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A BASIC COURSE ON GENERAL STOCHASTIC INTEGRATION

INTRODUCTION

This course on the stochastic integral
is “self—contained" ; exXcept in paragraph J, the
details of all proofs are given. The reader is
expected to have a knowledge of classical measure
theory aﬁd specially the properties of the space LZ'
the properties of the conditionnal expectations
and some properties of equi-integrable families
of random variables. Of course, the understanding
is easier for the reader already familiar with the
classical study of elementary processes, in parti-

cular the brownian motion.

It is often possible to read a paragraph
without knowing the previous paragraphs ; more

precisely, the planning ié as follows :

|
NN,

In other words, knowing the paragraphs
A and E, one can read the paragraph G (for

example) .

An extensive table of contents is given

atthe end of this course.

In this course, we are specially concerned

with the "hard" parts of theorems ; some easier facts

and elementary counterexamples are given in exercises

at the end ; some of these exercises are

fundamental , specially all the exercises on the
brownian motion (C.1, 2, 3, 4) but are not used

in the course.

In paragraph A, we give elementary
definitions and properties from the theory of sto-
chastic processes as studied in [Dei] (stochastic

basis, stopping time, predictable set, etc...)

The stochastic integral is defined in

paragraph B for a very large class of processes.

The Ito formula is proved in paragraph
C for non continuous processes with values in a

Hilbert space.

The existence and unicity o§ a "strong"
solution of the stochastic differential equation
dxt = a(t,X) dzt is proved when a depends on the whole past
history of the process X and is lipchitzian ; the
proof is based on the fixed point theorem ,-the
process Z being assumed to satisfy an inequality, which,
in paragraph G, turns out to be fulfiled for a very
large class of processes : actually, all the real

semi-martingales.

The definitions and classical properties associated

with martingales and Doleans functions are given in
paragraph E : in particular, we give c¢onditions for the exis-
tence of a Doléans measure, we prove the Doob theorem

on the existence of a "cadlag" modification for some
processes, the "stopping" theorem for martingales or

Doléans measures and the Doob inequality for square
integrable martingale ; we also study the stochastic

integral with respect to a square integrable martingale.

The Meyer process associated with a Doléans

measure is constructed in paragraph F.

A new inequality for semi-martingales is

proved in paragraph G.

The Burkholder inequalities are proved in

paragraph H and a new inequality is also given.

For convenience of notation, there is no

paragraph I.

In the paragraph J, the stochastic integral
is defined and studied as a classical integral with

respect to a group-valued, or vector-valued, measure.

Some exercises are given and naturally
exercises A.1, A.2, etc ... are related to paragraph A

B.1, B.2 ... to paragraph B, and so on.

Some bibliographical notes are given immediately

prior to the bibliography and the table of contents.






A - STOCHASTIC BASIS

A-1. STOCHASTIC BASIS DEFIWITION

Let T be a part of the real line. We
shall call stochastic basisa family (Q,'g, gt)tET)
such that (Q,@) is a measurable space and g’) )

t teT
is an increasing family of sub-0-algebras of .
If (Q,g,,P) is a probability space, we shall call
the family (Q,(y;P, (‘gt)ter) a probabilized sto-
chastic bas”s or, only, a eiochastic basis

In the following, T is always the unit

interval [0,11 of the real line or ntl the set
IN U{=} where N is the set of the integers. We
shall note T' = T\0} and Q' = OQxT'. Moreover we
shall note Tw the supremum of the elements of T.
Intuitively, { is the space of all the "possible
events" and G’-t is the O-algebra generated by the

events realized before the time t. It is often

bet'er to forget this point of view.

In all the paragraph A, we consider a

probabilized stochastic basis (8, g ,P, (gt)t ET) .

We shall say that this basisis complete
if the space (Sl,gg,P) is a complete probability
space and if, for each element A of @: such that
P(A) = 0 and for each element t of T, A is an

element of (-Ft.

For each element t of T, we note

§t+ = Qo §t+€ and we shall say that the family
(@t)teT is right continuous if (;t = §t+ for each

element t of T.

If H is a Banach space (with its O-alge-
bra x of borelian sets), we note LOH(Q,@t,P) the
complete metric space for the convergence in proba-
bility which contains all the H-valued glt—measu—

rable random variables.

A-2. STOPPING TIME AND NOTATION gu

Let u be a measurable mapping from (Q,:F’)
into (T,@), where e is the ¢-algebra of

borelian sets. One says that u is a stopping time

if, for each element t of T, the set {w:u(w)st}
belongs to the O-algebra ’5—t.

If u and v are two stopping times, it
is easily seen that uVv and uNv are also stop~

ping times.
1f u is a stopping time, one notes gu

the O-algebra definad by :

‘;u ={a:2€Fana, Veer,anluct]) & ';t}

If s belongs to T and if u = s (for each w), we
see that (;u = l;s (then there is no possible

confusion in the notations).

A-3. STOCHASTIC INTERVAL

Let u and v be two stopping times ; one

notes ]u,vJ the part of ({xT) defined by

(w,t) &]u,v] if and only if u (W) <tV (w)

One defines [u,v[,... in the same way.

Such sets are called stochastic intervals.

Then, there is an ambiguous notation,
but, in the general case, there is no possible
confusion : if u=s and v=t are two "fixed" stop-~
ping times, the set ]u,v] = ]s,t:[ can be a part

of T or a part of (§XT) as above.

A-4., PROCESS {definitions) AND FRENCH NOTATION

CADLAG

The word "process" has several different

meanings in probability theory.

If (H,‘g) is a measurable space, we
shall say that X is an H-valued process if X is
an H-valued mapping defined on ({xT). On the
contrary, we shall say that X is a "process defi-
ned up to modlflcat;on if X = (Xt)tET is a
mapping from T into Lo (Q,‘y,P).

If X and X' are two processes, we shall
say that X' is a modification of X if, for each

element t of T, Xt = X‘t a.e.

Let H be a topological space. Let f be
an H-valued function defined on T. We shall say
that f is a cadlag function if, for each element
t of T, f is right continuous and with left limit
(in french, f est continue a droite et admet une

limite & gauche).

Let X be an H-valued process ; we shall
say that X is a cadlag process if, for each ele~

ment w of Q, the sarple funmetion tes £(t) = % _(w) is
v t



cadlag as defined above.

We shall use also the notations caglad
(left continuous and with right limit), laglad
(with left and right limit), and so on....

In the same way, we shall say that a
process X is continuous if, for each element w of Q,

the sample function t~sf(t) = xt(m) is continuous.

One says that two processes X and X' are
indistinguishable if P({w : Jt, X (@ # X' @h=0.
Actually, in the following, we consider

processes defined up to indistinguishability.

If X is a cadlag process, one notes
(X, )

= (¥
t-"tEeT ( t)teT
unique up to an indistinguishability, such that

the caglad process,

Y, = lim. X _for each element t of T.
t stt s

Moreover, if X and Y are two cadlag

processes such that X is a modification of Y,

then X and Y are indistinguishable (we have

X
i

X

£ (w) = Yt (w) for each element t of T except
f there is a rationnal number g such that

(w) Y (w)).
q d q )

A-5. PREDICTABLE SETS ; NOTATIONS :R’ ,‘mand ?

We shall note .(R the family of parts A
of @' = QxT' such that A = F X]s,t] where F belongs
to [\;S. We shall note (t the algebra generated by
\{R . We shall note {P the O-algebra generated by
@ (oxr %’) : the elements of this g-algebra are
called the predictable sets. One says that an
=,'W) -valued process is predictable if this pro-
cess is measurable relative to @ and \be

A~6. DECOMPOSITION OF EACH ELEMENT OF @ (lemma)

If A is an element of & , there exists
a finite family (Ai) of elements off_e, which

18 a partition of A.

1€I

Proof

Let 9&' be the class of all the elements
A of 66’ such that there exists a finite family

(Ai)ie 1 of elements of & which is a partition
of A. To prove that @ - (t', it is sufficient to
prove that Lt' is an algebra. For that, it is suf-
ficient to prove that, if A and B are elements of
df', it isnthe same for ANB. Then, we suppose

where (B,)

that B = i\:1 Bi 1) 1<icn is a finite

family of elements of 3 . We define Ci, by recur-

rence, by C, = A and C,

1 i+l

en+1 = AN\ B. Reasonning by recurrence, it is suf-

ficient to prove that, if D is an element of J",

= C,~B,. We have
i i

it is the same for D\Bi ; it is sufficient to
prove that if D is an element of @ and that is

easy to verify.

a-7. & AND THE STOCHASTIC INTERVALS Ju,v] (lemma)

The algebra ® isidentical to the algebra
7 generated by the stochastic intervals ]u,u]
where u and v are simplestopping times (f.e. the
number of elements of u(Q) and v(Q) is finitel).

Proof

1°) First, we prove 086@ It is sufficient to
prove that, if B = F X]s,t] is an element of @,
then B is also an element of (l‘ ; but B = ]u,v],
where u are v are the stopping times defined by
viw) =t (V) and u(w) = t if w & (A\F) and u(w)=s
if w € F.

2°) Now, we prove :Z'-c lt’ Let u be a simple stop-
ping time. Then, there exists a finite increasing
of elements of T and an asso-

1<k&n
(F(k)) of elements of @

sequence (t(k))
ciated sequence

such that :

1<k&n

a) for' each integer k, F(k) belongs to ?’t(k)

b) (F(k))léksn is a partition of Q
n

c)u= I t(k).1
k=1 F (k)

Then we put B_ = (F(k) x]t(k),1]) (for

k
each integer k) and (Bk)lﬂkﬂn

]u,l] . That proves that ]u,l] is an element of tz’

is a partition of

and completes the proof.

A-8. ADAPTED PROCESS

One says that a process X or a process
X defined wp to a modification is adapted (with
respect to the stochastic basis (ﬂ,?’,P( gt)th))
if, for each element t of T, the random variable
X t( .J) is

t-measurable .

Let u be a T-valued function defined on
@ and measurable relative to ¥ and 6. It is
easily seen that the definitions imply that u is
a stopping time if and only if the process

X = 1[0,1.1[ is adapted.

A-3. AN EXAMPLE OF STOPPING TIME (lemma)

. Let X be an
H-valued adapted process, right or léft comtinuous.

Let H be a Banach space

Let u be a stopping time and a be a real number.
For each element w of Q, we put :

viw) = inf.;t : teT, taulw), | |Xt(m)—Xu(w)(w)||> a z



and v(w) = Tw= Sup. t <f the set above is empty.

teT
Then v 18 a stopping time with respect to the fa-
mily (§t+)te.‘l' .
Proof

It is sufficient to consider the case
where T = [0,1]. In this case, let Q' be the set
of rational numbers belonging to T and let

(S(n))n>° be a sequence of finite parts of Q'
inc.reasing to Q'. We put :

] =1 . v - >
vi@=inf. § t s teQ o), |[x WX, o @ ][> ]

v @=inf. § t : tesm), 3w,k @-=x w]l>a}

(with the convention v'(w) =1 or vn(u)) =1 if the

sets above are empty).

It is easily seen that, for each element

wof R, v'(w) = v(w) and v'(w) = inf. vn(w). It is
. n>o

also easily seen that, for each integer n, vr1 is

a stopping time. Then, we have only to prove that

the limit v of a decreasing sequence (v(n))n>c> of

stopping times is a stopping time for the family

Ferer -

Let t be an element of T ; we put :
1
A ={w: v(w) >t} and A(n,k) ={w: vn(m) >t 4 }

We have A = U {MN\ A(n,k)}. Moreover, the set

k>0 n>0

N 3 ; thus A belongs to

A(n,k) belongs to +1/k hus elong
n>0
G’( £ h integer k ; then A belongs to?‘_

t+1/k or each intege H e g t+
and that proves that v is a stopping time with
- @

respect to- the family ‘Q t+)t€'1‘

A-10. STOPPED PROCESS AND LOCALIZATION (definitions)

Let u be a T-valued random variable defined on (Q:ﬁ)

and X be a process. Let Z be the process defined by
Zt(w) = Xt(w) if t € u{w)

Zt(w) = Xu(u)) (W) if t 3 u(w)

On says that 2 is the process stopped at the ran-
dom variable u. If u is a stopping time and if X is
an adapted process, it is easily seen that Z is

also an adapted process.

Let X be a process. It is often useful
to consider an increasing sequence (u(n))n>° of

stopping times such that 1lim P[u(n) < 1] =0
n-e
and to consider the processes Xn which are the

process X stopped at the stopping time u(n). This
procedure is called localization. In this situa-
tion, one says that X is locally bounded, locally
measurable, etc... if each process X" (which is
the process X stopped at the stopping time u(n))

is bounded, measurable, etc...

A-11. PREDICTABLE SETS ASSOCIATED TQ THE FAMILY

(gt+) (proposition)

The o-algebra B of the predictable sets

assoctated to the family ('3{ t) €T
the o~-algebra @ of the predictable sets associa-

ted to the family (?;+)té’l’ .

18 the same than

Proof

+ m
we have 35 . Moreover, if H is an

1
element of ’;SJ(, we have Hx]s,t] =]:: (HX]s-l--}-(- £])
o
where, for each integer k, I—I><]s+l ,t] is an ele-

k
ment of @. Then ?+C?

A-12. LEFT CONTINUOUS PROCESS AND PREDICTABLE

PROCESS (proposition)

Let H be a Banach space ; let X be an
H-valued caglad adapted process ; then X is a
predictable process. Specially, if u is a stopping
time, the real process 1 78 a predictable
Jo,u]

process.

Proof

°) W R ;
1°) We can assume that the family (gt)téT is
right continuous (cf. A-11 above). Moreover, it is

sufficient to consider the case where T = [0,1].

2°) First, we consider the case where X = Y-llu'ﬂ
u being a stopping time and Y being an @"u—measu—
rable random variable. Then, for each integer n,
we put :

a(n) = I k.27% .

o Mk 2 u< k1) 277

We have u(n) ¥+ u ; thus X = lim. Y.1] 1] ;
oo oo u(n),

now, for each integer n, Y.l]u is a predic~-

(n),1]

table process (this is easily seen as in A-7 abo-

ve) ; then X is also a predictable process.

3°) Let u and v be two stopping times and Y be an
u-measurable random variable. Then the process

X=1Y.1 is a predictable process because
Ju.v]

X = Y'lju,l] - Y'l]v,IJ (cf. 2°) above).

4°) Now we consider the general case.For each
integer n, let (u(n,k))k>o be the increasing
sequence of stopping times {(cf. A-9)) defined by

recurrence by u(n,o0) = 0 and

uln,rt) = infode s eauln,k), | |xx, o k)]|>% !

(and u(n,k+1) = Tw if the set above is empty).



For each element & of £, the function
t,\.,Xt (w) is caglad; thus, it is
classical and not too difficult to prove that,

for each integer n, there exists an integer

k(n,w) such that u(n,k(n,w)) = 1. That
means that, for each integer n, the
sequence of the sets (u(n,k) < 1) k>0

is decreasing to the void set ; then

we can put :

n

= I X A
75 T+ Tumm sain k]
Moreover, x" is a predictable process (see 2°)
n
above) and the sequence (X )n>O converges

uniformly to the process X ; thus X is a

predictable process.

A-13. PRELOCALIZATION

Let u be a stopping time and X be a
cadlag process ; let X" be the process defined

by :

xltl(w) = xt(w) if t < u(w)
u .
Xt(w) = xu(w)_(w) if ot 3 uw

We shall say that Xu is the process X
stopped just before the stopping time u. If X is
adapted, it is the same for Xu. As in A-10, it is
often convenient to consider a sequence (u(n))n>o

u(n))

of stopping times and the sequence (X of

n>o
associated processes. We shall call this procedure
prelocalization. If, for each integer n, Xu(n)
bounded, continuous, etc.... we shall say that X

is prelocally bounded, continuous, etc....

A-14. PREDICTABLE STOPPING TIME (definition)

Let u be a stopping time. One says
that u is predictable i1f there exists a sequence
(u(n))n>o of stopping times increasing to u
and such that, for each integer n, and each

element w of 9,

@] W < uw

In this case, ]o,u[ =

U Jo,um]
n>o

is a predictable set.

B - STOCHASTIC INTEGRAL

B-1. GENERALITIES

In all this paragraph B, we consider a
P F O
(cf. A-1), three Banach spaces H, J and K and a

probabilized stochastic basis(Q,{g

bilinear mapping from (HxJ)} into K which, to (y,x)
element of HxJ, associates y.x element of K. The
norms in H,J and K will be noted ]].[|H f Il.l]J
and ||.IIK respectively. Moreover, for the conve-
nience of notations, we shall suppose that

T = [0,1].

What ig the problem of the stochastic integral ?

Let Y be an H-valued process (usually Y is a pre-
dictable process) and X be a J-valued process
defined up to

modification ; then, the problem

is :

1°) to define, for each element t of T, the random
t

variable Zt = J Ys . dX f Z]O,t](S)'Ys . dXs

6 "
¢

2°) to study the process (Z,)

drer thus defined up
to

modi fication.

Actually, one considers processes X which
have a cadlag modification ; we shall note also X
this cadlag modification, defined up to indis-
tinguishability. Then, it is natural to define
Zt(w) as the usual integral of the H-valued sample
function s fQ-YS(m) with respect to the "measure”

dXs(m) (w being fixed).

Actually, this building is not possible

in the general case ; indeed, for many processes,

specially the real brownian motion, for each ele-

ment ©w of I, the sample function t ~ f(t) xt(w)
is not with bounded variation ; then, dxt(w)

(w being fixed) does not define a measure.

The building that we give now is not the

more general, but it is very elementary.

B-2. A-SIMPLE PROCESSES ; NOTATION & (H)

We shall note 5 (H) the vector space of

the H-valued and dy+simple processes, i.e. the

processes ¥ such that Y = [ a, . 1_,. where
. i A(1)
i€l
(a,). is a finite family of elements of H and
i‘iel
{(A(i)), is a finite associated family of elements

iel
of d?.



We can assume that, in the previous writ-

ing, the sets (A(i)),

ier are disjoint and belong
to B (c£. a-6).

In this case, we can build the stochas-
tic integral as suggested above ; for each element

w of {, we can define

zt(w) = J llolt](s).Ys(w).dXS(w) if X is a cad-

lag process ; if X is defined up to modification,

it is the same for the process 2.

Then, the stochastic integral j Y
]o,l]

is the linear mapping defined on g(H) , with values

in LOK(Q,G,P) , such that, for each element

A= FX]s,t] of ® and each element a of H, if

Y = a.i_ , we have :

A

f Y.&X = J a.iA.dX = 1F .a .(Xt—XS)

The probiem is to extend the mapping
Y~»| Y.dX to a larger class of processes

than the class of the (78’—simple processes.
For the convenience of notations, we write

J Y.dX instead of J Y.dX = J dx .

]O’ﬂy.

Q'

B-3. A FIRST EXTENSION

Let X be a J-valued process, defined up
to a modification, which satisfies the following

property :

(1) there exists a positive measurea defined on the
o-algebra of predictable sets and such that,
for each H-valued and ' 4 -simple process ¥,
we have : k

2 2
P (njy.dqu) < [ el . da

In this case, the mapping Y"'>J Y.dx
defined on & (H) and with values in Ly (@, % ,p)
is uniformly continuous if we consider f(H) as
a subspace of Li(ﬂ',@,a) ; then, there is anuni-
que extension of this mapping in a linear continuous
mapping from Lg (Q,g),a) into L}; (Q,@,P) (the
space G(H) being dense in LI;(Q' ,@,a)) . The image
of a process Y belonging to Lg(ﬂ',?,a) by this
mapping will be noted Y.dX and will be called
the stochastie integral of the process Y with

respect to the process X.

