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A sequence is so termed if the function ajY] ^ a s ^is 

property (where [t] denotes the largest integer not greater than t). 

Regular variation is discussed in [5] and [1 0] . 

The proof of theorem 4.1 will be in a sequence of lemmas. 

Firstly, let, for x e ft : 
n v n-1 v 

•fx) = I ^Q (T x) and • (x) = I *(a Kx) 
n k=1 " n k=0 

It follows that : 

( 4 . 3 ) S n ( x ) W = n and % n ( x ) ( x ) <_ n < % n ( x ) + 1 ( x ) 

We will assume that y(ft) = 1 . No generality is lost, because 

we can normalise the measure y , and (4.2) will follow from the regular 

variations of a and b 
n n 

Lemma 4. 2 

T is homogeneous with return sequence { a
n) iff 

(4.4) *n P 1 

:— -* 1 • 
Proof. a n 

If T is homogeneous, then (4.4) is evident. Conversely, we 

have that Vn^ -> 0 0 ~3 m £ = n^ 0 0 such that 

(4.5) - — 1 a.e. on ft 

The convergence set for (4.5) is T-invariant, and so, 

containing ft, must be (almost all of) X . Homogeneity now follows 

from the Hopf ergodic theorem . [~] 

Lemma 4.5 

Let a:R+ -* R + be monotone. If Ve > 0 , m c N : 
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( 4 , 6 ) a((1-e)mt) < ma(t) < a((1+G)mt) for t large then a(t) is 

regularly varying with index 1 . 

Proof. 
A little manipulation shows that (4.6) is true for a positive 

rational number. Now suppose that A,e are positive rational numbers. 
We have : 

Aa(t) = ( H e ) ^ ) a(t) < (1 + e)a((1 + e)( TA 7)t) = (1+e)a(At) 
for t large and similarly that 

Aa(t) > (1-e)a(At) for t large . 

In other words : 

>A for A > 0 , A e 0 . 
t — 

The required regular variation of a(t) now follows from its 
morotonicity. • 

Lemma 4 . 4 

Let b_ ^ b . oo and b ^ mb as n -+ °° Vm e N . n n+ 1 mn r\ 

Then aft) = min{n>1 : b n > t} is regularly varying with index 1, 
and a u * t as t • b (t j 

Proof. 
* -

We will show ( 4 . 6 ) . It follows easily from the assumptions that : 

(i) b * jj b n . as n -* • vm e N 
lm] 

(ii) b a ( t ) > t > b a ( t ) . 1 Vt>0 where b Q = 0 

(iii) b
a (- t^ * t as t » 
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M Tt such that 
Using these, we can see that Ve > 0 , m e N » J l Q 

Vt > t Q : 

bma(t) * ( 1 - £ ) m ba(t) * ( 1 ' e ) m t • 

a i X d b["a((1 + e)mt)1- (1 + Om ba ( ( 1+e)mt) - Z ' 
m 

These inequalities yield ( 4 . 6 ) immediately- P 

Lemma 4 . 5 
<f> P 

If ~ + 1 then T is homogeneous with return sequence 

a(n), where a(t) = min{n>1 : b n>t} is regularly varying 
with index 1 , and b ^ t as t -> 00 

a(t) 

Proof. 

We first establish the regular variation of a(t), and the 

fact that b % t as t + ~. To do this, in view of the preceding a(t) 
lemma, it is sufficient to show that b n % ^ n + i a n c* ^mn °° m^n a S 

n -> 00 Vm z N . The first of these is clear. To see the second, let 

e > 0 and m e IN . Since 

<f> P 
n 

there is an n Q such that Vn > n Q : 

P ( f i a - k n [ | ^ - 1| < e] H D ^ " 1 I < e] >• 0 
k = 0 n mn 

That is : Vn > n Q 3 x e ^ such that 

( 1-e)b n < cj>n(aknx) < (1 + c)b n for 0 < k < m - 1 

and (1 -e)b < 6mry(x) < (1 + e)b w r > 
v J mn - Y m n v ^ - v J mn 

These, together with the fact that 
m -1 V 

• (x) = 7 • ( a x ) ymn^ J ^ = Q r n v ^ 
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show that 

b 
l-B^ - m| < JZJ for n > n Q 

To complete the proof of this lemma, it is now sufficient to 
show that : 