B~4. THE STOCHASTIC INTEGRAL PROCESS

Let X be a process which satisfies the

condition B-3-(i). Let Y be a process which be-
K
longs to L2 (Q',(Sb,a). For each element t of T,

we can define the random variable Zt by :

Zt = J 1]0,€].Y.dx

Then, the process Zisdefined up to modification,
and is called the stochastic integral process of

Y with respect to X.

B~5. DOMINATED CONVERGENCE THEOREM

We consider the hypothesis and notations
given in B-1, B-2 and B-3. Moreover, we suppose
that the family (F)

t teT
basis (Q,K:,P,(yt)tﬁT) is complete and that X is a

is right continuous, the

cadlag adapted process. Let (Yn)n a sequence of

>0
J&simple processes such that, for each integer n,

J HY-—YnH; .da ¢ 87

For each integer n, let z" be the cadlag process
defined b Zn = 1 Yy .ax ; z° can be select
4 t ]0 ,t] ““n” !

. n .,
cadlag because X is a cadlag process and Y 1is an
. n X
m-s.unple process ; thus 2 is unique up to an

indistinguishability. For each integer n, we put :

= inf.$ . zn_zn+1 s> o7R
u(n) inf. } t H e 2 | ]K 2 $
and u(n) =1 if the set above is void.

Let G(n) be the set defined by
em =tw: fam]w <1

For each simple stopping time v, we have

E(]]zs—z:HHi) = 5(]| J 1]°,v1.(Y:-Y3+1).dX||2)
< J 1]0"’1.||y":—y§+1[[}21 . da < 2.87"

Then we have the same inequality for a general
stopping time (such a stopping time being the
decreasing limit of a sequence of simple stopping
times : cf. the end of the proof of A-9). Thus,
this inequality is satisfied for v = u(n) and we
have :

n

2.8 > e(||2®, ~z™! ()12

-n
am Zam e %4 .plc(n]

Then P[G(n)] ¢ 2.2”" and P(@) =0 if

G= N 3 Y G(n)s . Thus, if u)¢G, there exists
k>0 n2k
an integer k such that, for each integer n 3 kK,
n__n+l

sup ||z -2
t

t 2t I < 2"" . This means that, for each

n ;
element w of 2\ G, the sequence (zt(w))n>o is a



Cauchy sequence which converges uniformly to a
function zt(w) ; the process Z is a modification

of the process Z. Then, we have proved :

If X has a modification which is a cadlag adapted

process, 1t is the same for the process Z.

Actually, we have proved more than that :
let X be a cadlag process which satisfies the pro-

perty B-3.(i). Let (Yn)n be a sequence of H-valued

>0
processes which converges to Y in the following
sense : for each integer n, f|]Y—Yn||§.da <g"
For each integer n, let z" be a cadlag process
which is a modification of the stochastic integral

process fYn.dX ; we can prove as above that :

the sequence (Zn)n converges almost uniformly to

>0
a cadlag process which is a modification of the

stochastic integral process 2z = fY.dX.

We note that, if (Y )
n'n>o

which converges to Y as in the dominated convergence

is a sequence

theorem, there exists a sub-sequence (Y )
n(k) k>o
which converges as above ; thus the sub-sequence
7 ;
( n(k))k>o of the cadlag stochastic integral
processes associated converges almost uniformly to

the cadlag stochastic integral process z =J Y.dXx.

This theorem is very useful to prove many

properties. We give some examples :

If X has a modification which is a continuous
(or predictable, etc...) process, it is the same

for the stochastic integral process I Y.dx.

If u is a T-valued random variable, the stochas-
tic integral process stopped at u is the same as
the process stochastic integral of Y with respect

to the process X stopped at u.

If u is a T-valued random variable, we have

Z -7 =Y .(X-X ) 1if z is the cadlag stochas~
u  u- u- u  u-

tic integral process J Y.dX and if X is a cadlag

adapted process.

All these properties are obvious if Y is
an (z'—simple process ; they are true in the gene-
ral case by the dominated convergence theorem

above.

B-6. A SECOND EXTENSION

We consider the hypothesis and notations
given in B-1 and B-2. Moreover, we suppose that
theve exists a real positive fimite increasing
adapted cadlag process A such that the following

property is fulfiled :

(1) for each H-valued a'é’—simple process Y and for

each stopping time u,

2
E} [[J rodr-y, . (x,-x )|l o
0,u

< mu_;J [”’tﬂﬁ a,l)

Josu

Then, we can define the stochastic integral J Y.dx
for each H-valued predictable bounded process Y
in the following way :

Let u be a stopping time such that

Sup .(A ) < +® . We note x" the process defined
[A139)

by :
u
X" =X .1
[o,u[
For each H-valued %—simple process Y, we
have :
u
j Y.dX = J Y.dx - ¥ .(X-X )
u- U u-
]o,u]
Then, we can define the stochastic inte-
u u .
gral Zt = J] ]Y.dX and the cadlag stochastic
o,u

integral process 7% = j v.ax? as in B.4 and B.5 for

each H-valued bounded predictable process Y. More-
over, if u and v are two stopping times such that
Sup (A ) + Sup

wER u we u v
tic integral processes 2  and Z are indistingui-

(A_) < 4o, the cadlag stochas-

shable on the stochastic interval [o,uAv[ (this
is obvious if Y is an d’—simple process and is
true in the general case by the dominated conver-

gence theorem above).

Then, we consider a fixed H-valued

bounded predictable process Y and the sequence

(u(n))n>o of stopping times defined by :
= j s . > !
u(n) 1nf.¢ t: At n .
(and u(n) =1 if the set above is void).

We have lim
nreo

P [u(n) < 1] =0 because the

process A is a finite cadlag process. Moreover,

Sup. [Au(n)-l € n. Let Zu(n) be the cadlag stochas-
[AY3Y]
tic integral process Y.dxu(n) defined, as above,

up to indistinguishability. Let Z be the process

defined up to indistinguishability by

_ .u(n)
Z'i[o,u(n)r__ z '1[0,\1(11)[

and Z -2 =Y .(Xl-x

171~ 1- e

1-

Let B be a process which satisfies all

the properties of the process A. Let v be a stop-
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ping time such that S\:S (Bv_) < +%, We can build

w
2V with the help of the process B. Then, we can see
) v
. =2 .1 .e.
as above that Z 1[o,v[ [0"’[ a.e
Then the process Z, defined up to indis-
tinguishability, depends only on the processes Y
and X ;
We shall call it the cadlag stochastic integral

it does not depend on the process A ;

process of the process Y with respect to the

process X.

B.7. REMARK

We shall see after that there exists a
process A fulfiling the condition B-6~(i) for a
very large class of processes X (specially the class
of all semi-martingales in the finite-dimensicnal

case) .

Now, we can see that the class of processes
X for which tehre exists a process A fulfiling the
condition B-6-(i) is a vector space and contained
all the cadlag processes of finite variation (by the
Cauchy-Schwartz inequality ‘applied for each sample

function).

B.8 - OPTIONNAL SET AND PROCESS (definitions)

Let @ be the
stochastic intervalls ]O,u[ s for all the stopping

0- algebra generated by the

times u. This o-algebra is called the o-~algebra of
the optionnal sets. One says that X is an optionnal
process if X is measurable with respect to this

o-algebra @.

Of course, the ¢-algebra % of the predic-
table sets is contained in the g-algebra (% of the

< 1
optionnal sets (because __[o,u] =N ]o,u + ;[) .
n>o
Conversely, let®' be ag-algebra such that 4 is

contained in &' and such that, for each stopping
time u, [u] belongs to @', then & is contained in
[ A

B.9 - RIGHT CONTINUOUS AND OPTIONNAL PROCESS

(proposition)

Let H be a Banach space ; let X be an
H-valued adapted cadlag process ; then X is an option—

(F..)

nal process with respect to the family 1+t er

Proof

1°/ At first, we prove that Y = X .1 is an option-
/ »ve P w1 ption
nal process if u is a stopping time ; X being
adapted, X is an ‘(u—measurable random variable,
thus it is sufficient to consider the case where

X“1 is an‘(u—simple random variable. Thus, we can

suppose that :

X = I a,.1_ .
u jer * F(i})

with, for each element i of I, a; € H and F(i) €@/u i

in this case, Y= I a,.1 ... .1 ; if we put
i€t i "F(i) [u,l[
u(i) = u if w€ F(i) and u(i) =1 if w & F(i)}, we
Y= I .
have e ai 1Eu(i) ’1[: and that proves that Y

is an optionnal process (u(i) being a stopping time

for each element i of I).

2°/ Now, we consider the general case. For each integer
n> 0, let (u(n,k))k>o be the sequence of stopping

times (with respect to the family (({ )

t+'terT ’
cf. A.9) defined by u(n,0) = O and :
1
+1)=in€{t:t> - >
a(n,k+1)=inf{t:t u(n,k),”Xt X (0,K) H - }

n
Let X be th defined =X
e process defined by X‘; a0,k

for u(n,k) € t <u(n,k+1). The process X" is well

defined because [u(n,k) < 1:[ v ¢ and it is optionnal
k>

(cf. the 1°/ above) ; but the sequence ~(Xn)n converges

>0

uniformly to the process X ; thus X is an optionnal

process.

B.10 - STOCHASTIC INTEGRAL WITH RESPECT TO A CONTINUOUS

PROCESS (proposition)
Let X be a Banach space valued continuous
process which satisfies the properties given in B.6, the

process A, considered in B.6, being continuous.

Let (u(n))n>o be the sequence of stopping times

defined by u(n) = inf. {t : A, > n } . For each integer

t
n, let a_ be the measure defined on (Q', FoP ) by
' Bl
a (B) = E{ J 1,08 .dAt}

]o,u(n)]

By the Fubini theorem, a is a finite positive
measure ; let an be the restriction of én to the
o-algebra (@ of the optionnal sets ; for each stopping

time u, we have :

én( [u])

an([u]) =0

Then, the adherence of ‘2 (H) (cf. B.2} in
H
LZ(Q' ,O‘,an) contained all the uniformly bounded option-

nal processes (cf. the end of B.8).

Then, ©f ¥ is a uniformly bounded optiomnal
process, it is possible to define the stochastic inte-
gral process 7 = f Y.dX ezxactly as in B.6 ; moreover

Z 18 a continuous process.



C - ITO FORMILA

C.1 - INTRODUCTION

Wwe put T = [0,1].
Let X and £ two real functions, X being defi—
ned on T and f being defined on the real line. Under

the adequate hypothesis, we have
d £(xX) = f£%X) aX

and this formula is fundamental for all calculations
in differential equations. This formula can be also

written more precisely

£(X)-£(X ) = J[ £10x). ax_

o,t

Now, we consider the case where X is a real
continuous process, f being a real function defined on
the real line ; then, in general, we have not the pre-

vious equalities, but we have
AE(X) = £'(X) d X + % £7(X) d <x>

or, more precisely :

. 1 "
f(Xt) - f(XO) = J f (Xs) dxs + 5—f £ (Xs) d<X>S
o,t o,t

.

where <X> is an increasing process associated to the
quadratic variation of X. This equality is called the
ITO FORMULA : it was proved for the first time for the

brownian motion in [Ito].

Of course, this formula is fundamental for all calcula-

tions in differential stochastic equations.

Before proving this formula, we give the fun~
damental idea of the proof.

If X is a function, let us recall a proof of
the equality given above :
if (t(k)) is an increasing sequence of times

1<kgn
such that t1=0 and tn=t, we have :

n-1

EX)-E(X) = k£1 8 e ey - K 3]
n-1 n-1
= 51 £ %) Begean Xeaod * k§1 Ry
Now, if Sup [t(k+1) - t(k)] goes to zero, for some
k

functions f and X, the first sum converges to

J f'(XS).dXS and the second sum converges to zero.
o,t

Now, if X is a process, in general, the second
n-1
sum z R, does not go to zero.
k=1

Then, we use the Taylor formula and we have :



n-1
£(x) ~ £(x) = k£1 £ X g Ee ) Feaod
1 n-1 P n-1 *
2 k£1 £ X g0 Begany Xegod kzl &

For some functions f and for some processes X, when

Sup [t(k+1) - t(k)] goes to zero, the first sum
k

converges to the stochastic integral

£ (Xs_) . dxs , the second sum converges to

J:[o,tJ
L f f"(xX_ ). d <xX> and the third sum converges
2 ]o t] s- s

.
to zero.

We shall prove the Ito formula for processes
with values in a separable Hilbert space H. In our
context, to suppose that H is separable is not a
restriction ; moreover, it is not more difficult to
prove the Ito formula when H is an Hilbert space
that when H is a finite-dimensionnal vector space.
It is also possible to prove this formula when H

is a Banach space (cf. [Gr P]) .

In the following, {hn)n will be an orthogo-

>0
nal base of H. Moreover, as in the previous para-
graphs, we shall consider a probabilized stochastic

basis( ’g-’ P, (ft)teT) and we shall suppose

that this basis is complete and right continuous
(ef. A-1). We shall suppose also that T = [O, 1].

C.2 - TENSOR PRODUCT AND HILBERT-SCHMIDT NORM :

We shall note HQ® H the tensor product of H
by itself. If x and y are two elements of H, we

shall note x @ y the tensor product of x and y.

RN
If x = y, we shall note x @ x = x .

Let (Xi'y')' bea finite family of pairs

i'ieg1

of elements of H ; let z = ) X ] y; be the
iel

element of H® H associated to this family.

We consider also similarly z' = ] x!@®@y!
. J J
j€JI

If we put

<z,z'> = z z <xi,x3>,<yi,y5>

i€1 jE€J

this defines a scalar product on H @ H.
We shall note H é H the space HQ® H completed for
the topology associated to this scalar product ;
the norm on H é H associated to this scalar pro-

duct is called the Hilbert-Schmidt norm and will be

noted II ] IH g." With the canonic extension of the

scalar product defined above, H 6 H is a separable

Hilbert : i
ilbert space : more precisely, (hn® hm)n>0,n>o

Fal
is a base of H@Q H. If x and y are two elements

of H, we have :
lx &yl o= Hxll,- vl

At last, the mapping (x,y) ~» x @y from (H X H)

into (H @ H) is a continuous bilinear mapping.

All the previous properties are well-known
and easy to prove. Let us recall also that, if H
is finite dimensionnal, H® H = H §H is isomorphic
to the space of all d x d matrix
let (hn)lgngd
(Xi'yi)iel be a fénite family of pairs of elements

of H, with x, = z X,
i i,n
n=1

: more precisely,

be an orthonormal base of H,

a
h = .
n and ¥y nzl Yi,n hn’

and (Xl,Yl) be the pairs of matrix defined by

i [*ia i ¥i1
xm=f and Y = :l' then the one-to-one
*i,a Yi,q

mapping which associates the d x d matrix

(CF % Ly, 0., = o xah
i€r 3 TREIk o

€7 %, [ y;) of H @ H is an isomorphism from H © H
i€r

into the vector space of all d X d matrix.

For the convenience of the reader, we shall

explicit the Ito formula when H is finite dimen-

sionnal in C-8 after.

C.3 - QUADRATIC VARIATION :

Let X be an H-valued cadlag process. We shall
call the quadratic variation of X the positive in-
creasing right continuous process D defined (up to

an indistinguishability) by :

Dt = lim.sup

Ny

2
Tollx n,, = X, on o, |7 a.e.
¥50 (k+1).2 "At k.2 " At

For each pair (s,t) of elements of T with
s < t and Dt < +® a.e., we have :

2
Dt_Ds = lim.sup kzo Hx(k+1)2_nAtVs - Xk.Z_n/\tVsH

n-w

We shall say that the process X is of finite

quadratic variation if D1 < +%° a.e.

to the element
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The set of the processes which are of finite
quadratic variation is clearly a vector space. More-

over, if X is a cadlag process of finite variation,

Then the processes S, Q, V and C are well defined,
adapted, cadlag, of finite variation and C is conti-

~
nuous ( (H @ H) being with its Hilbert-Schmidt norm).

then X is also a process of finite quadratic varia-
Moreover, we have the Ito formula :

tion.
C.4 - DIFFERENTIAL (CONVENTIONS) : fix) - fix) = att) *J oy frx, ).dx,
>

Let H and K be two Hilbert spaces, f be a - % sﬁt f"{Xs_) (X~ Xs-) ®2, %J 0.t f"(xs-)°dvs
K-valued function defined on H and twice differen-
tiable. We shall note f' and f" the first and =Q(t) +[ f’(Xs—)°dXs + % I ,f"{Xs)-dcs
second differential respectively : the second ot ot
differential will be considered as a K-valued
linear mapping defined on H 6 H ; if (x,y) is an
element of (H, H 3 H), we shall note [ “(x)] (y) M

the value of this second differential considered at

The proocf h t arts ; in the first part
the point x and applied to the vector y. proo as two p ! p

(C-6), we study the processes S, @, V and C ; in the

second one (C-7), we prove the Ito formula.

Before, we remark that :
C.5 - ITO FORMULA :

a) we can suppose that the family ({t)te,r is right

Let X be a cadlag process, adapted to the continuous (cf. a-11).

complete stochastic basis(Q, @?7, P, (gt)t GT)

and with values in the separable Hilbert space H.

b) by prelocalization {(cf. A-13), we can suppose

that the quadratic varation D of X is uniformly

We suppose that X is of finite quadratic varia- bounded by the real number d and the norm of the

tion D. Moreover, we suppose that there exists process X is uniformly bounded by the real number a.

a positive increasing right continuous adapted
process A such that (ef. B-6) ]
C.6 - THE PROCESSES S, Q, V AND C

(7) for each Hilbert space K, for each Now, we prove the first part of C.5.

b%-simple process Y with values in ot(H,K),
1°/ s and Q are well defined.

for each stopping time u, we have :
For almost all the elements w of £, we have
E{]| v.ax||?} < B4, | 7,112 a4,
] [ : U~ ]o,u[ t Tt 2
o u Ellx w -x ]| < a
<
Let f be a K-valued twice differentiable sst
function, defined on the Hilbert space H ; we
suppose that the second differential " of f is

uniformly continuous on all the bounded subsets

thus S(w) is well defined (for each element w of Q)

(let us recall that meHH g, § Hxl]iI ).

of H. Moreover, the Taylor formula gives :

Let S, @, V and C the processes defined
by : X)) - f(Xt_) - £UX ) (X - Xt—) =

®2
S(t) = £ (X -X_) 1 :
s fe- i-s ., 2
sst { fo ' [x v sx- %, 0] as}(x-x. )
- T - - 1/ -

Qe) = T [fxy) - £ - £rx ) xg xs_)]

8Kt
®2 ®2
vit) = X, -X

t o —f]o,t]

The function f" being bounded by the real num-
(XS_QdXs + dXs® Xs—) ber C on the domain ||x|| € a, the terms of the
equality above are less than % c. l lxt— Xt_[ 12.

c(t) = V(t) - 5(t) Thus, the process Q is well defined as above.

where X_® dXs + dXs [ Xs_) 18 a stochas- Of course, the processes S and Q are cadlag

B ™

A~ and of finite variation ; thus, they are defined up
tic integral and 5,V and C are (H @ H)-valued.

to indistinguishability.
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2°/ The processes S and Q are adapted

We shall prove that the process S is adapted ;
the proof is about the same for the process Q.
lLet t be a real positive number. Let b(n) a decrea-
sing sequence of real positive members such that
lim.b(n) = O.
nso

For each integer n>o, let (u(n,k))k>o be the
increasing sequence of stopping times defined by

recurrence by ul(n,1) = 0 and :

u(n,k+1) = inf {s : sgt, s;u(n,k),[le-Xu(n'wll>b(n)}
and u(n,k+1) = t if the set above is void.

The process X being cadlag, for each integer n,

[u(n,k) <t] ¥ @ . For each integer n, let W_ be
ko »
the random variable defined by :

@2

w. o= I | -xu(n’k)_)

X
n >0 u(n,k)

(wn is well defined : cf. the 1°/ above).

con-
>0

verges a.e. to a random variable W (cf. the 1°/

The sequence of random variables (wn)n

above), then W is @;;—measurable ; now W = S(t) a.e.;

thus S is an adapted process.

3°/ The processVis the "tensor quadratic variation"

of the process X

Let b(n)ke adecreasing sequence of real positive

numbers such that lim.b(n) = O . For each integer n,
n--co .
let (v(n,k))k>o be the sequence of stopping times

defined by recurrence by vi(n,1) = O and

v(n,k+1)=inf.{s : s3v(n,k),]||X > b(n)}

s ot !

and v(n,k+1) = 1 if the set above is void. We have
1im P([v(n,k) < t] ) =o0.
) 2
For each integer n,let V"be the cadlag process

defined, for each element (w,t) of the set

(n,k), vin,k+) [, by :

n @2
v, = I (% . - d
¢ 3= ( vin,j+1) Xv(n.j)) an
i 2
V= I (x . - X e
1 =0 (v(n,:|+1) v(n,j))

n o @2 @2
Vi) X - X
K=o  ViRsktl) v(n,k))
o«
- (x - X
Z Ko T Xotm0) @ Xom,x
o
- X ® (x -
e im0 Gy e )™ oo,k
(the first sum is, of course, equal to X?z— Xg2)

n
Let Z (t) be the predictable process defined, for

each element (t,w) of the stochastic interval

rk r 'k ’ o =
vk, vink+1)], by 2%(0) X, k) -

We put :

@ @
Ve = x - on'J " @ ax + ax_ @ z"(w)]
o,t u u

Wwe have V' (1) = V(1) and, if (t,w) € [v(n,k),v(n,k+1[,

Vi = o =[x ox k)]m

If the sequence (b(n))n>o decreases sufficien-
tly quickly to zero, the sequence of processes
(V)n>° converges a.e. uniformly (cf. B.6) to the

process V ; then, it is the same for the sequence

o

n>o

Moreover, that proves that, for each element w
of , the total variation of the process V is less
than 4.

4°/ The process C is continuous

We choise the sequence (b(n))n such that, for

>0
. 1

each integer n, b(n) g (592 and we define the se-

quence of stopping times (v(n,k))k>o as in the 2°/

above.

For each pair of integers (n,k), we put :

A(n,k) = : - 1
() Lo IIXv(n,k) Xv(n,k)—H > n ¥
B(n,k) = Q\A(n,k)

E =

X 1
nk = Xvmx C BBex Y Xmx - amn

For each integer n, let Sn(t) and wn(t) be the
processes defined, for (t,w) element of

Wk, vin,x+) [, by

@2

®2
=L Gy, 57%00, 9 )

x
n
s (t)= -

(t) jfl(xv(n,j) En'j)‘

~ =

(

=1
®2
) L

n k
wit)= I (x
j=

L v, M-
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n
The total variation of the process ($-5) 2°/ For each integer n, we have
converges a.e. to zero. Moreover, on A(n,j), we f(xl) _ f(Xo) _
have :
L E(X -f +
1% X [ «h? I ) % 0T B ey e e
vin -1 vin, 3 n and ,
[x - x > L )
v(n,3) v(n,j)- > 4 Using the Taylor formula, for each n, k and w,

there exists Rn k(u)) bounded as after (cf. 5°/)
’

we have and such that :
s ollc L ) § | £(x )-£(x, ) )=E"C )
[ ey -s™ el — illlxv(nlj)—xv(n,j)_ll Do is v(n,k+1) vina0 = Oy 0 D (o) o n, 10
4
® 2
i 5 0 ) €
and that shows that the sequence of processes (W )n>o 2 Xv(n,k) xv(n,k+1)- xv(n,k))

converges, to the process S, a.e. uniformly.

n .
For each integer n, let C be the process defi-

ned, for (t,w) element of [v(n,k),v(n,k+1)[, by :
(Actually, we shall use this identity only on the

k
Q@ set Bin,k+1)).
o= T [xo, o -xo T
j-1 v(n,j) vin,j-1} B(n,Jj) 5 .
Thus, we have : £(X )-f(X ) = I I ar with
1 [e} n,k
n n k>0 i=1
=V (t) - W (t)
1
a” =f£'(x ) (x - X
If the sequence (d(n))n>o converges sufficien- n,k v(n,k) v(n,k+1) V(n,k))
tly gquickly to zero, the previous results show that a2 _ 1 e x (X N )@21
the sequence of processes (Cn)n>0 converge a.e. uni- nck 2 vin,k) “*v(n,k+1) “v{n,k) A(n,k+1)
formly to V(t) - S(t) = C(t) : thus C is continuous, 3 R
a =

.1
the jumps of " being less than 1/n. n,k n.,k B(n,k+1)

®n,k E—f (Xv(n,k))(xv(n,k+1) - Xv(n,k))+

5°/ At last, we remark that :

x? - xfz = v{t) + J [Xs_e ax + ax_ 4 xs_] f(XV(ﬂrkH)) -f(XV(n,k))]' 1A(n,k+1)
‘]O't] 5 1, 2

thus the stochastic integral can be defined with an'k =2 (Xv(n,k‘))'(xV(n,k+1)_XV(n,k))

respect to the process X?z (we are in the situation )

given in B.6). Now, we prove that kzo a:;,k converges a.e. for

1€i<5, when n goes to the infinity.

C.7 - PROOF OF THE ITO FORMULA 1

3°/ We have I =J £ n( Y.
Ko oK Jou1] [l ax

Now, we prove the second part of C.5.

n .
where 2 is the process defined as in C.6.3°/

1°/ RAll the integral and processes considered in C.5 above. If the sequence (b(n))n>o converges to
are well defined {up to an indistinguishbility) ; zero, £ [Zn(t)].dxt converges a.e. to
moreover, these processes are cadlag ; to prove &
the Ito formula, it is sufficient to prove that j]o,l] £ (Xt—) 'dxt

the two members of this formula are equal a.e.

for each element t of T (t fixed). It is suffi- 40/ I a2 . converges a.e. to - LJ £ (x ).as
cient to prove that for t = 1. k3o M 2 Jo,l] t t

because f" is uniforly continuous and the proof
We consider a decreasing sequence of real posi- C.6.2°/ (the total variation of the process (S-S")
tive numbers (b(n))n>0 which converges "sufficien- converges a.e. to zero).

tly quickly” to zero.

5°/ The function f" being uniformly continuous, (for

We define the stopping times v{n,k) as in C.6.3°/ Hxl l a), for each € >0, we have, for n sufficien-

and the sets A(n,k) and B(n,k) as in C.6.4°/. tly large, if w € B(n,k+1) :
r H
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6°/ L at X
k3o

converges a.e. to Q(1) (cf. the

proof of C.6.2°/)

7°/ At last, we have :

5 _1 .. @2 _
kT2 T ke T X,
T Xk e[xv(n,k+1)— xv(n,k)]

[xv(n,k+1)_ Xv(n,k)] e Xv(n:k) s

If we define Z" as in C.6.3°/ above, we

have :

2% a°

Bk I]o,q

£(X ) .av, =

(2™ - emx )] .ax®?

.
e
o

" n n_ .
[ema™ .z ) x ] @ ax,

n n 28 - n
£" (2 ).dxt @z £ (xt_) .dXt. @xt_

By the dominated convergence theorem
(cf. B.4), when n goes to the infinity, all the
previous integrals converge a.e. to zero (cf. C.6.

5°/ above) and that completes the proof.

C.8 - ITO FORMULA : FINITE DIMENSIONNAL CASE

We suppose that B is @& fintte dimensionnal

vector space and (h,). .
37 1<j<n
be an B-valued cadZag process adapted to the complete

stochastic base (R, 5 P, (ft)te,r) with T = [o,lj

is a base of H. Let X

we suppose that X is of finite quadratic variation

and satisfies the condition C.5.(1). We shall write

n
x= I X
j=1

Ion,
j

Let f be a real function defined on the

real line and twice continuwously  differentiable.

We consider the following real processes

with 1€ig€n and 1£j4n :

- L8 ) -
5; 48 = sit(xs X ) (00X ) = S5 ;%)

ett) = £ [pxa-rx ) - ¢ L ). (-1 )]
st 8 ° i=1 9zt 7 ©

- A S A B
5,508 = X4 .5 [Jo tJ(x

cdx) + x_ax)
8 8

ci,j(t) = Vi,j(t) - Si,j(t)

Then the processes s 3 Qs Vv, and €, .
1,3 i,3

are real, well defined, cadZag processes of finite

variation and Ci . 18 continuous ; moreover, the
’
processes S, .. V, . and C, . are increasing.
1,1 1,1 1,1

Moreover, we have :

FOX)=F(X )=qit)+ f T —f- (x ). dX
Jo, t]z=1 3’
1 32f(X _) 3 . - 3
-< 5 5 Liffew) i 2 -x
2 et 1.7 2t s Kor) (g 1)
2
; f 02f (Xg.)
+ - ¥ —_—, dV -(S)
2 Jo,t] 1.5 8z" 8a? s
n .
:Q(t)+f g ) i
]o,t] =1 3’ 8
2
1 f ¥ f(Xg)
+1 — . dc. (s)
2 Jost] 4,5 szt 8af Lsd

Proof

This theorem is a particular case of the
theorem C.5 above ; we have only to prove that the

processes Vi i are increasing ; that proceeds

’

of the proofs C.5.3°/ and C.5.4°/.

and C,
i,i

C.9 - REMARK

In C.5, we supposed that f" is unifor-
mely continuous on all the bounded subsits of H.
Actually, in the proof of ¢.5, we exactly used the
following property :
for each pair (a,e€) of positive numbers, there exists
a positive number 7 such that :
]lx]f < a, andlfy|| € € implies

2
<n |yl

1 [
|]f(x+y)—f'(X)-y-Ef"(x)-y 2||K H

C.10 - BROWNIAN MOTION (DEFINITION)

Let X be a real process. One says that
X is a real brownian motion, with respect to the

stochastic basis (Q,'S',P,(gt)teT) with T = [0,1] Aif

X satisfies the following properties
(i) X is a continuous process
(ii) X is a square integrable martingale, id est,
2 R
E(Xl) <+» and, for each pair (s,t) of elements of
E(X = .
( tlgé) XS a.s

(iii) the quadratic variation (X,X] of X is

T with s < t, we have :

defined by [X,X]_ =t (for each element w of ).

We see in the following paragraph E
(cf. E-11) that x satisfies all the hypothesis
given in C.5 ; thus, it is possible to apply the

ITO Formula to a brownian motion.

C.11 - NOTATION [X,z]

Let X and Z be two real processes
which satisfy all the properties given in C.5.
In the exercises, we note [X,Z] the "quadratic
variation" associated to the processes X and Z.
More precisely, P,Z] is the cadlag process
defined by :

x.2], =

X, .2 -X .2 X.dZ-J Z .4AX
t %t "o %0 JIo,t] sS- [ ]o,t] s~ s



- 14 -

D - STOCHASTIC DIFFERENTIAL
EQUATIONS

D.1. GENERALITIES :

In this paragraph p, we consider

-7 = [O,l], the unit interval of the real line
- H,K two separable Banach spaces and éﬁa(K,H)

a subspace of % (K,d), the space of the linear
operators from K to H ; on this subspace

ega(K,H), we consider a norm such that, if u

is an element of £a(K'H)’ I |u| | 2 Sup. | !u(k) [ |H
Hilf<1

I . :
= B~ a "stochastic basis"

-(a,%, > (@i)

with the usual assumptions,i.e. for each element t of

T, §t=f\§

anc A € B if P(A) = 0. We
s t
s>t v

cer

shall call this basisthe "initial basis".We note
ﬁ the algebra generated by the sets P x ]s,t]
with F € @S ; the o-algebra generated by ﬁis the

g-algebra of predictable sets.

D.2. CANONICAL BASIS (DEFINITION)

We shall use the french notations "cadlag"
“caglad", and so on ; more precisely, let f be a
real function defined on T ; we say that f is cadlag
if, for each element of T, f is right continuous and
has left limit. (in french : continu & droite et a
une limite & gauche). We say that a process X is
cadlag if, for each element w of £ , the sample function

t A Xt(w) is cadlag.

Let DH be the space of all H-valued cad-
lag functions defined on T. For each element t of

T, let ;Di the o-algebra generated by the sets
{w : X, (w) € HO} with s € t and H_ borelian set

of H ; we define QH = @I; The family

m“xm@“@@i@i@§>

: " ;
e teT) is a "stochastic

pasis” that we shall note BH and we shall call
the canonicallesis (for the H-valued processes defi-

ned with respect to the basis BI).

D.3 REMARKS AND CONVENTIONS :

a) The o-algebra of predictable sets of the cano-
nic basis BH is generated by the sets GXFXJs,tJ
where G is an element ofg)g, and F is an element

of ﬁs ; actually, it is sufficient to consider

the case where G is the set of the cadlad func-

tions x such that X, = x{u) is an element of Ho

with u < s and Ho borelian set of H.

b) Let a(x, w, t) be anega(H,H) ~valued process

defined with respect to the canonic basis BH. Let X
be an H-valued process defined with respect to the
initial basis BI. In the following, we consider
processes Z such that Zt(w) = a [X(w) ,w,t] ;

in this situation, for the commodity of nota-

tions, we shall not write the symbol w; then,

we shall write Zt = a(X,t).

c) we shall consider stopping times such that :

w=inf {t : t2u, t<v, |[x|]>¢€}

In this situation, if the set above is empty,

we define w(w) = viw).

d)v Let u and v be two stopping times. We define

the stochastic integral Y.dX as usual and

Junv]

we define

Y.dX = Y.dX - v (X -X )
v-v Tv-

J]u,v[ j]u,v]

(when these terms are well defined).

1f v is a predictable stopping time, the set]u,v[

is a predictable set, then we have :

bu’v[ Y.dX = JljuNL Y.dx

e) Let u be a stopping time and let X and Y be

two processes, the process X being cadlag ; then,

we shall note Sup. HJ YS.dXSI [2 the random
t<u o,t

variable U defined more precisely by :

vw = sup .||z, w]|?

£<u (W)

where 2 is the cadlag process, unigue up to
indistinguishability, stochastic integral of Y

with respect to X, i.e. defined by

Zt = Jjortj Ys.dxs.



D.4. PROPOSITION :

Let X be « 3anach space. Let X be . cadlag
H-valued process, defined and adapted with res-—
pect to the initial Lusis BI. Let alz,w,t) be a
K-valued process, defined and predictable with
‘ Let Y be the

Y (w) = ailX(w),w,t). Then,

respect to the canonicul usi: 8.
process defined by :
Y 18 a K-valued process, predictable with respect

to the tnitial busis BI. Moreover, Yt(m) 18 depen~
ding only on the values Xs(u)) for s < t (then, it
18 possible to define Yt(“’)’ when X 8 knoum

only for s < t).

1°) First, we consider the case where there exists
k element of K, u < v < w elements of T, Ho bore~

lian set of H, F eleément of @‘_V such that, if

J={x:xueHo},

then, a(x,w,t)=k. S(X) (w1

= Jond

Let F' be the set defined by

(t)

F'= {uu:xu (w) & HO}. The process X being adapted

F' belongs to g ; we have also :
u

v =l okl _©

1v.w

= k.iF(w).lF, w).1

Iv,w]

then Y is a predictable process and Yt(w) is

(t)

only depending on XS (w) for s < t.

2°) Then, we consider an H-valued process X,
adapted with respect to the initial basis BI.
Let z;’x be the family of all the K-valued pro-
cesses a, defined with respect to the canonic
basisBH and such that, if Y = a(X,t), ¥ is a
predictable process with Yt only depending

on X for s < t. The space gx is a vector
space armd a monotone class ; moreover, box
contains all the processes a=k.!_.1 .1

P Fa A

as defined in the 1°) above. Then,z;ox contains

all the predictable processes (cf. the remark

D.3-a).

D.5 : THEOREM :

Let H and K ke two separable Hilbert spaces. Let

BI = (Q,f, P, ;'_{)

feer stochastic basis.

J be a

w

wrth che usual asswmptiomns, (cf. D.1 akove), that

we shall call the inttial basts. Let Z be a X-valued
cadlay process, defined and adapted with respect to
the ‘nittal bastis BI. We suppose that there exists
a real positive increasing process &, defined and
adapted with respect to the initial basis BI, such
that, for each (strongly) predictable xa(.’(,H)—vaZued
uniformly bounded process Y, and fer each stopping

time u, we have (cf. D.3.e. above)

(<) E?Supl |J10, t]YS'dzsl |2€5E@u_. ;JIO u[[ [Yt| |2.th )

Let alx,w,t) be an {(K,H)—valued process,
defined and predictable with respect to the canonical
basis g We suppose that a ts locally lipschitzian in

the following sense :

(17) For each real positive number d, there exists a
right continuous increasing adapted process L d
such that, if (w,t) Ts an element of (Ox T), if
(z,x') 28 a patr of elements of 'DH with

"1l s d, then we have :

and Sup Ha:s

Sup HxS]] < d
s<t

sgt

][a(sc,m,t:)-a(x’,m,t)llg € Ly(w.Sup ! xb-xS’H 2w
s<t

Let u be a stopping time and X* ke an H-valued zad-

tag adapted process storped at u. Then, there exists u pre-
atetable (ef.A.14) stqping timMmd @n Fvaiued cadlag process
X, defined and adapted with respect tc be initial basis

B[, unique up to indistinguability, with the following

properties :
(zv) Zf w belongs to the set{v <1},
lim. sup. ||Xt(tu)|| =+
ttvl(w)
) 1
W x, = xte fu alX,e).dz,

On the stochastic interval lu,v| , this integrul

being an usual stochastic integrali.

Then, we say that X is a strong solution of the

stochastic differential equation dX,= a(X,t).dZ on
(= &

the stochastic interval ju,v[, with the initial

value X

Proof :

By localization, it is sufficient to consider
the case where Q.is uniformly bounded ; then, in the
right term of the inequality D.5(i), we can write :

. 11240
E%J O,u[_-l by, | |2.th€ instead of E(Q“'.M]o,u[n e .ths)

that we shall do henceforth. In the following we shall
omit the symbol w if there is no possible confusion.

The following proof is a natural generalization of the



classical study of ordinary differential equations
based on the fixed point theorem. This proof has

three steps :

1°/ Unicity : Lemma D.6
2°/ Extension principle for sclutions (D.7)

3°/ Maximal solution (D.8)

D.6 - UNICITY

We consider the hypothesis and notations
given in the theorem D.5 above. Let X and X' be
two adapted cadlag processes which are solutions
of the equation D.5.(v) on the stochastic intervals
]u,v] and ]u,v'] respectively and which are equal

on the stochastic interval 110 u]
2

Then, X'JEA,UAU’] and X"Jtu,v Av'] are
two indistinguishable processes.

Proof :

Let X and X' two solutions on Iu,v] and

]u,v'] respectively. We define :
w' = inf {t = [[x- xé[] >0, t 3u, t £ vAv' )},

If P[h' < (v Av") 1 = 0, the lemma is proved.
Then, we suppose that P[b' < (vAv')l > 0. The pro-
cesses X and X' being cadlag, there are a real number

d and a stopping time w' such that :

sup L([fx_{] + [Ix']l) < 4
u'ss<w’ s S

p(fw>uw]) >0 and w £ (viv').