(4.7) Ve > 0 P(a((1-e)n) < <j>n < a((1 + e)n)) - 1 

(This, because of the now established regular variation of 
a(t), and lemma 4^ 2) 

In view of (4.3), we have : 

* n > a((1 + e ) n ) ^ 4 a ( ( 1 + e ) n ) - n - TT^ ba((1 +e)n) ' a " d 

* n < a((1-e)n)^ • a ( ( 1 ^ ) n ) > n > b a ( ( 1 _ £ ) n ) • 
<j> p 

The assumption ^— -> 1 thus establishes (4.7) LJ 
n 

Lemma 4.6 
Suppose T is homogeneous with return sequence {a n} . Then 

b(t) = inf{n>1:an>t} is regularly varying with index 1, ab(t) ^ t 

as t -> «>, and 
*n P , 
b(n) 

Proof. 
It is evident that : 

(i) a <v» a ^ as n •> 00 
v 1 n n+1 

(ii) a b ( t ) > t > a b ( t ) _ 1 for t > 0 where a Q = 0 , and : 

(iii) % t as t * » 

Thus, from (4.3), we have, Ve > 0 that for t large : 

• [tj > b((1 + e)t)-» * b C ( 1 + e) t) < W < TT7 ab((1 + e)t) 
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1 — e / 2 

• |Y| t b((1-e)t) *b(1.e)t) - W > "TV ab((l-Ot) 

Whence, by lemma 4.2, Ve > 0 : 

(4.8) P(b((1-e)t) < + r , < b((1+e ) t ) ) — > 1 

To prove the lemma, it is sufficient now to show the regular 

variation of b(t). As in the proof of lemma 4.5, we deduce from (4.8) 

that Ve > 0 m e N such that Vt > tQ 3 x e Q such that : 

b((1-e)t) < (akWx) < b((1 + e ) t ) for 0 < k < m - 1 

and b((1-e)mt) < * b((1+e)mt) 
mLtj 

m-1 icTtl 

Since <f> r.-i (x) = I <f> (a K L Jx), we have established (4.6) and 
m L t J k=0 [t] 

hence, the regular variation of b(t). ¡3] 

Lemmas 4.5 and 4.6 constitute the proof of theorem 4.1, as, 

the regular variations of the sequences t a

n ^
 a n d °f lemmas 

4.6 and 4.5 respectively, are established by lemmas 4.5 and 4.6 respec­

tively. 

We note that if T is both homogeneous, and weakly rationally 

ergodic (see[2]) then T satisfies a "strong L 1 ergodic theorem" on 

certain sets. Namely, if A e R(T) and B c A then 

1 N " 1 V 

A a n U J k=0 13 

This is because 

both in measure (by homogeneity) and weakly in L i(A) (by weak rational 

ergodicity) and hence : strongly in L*(A). 
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Theoreme 4.2 

If (X.&.^>T) is a homogeneous m.p.t. and y (X) = °o then : 

lim — 7 j j I f o T = 0 a.e. Vf e L a
 + . 

n+«> a
n
 1 j k = 0 

Proof. (This is an adaptation of the proof of theorem 2 of [l] ) . 

Suppose otherwise, then 3 a > 0 (a < 1) such that 

1
 n " 1 v lim i 4 - T I 1 A o T K = ay (A) a.e. VA eft (a(n) = a

n ( T ) ) -
n"°° k = 0 

Fix A eft , y(A) = 2 . Then 3 ̂  5 A > ^ (̂ ) = 1 s u c h t h a t 

( 4' 9 ) H E X R ^ V ^ * 3 - 6 > 0 Vx e ^ , n > 1 k — 0 
We now restrict attention to (fi,Q,p,a,<)>) -the return time 

stochastic process of T on ^. We will show /fi <()dP < °°, using where-

wherever possible, the proof of theorem 2 of jjj . 

Let c(t) = P(* > t) and L(t) = / J c(s) ds . 