Let Ld be the "Lipschitz process" associated

to d which appears in the condition D.5.(ii). Let w

be the stopping time defined by
. 1
w = inf.{t : t 3u’ t<w - > —
{ u', w'o2m Q 2Ld}
The processes Q and Ld being right continuocus
P
we have P(Ew > u':I) > 0. Then we define

2
h==¢{ Sup. |1X'—X l[ }
ugs<w s s

Then, we have (cf. D.3-e) :

o
I

= E{ sup.
uss<w

IJ a(x,r)-a(x',0)].az ||}
u,s][ Paotn].az |l

mn

{(
et

Ila(X.r)-a(X',r)llz.er} (cf D.5-(i))

< E{J L. . Sup .||x —X'||2.dQ } (c£.D.5-(ii))
Iu,w[ d ugr<w rr *

1
h € > h (cf. the building of w); then h = 0 and

that proves the unicity.

D.7 - EXTENSION PRINCIPLE FOR SOLUTIONS

We consider the hypothesis and notations
given in the theorem D.5. Then for each €>0
there exist a stopping time v and an H-valued cadlag
adapted process X, defined on the stochastic inter-
val [u,v] ,» which satisfy the following two proper—

ties :

(%) P(lv>u]l > p(lu<1]) - ¢

(id) X, = X%+ Jt
U

interval {(t,w)

a(X,s)dZs on the stochastic

culw) &€ t € v(w }

Proof
1°/ Let x° pe the process defined by :
[} u
= X

xt(w) (w)
Let d be a real number such that
p [suwp [[x,|] >a]<e.

t
tsu

Let L = L2d

ciated to 24 which appears in D.5.(ii).

be the "Lipschitz process" asso-

Let v" the stopping time defined by :

vt =inf{t:t2u , Q.- 9, > %f }

The process Q being right continuous, we have

p(fv" > u) = p(fu < 1]

Let w be the T-valued random variable defined
on (DH,SH) by w(x) = inf.{ t thH > 2d}.
We put a'(x,w,t) = a(%,w,t) where ;(t = xtAw
It is easily seen that a' is predictable with respect
to the canonical basis BH (actually, if we put
w(x,0) = w(x), W is a stopping time with respect to

H
B') ; moreover :
a(x,m,t).lto'w](x) = a'(x,w,t).IEOIWJ(x) and

a* Gerwrt)-a’ (e ) | | %€ Loy (w) - sup | |2~ x| [°

s<t
for each pair (x,x*) of elements of pH.

2°/ Now, we can define a process X on the stochastic

interval [u,v'l such that

a'(x,s) daz
S

x=)€“+[
t

u,tl
on this same stechastic interval by the classical pro-
cedure ; we recall this procedure for the convenience
of the reader. We define the sequence (Xn)n>° by the
following way '

+
X" r_ <+ I

: Jure]

n
a'(x ,s).dzs

n+l

If we put hn <

Ssup | |X
ugs<v'

]
o

Xg ||2? , we have :
)



=2
[}

E

Sup HJ [a'(Xn,r)—a'(Xn—l,r)].dzr‘|2)
ugs<v’ }u,s
(cf. D.5.(i})

< EM [a' x®, ) - a'(xn_l,r)||2.er€
Juv[
(cf£. D.5.(ii))

-1,;2
< E sup  |{x™- X" |41, a0 %
lu,v' [ usr<v! 24 '
£ % h (cf. the definition of v')
< n-1

Thus we have hn < 2_n.ho. That implies that
the sequence of processes (xn. 1]u,v[>n>o converges
almost everywhere, uniformly for each sample func-
tion, to a cadlag process X on the stochastic inter-
vall 1u,v'[ ; we have the same property on the sto-
chastic intervall ]u,v‘] because

ne
X0, - K, =atx 1

v 22 )

v'-

then, on the stochastic intervall ]u,v'] » We have :

u
X, =X + ' .dz
t hu,tl al (X es).azg

At last, we put

v=inf. {t: t3u usv,||x]|]>2d}.
The process X being right continuous, we have

p([v>u]) 2 1-¢€;

but, ail]o,v] = a"ljo,v] and that proves the

lemma D.7.

D.8 ~ MAXIMAL SOLUTION

Now, we prove the theorem D.5. Then, we
constder the hypothesis given in D.5.

Proof

We consider the family D’of the pairs (v,X)
where v is a stopping time and X is a solution of
D.5. (v} on ]u,vl . The set Do is not empty accor-
ding to lemma D.7. We denote by w the essential su-
premum of these stopping times v and by (w(n) ,Xn)n>

O

a sequence of elements of D’ such that (w(n))n>o

is a sequence increasing (a.s.) to w ; such a sequence

exists because of the following property : if (v',X")

and (v",X") are two elements of f,
Ty ', + X",
(v'iev", X l]O,V'J X 1]v,,v" )
is also an element of f (see D.6).

According to the lemma D.6, it is possible tc define

the process X on [o,w[_. by X'llo,w(n)]= Xn'ljo,w(n)]

For each integer k, let r(k) be the stopping time

defined by r(k) = inf. {t : £t £ w and th“ >k}.

:
1f, for each integer k, P([r(k) =wand w< 1]} =0,

the theorem D.5 is proved.

Now, we suppose that there exists an integer
k such that P([r(k) =wand w < 1]) = 2 > 0. Accor-
ding to the lemma D.7, we can extend the solution
(r(k) 'X'ljo,r(k)]) on a stochastic intervall
Jo,r0) v r'] where ([x'>r0]) > p(fxmy < 1] - €

But that implies that P([: r' > w]) > £ and this is

impossible by the definition of w.

D.9 - REMARK

Let c be a measurable mapping from (H X T)
into a Banach space K which is continuous with res-
pect to the first variable. For each element (x,w,t)

of (DHX 0 x T), we put a(x,w,t) = lim .c(xs,t)
stt
(actually, a does not depend on w ) ; it is easily

seen that a is well defined and is a K~valued pre-
dictable process with respect to the canonic basis
B . Thus, this situation is a particular case of the

situation studied before.
D.10 - LEMMA

Let W be a family of elemente of & (WLFP )
such that weWand w =w' P.a.e. implies w'eW;
for each element w of W, we suppose that 0 s ws 1 .
Than there exists an tnereasing family w oo
of elements of W such that, if we have

weW and w > sup - F.a.z2.
n
then W = Sup.w_ P.a.e.
n
Proof

Let f be the canonical mapping from

iw(Q,‘g,P) into Lm(Q,‘E'/,P) and Y' be the subset of

Lo defined by W' = £ . onW we consider the

usual partial order £ ; according to Zorn Lemma

there exists a "maximal" ordered family (wi)iel of
[
elements of W; if b = Sup E(w‘_!L) , there exists an
i€ 1

increasing sequence (wx.l)n>o extracted from the pre-

vious family such that b = Sup E(wx‘l) (there exists

: n>o
a cofinal sequence)
and that proves the lemma (consider a sequence (wn)n>o
such that wy = f(wn) for each integer n).

D.11 - CONDITION FOR NON EXPLOSION

We comsider the hypothesis and notations given
in the theorem D.5. Moreover, we suppose that the
three following conditions are fulfiled
(i)' for each (strongly) predictabie ,Z:(K,H)~va'lued

uni formly bounded procese Y, and for each stop—

pint time uw, we have :
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E! sup] |»{ Ys-dZS[ |2$<E=Qu J ||Yt| |2~th (because of the inegquality (a+b)2 < a’+ 3b2 if
ten o,t] 1 o,u] |b| > la')
()" Q@ 1is locally integrable, id est there exists We put :

an increasing sequence (aln)) o of stopping
- *
times such that lim .Plutm) < 1] =0 and, Yy = E(Xw"IEW' <1] ) and x = E(X:-'IEW<1])
for each intezgern;xx:) E(Qu(n)) <+
Then, we have :

(1i1) there exists a positive number C such that, s 2
u y-x <3E} sup || alx,s).az_||
for each element (x,w,t) of (D° X @ X T) , wEtEw? w,t s
we have : S

€3EJ c(1 + Sup Hxllz).dgg
l]w,w'J wetew'  © s

]|a(x,w,t)!|2 < C(l + Sup Hst 2)
s<t

\
3E
i

”m

Then P([v = 1]) =1 <if v {8 the stopping time ca + 4‘3)-‘395%

e

considered in the theorem D.5. Morecver, we

"N

have the following inequality :
e iz 1% < & §sw ||x. |1}, 3¢ g.expti2c)
t<£

. <u ] ) But 4d € 4E(x*.1. .4) =4x ;
where X 1s the wnique solutiom as considered w1}

3CU+ 4Q) E(Q.- Q)

in the theorem D.5 and where q = E(Q,- Q) thus, we obtain :

< x + + -
y 3 c(1! 4x) E(Q ,- Q)
Proof

we have alSO B

For each stopping time w, we put
X € 3C.E(Q - Qu) exp. { 12C E@Q, -~ Q) }

X": = Sup ”Xt] |2 . For each ¢ > O, there exists a po-

S

sitive number r such that and that gives :
< - -
PF) 3 1-¢ if F= {u: X: <t} Y € 3C.E(Q .- Q) exp. {12¢ E(Q - @) }

Thus, by considering the process X only on the set
Then w' belongs tow: this is impossible
F x T, we can suppose that g < + « if we put
N o because w was an element “"maximal" in WP :
g = E(X7).
© u thus P([w < 11) =0 and that proves the theorem.
Now we consider the set W of all the stopping times
w such that if w'is a stopping time with w' g w, we

have :
*
E( X;,.IE',Q]) < E(x%).3Cq, exp(i2cq,)

where q_, = E(Q .- Qu)'

According to the lemma D.10, there exists
a "maximal" increasing sequence (w(n))n>o of elements
of W if we put w = Sap w{n), we see that wve W

n>o
(Lebesgue theorem).

Now, we suppose that P([w < 1]) >0 ;
then, there exists a positive number 4@ such that
P(F) >oifp=3w: wiw) <1 anddgx;gmgand

*
such that d < E(X '1[:w<1])'

Let w' be the stopping time defined by :
if w &F, w'{w) = wiw

if we F wiw=inf{t : tawl) X>4d, tevi) ).
On the set [w'< 11 , X¥, 3 44 (because
w
X is right continuous) then we have :

2
W, <X+ 3. swp ' Hx.- x|
wgtgw



E - MARTINGALE AND DOLEANS MEASURE

In all this paragraph E, we consider
a probalilized stochastic basis (Q,{;,P, (gt)teT) ;
we shall note T = Sup.}t : teT % and we suppose

that T is an element of T.

E.1. DOLEANS FUNCTION (lemma and definitiom)

Let X be a process, or a process defi-
ned up to a modification, with values in the
Banach space H and such that, for each element t
is an element of LT(Q,@,P). For each
F x]s,t} ot 8 , we put

of T, Xt
element A =

x(a) = E [1F.(xt—xs>] .

It is easily seen that x can be enten-
ded, on a unique way, in a function defined and

additive on @ .

We shall note d(X) this funcﬁon and
we shall call it the Doléans function of the

process X.

Actually, we are chiefly interested in
the case where d(X) is O-additive : in this case,

one calls it the Doléans measure of the process X.

The following lemma is fundamental to

possibly prove that it is so.

E.2. LEMMA (sufficient condition to have an outer

"Doléans measured)

Let v be a positive function defined on

[t which satisfies the following three properties :

(2) for each pair (A,B) of elements of 17?,
v(4) ¢ v(AVB) g v(A) + v(B)

(11) for each element s of T, lim v(Q x:[ s,t]) =90
t¥s

(1i1) for each increasing sequence (u(n)) of

n>o

simple stopping times such that

lim P [u(n) < T« = 0, we have :
740

lim v (Ju(n),T4) = 0

N>

Then, the following property is fulfiled :

of elements of ;78’

(7v) for each sequence (An)n>o

19 -

such that An v 4, we have lim v(An) = 0.

n-re0 N

Proof

1°) Let (An)n o be a sequence of elements of (7&.

>

such that An ¥ @ ; we put a =

é lim.
e

n><e
we suppose that a > o and we shall prove that there

v (An) ;

is an impossibility.

1¢k<b(my P 2

such that, for each integer

k, B(n,k) is an element of @ (cf. A-6).

2°) For each integer n, let (B(n,k))

finite partition of A

For each pair (n,k) of integers, we have

B(n,k) = F(n,k) x]s(nk),t(n,k}] .

Let s'(n,k) be an element of T such that

s(n,k) < s'(n,k) < t(n,k) and

v(]stn,k),s' (n,k)]) € a.27",

1
b(n)

For each integer n, we put :

b(n)

cn) = U (F(n,k) x]s'(n,k),tin,k])
k=1

_ b(n}

C) = U (Fln) x[s*(n,k),tn,x])
k=1
n _ n

D(n}) = N C(k) s D(n) = N C(k)
k=1 k=t
b(n)

8 = U (@x]sn,x),s (K]
k=1

We have :

a(n) <;3s(n)\1c(n)g .

If we remember that A(n) + @, we have

n
Am) Cipmul L s} !

i=1

and that implies v [A(n)] £v [D(n)] +a .

3°) Moreover, for each integer n, C(n) being con-

Dn) +v ¢@.

n><o

tained in A(n), we have

For each integer n, let u(n) be the simple stopping

time which is the "beginning"” of the set D(m) , il.e.

[om] @ =inf. ft : teT, w,t)eDdn)|
Let w be an element (fixed) of (I and let B(n,m) the

compact subset of Tdefined by :

Din,w) =}t : t€T, W, IEDMm]

We have (w being fixed), E(n,m) Y@ ; then there
exists an integer k such that B(k,m) = @§ (property

of the compact sets) ; that means that ]:u(k)] (W) =T



thus, we have proved that

[um) <12 +

no

Then, there exists an integer j such that

v (Juti), 7o) < a (c£. (iii))

we have :
v ] sv o] +a
< v (Jui),t) + a

< 2a

(cf. 2°) above)

and this is impossible by the definition of a.

E.3. REMARKS

1°) In this paragraph g, we shall .use the lemma
above for an additive function v : in this case,
if the conditions E.2-(i), (ii) and (iii) are sa-

tisfied, v is a Doléans measure.
2°) The proof of this lemma E.2, is a natural

generalization of the associated basic lemma when

! has only one element ({(deterministic case).

E.4. EXISTENCE OF A CADLAG MODIFICATION (theorem)

Let X be an adapted process defined up to
modification, with values in a finite dimensio-—
nal vector space H and right continuous in proba-

bility (Z.e., for each element s of T and for each
€ > o0, lim .P [ Pl -x |} > e] = 0). We suppose
t¥s v

that X satisfies one of the following two proper—

ties

(1) for each element t of T, X
Llli(Q, g,P) and the set

+ is an element of

3z - [d(X)](A), A 6$:is bounded in H,

Z.e. there exists a real number a such that,
for each element A of % , || [d(X)] (4)||< a.
(2Z) the set :z rzF J ZA.dX,A 6&?{ (this integral
being defined as in B-2) is bounded (in the

Bourbaki sense)in 1" (2,8 ,P).

Then there exists a process Y, defined
up to indrstinguishability, which is a modifi~
cation of X.

Proof

1°) It is sufficient to consider the case where
T = [O,I]. It is also sufficient to consider the
case where X is a real process (look at the pro-

jections on a base of H).

-20 -

The condition (ii) is the same as the following

one :

(ii) ' there exists a positive decreasing function

£ defined on ®' such that lim £(x) = 0 and,
X0

for each element A of Wax‘xd for each real

strictly positive number d, we have :
P( |J1A.ax| >d) € £(@

Let Q' be the set of the raticnal numbers belonging

to T. For each element t of Q', we put Zt = Xt .

At first, we shall prove that the process

(Zt)te,Q‘ is ladlag.

Let (a,b) a pair of rational numbers with

a < b.

2°) Let S be a finite part of Q' ; let zt(k)gléksn

be the increasing sequence of the elements of S.
§ )

Let k

et k) §yckeon

simple stopping times defined by recurrence by

u{l) = 0 and :

be the associated family of

u(2k+l) = inf.§t : €S, t 3 u(2k) 2, 3 b!

u(2k) = inf.; t: €S, £ > ul2k-1),2 < ag

and u(j) =1 if the sets above are void.

t A(j,S) be the domain wher
Le (j,S) be the do the process (Zt)tas

has more than (j-1) upcrossings of the interval

[a,b] ; if wEe R, we have

- either WE&A(j,S) and this implies

2 2 3j.(b-a)

u(Zk)jJ

J
t [Zu(2k+1)_

1

k

- or WEA(j,S) and this implies

J -
I ok P < 7@

k=1

(we have 2 Z 0 only if

u(2k+1) Zu(2i) <

< =
Zagaky 2 A4 2 004y T Xy

Then, we have :

Zocaky) 2 30ma) 1, L=z -a) .

3
E [zu(2k+1)_

(3,8) ln\ag, )

k=1

If the condition (i) is fulfiled, we put :

1
S = Ty [2 4 ® zyab]

If the condition (ii) (i.e. (ii)'") is

fulfiled, we put :

c; = £ [10-a)]



In all the cases, we have

r [a5.9)] < c; amd lim . cC =0 .

J-)@
3°) Now, we consider an increasing sequence
(S(n))n>o of finite parts of Q' such that

V) S{n). Let A(j,Q') the domain where the
n>o

Q' =

process (Zt) has more than (j-1) upcrossings

t€eQ'
of the interval [a,b] ; we have A(3,S(n)) 4A(3,Q"),
and this implies P [A(3,0")] € ¢ - Thus, if

"o .
A(Q') is the domain where the process (Zt)teQ'
has an infinity of upcrossigns of the interval

[a,b], we have P [A(Q')] = 0.

4°) If we consider the family of all the pairs of
rational numbers a and b, we see that, with the

probability one, there do not exist two different
real number c &nd d such that X upcrosses infini-

[c,d].

But, a classical result says that this

tely the interval

is equivalent to say that the process X is a.e.
ladlag.
5°) Then, for each element (w,t) of

([0 \ A(Q')]XT), we can put

(w) =

Y (wy= 2
t() t+

lim . Zq(w)

sit -

Let t be an element of T and 3t(k)€
k>o

be a sequence of elements of Q' decreasing to t ;

the sequence of random variables (Y )

t(x) k>0 07

verges a.e. to Y, (by the definition of Y.) and in

t

probability to Xt ; then Yt = Xt a.e. and Y is a

modification of X.

E.5. MARTINGALE (definition and lemma)

Let X be a process, or a process defined
up to modification, with values in the Banach
space H and such that, for each element t of T, Xt
belongs to L}II(D, gt_,P). One says that X is a mar—
tingale 1f the associated Doléans function is

identically null.

It is easily seen that this condition
is equivalent to say that, for each pair (s,t) of

elements of T, with s < t, we have :

a.e.

E(Xt] gs) =X

s
More generally, if u and v are two

simple stopping times, we have Xu = )’:‘.(Xv | (:‘u)

if u € v {cf. A-2 for the definition of (‘u and

A-7).

If X is a real process, one says that

- 21

X is a supermartjngale (resp. a submartingale) if

the Doléans function is negative (resp. positive).

E.6. EXAMPLE OF SUBMARTINGALE (proposition)

Let M be a martingale, defined up to
modification, with values in the Banach space H.
Let f be a convex real positive function defined
on the real line. Let X be the real process defined
w to modification by X, = f(||M,|]).

Then, X 1s a submartingale .

Proof

Applying the definition above, we see that
this proposition is a corollary of the following

inequality :

Jensen inequality :

Let Y be an element of Ll(Q,f,P) and g a
sub-0-algebra ofg ; let £ be a convex real positi-

ve function defined on the real line ;

£ [B(v 1g) <z [gm 1§]

This inequality is obvious if f(x) =

we have :

ax+b ;
thus, we have the same inequality in the general
case because a convex function is the supremum of

a family (fn)n of functions such that

>0

f (x) =a x+b
n n n

E.7. EQUI-INTEGRABILITY

Let H be a Banach space.

Let (An) o

LI;(Q, GI,P). One says that this family is equi-inte-

grable 1f, for each € > o, there exists n > 0 such

be a family of elements of

that P(F) & n implies (for each integer n),
E(JF.HAnII) €€ .

It is well known and easy to verify that

of random
>0

variables which converges a.e. to a random variable

an equi-integrable segquence (An)n

H
A converges also to A in LI(Q' ,P).

B
Moreover, let A be an element of I..1 (Q,g,P)
and (Sn)n>o be a family of sub~g-algebras of % ;

if we put A = E(a ‘gn) . the sequence (&) .  is

equi-integrable.



E. S, TBEOREM

Let X be a cadlag process, with values
in the Banach space H, such that, for each element
t of T, Xt belongs to LI;(Q_, @’,P). We suppose that
the Doléans function d(X) of X is o-additive. We

suppose also that, for each decreasing sequence

(u(n)/‘n>0 of simple stopping times, the associated
sequence (Xu(n))n>o of random variables is equi-
integrable.

Let u be a stopping time. Let X' be the
. ! -
process X stopped at u (Z.e. X[ = Xt/\u)' Then,
for each element B of 95' s we have :

lacxt)] ) = [dx)] (B Jo,u))

Specially, if X is a cadlag martingale
and 1f u s a stopping time, the process X stopped

at u s also a martingale : in this case, we have :

E(Xu' Gt).JJO,u] = E(X.Tm‘ gﬁ)'l]o,uJ

Proof

1°) The proof of the first part of the theorem is

easy when u is a simple stopping time.

2°) We consider any stopping time u and a process
X fulfiling the properties given in the beginning

of the theorem. Let (u(n))n o be a sequence of

>
simple stopping times which decreases to u (cf. the

end of the proof of A- 9)., . Let B = F X ]s,t] an

element of &; we have :
laxn]e =& [1.x % 0]

=lm E [1..

oo tl\u(n)—xs/\u(n))]

because the sequence (X is equi-inte-

t/\u(n))n>o

grable and converges a.e. to XtAu

Lo [ax] B AJo,um])

naee

[ax)] s Ale,u

3°) Now, we suppose that X is a cadlag martingale.

For each simple stopping time u(n), we have (cf.

E.5)
¥

= E(X‘I‘<>°| u(n))

Xuiln)
then, the family (X }

u(n) n>o
thus, we can use the first part of the theorem

is equi-integrable ;

and we have d(X') = 0 ; that means that X' is a

martingale.

E.2, DOLEANS MEASURE FOR A SUB-MARTINGALE

Let X be a real positive process defined
up to a modification and fulfiling the following

three conditions :
(1) for each element t of T, Xt belongs to
1,2,%,p)

(i1) (X))

Yter 18 a sub-martingale

(i2Z) X is right continuous in mean, i.e., for
each element s of T, we have :

Lim E(|X,x |) =0

t¥s 8

Then the Doléans function x of X is o-additive.

Proof

We can suppose that T = [0,1]. The Doléans
function x of X is positive (cf. (ii)) and additi-
ve ; then, it is sufficient to prove the condition
E.2-(iii).

Let (u(n))n>o be a sequence of simple
stopping times such that [u(n) <1]nim @. We have :

x(]u(n),l]) = E [Xl_xu(n)]

<E [(xl—xu(n))+] <E [x.1 ] and

1im x(Ju(n),1]) =0 .

<o

that implies

E.10. LEMMA

et s and t be two elements of T with

s < t. Let H be an Hilbert space. Let X_and X
H HS ¢
be an element of Ly(% K,P) and of Lh(2,&,,P)
respectively. We suppose that E(X,_ I fs). =X

Q.E.

Let Z be an element of LI;(Q, ‘;S,P). Then

we have :

1°) The random variables 7 and (Xt—X ) are ortho-
gonal in Lg(Q,?,P)

2 2 Y
2°) E’(”Xt_XSHH) :E(llxtllﬂ_ IIXSwIH)

Proof

We note <.,.> the scalar product in H.
° < -X >) = E(< -
1°) E(<Z,X -X_>) = E( z,x-:]:(xt x4 3fs]>)

because Z is g,s—measurable
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2
= - =] < - - > °
2°) b E(] lxt xs”ﬂ) E ( xt xs, xt Xs ) 2°) For the notations, see the paragraph B.

= E(<xt'xt>) _ Z'E(<xs’xt;>) + E(<xs’xs>) Let Y. be an b%’—s:.mple J-valued process.

We have :
_ @< N Y = z a,.1_,.. where, for each element i
Now, E(<X_,X,>) = E(<X_, E(X_| $))> 16 1AW
because xs is gs-measurable ; then of the finite set I, ai belongs to J and
A(i) = F(i) X Js(i), t(i)] belongs to Jg; we can
< >) = E(< > i ig—
E( xs’xt ) E( XS,XS )} and also suppose that the sets (1\(1.))icI are dis
Joint. If i # j, we have F(i) A F(§) = ¢
b = E(<X_,X >) - E(<X_,X_>) : .
. e s s or t(i) € s(j) or t(j) & s(i) ; then
2. . 2 the rando iabl
= mdIx )13 - mdlix ][ m variables (Ja .1, ) .aw,
are orthogonal in LI2(( Q,‘S:,P) .
Then, we have :
E.11 -~ SQUARE INTEGRABLE MARTINGALE : 2 2
2 E (l!fY-dMIIK) = I E(l[Jai.lA(i).dM||K)
i€1I
Let H be an Hilbert ce. Let M be an 2 2
) e o e < 1 MaglTmag gy T gy 15
H-valued martingale defined up to modification i€I
We suppose that M ie¢ a square integrable martin- )
gale, i.e. for each element t of T, £ ) ”aiHZ'E{lF(i)'(”Mt(i)H - ||Ms(i)||2)}
E(] |Mt! Iz) < +o, We suppose also that M is right ier
continuous in quadratic mean, t.e., for each (cf. E.10-2°)
element s of T, lim.E(| IMt-Msl |2) = 0. 2
t4s . < [ mnZe
J
Let v the Doléans function of the process
N defined up to a modification by N, = ||M,| |2.
Then, ve have : ' 30) 16 [yl | =l Ixl |- vl], the inequa-
lity above becomes an equality and this proves the
1°) v is positive and o-additive. ' isometry.
2°) let J and K be two Hilbert spaces ;
we consider a bilinear continuous mapping from 4°) At first, we consider the case where M is
(7 x H) into K which, to (y,z) element of (J x H) a real martingale. By the 2°) above, we can use C.6- 3°)
assactates y.x element of K. We suppose that and the quadratic v:riation V of M is the cadlag process
: 2
ly-ally € Hallye [l Zet ¥ be an F -simpte Vdefined by v, = M{ - M) -2 | M v
. ' Jort]

Jd-valued process. Then, we have : 2 2
P P and E(Vt) = E(Mt) - E(MO).
sl ([ranly <fl1nEae (er. 5.

. J Now, if M is an H-valued martingale, then M takes its
values in separable subset Ho of H ; let (hn)n>o be an
3°) The mapping which, to ¥ € L”;(Q',@,v)f

. . ~ orthonormal basis of H_ ; for each integer n, let M” be the
assoctates the random variable stochastic inte- o

\ . H . real martingale such that M = z M'h ;i let v be the
gral |Y.dM is an isometry from L2(Q',g5,v) into o B
Lg(g,ﬁ P). . quadratic variation of M ; then, we have V = X v

_ B 2 n>o
and E(V,) = E(|[m_ MOH ).

_4°)M 18 a procese of finite quadratic

variation.
E.12 - A DOOB INEQUALITY (PROPOSITION)
Froof - Let p and q be two real positive numbers such
1°) N is a sub-martingale (cf. E-6). that L+ -(13 =1, (1<p<#=). Let (Xt)ts[o, 1] be a real positive
Moreover, if s belongs to T and if t is decrea- - right continuous (for each sample function) sub-martingale
sing to.s, ti’:‘ E(N.-N) =0 (cf. E.10-29)). such that E(XI;) < 4o, We put : Y(w) = i‘ug.xt(w). Then
a

we have : E(¥) « . E(E).

'rhen; we can use E.9 and this proves the 1°).


file:///m.-M
file:///Y.dM

Let Q' be the set of the rationnal numbers

beionging to [0,1] ; then, we have Y = Sup. X  and
taQ'

that proves that Y isﬁf—measurable.

Now, let d be a real number with 4 > 1.

For each n, let v(n) be the stopping time defined by
v(n) = inf.{t : Xt > a%y (and, of course, v(n)=1
if this set is void). We note A(n) = [Y¥ % d"]

and an = P[A(n)]. We have :

E(X)) > E(X 3> d%a J X, .dP
v "o Jovam

then

(n)

and X

v tam T X taa )

a <d ™. J X, .dp
n A(n)

Moreover :

p P - np
E(v) ¢ a. ] (a-a )

neZ
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2 p-l
() & P~ JQ X, . . dp

Now, if we use the Holder inequality, we obtain :
1 -1 1

2Py ¢ B [ea)] /e (3@ 1,114

but q(p-1) = p, then, we have :

E(¥P) < 55_3—1- (ead)] Va [gP)] 14

At first, we suppose that E(Yp)< +© ; in this case,

we obtain :
-1 1
[E® ] 1-1/q o p_ (&P ] /p
p-1 1
but 1-1/q = 1/q, then we have :

() ¢ (P )
p-1 1

Now, if we have E(Yp) = +* , we consider the cadlag

martingale X(n) defined by :

x(m=E[x.A m1F ] and we put Y(n) = Sup. X_(n) ;
! t tGcT

"

® 7 a. [a®-aUR ,
nez O by the previous proof, we have

Now, if we use the inequality obtained above
' d of ‘ E(¥®n) €& . E [x, nyF]
we have

but, ¥ € Sup. Y(n), thus (Lebesgue theorem) :

P P -n np _(n-1)p n>o
E(Y) ¢ dF. § a . X .dP). (@ " -a )
nez A(n) ) €& LB
If we put B(n) = A(n) N A(n+l), we have :
Exceptionnally, in the two following propositions, we
Py ¢ . T . ) (J X, .ap) AP (@ ()P suppose that the set T is open on the right.
ne& k3n ‘B(k)
< af % .ap).a ™. (dnp‘d(n—l)p) E.13 - CONVERGENCE OF A SUB-MARTINGALE (PROPOSITION)

<j .
keZz ngk ‘B(k)

Let (X,) be a sub-martingale defined up
B t'telg 1]
ut, we have also : o .
to modification and such that Sup. E(!Xt[):K <+
akP tefo,1]
! n.(dnp—d(n_”p) < J x—l/p dx = = . dk(p_l) Then, there exists a cadlag process (Y,)
ngk o p-1 t'tefo, 1]
which is a modification of X and there exists a random
then : variable Z such that Z = lim. Yt'
t4]
Py ¢ B . 4P, x geEh ) Moreover, if the values of X are negative, for each

P .<J
p-1 ke& B(k) element t of T, we have E(Z lSi) Py Xt p.s.

k
but, on B(k), d € Y, then we have :

eP) ¢ £ . x . P
p-1 0 1 We put X, = O ; let x be the Doleans function

te [0,1] ; let A be an element of Jk ;

there exists a partition (B,C) of A and an element t of T

of the process (Xt)
But, this is true for each real number such that

d > 1 ; then we have the same inequality for 4 = 1, )
] with t < 1, such that B(’]o,t] and C = Hx ]t,l] with
i.e.

Iieiyt (consider the last time t where the value of 1A

changes) .



We have o & x(B) § x(]o,t]) & K ;

Moreover, x(C) = E [1H.(x1—xt)] = -—E[1H.xt ,

then Ix(c)! € K ; then, the Doleans function of X is
bounded and it is possible to apply the theorem
E.4
to the process (Xt)te[o,ll and that proves
the first part of the theorem.

Now, we suppose that X is a negative
sub-martingale. Let t be an element of T ;

we put Yn =Y . We have

1-1/n

E(2 lf.?'t) 2 E(Ynls:t) > X for 1-1/n > t.

But, {E(Ynl g:t)}n>o is an increasing family

of random variables, then (for 1- L 2 t), we

n
have (Fatou lemma) : E(Z|3't) b E(Ynlggt) 2 X, -

E.14 - CONVERGENCE OF A MARTINGALE (PROPOSITION)

Let H be a finite dimensiomnal vector space.

Let (Xt)te [0’1
to modification. We suppose that the family

[ an H-valued martingale defined up

(Xt)te [0,1]: is equi-integrable. Then, there

exists a cadlag process Y, which 1s a modification

of X, and a random variable 7 such that :

(Z) 2 =1im. Y
t+1

(ii) for each element t of T, X, = E(Z ‘gt) a.s.

t

It is sufficient to consider the case
where X is a real process. The equi-integrability

implies

sup. E([X [} = K <+,
te 0,1[

Thus, we can use the previous proposition E.13,
and that permits us to define Y and Z. Now,
the equi-integrability implies that the sequence

(Yi— 1/n) n>o
to the infinity.

converges in mean to Z when n goes



F - MEYER PROCESS
AND
DECOMPOSITION THEOREMS

F.l1 - GENERALITIES

In this paragraph F, we suppose that
T = b,ﬂ and we consider a complete probabilized
stochastic basis (Qéﬁ P,(Eﬁ)t‘T): if we say that
X is an adapted process (or a martingale, or a
predictable process, and so on ...), that means
that X is adapted with respect to this stochastic

basis.

Moreover, we suppose that the family
(8i)t‘T is right continuous. If F is an element
of &, we note E(IFlgi_) the left continuous
martingale M such that M, = E(lF‘si_) for each

element t of T.

F.2 - PREDICTABLE STOPPING TIME ANDgSi_

{Definitions)

Let u be a stopping time. One says that u is
predictable if there exists a sequence (u(n))n>°
of stopping times increasing to u and such that,
for each (n,w), Ex(n)](w) <u(wy. In this case, one
notes ﬂi_ the O-algebra generated by the
J-algebras (&‘; ) )n>o

sequence (u(n))n>0 is "announcing" u.

and one says that the

If u is a predictable stopping time, the
stcchastic intervall ]o,u[ is predictable because
Jorul= éﬁo ]o,u(n)l. In the same way, [u]is a
predictable set. Moreover, let Z be angyh_—measurable
then Z.1

random variable is a predictable

1]
process ; indeed, if the sequence of random variables
n
Z
( )n>o

n, z% is Sz(n)-measurable, then the sequence of

converges to 2 and, if, for each integer

predictable processes (Zn'llu(n) 11)n>o converges
'

to the process Z.l[u 1].
’

F.3 -~ DOLEANS MEASURE (Definition)

We say that a is a Doléans measure if a
is a real measure defined (thus finite)} on the
calgebra of the predictable sets and such that
a(B) = O for all the evanescent sets B
(i.e. the sets B such that iB is indistinguishable
of 0).

In E.2, we gave some conditions such that a is a
Doléans measure ; notahly, if A is a right
continuous increasing process, with E(Al*AO) < 4o,
the Doléans function a = d(A) associated to A
(i.e. the function a defined by

a(F X]s,t]) = EDF. (At_As)I for each element

F XIs,t] of &) can be extended in a Doléans
measure : this is a special case of E.9 and can
be directly proved with the Fubini theorem.

In this case, we say that a is the Doléans measure

assoctated to A.

In this paragraph, if a is a Doléans
measure, we construct a predictable increasing
process A such that a = d(a) (cf. F.12). A fundamental

step of this study is the "projection lemma” F.8.

F.4 - TOTALLY INACESSIBLE STOPPING TIME

(lemma and definitions}

Let u be a stopping time. The two following

properties are equivalent

(i) PED:u and u < 1] = 0 for each predictable stopping

time W.

(27) For each sequence (v(n))n>0 of stopping times
inereasing to a stopping time v, the sequence of the
sets ([v(n); u and u < 1])n>ois, Ra.s., increasing to
the set [v 5 u and u < 1)

If these properties are satiafied, one says that u is
a totally inaccessible stopping time.
Attenticn : With this definition, the stopping time u=1
is predictable and totally inacessible.
At firt , we suppose that the condition (ii) is satisfied ;
let w be a predictable stopping time and (v(n))n>0 be a
sequence of stopping times which is announcing w;iwe have
[v(n) 3u and u < 1] T [y 3 u and u < 1] P-a.s.
e
and
{v(n) %u and u < 1] T [ﬁ >u and u < 1]4 P-a.s.
n—Nx)

thus

P([:W=u and u < 1]) = 0.

Now, let (v(n))n a sequence of stopping times

>0
which is increasing to v.

For each integer n, we put :

v'(n) = v(n)

H

if v(n)< v

and

]
-

v'(n) if wvi(n) =v



It is easily seen that v'(n) is a stopping time.
The sequence (v'(n))n>° of stopping times is
increasing to the predictable stopping time v' and
[v(n) 2u and u < 1] T ([v 3 u] \ Ev' = u]).

no<o
1f the condition (i) is satisfied, we have

P([v' = u]) = 0 : thus the condition (ii) is
satisfied.
F.5 - DECOMPOSITION OF A STOPPING TIME (lemma)

Let u be a stopping time. Then there exists

a sequence (vn) of predictable stopping times

n>o
and a totally inacessible stopping time p such

that :
[u] € w) v ¢ R [un]) . Moreover, it is

possible to suppose that P ﬁy =v, < Z] =0 for
each pair (§,k) of integers. We have also

P DG =< 1] = 0 for each integer j.

Let a be the supremum of the positive
numbers b such that there exists a sequence

{u ) of predictable stopping times with
n

n>o

b="P w:in, u (W = u(w
n

This supremum a is reached for a sequence
(v.) s of stopping times. Let W be the random
n'n
variable defined by

u(w) if, v¥n, u(w) # v _(wW)
w(w) = n
1 if In with u(w) =

v_{(w)
n
It is easily seen that w is a stopping time and

w is totally inaccessible.

To have the last property, it is sufficient to

consider the sequence (v' )n>o of stopping times
n

defined by :
v (W) if, ¥ k<n, v _(W) # v (W)
n n k
v' (Wy =
n
1 if 3k <n, V(W) = v, W)
F.6 - MEYER PROCESS AND NOTATION & (Definitions)

1°) Let A be an increasing (real) process ; we say
that A is a Meyer process if 4, = 0, ETA1)< +00

and A is a predictable right continuous process.

2°) We note € the set of the processes A which
satisfy the following properties :
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() A is real increasing and right continuous
(Z%) Ao = o0 and E(Al) < +®
(111) For each element F of & and for each stopping

time u, we have :

E(1,.4) = J E(1, | )da

Jo,u]

where a is the Doléans measure associated to the

process A.

If A is an element of g ; if u is a stopping
time, the process Au, i.e. the process A stopped at
the stoppingtime u, is also an element of g and the
Doléans measure au associated to Au is defined by
au(B) = a(]o,u] N B) for each predictable set B.

Of course, we have the same property if A is a Meyer

process.

We shall see in F.12 that the conditions given

in the 1°) and in the 2°) are equivalent.

F.7 - CONSTRUCTION OF A (Proposition)

Let a be a Doléans measure. Then there exists an
element A of'g such that a is the Doléans measure of A ;

This process A is unique up to itndistincuishab’lity.

1°) A is unique up to modification by the condition
F.6 (iii) ; then A is unique up to indistinguishability

because A is right continuous.

2°) Let t be an element of T ; for each element H of 5?,

we put
v, () =J e |F ) . aa
Jo.t]
The function vt(.) is g-additive (Lebesgue theorem) and

dominated by P ; then we can put
dv

v =

t
dp

process V right continuous in mean. Let A be a right
continuous process {in the strict sense) which is a
modification of V.

3°)Let Y be an element of Lﬂﬂ,?,?) ; we have

E@|R ). = IQ ¥.v, (dw)

o

Indeed, we have this equality if Y =1_ with F € 13

t ; . e ; : :
— and this defines, up to modification, an increasing



- 28

(by the definition of v} ; then, we have this
equality in the general case by linearity and

density.