We have by theorem 4.1 that 

<f> P 

k^~y 1 , where b(n) is regularly varying with index 1 

and b(a(n)) ^ a (b (n)) ^ n as n -y 00. 

By step 2 to the proof of theorem 2 of [1] , we have 
O O 

(4.10) I c(b(n)) < » 
n=1 

n-1 
Let b(n) = I L(b(k)). If we show that 

k=0 

n->°° 

Then (in view of the regular variation of b(n)), we have by 
step 4 of the above mentioned proof, that 
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I c(b(ri) < -

n=1 

and hence that /fl 4>dP < 00 - We establish (4.11) : 

Let £ n(x) = fcj)(x) if 4>(x) < b(n) 
f 0 else 

By (4.10), we have that for P.a.e. x e 

<|>(anx) f f (a nx) f o r o n l y finitely many n > 1 . 

In particular : 
1 V 4: k P 1 b(n) k £ Q k 

Choosing a.e.-convergent subsequences, and using Fatou's 

lemma, we see that 

n->oo v J k=0 

This establishes (4.11) because 

/ f dP < L(b(k)) • 

Corollary : If (ft, a, P, a , cj>) is an (ergodic, N-valued) stochastic process, 
• n P 

and Tp -> 1 then ^ <j> 
n E(cf)) = 00 ̂  lim T~~~ = 00 a.e. 

n^oo n 
It follows from the remarks following corol­

lary 3.5 of [3] that no odd restriction (of an inner function of R 2 + ) 

preserving an infinite measure can be homogeneous. 
The rest of this section is devoted to classifying the homo­

geneous Markov shifts. The following theorem of W. Feller will be used : 

Theorem 4.3 ([5] p. 236) 

Let ^ n ^ = 1 ^ e independent, identically distributed random 

variables (i.i.d.r.v.s) with X^ > 0 . 

Let c(t) = P(X 1 > t) and L(t) = /J c(s) ds . 
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Then : 

1 n 

3 b(n) such that ^J^J I Xfc 1 in probability iff L(t) is slowly 
k ~ 1 

varying (i.e. regularly varying with index 0) and in this case : 

b(n) ^ nL(b(n)) as n -> «> 
Let (X,^,y,T) be a c.e.m.p.t. 

We recall from [2] , that a set ft e ̂  was said to be a recur­
rent event for T if V0 = n n < n. < n 0 < . . . < n, : 

0 - 1 - 2 - k 
k -n. k 

y ( 0 T Jft) = y(ft) n u • where 
j = 1 j=l Bj" nj-1 

u n = y (ft pt T~nft)/y (ft) 

The collection of recurrent events for T is denoted by M(T), 

and T is said to admit recurrent events if M(T) f 0 . It is not hard 

to see that M(T) f 0 iff T has a Markov shift factor, and that if 

(ft a,<|>) is the return time stochastic process of T on ft e M(T) 

then 

{* o a11} are i.i.d.r.v.s and 
O O C O 

(4.12) I u A n = ((1-A) y W 1 

n=0 n n=0 n 

where u = y ^ n T ^ and c = P(cf> > n) 
n y(ft) n 

It was shown in [ 2 ] that if 3 Q z M ( T ) t h e n T i s ^ation-
nally ergodic (hence by theorem 1.1 weakly homogeneous), and that 
1 n 

J u v is a return sequence for T . 
y(ft) k=0 K 

Now suppose that T is a c.e.m.p.t. and that ft e M(T), 

y(ft) - 1 . The equation (4.12) implies, through Karamata's Tauberian 

theorem (see [5] and [l oj ) that 
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J, u v is regularly varying with index 1 iff 

k=0 K 

n 
L(n) = J. c v is slowly varying, 

k=0 K 

Thus, if T is homogeneous, then L(n) is slowly varying ; 

and, by Feller's theorem, if Lfn) is slowly varying, then 

(ft,3.,P,a,(f)) satisfies a W.L.L.N. 

We have proved 

Theorem 4.4 

If T is a c.e.m.p.t. and M(T) f 0 , then T is homogeneous 

iff a

n C O is regularly varying with index 1. 
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