4°} A is an adapted process, indeed

vtm)J et ] S_).da:J LE o &) & J.aa
Ne,t] Jo.t]
=;( E(L &) v (dw) (cf. the 3°) above)
JQ H™t t

; B(1, I8 ) .da

o,y

Then the property F.6 (iii) is satisfied if u is a
simple stopping time ; thus, we have this same
property if u is a general stopping time because
such a stopping time is the limit of a decreasing

sequence of simple stopping times (cf. the 2°/ of the

proof of A.12).

F.8 - "PROJECTION" LEMMA

Zet u be a tctally imaccessible stopping time.
1

e e
) the right

(resp. left) continuous process defined by :

Let B be the process defined by B
;. 4 7 A
For cach integer n, let B (resp.C

7

Ty
1

E(B 1yy) B0 ir BTN S < (k1) 27

t
oo e . B -n -M
oy = ;(E{w}_q_nmg_) if k.2 < t s (k+1).2

. . - 1
Khen n goes to the Infinity, the sequence (F )n>o

(resp. (C ) converges P- a.s. uniformly to

"n>o
the rrocess Riresp. {=1 1 ).
= 12(, 1]

At first, we can remark that this lemma
is a corollary of the properties of the
"predictable projections” as studied in EDEL] B
this lemma is sufficient for the following and
allows us to do not use the "section and projection
theorems” and the "capacitability theorem" as

done 1in [DELI .

1°) The processes B" and c” are defined up to
indistinguishability, the sequences (Bn)n>o and
n
(C )n o are decreasing and, for each integer n,
>

B" 3 B.

Let € be a positive number. For each integer

n, let v(n) be the stopping time defined by :

v(n)=inf.3t:B:—Bt>£2

|

The sequence (v(n))n>o is increasing to the

stopping time v.

For the convenience of notations, we note
~
Lv = u] the set \ w o viw) = u(w)' , and so on ...
2°) For the convenience of notations, we put

g = 2" v = 2" T = 2" 2 -
u 27 .a, v 2 .v, v(n) 2 .wv(n) ; 81k+1).2"n

D = > al k € v(n)(w)/ and
_ \ n 1 /
a(n,k) = E / Bv(n)'lkg;7;3<k+1' ﬁ

\
E(B |
< ( ( ).1 ‘S)

n
< t, lD.B

Deg 5§{ ~-n) then (cf. the "stopping theorem” D.6), we

s

n

For k.2 is a sub-martingale (because

have

< )
alnd) € BB ) omnrlp lg)

< E(l[ﬁskﬂ]'lol‘g)

This implies

£ [atu,x)] = E[a(n,k). 1 (o ]]
vin) <k+1
<z [1 . A
Ggk+1 D [v(n) < k+1]
1

»
o]

1, —

[ G gvi(n)+1 D<613755 < k+11
Thus, we have

2n-1

B\’:(n)] = ] E [a(n,k)]
k=0

£ E [1 [;‘m)+1) j( P([ﬁg;&l])
Then

lim. E [Bz(n)]g P([ugv and u<1])
I—»a

3°) The definition of v(n) implies

[B:(n) - Bv(n)}> € - P([v(n)aj); . P([v(l])

If we consider the limit of this inequality when n

goes to the infinity, we obtain (cf. the 2°) above)
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P([ucv and u<1]) - lim.P([usv(n) and u<i])
: -

3 e.p([vat])

But [uév(n) and u<1]+[u$v and u<1_] (cf. F.4)
thus e. (@[v<1]) = o.

4°) That proves that the sequence (Bn)n converges

>0
P.a.s. uniformly for each sample function to the

process B. But, for each integer n, c” is the left
continuous process associated to the right conti-
nuous process Bn ; thus the sequence (Cn)n>o
converges P.a.s. uniformly for each sample function

, id est

to the process C defined by Ct = Bt—

C = 1]u,1]‘

F.9 - WHEN A IS CONTINUOUS (proposition)

LetA be an element of & and a be its Doléans
measure. We suppose that, for each predictable stop-—
ping time u, a([u]) = 0. Then A is continuous (up

to indistinguishability) , thus A is a Meyer process.

1°) Let u be a predictable stopping time and

(u(n))n be a sequence announcing u. We have :

>0
0=a([u]) = ,11_1,2 - alJuln),u]) = r];im.E]:Au— Au(n)]
=E(A-A )
u u-

2°) Let u be a totally inaccessible stopping time.

n .
We define the sequence (C )n of processes as in

>0
F-8. For each pair (n,k) of integers, we put :

pn,k) = [k-2™ <ug (ke1).277 ]
a (m) = ktl).2 " .1
an win = . - - D(n,k)
We have
E(A - A ) = lin % b3 [1D(n,k) <1y om0 T Ak.z_n)Js
n--oo k

this and the property F.6 (iii) implies :
E(A~A ) =1lim. | [c™- 1 1. da
u u- oo ]w(n) ,1]

and this limit is equal to zero (cf. F.8)

3°) Then, for each stopping time u, we have
E(A“— Au_) =0 (cf. F.5 and the 1°) and 2°) above)
Thus, A is continuous (for each € >o, consider the

stopping time u defined by u = inf. {t : (At_At—) >e}

F.10 - WHEN a([u]) = a(Q") (proposition)

Let A be an element of €. Let u be a predic-
table stopping time. We suppose that a([u]) = a(@'.

Then the process A is predictable (i.e. 4 18 a Meyer

process).

Proof

We have :

E@-a) =a@) =a(u) =Ea -2 )
(cf. F.9.1°)).

That means A has a jump on the stopping

time u and A is canstant elsewhere. Let (u(n))n>0 be
a sequence announcing u. Let F be an element of .

We have (F.6.(iii))
- &
E(1p-A) JE(lF[ .0 . 1]0,11] . da

But the martingale E(lqu'/t_) stopped at uf{n)
is indistinguishable of the martingale EEE(IFlffu_) [t(t—]
stopped at u(n) ; thus, we have the same property

when we stop these martingales at u ; then, we obtain :

JE[E(1F|‘(U_)I ({t_]. Ho,u] - %
e IS ) . a,]

E(lF.Au)

That proves that the random variable Au is @)u—" measu-
rable and A .1 is predictable (cf. the end of F.2).
u [u,l]

F.11 - INTEGRATION (FA MARTINGALE WITH RESPECT TO AN

INCREASING PROCESS (proposition)

Let M be an uniformly bounded right continuous
martingale and A be an adapted integrable increasing
right continuous process. For each element t of T,

we have :
E[J]O 4 M. da ] =E [M.4,-4)]

Proof

We note T® = (Tn[o,t]). Let (Tn)n ° be an

>
increasing sequence of finite subsets of T* such that

v T, is dense in T* and t € T, and O € T,-
n>o

For each integer n, let (t(k)) be the increasing

1<k&q
family of the elements of Tn and let Mn be the process

defined by :

M = I

M .1
X tlke+l) k), t(k+1)]

1
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n
The sequence of processes (M )n>o converges to
the process M ; by the dominated convergence theorem,
it is sufficient to prove the equality for each pro-

n
cess M . But we have

E J M“.dAS]

10,?] s ) k

L[ s ave]

- /
, E?“t(kﬂ)'[At(kn) Ac(k)lg

[N NTe)

Edm . [a -a ]
k=1 3 t Lt(k+l) t (k)

_ 1
E[Mt. (a-a)]

F.12 - MEYER PROCESS:EXISTENCE AND UNICITY (theorem)

a) If A and B are two increasing Meyer processes

whieh have the same Doléans measure (i.e. (A-B)
s « martingzie), then A and B are indistingui-
ghable.

b) If a is a positive Doléans measure, there exists
a Meyer process A such that a is the Doléans
measure of the process A. Moreover this process A
i3 eontinuoue (up t¢ indistinguishability) ([ anz

enly If Q(EMJ) = 0 for all the predictabie stop—
a u.

) At last, an tnereasing process A is a Meyer process

77 and only if A s an element o €

Proof

1°) Let A and B be two Meyer processes such that (A-B)
is a martingale. At first, we suppose that A and B are

uniformly bounded. We have (cf. F.11 above)

E(M_.A) = E( Jjo,tJ M_.dA_ )

if a is the Doléans measure of A, we have (because M

is a predictable process)

E(J]o,tJ Ms.dAS) = J]o,t]Ms.da

M_.db = E(Mt'Bt) (as above)

J]M] :
At last, we obtain 2 = EE*It.(At— Bt)‘] = E(M

thus M is indistinguishable of O.

2°) nNow, we suppose that A and B are two Meyer pro-
cesses such that (A-B) is a martingale, but we do
not suppose that A and B are uniformly bounded. For

each integer n, we consider the predictable set C(n)

U
where (At+ Bt) > n and D(n) = Q\C(n) ; we put
n
A = n.lc(n) + A'ID(n)
and 8" = n.1 + B.1
“TC(n) " "D(n)

n

The processes A and Bn are two Meyer processes which
have the same Doléans measures, thus (cf. the 1°))

n n C s s .

A and B are indistinguishable ; that proves that A

and B are also indistinguishable.

3°) Let a be a positive Doléans measure. To prove that
there exists a Meyer process A such that a is its

Doléans measure, we begin to prove that a = d + L bn
. . . . n>o

where d is as in F.9 and bn is as in F.10.

For that, we consider the supremum ¢ of the positive

numbers b such that

(i)} there exists a sequence (u(n))

o of predictable

stopping times and a sequence (bn)n>O of Doléans
I b _QY,
n

n>o

measures such that b =

% bn(.) < a(.) and, for each integer n,

b @) =b (um].

It is easily seen that this supremum c is reached for

a pair of sequences (u(n),bn)n satisfiing to the con-

>0
dition (i), with b = ¢. We put d =a - I b . Let D

and Bn be the processes belonging to Tf associated
to d and bn respectively as built in F.7. These pro-

cesses are also Meyer processes (cf. F.9 and F.10).

Moreover, L E(Bn) = I b (R') < + ©, then the se-
n>o nro 0 n

quence (ADl) of processes defined by A =D+ LB
n>o k=1 k

converges P.a.s. uniformly, for each sample
function, (Borel-Cantelli lemma) to a process A wich
is a Meyer process and wich belongs to t?. Moreover,
the Doléans measure of A is equal to d + L bn =a .
n>o
4°) If A is continuous, for each predictable stopping
time u, a(fu]) = E(A;- A ) =0  (cf. F.9.1°))
Conversely, if a([p]) = 0 for each predictable stopping

time, we saw in F.9 that A is continuous.

5°) Now, we have only to prove the c¢). Let A' be an
increasing right continuous process with Aé = 0 and
E(Ai) < + >, Let a be its Doléans measure. Let A be
the associated process as built in the 3°) above ;
A is a Meyer process and belongs to ff : then A is
indistinguishable of A' if A' is a Meyer process or

if A' belongs to t? and that proves the c).

F.13 - BOUND FOR A PREDICTABLE JUMP (lemma)

Let H ke a Hilbert spac

and @ a Doléans measire asscciated to the

H-volued process 5.Let A be the Meyer process associa-
ted to a. Let u be a predictable stopping time.

We suppose that Z 7g wuniformly bounded by d
(i.e.HZt(m)Hs d for each element (w,t, of (Q x T)).
Then we have

12

- 1 ia - |
ella-a _[I] « 2a.e(fla-a 1D



Proof

2f course, the Meyer process A is a right con-
tinuous predictable process of bounded variation asso-
easily seen. We have

f1[u]<(AS— A_),dA>

ciated to a ; its exisgence is
X = E A - A = E
[a-a 7

1 A - A i i -
But ( [u]( s 1) is a predictable pro

s-"'seT

cess and A and 2 have the same Doléans measures,

thus we have

x = E JIDJ <(AS- AS_),dZS>

< 2d.8(Ja -a |
u u-

F.14 - DECOMPOSITION OF A MARTINGALE (proposition)

Let H ke a Hilbert space and M be an H-valued

martingale. Then there exist an H-valued cadlag
locaily sauare tntegrable martingale W and an
H —valued cadlag process cf bounded variation Q

such that M =W + Q

Proof

By localiza-
tion, we have only to consider the case where there

exists a stopping time u and a positive number d ‘such

that|M_(w)| < dif £ < u(w) and M_(w) = M (w) if
t t u{w)
t 2 u(w) (consider the sequence (u(n))n>o of stop-
ping times defined by u(n) = inf.{ t :!MJ} n } and
stop M at u(n)). In this case, we put :
Z =- M.1 and B = M.1
[osul [, 1]

Let a be the Doléans measure of B (and of Z)

and A be the Meyer process associated to a. For each

integer n, we put

vin) = inf. { t ﬂAt‘Z n } : since lim.P[vin) < f] =0

n-oo
it is sufficient to prove the decomposition for the
process M stopped at v(n).

Because the Meyer process associated to the
process B stopped at u(n) is also the Meyer process

stopped at u and associated to B, we can suppose

that v(n) = u (for the convenience of notations).

In this case, we have

(cf. the definition of v{(n))

e [a-a 1) ca2dedla-a 1)t .13
u u- u u-

thus E (Az) =E (Az) < A
1 u

But M = (A-Z) + B ~ A where (B-A) is a process of

bounded variation and (A-2Z) is a square integrable

martingale ik and  E (AT

(remark)

- IF %§1; s QFt+

Por the convenience of notations, we supposed

that the family (31) is right continuous.

teT
In the general case, it is always possible to

. ; @
consider the family (Jz+)th

results of this paragraph F ;

and to use the

in this case, a Meyer

process with respect to the family G3€+)teT is

also a Meyer process with respect to the family

(EFt)teT (cf. A.11).
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G -~ AN INEQUALITY FOR SEMI-MARTINGALES

G.1. GENERALITIES :

The main result of this paragraph is the
theorem G.-6 after. It is fundamental to note that
the inequality G.6- (i)} is only concerned by the
values of processes Z and A "strictly before”™ the
stopping time u. The theorem G.6 gives an example
where we have the condition (i) of the theorem

D.5 above.

In this paragraph, we consider a stochas-
(Q,‘f,P,(#t)tET
use the french notation cadlag and the conventions

tic basis and we

given in D.3-d) and D.3-e). Moreover, if M is an
H-valued square integrable cadlag martingale, we
note Dﬂ the increasing positive cadlag adapted

process which is the quadratic variation of M, i.e.

], = Lin. §

o |

s 2
kzol 1M ety .2mnpe = M. 2pel | §

and we shall note <M> the "Meyer" process asso-
ciated to Dﬂ {(i.e. the predictable increasing
right continuous process such that [M]O = 0 and

[M]t - <M>t is a real martingale).

G.2. A LEMMA ON THE CONDITIONNAL EXPECTATIONS :

We consider (2,%,P) a probability space,
g a sub-g-algebra of ‘;, A an element of ‘{and
*the and A. Let Z be an
element of ﬂi(Q, *.P)  such that E(le%) = o.
Q\a, we mve :

o-algebra gemerated by

If we note B =

. 2
(i) E(lhlg).E(HzH .1A|g)=z<13|3>.m||z||2.1B|g)a.e.

o 2 2
(i) e llz]|D =€ 31A.E(||ZH !g)g

Proof

1°/ The elementary following proof was suggested by
J.Jacod.

We can write Z = X.lA + Y.IB where X and Y belong
to Lfi (€2, g,P) . The property E(Z(g) =

X.E(IA[g)=E(X.1A!3)= -E(Y.13|(’A>= —Y.E(IB!ﬁ).

O implies

Then, we have also :

=1,y ud fzl 171, =g el [x[ 11,1 €)
) 112 = et feugigp] 2

- E(lB|g).E(|le2, 1B|‘g)

2°/
E%lA.E(I 12112119 §= E$E(1A|g).E(||Z||2.1A|g)%
=E%EUB&).M|z||2.13|5)%g 1B.E(||Z[|2.1B[g)§

Then, we have also :

E IA.E(HZHZI%)%

- el 2,140 - eliy-adizl %119 g
= E318.3<||z||2.1s|€3) $ v EN,Ed 2] 12,8 %
=& lz[[%1)

G.3. LEMMA (if only one jump)

Let B be a Banach space. Let u and v be
two stopping times, v being predictable. Let S be an
H-valued square integrable random variable which is
((v - measurable. We put ¢ = 8§ - E(Slgv_ ).

Let M be the cadlag martingale defined by

M = E(C|‘§t) . Then M has a jump on the stopping

t
time v and ts "fized" elsewhere. Moreover there exists
an H-valued square integrable cadlag martingale W

with the following properties :

(7) W.l[olu[= M.l[o'u[
(this implies [w].1[o o [M].1[o u[)
(27) the random measures AdA<W> and d<M> are such

that d<wWw> g d<M>

(17} for each predictable real positive process Y :

E%J]o,u] v.a[w] €= E%J]o’u] Y.d<w>€ :

E”]o,u[ v. (dfw] + 4 <w>) é



Proof :

1°/ Let (v(k))k>OtEasequence of stopping times

"announcing” v (i.e. v(k)t v and, Vk,P([v(k)<v:])=1)

For each integer k, E(C|f§'/V )

*) = 0, then

M‘l[o,v(k)] =0 ;

this implies M.!1 = 0. Moreover, C being
[l

év - measurable, M, = Mv This proves that

1
M has a jump on the stopping time v and is "fixed"

elsewhere.

2°/ For the building of W, we can éuppose that M is

stopped at u (i.e. M1 = Mu). Then we consider the

sets B = {w : viw) = u(w)} and A = Q\B, the

*
o-algebra % = ‘v_, the g-algebra g generated
by % and by the set B, the randon variable

D, = C.ly - E(C.1,] 5*) = 1B.3 C—E(Clg*) !

and the cadlag martingale D defined by Dt= E(D1 |‘§}t) .
We note that D has a jump on the stopping time v and

is "fixed" elsewhere (cf. 1°/ above).

Now we put W = M - D and we shall prove the proper-

ties (ii) and (iii) (the property (i} is proved

*
above). We note that W_=W, =1 .C + 1_. E(Clg ) -
v 1 A B

3°/ The stopping time v being predictable, we have

<W> = <W> - <W>
v v v

(], 1Y)
s} 1y llel® v 1y Heelgh 117 { g
B eIl g Tlel 1?41y

E([M] | '%) <

N

n

Actually, we have d<W> & d<M>, i.e. the property

(ii) .

4°/ Let Y be a predictable real positive process.
Then, the random variable YV is (gv_—measurable.

We have :
E( J v.a[w)h
o,u
=B, e[ + E(YV.IB.[|E(C|8*)Hz)
y.a[wW]).

The first term is bounded by E( J

o,u
, 1/2 *
By the lemma G.2, if we put 2 = (YV) .E(CNﬁ )

the second term is equal to

o

(9]

¢ e ¥ 2 ¢
E(YV.IA.E(“E(C;% yH S“

which is bounded by E( { _ Y.d<W> ) (see above).
o,uL

This proves the property (iii).

G.4. PROPOSITION

Let B be an Hilbert space. Let M be on
H- valued cadlag square integrable martingale. Let u
be a stopping time. Then, there exists an H-valued
cadlag square integrable martingale W with the follo-

wing properties :

(z) w.lEo,u[= M. 1[:0,11[ (this implies :

Lw].1[o’u[ =[M] 'l[o,u[)

(77) the "random measures" dA<w> and d<M> are

such that d<w> & d<M>.

(111) for each predictable real positive process

E?J:[Q,u]y.d[w] $= E?iju} Y. d<w>

SE\

?J]o,u[
E‘J Y. (@[M] + a <M>)%

© "o

Y. (@wl + a <w)

Proof

We can assume that M.] = Mu . Let w be

a "totally inacessible"” stopping time and let

(v(n))n be a sequence of predictable stopping times

>0

such that [u](_ [w] u% v [v(n)] 2;‘ we can assume that
n>o

the sets [v(n)]n>o are disjoint.

For each integer n we define the random va-

n
i =M - M = -
riable C_ ) ny- 2Rd MU E(Cn| ((t)

— n
We can define M =M - I M (convergent
n>o
serie in the space of square integrable martingales)

and we have [M] = [ﬁ] + I [Mn] (the sets [:v(n)._[n>o
n>o

being disjoint). Moreover, <M> being a
predictable process, <§>w = <ﬁ>w_ ; this implies
<ﬁ>u = <ﬁ>u . Then, for each predictable real posi-

tive process ¥, we have

E(J Y.d<M>) = E(J Y.d<M>)
Jou] Jouu]

= E(J Y.d<M> )
Jol

(if we define W = i, the properties (i), (ii) and

(iii) are satisfied for the pair (W,M).



Then, for each integer n, we build a martingale wn
associated to M" as in the lemma B-3. By additivity,
the proposition is proved if we put

W=W+ £ W =M+ T W
n>o n>o

G.5. COROLLARY

Let M be an Hilbert space valued square
integrable cadlag martingale. Then, for each stop-
ping u and for each real bounded predictable pro-
cess Y, we have :

E(sup.HJ'

2
v_.am |[7)
o€t<u t

loe] = °

Yz. (@am>_ + aM]_ ) )

< a. (EzJ

o,u

(ef. D.3.e) for the notation above).

Let W be a martingale associated to M
and u as in the proposition G.4 above. The stochas-

tic integral J’ Y .dw_ is well defined (see
Jou] ¥erd¥s

o,u

the property (ii)) and we have

(fv.dm).l = ([Y.dw)l

Jou[

o,u

(this is obvious if ¥ is an 9%’— simple
process, and it is true in the general case by

linearity and density).

Then, we have

2
E { Sup ||J Y _.am | |9)
ost<u o,t] s s
2
=E ( Sup HJ Y .aw_||7)
ogt<u Jout] % 0 °
< E ( Sup ]]J ys.dws]| )

ogtgu J O, t]

< 4.8 ( IJ] Y .dwsl 12 (Doob inequality)

S
O,\l]

Yi . d Eﬂ)

(JJonﬂ

v2 {a[M] + 4 <)) (cf. G.4).

Dot

G.6. THEQREM

We consider a Banach space H, two Hilbert
spaces J and K, and a bilinear mapping of H % J
into K which, to (x,y) element of (K x J), asso-

etates y.x element of K. We suppose that we have,

for each element (y.x) of (i x J),

Hy.xl < [1gll Hall

Let M be a J-valued cadlag locally square
integrable martingale. Let V be a J-valued cad-
lag adapted process of finite variation (i.e.,

for each elementwof Q, the function s~)Vs(w)

has a bounded variation). We put Z = M + V.
Then, there exists an increasing cadlag adapted

process A such that,
(7) for each stopping time u and for each H-valued
predictable process Y :

2
E{SupHJ v.az|| < E@ _{J
t<u o,t K v

[“ytnz.cmt})

o,u
(see D-3-e) for the notation above).

Actually, this property is fulfiled for a process Z

which is the sum of a local martingale M and a process

of bounded variation V ({.e. a general semi-martingale).

1°) The set of processes Z for which there exists
a process A with the property (i) is clearly a

vector space. Moreover, if 2 = V, is a process

of finite variation B_ = J d]]v ‘| and if
t s
o,t

we put At = Bt'

the condition (i) is satisfied by
the Cauchy-Schwartz inequality (applied for each
"sample function").Then, it is sufficient to prove
the theorem when Z = M is a locally square inte-
grable martingale. In this case, the condition
(i) is satisfied if we put At = (<M>t + [M]t }+ 1
Indeed, <M> can be defined by lccalization
and the corollary G.5 is available for a locally

square integrable martingale (Fatou lemma) .

2°) 1t is sufficient to apply the proposition F.14.

G.7 ~ SUMMABLE PROCESS (définitions)

One says (cf [Kus]) that X is a p-swmable
with p3o) process if the mapping AMflA.dX >
defined on the algebra dt/, can be extended in a
measure o-additive for the strong topology of
L (Q,4,P) . We say that X 1is a prelocally (ef. A.13)
pgswnmable process if there exists a sequence
of stopping times such that

(u(n))n>O

lim .p(fum< T ]) =0
n>m

and, for each integer n, X.1 is a p-summable

]o,u(n) [
process (in [Kus], such a process is called locally

p-summable J.
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G.8 - CHARACTERIZATIONS OF A SEMI-MARTINGALE

(proposition)

Let H be a Hilbert space and % be an
B-valued cadlag adapted process. The following pro-

perties are equivalent :

(1) Z is a semi-martingale, in other words Z = M+V
where M is a local martingale and V is a pro-

cess of bounded variation

(i2) 2 is prelocally 2-summable (cf. G.7 above)
(ii1) 2 is prelocally 1-summable

(iv) Z satisfies the condition G.6.(7) for each

Banach space J and each Hilbert space K.

(v) there exists a real positive finite increasing
adapted cadlag process A such that for each
real Lf—simple process Y and for each stopping

u

EaHI]o u[y.dzllflgs E(Au_.{I] [||y||2.dAS} )

’ c,u

Proof

At first, we can remark that this proposi-

tion generalizes the theorem 12.3 of [Kus] .

We saw in G.6 that (i) implies (iv) ; we
saw in B.6 that (v) implies (ii) ; it is obvious
that (ii) implies (iii) and that (iv) implies (V).
Let Z be a l-summable process ; the Doléans function
d(X) of X is o0-additive ; thus, there exists an
H-valued Meyer process A associated to this Doléans
measure ; Z-A is a martingale, then Z = A+tZ—A) is
a semi-martingale. Now, we suppose that Z is a prelo-
cally l-summable process ; let (u(n))n>o be an in-
creasing sequence of stopping times such that

lim.P([u(n) <1]) = 0 and, for each integer n,
n—)c:)

X. 1 is a l-summable process ; for each inte-
]o,u(n)[

ger n, we have

X'110,u(n)[ = x'llo,u(n)[ + X'l[u(n)]

thus x.llo ] is a semi-martingale ; then, X is

su(n)
also a semi-martingale and that completes the proof.



H - BURKHOLDER INEQUALITIES

H.1 - THEOREM

o . ,
Let (Q. ,P,(g;)teT) be a stochastic basis
and X be a martingale with respect to this

basis.

For the convenience of notations, we suppose

that T = [o,®].

We consider

N (X) = E {sup. [x_[}

! ter ©

+ . 2 1/2
N2 (X) = lim.sup. E z (X(k+1).2'n _Xk.Z"“) ]

> k>

‘ im. i \ 2 | /2
N, (X) = lim.inf. E [ Z (X on - X —n)

2 nvos k3o kHD2 K 2 {

N, (X) = Sup. E[{ J| v.ax | ]

this supremum being considered for all the

O, ®

processes Y such that

n-1
where (u(j)) P
oy a0 2k 1gen

18 an inereasing family of stopping times.

Sup. E[ | J]o’m]f(t) .dxt! ]

N4(X) =

this supremum being considered for all the
functions f such that
n-1
o1 where (t(3j))
o1 JeR ekt 1<ji€2n

is an increasing family of elements of T.

Then, these five semi-norms are uniformly
equivalent in the space of all the martingales

such that X = o. More precisely

NI(X) < 4.N3(X) i N3(X) < 8 NZ(X)
- + +
N2(X) [ NZ(X) ; NZ(X) < 45.N1(X)

N4(X) £N3(X) i

+
Nz(x) [S 180.N4(X)

Proof

The inequalities N;(X) € N;(X) and

N4(X) ES N3(X) are trivial. The inequality

N1 < 4.N3

N3 € 8 N; is proved in H.4. The inequality

is proved in H.2. The inequality

N; € 45.N, is proved in H.6. The inequality
N; € 180.N4 is proved in H.9 (actually, it is

possible to do better by using the Khintchine

lemma) .

Moreover, let [X,X] be the quadratic varia-
tion process associated to X as defined and
studied in C.6 3°) the hypothesis given in

C.5 are satisfied (cf. G.6) ; thus, we have

+ - ; :
NZ(X) =E ( &,X]m) = N2(X) ; actually, in this

paragraph H, we do not use this property : we use

only E.10.

H.2 - PROOF OF Nl(X) S 4.N3(X)

+
If Z is a random variable, we put Z =Sup.(Z,0)

and Z = sup. (- Z,0).

1°) tet @,F, F) .0

stochastic basis. We note{gn the space of all the

) be a probabilized

martingales X (with respect to this stochastic

basis) such that X1 = o and such that, for each
element W of {, the sample function k,yxk(m) is

"fixed" after its first "going down", id est :
- X is an element of Ll(Q,%sP) and E(angi) = o

. I
- £ h k X =E
or each integer k, X (Xn]JL)

- wy < w) i i ¥ 32
Xk+1( ) Xk( ) implies,¥ j 1, X

k+j(w) = xn(m)

If X is an element of 3;, we put x* = Sup. X, , we

1<k&n k
say that a martingale Y is a "transform™ of X
(cf. [Bur] ) if ¥ is a martingale (with respect to

@Fr, &)

1Sk(n) and if there exists a subset J

of K = {k : 1€k€n-1} such that ¥ =X+ kEJ(ka—xk).
If X is an element of j; and if Xlis a transform
of X, X' is also an element ofzf ; moreover, if
X" is a transform of X', X" is a?so a transform

of X.

2°) Now, we prove that, if X is an element of

3;, we have :

Ex®™ € 2 sup. {E(|¥Y])}

this supremum being considered for all the
transforms Y of X.
Then, we consider an element X of 3;. Let d be a

positive number. For each integer k, we put

Ak) = {w : X, @) < xk(w)) ; the sets (A(k))

1€k€n

are disjoint (because X & :g ).
n

At first, we suppose that there exists an inte-

ger j such that



) € d.E(X,.1 ) times defined by

E(X. , .1 .
( A(3) it

j+1
u(n) = inf. {t : x_ >a"} (and u(n) = 1 if the

Let k be the first such integer j and Y be n t
set X, > d is void) ; the process (X L) is
the transform of X defined by Y o= Xn—(Xk+1-Xk) . t u(k} k&n

a martingale with respect to the stochastic basis

S~
@, &, Y0 15n

Wwe put Y¥ = Sup. Y and B(k) ={lo: x (0 >x (W}
1<ksn K k+1 k and satisfies the hypothesis

; » SE o
if WEBKY,X* (W = ¥* () and, if we Bk given in the 1°) above (with u{k) instead of k) ;

* *
X (w = Y (w + Xk+1(m) - Xk(w). Then, we have then, we have

#, 3,
E(X") = E(Y") +E |1 . (X =X )
[B(k) k+1 k] E { Sup. X ..} € sup. efl| v.ax| }
#, <
= B(YD) +E 1 (XX 1gkgn
) [A(k) { k+1 k)] where this supremum is considered for all the
(X being a martingale) processes Y such
that Y = I 1 . . with 3¢ K ={ k : Igk¢n-11
% -
< E(Y) +E X ) +E . ) ; Tu3)uen)]
(Y ) (lA(k) k) (Xk+1 IA(k) jaJ ’
(because Xk(m) 20 if we Ak)) Moreover, Sup. Xt £ a. Sup. Sup. Xu(k)
* teT n>o k«n
Y + . .
< E( (1 + 4) E “A(k) Xk)
At last, we obtain
€ E(YH + 1+a) .E Q1 Y
A(k) 'n E { sup. x } € 2a. sup. E{ | Y.dX‘ }
teT
Now, we use the same argumentation for the
martingale Y : if there exists an integer such that this supremum being considered for all the processes
- Y such that
Y - £ d.E |Y,. .
B [ lyp] €98 Bty q)] (ehe sees Lo
(A(K)) | o Peing always the same); we consider k=1 Juca) juezken]
k, the first such integer j and we consider the
where (u, (k)) is an increasing family of
martingale 2 transform of Y defined by ©gkg2ntl

stopping times. This inequality being satisfied
Z =Y - (Y -Y ) ; at last, we obtain a subset
n n k+1 "k for all the real numbers a with a » 1, it is also

J of K = {k : 1¢k¢n} and a martingale M satisfied for a = 1.

transform of X such that : Of course, we have also

(i) M =X - ¥ (X, ,-X.)
noon gy LT E (Sup |Xt|)é E (Sup X,) + E (Sup - X )
teT teT teT

B [t (5) Ml

3 and that gives the inequality N, € 4 N_.

1 3

(i) E(X®™ < EMY + (1 +4) I
cJ

(i1) if 343, E [Mj+1.1A(j)1 > a.E M, ]

H.3 - LEMMA
If we put D = Q\U A(j), we obtain :

J
e Let (2,%P) be a probabilized space and k&
1 e
MY = E(Mn.lD) +q b E(IA(j)'Mj) and be a sub-g-algebra of J‘/ Let V,X and Z be three
Jed
< elements of L, . Fp) . We suppose that E(zZ|§) = o,
Ex® ¢ MY + (1 +d) I E“A(-)'Mj) and v and X areﬁ—measurable and ])([.1A 3 |v|.1, i
JeJ
5 1 n-1 - 1 _ A = {U): Z(w) # O}. Then, we have :
E(L_,, . .M,) <= L E(1_ ., .M, )< —.EM)
. A(3) a aA(3) +1°7 a n /
¢ »d =1 3 E(lx+z] - |x]) € 6 E ¢ viez? - v
Thus, we have :
- Proof
Ex® < éE(Mn) + 2+ Q) B —_—
We can suppose that o€V&X (in the general
- + 1 .
But E(M ) = EM ) =3 E(anl ); then, if we choose case, one considers the sets where V and X are
d = 1, we obtain positive or negative). In this case, we put
B ={w : (x+2) @) < o} . wWe have
Ex® < 2. E(M])
E ([x + Z!— le) =2 E(|X+Z!,1B) (because
3°) Now, we consider a real cadlag martingale E(Zlﬁ) = o).

X with respect to the stochastic basis (O,EF,P, ((\‘t)tGT)

with T = [o,l ] Let a be a real number such that

a >t ; let (u(n)) o be the sequence of stopping
n



But, if w & B, [2(w | 3 [x(w]| > [V(w | thus

q-3-1
€ X - -
ST - Wb @ s | byl € T -l bl -l b
Indeed, if v and z are two real numbers with But :
oz, we have 3 Vv2 + 22 2 3 v + z. Then, we q-:zi:—l
obtain : ot (lxk+j+1‘_ [Xk+jl) €S
6 8 (Az2- ) 328 (lzl.1) 22 B (|x+z] A1p) ka+1| Slx e Ix, x e vy
2B (IX+ZI - |X|) IXkI [ Vk (see the definition of k)

H.4 - PROOF OF N3(X) S 8.N2(X) That implies :

|xk|s s+2v,
Let Y be a predictable process such that

- : E X . E(V
n-1 where (u(K)) Thus (! CII) 8. E(V)

Y = - k&2
o e ek ] 1¢ken
H.5 - LEMMA
is an increasing family of stopping times ; if
we put 2 =J ¥.dX, it is easily seen that Let (Q,S:IP,(X()IQKq) be a prcbabilized

- - stochastic basis. Let (Y,)
N_ (2) € N. (X) (cf. E.11 - 4°) ; then, it is et () ke

2 L 2 . . . martingale (with respect to this basis). Let
sufficient to prove that, if X is a martingale
W, be an element of L2(Q'§1'P) such that W3 o

and W Y.

q be a square integrable

and if (t(k))lﬁkgq is an increasing family

of dyadic numbers belonging to T, we have : 1
We put :
é q-1 5 172
E 1 I (% -X ) 38 E( |x -x ) q-1 1/2
- t(k+1) (k) q 1 = 2 _ 2
k=1 ' % {w1 LMy oY)
k=1
Now, we suppose that (Xk)1<k is a real
£« We suppose that, if [Ykl > 2.W, , then, for each
. : _ < . . .
martingale with X1 o (and E(]Xq’) + ©) integer i 3 1, Yk+j - Yk _ Yq . We put :
Let V be the quadratic variation of X, id W'o=W Vv ]Y I Then, we have :
. N :
est V1 = o and E
| EMW' - W) < 9.E(ly -¥Y D
k-1 9 1/2 q 1 'q . 1l
Vel = El (xj+1—xj)
{ 1= Proof

For each integer k, we put
It is sufficient to prove that :

A(k) =3u) HIAY S]X ]s . Let S be the random
_ kK ok E (W -W) ¢ 8E([Y-Y |)
variable defined by q 1 q 1
q-1 For each integer, we put :
s= 1z [t -Ox,, |- D]
k=1 =~ A0} Tkl k A ={w : [Y () > 6W and |¥, _ () < 24,}

We have (cf. H.3) : The sets (A{k)) are disjoint ; moreover
2¢kgq

q-1 /—‘———‘—
2 2
- - Y -~ Y .1 aw, .1
By <6 I E[1A<k)' Vit B Vk} M - Bl dagg> ®ytagg
Y .1 =Y . . = .
a1 % lam q 1A(k) We put B(k) QN\A (k)
£6 z E[»’V2+ (X, —x)z-v :l
k=1 k k+l "k k We have :
2, 4 2 d 2 1/2
W =<W+ Y -Y .1 + Y -Y .
<6 E(V) q )" k§2‘ K Yk-1! laggt I Y ) Bk
g = k=2
; X 2 2 1 x2
Now, let w be an element "fixed" of I : in the The inequality v/ a” + x° g a + 5 3 (fora>o)
following we do not write the symbol w for the implies :
convenience of notation ; let k be the first integer,
W gC+0D with
1<k£q, such that m€Ak+j for all the integers q
3> ; we have : 5 q 2 1/2
c= W+ - .
1 * R e T )



q -
1 1 2 k-1 1/2
D= = (Y, -y, 1.1 v =| § x. .-x,)?
2w1 k=2 k "k-1 B(k) k jol 341775
But if w and y are two positive numbers, we have : We put P Sup |X

' 1 K|
w2 + y2 €w+y then b
|

q
< X . A 2°) We define the sequence {(u(n) ,W ,W' )
C &wW, + lyk Yl q LIRL AN

1 n>o
k=2
by the following way
Moreover :
1) =1 =c + i >
! q 2 1 q 2 u(l) and W, o=e IX1| with €>o0
D=3 oy %5y Popn 0%
W k=2 1 k=2 umtl) = inf.{ e : €3 um), |x | > 2.0n)
: . . \ a-1 1/2
(Y,) being a martingale and W, being =\ 2 n _ 0 2
k1&g 1 W ?wn + k§1 (Yk+1 k)
‘%l—measurable, the expectation of the first
n
i ith Y =X
sum above is equal to W1l k [kvu(n)Au(n+1)1
1 2
[ ] .
20, q 1 o+l Sup. { Woe1? IXu(n+1) I}
n
= ' i : W t =
Then, we have E(D) E(D') with - e pu Ek [k/..u(n)Vu(n+1)]
SR S I R LY
- 2W1 q 1 2w1 k=2 k "k-1" "TA(k) For each integer n, we can apply the lemma H.5 to
. q , the martingale (Y:)iékSthiCh is a marti:gale with
= = Z[(y—y)—n~y )].1 . . W .
2W1 k=2 q 1 k k-1 R A (k) respect to the stochastic basis (Q’J"P’gk)l(kSq) ;
thus, we have :
1 2
+ 2, (Yq—Y1) -1l © ©
L E(W' ~W' . -X
_ ¢ n+1 n)SEJr ° EElfxu(m-l) u(n)ll
where n=1 n=1
a q
B= M Bk) = Q\N] U a(k) But, for each integer n, we have vu(n)s wr'1' thus
k=2 k=2 o I ’
E(V)Y £€+9 I E(|X - X )
+1
But, if we A(K) a n=1 u(n+1) u(n)
- = - - For each integer, w ut A{n) = < u(n+l ’
LA S ]Yq v, 1< 2 ¥, v | ger, we p (n) ={ u(m (n+1) }

= {a 1) = = -
(because IYq[ 3 6W1, IYk—II < 2w1 and IYI] < 2W1) B(n) (am N untl) q} and G(n) A(n) \ B(n)

By the definition of u(n), if w ¢ G(n) we have :
At last, we obtain :

I & W) 22 | ; then, in thi
'Xu(n+1) (w) | 2 2 wn(m) 2 p{u(n) (w) | hen, in this
C+D'&W +8 IYq - Y1| , id est : case, we have also
E(W ) <E(C +D') <E(W) + 8E(|Y_-1Y ]. 1 R | . -1x N
q 1 a 1 Py Fuqm | @ € 3D gy @ = @]
This implies
H.6 - PROOF OF N. (X) g 45. N (X) k. ml' 1
e - ‘ X -X £3 L - X {.1
2 1 : G ety Xy | & % ey | Xy I_l G(n)
n=1 =1
00
1°) It is sufficient to prove this inequality + T IX -x [ 1
. R . u{n+l) u(n) Bin)
for a martingale X with respect to a stochastic n=1

The sets (B(n)) being disjoint, the second sum
basis (Q;SFIP,(&;() (id est card (T) < +). n>o b !

1eksq’

is bounded by 2 X¥; the sequence of sets (G(n)n>o
For each integer n, we put X; = X'I{IXISn} and being decreasing, the fir:t sum is bounded by
we consider the martingale X" defined by 3 i:i ”Xkl B |X1 |) €3 X
X: = E(Xg,gk)' By the Lebesgue theorem, we have At last, we have : E(Vq) < e + 45. E(X*)
N;(X) = lim. N2 (Xn) and Nl(X) = lim. Nl(Xn) . Thus and that proves the expected inequality when ¢ goes

=00 Eald

n m to zero.
it is sufficient to prove the inequality for each
martingale Xn ; thus, it is sufficient to prove the
inequality if X is a square integrable martingale.

Let V be the gquadratic variation of X, id est
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H.7 — LEMMA Actually, it is possible to say better (Khintchine

lemma) .

Let (,%P) be a probabilized space ; let
Now, we have to prove that N3(S) < E(]S])
A and B be two elements of F and £ be a one—
R . R {of course, we have N, (S) » E(|S|)).
to-one measurable mapping from A into B which 3
, For each integer k, with 1€k&£q, let V _be an
preserves the measure P , t.e. P(G) =P [f(G)] k

and P(D) =P [f_l(D)] Zf G and D are two
elements of & with G ¢ A and DcB ; let X be
an element of LI(Q,D:.P)such that .1, =X ; we

gﬂﬁmeasurable random variable such that ogvkgl.

Now, se suppose that Vk =1 if k > p and we prove

at first, that

£ Y(W =X - X [f(w]; let a be a real % ! R
U = - ; le e e - -
P : Bl vea e, zk)ls < B I .q g5l
number. Then we have : k=o k=0
ifV =V fork#pand\-l =1,
E([Y +a.1, -a.1,]) 3 E(]Y]) kook p
By convexity, we can suppose that Vk (w) = o or
v, W) =1 (for each element w of Q).
Proof )4
The inequality above is a corollary of the lemma
We have :
H.7 above if we put A = {(I—Vk) (Z 4~ %) >0 } ana
E(|¥+a.l -a.l_[)=E([X+a |l )+E(|X-a .1 ) = _ _ -
| A B[ [ [A [x-al.1, B={Q1 V(% - 2) <0} anda a4
and E(|Y]) = 2 E([X]) = 2 E( IXI‘IA) Then, by reasoning by recurence on p, we obtain :
q-1 q-1
Then, we put : T - . -
’ B X v.d.z,-2) )< E|E qz,,-2)|)
+ - k=0 k=0
q = E[(X—a) ] ;, S = E]:(X+a) ] ’
+ -
p=EX)-q, r=EX)-s H.9 - PRGOF OF N;(x)s 180.N, (X)
u=P({X >0}, v=P({X <o})
It is sufficient to prove this inequality if
Then, we have : (xk)lSk‘q is a martingale with respect to the stochastic
E(|X|)=p+qrr+s ; E(|X+a|.1A) 3 prqtauts basis (Q,‘«F,P,(ﬂ'];)lgk‘q). In this case, let (szk)igkgq_1

be a family of Rademacher functions defined on another

E(]X—a '1A) > gqtr+s+av ; p £ au ; r g av ,
probability space (2',& ,P'). We put Dy = X1 7%
and that implies For each element w' of ', we have
E([x+al.1) + E(|x-a[.1,) > 2 E([x].1,) J Iq_l |
T Y (w").D {w) |. P(dw) € N, (X)
0 ket k k 4
H.8 -~ LEMMA
— This implies :
Let (Zk) 1¢k¢q be a mar:v,ngayle with respect J J lq:i
\ . . LY (W').D (w P .P' '
to the stochastic basis (Q,FP,( k)l<k<n 3 0 Jor ket k( ) k( ) |.P(aw).P'(aw") < N4(X)

) is a family of

we suppose that (Zk—Zk_1 1¢keq

Rademacher functions. Let Q) be a By the Fubini theorem, we have also
gkgg-1

family of real numbers. We put q-t

k-1 oo | 2 v @".p @) | P (@) P € N, x)

= - = ' k=1
S, jil a7y, -2 E(Sq[ka)
Then, we have : But, the lemma H.8 implies :
a-1 J' q-1 q-1 . 1/2
1 + 1 2 1 2
E(|S = N,(8) = —_ = m— Y ').D P "S> =
(ISP = 8,(8) = N,(8) 5 755 Ny (9) = 5 T (d) Q,| Rl P@n i Iobw]
=1 k=1 k=1 )
At last, we obtain :
Proof 1 q-1 9 1/2
- N, (x) 3 J Teo) L [P @] -P(dw)
. Q - k

Let us recall that (Zk_zk—l) is a Rademacher k=1 )

function if Zk—-zk_1 = +1 or -1 with the probability
1 +
. 3 =

1/2 respectively. 180 Ny (X

; 1 +
Th i —_ i
€ inequality N3 (S) 3 160 N2 (S) is a

corollary of the inequalities given in H.2 and H.6.



- 41

H.10 - THE SPACE H1 (remarks)

Let (nyip,(ﬂ:) } be a stochastic basis.
t teT

One notes H1 the space of all the real cadlag
martingales X such that N; (X) <+ | If Y is
an uniformly bounded predictable real process,
it is possible to define the stochastic integral
YdX as in B.6 (cf. F.14). Actually, it is
not necessary to use B.6 and F.14 if we know the
inequality N3(X) < B.N; (X) ; in this case, we
can define the stochastic integral |YdX as

follows

For eachd&—simple real process Y (cf, B.2), we put

N(Y) = lim.sup. E s [ z Yi 2'“'(x(k+1)2'n_xk 2-n)2 ]1/22
e ( k€o ©° ) s

this defines a semi-norm oni;(cf. B.2) such that,

for each element B ofofﬂ we have

I JB v [l g gy € 6 N

Thus, the mapping Yz+J YdX is a linear mapping from E
into Ll(Q,giP) and this mapping is continuous if we
consider on H1 the topology associated to the semi-
norm N and, on Ll(Q,ﬂaP), the usual topology. Then,
this mapping can be eXtended by density and this
defines the stochastic integral |YdX notably for
each uniformly bounded predictable real process ;
moreover, it is possible to define the stochastic
integral process Z = |Y¥dX as in B.5 and we see

that Z is also an element of HI' We can also prove,
exactly as in B.5, that H1 is a complete space.
Actually, if we consider the additive mapping

B ~ 1B.dX, defined on J*and with values in
Ll(Q,UiP), we can see that the semi-norm N3(X) is
exactly the semi-norm of the semi-variation as
considered in [BarJ ; thus, this mapping B~y lB.dX
can be extended in vector measure ; that proves
notably that the family of random variables

(| YdX), for all the bounded real predictable
processes Y, is uniformly equi-integrable (classical

property of the vector measures : see [BDS] b

Moreover, let A be the increasing process-

defined by :

> 2
A = lim.sup.% I [A -np. " >N t]
t e Ko (k+1)27PAE B2 np

if t is a dyadic number and A_ = lim.A in the

stt
general case. It is easily seen that A is a cadlag
increasing process ; A is the quadratic variation

process of X as studied in C.6. BAll the previous

remarks if Y is a bounded predictable process are
also available if Y is predictable process such

that E {Jysz} < 4w,



J - STOCHASTIC INTEGRAL CONSIDERED
AS A GROUP-VALUED INTEGRAL

J.1 - INTRODUCTION

Let B be a Banach space and X be a
B-valued process. We want to build and study
the stochastic integral |YdX if Y is a real
predictable process. In B.2, we saw that this
integral is defined in a natural way when Y belongs
to the vector space‘g. The mapping Y~»|YdX can be
considered as a linear mapping from\% into
Li (9,%F,P). The problem is to extend this

mapping to a family of processes larger than ‘% .

From this point of view, we are in a typical
situation where we have to extend a classical
integral, with values in the group Lg(Q,g%P) and
defined on the setgof all the reald"—simple
functions (ékbeing an algebra). Then, in such
a context, it is possible to use the classical
results on vector or group-valued integral.
Actually, this method permits to obtain some

specific results.

In this paragraph J, we consider only the
case where Y is a real process ; the methods given
here are sfill available when Y is a Banach space
valued process ; they are also available if the
"time" T is not an interval of the real line

(cf. [Mer-2]).

J.2 - HYPOTHESIS AND NOTATIONS

In this paragraph, we consider :

- a Banach space B

- i i Q
a stochastic basis ( f&,PGFt)tGT

- a B-valued process X defined up to modification

) with T = [o,1]

We put :
BB, Fr with po
P P
Q' =0 x (rn{oh

The sets c‘R: .ck, 8) and -&are defined as in

A.5 and B.2. We consider also

'&o= v : ve &, supl Yt(w)l €1}
t,w

For each element Y of g,, we define the
stochastic integral |Y.dX as in B.2. Moreover,
for each element A ofdi’, we put x(A) = J1,.9X
Then x 1s an additive fumction defined on(ﬂfand
with values in Lg ; moreover the stochastic
integral |YdX is a classieal integral of ¥,
constdered as a function defined on Q',with respect

to x.

In this paragraph, we give necessary and
sufficient conditions (cf. theorem J.5) such that
this integral can be extended to the family of all
the uniformly bounded predictable processes We will
use the lemma E.2 and the two following lemmas that

we recall for the convenience of the reader.

J.3 - A BOUNDED ADDITIVE FUNCTION (LEMMA)

Let ||.|| be an F-norm (cf.[MaCJ) on the
vector space U and x be anl)-valued additive
function defined on an algebrad*ﬁ We suppose that

lim x(An) = o for each sequence (An)n of disjoint

>
ne °©

elements of&f. Let v be the function defined on

oy via) = swp |lvm ]|
BeJt,BcA
Then, for each element A of 0+, v(A) < 4>

For the proof, see the corollary 4.11 in

[Dre].
J.4 - DANIELL THEOREM

We consider the hypothesis and notations given

in J.2. Moreover, let p be a non negative real number.

We suppose that the following properties are fulfiled :

(i) for each element Y of 8, JYdX belongs to LE
(ii) for each sequence (Yn)n>o of elements of E
such that Y + o, the sequence ([Y dax)

n 1'n 'm0
converges to zero in LE

(iii) if (Y ) is a sequence of elements of fb
n’ n#o

such that I
nx1

Y €Y the sequence Y dx
n o’ quenc (J 2 nso
converges to zero in Li.

Then, the mapping YA,JYdX can be extended in a linear
mapping, defined on the set of all the uniformly

bounded predictable processes, with values in Lz

and which satisfies the Lebesgue dominated convergence

theorem.

This theorem is proved in [Pel—l] .



J.5 - EXTENSION THEOREM

We comsider the hypothesis and notations
given in J.2. Let p be a non regative real number
and X be B-valued process, defined up to modifi-
cation, which satisfies the following properties :

(1)  for each element s of T, lim (Xt—xs) = o for

nre
- the usual topology of LE.
(1) {z: 2= | 1.8, nedl is a bounded (with
the Bourbaki meaning) subset of LE.
of disjoint

(iii) for each sequence (A(n))n>o

)

n>o

elements af'JP, the sequence (J 1A(n)‘dX

converges to zero for the usual topology of

LE.

Then, the mapping Y/9IYdX can be extended
in a (unique) linear mapping, defined on the set
of all the uniformly bounded predictable processes,
with values in LE and which satisfies the following

dominated convergence property

(iv) Zf (Yn)n>o

predictable processes such that |Yn| < |YOI

is a sequence of uniformly bounded

for each integer n and such that Y = lim.¥

no

then, we have : Ydx = lim.J YndX (for the

no>w

usual topology of Lz ).
Moreover, if B is a finite dimensionmal vector
space, the condition (iii) 1s necessarly fulfiled.
Proof

H
1°) For each random variable which belongs to Lp,

(&

we put
1/2
|If|!p = [ J |f(w)|p.P(dw) ] if p 2 1 (usual norm)
||fHp = J [£()P].P(dw if o <psl
||f|]o = J [|f(w)| A 1].P(dm) if p=o
Then ||.|I is an F-norm (cf.[MaO]) associated to

B
the usual topology of Lp.

In the following, we note ||.{1instead of
.dx if A is an element

-1
of d*?

and we put x(a) = IA

2°) At first, we consider the case where B =[R

in this case, the spaces LE = LE (pour p>o )

satisfy the hypothesis of the theorem 3 of [ﬁao];
let (A(n))n>o be a sequence of disjoint elements
of 6*: X being an additive function and xeﬁ) being

a bounded subset of LR, the serie (x(A(n))) is
1% n>o

"perfectly bounded” (cf.|Ma0]) ; thus, it is
convergent. That proves the end of the theorem when
B =]R ; thus, we have the same property when B is

a finite dimensionnal vector space.

3°) Now, we suppose that B is a general Banach
space. Let v be the non negative function defined

on the subsets of (SXT) by :

v(A) = Sup IIX(C)![

cedicen

At first, we prove that the restriction of v to
dFsatisfies the properties (i), (ii) and (iii} of the
lemma E.2. The condition (i} is obviously satisfied

and the condition E.2 (ii) is the condition J.5 (i).

If the condition E.2 (iii) is not fulfiled, there

exist ¢>0, an increasing sequence of stopping

time lu(n)) _  such that F(n) = [um< 1] + ¢ ana

a sequence (An)n>o of elements ofé*'such that, for
each integer n, An C(F(n)x T) and ‘]x(An)f[ > 8€
We have V(F(1)X T) =

a< +» (cf. J.3). Let D be a

set such thet D¢ (F(1)x T), pedt ana [|xmyt!l > a-e;
let k be an integer such that k>l and ]|x(D).1F(k)
let E be a set which belongs tod& and such that

E ¢ (F(k)X T) and ||x(E)]] > 8 £; we have

[1x(ew) |34 € or ||x(EaD) || > 4 € ; in the first

case, we have :

[lxEup || > ate -~ + (4e-€) > a+3e

In the second case, we have :

[ Ix (D\E) | |2a+2 €

In the two cases, this implies v(F(1)XT) > a+2 €
but this is impossible ; then the condition E.2

(iii) is fulfiled and we can apply the lemma E.2.

4°) Now, we prove the properties J.4 (ii) and (iii).

At first, the set {z =2 =| Ydx, Y € &} is
(e}

a bounded subset of L (according to Erur], J.5 = (ii})

B
P
and the properties of the F-norm considered). That

means that, for each €20, there exists N(£) such

that Sup IYt<w)1 < n(e) implies||| vax|| € e. we fix

t,w

€ and n(e).

[l <e;



be a sequence of non negatived*isimple

Y
Let ( n)n>o

processes such that Yn Yo ;

[Yn > n(e)] and B(n) =Q\NA(n) ;

for each integer n,

we put A{n) =

we have ||j Yn .lB(n).dX Il ¢ € (because
Yn'iB(n) € n(e)) ; moreover, A(n} { ¢4; thus
v(A(n)) + o (cf. 3°) above) ; then,

lim Yn'lA(n)'dX = o and that proves the
n>o

condition J.4 (ii).

5°) Now, we prove that the condition J.4 (iii) is
fulfiled. Let (Yn)n>o be a sequence of non negativ
d&simple processes such that z Yn « 1. Let € be
a positive real number ; we coﬁggder’n(e) as in th

4°) 1/k

above ; we can suppose that N(€)
(k depends on £). For each integer n, we put
A(n) = [Yn > H(E)] ; as in the 4°) above, we
have to prove that

1lim
n>oo

JYn . IA(n)'dX =0

For that, we consider the following sequences of

sets

B(o,0) = Q , B(n,-1) = ¢ if nzo

B(o,j) = ¢ if j31 and, for n3l and jxl

B(n,3) = [Br-1,3-1)N am ]u[B(-1,I0Nam]
Z(n,3j) = B(n-1,3-1) N A(n) = B(n,j}NA(n)

If j>k, we have B(n,j) = ¢ ; moreover, for each

integer n, {C(n,j)} is a partition of A(n).

1<jgk
at last, for each integer j, the sets {C(n,j)} o
n>
are disjoint. According to [Tur] and E.2 (iv),
we have
lim
-0

J Yn lc(n,j) dX = 0O

for each integer j with 1gjgk.

But thi i 1 i . - =
u is implies lim J Yn lA(n) dx o {(because
n-—rco
{C(n’J)}1<jgk is a partition of A(n)) and that
proves J.4 (iii).
Then, we can apply the Daniell theorem J.4

and that completes the proof.

J.6 - STOCHASTIC INTEGRAL PROCESS
We consider the hypothesis and notations
given tn the theorem J.5. Moreover, we suppose

that X 7s an adapted cadlag process (X is a

"

. . A
process in the " strict” sense). Let Z be the

process defined, up to modification, by

-~
A =

t 110,t]y'dx where Y is a uniformly bounded
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e

e

predictable real process. Then, there exists a
cadlag adapted process Z which is a modification
of z. Moreover, we have the following dominated

convergence theorem.

If (Yn) i8 a sequence of predictable real

n>c

processes such that  Sup [Yn(t,w)l € 1 and such

n,t,n

that (Y_) converges to ¥, there exists a sub—
n n>o

sequence (Y ) sueh that the sequence

n(k) k>o
(Zn(k))k>o assoetated as above converges P-a.e.
uniformly for each sample function to the process

Z assoctated to Y as above.

Proof

This theorem can be proved exactly as in B.5

by using the Borel Cantelli lemma and the "outer"

measure v.
J.7 - REMARK

1°) We consider the hypothesis and notations given
in the theorem J.5. If p 3 1, LE is a Banach
space ; thus x 1s a Banach space valued additive
function then, it is possible to use and apply
all the classical results on vector measures ;
of course, the hypothesis considered in J.5 are

more general.

2°) The stochastic basis (Q,ﬂ:P, (ﬁi)tsT) being
fixed, let 3 be the space of all the B-valued

cadlag adapted processes ; if pjo, for each element

Z of S , we put

|[|z|||p=yiu% HJY.dZHp (here [[.1] is
(e}

defined as

J.2).

in the proof of J.5 above and‘%% as in

Weput:gp {Z:Ze$,|[|z]|]p< +w }

It is easily seen that:?p is complete for the topolo-
1,

for each element A
ll ax
A
. can

be censideres as an additive functicn defined cn ﬂ+

. (as in B.5).

gy associated to the F-norm |l

Now, let X be an element of 3 ;
P A
ofdk, the stochastic integral process x(A) =

car te ccnsicered &s an element of 3 ; then

and with values in:f; ; moreover, il Y is an element

of {%, the stochastic integral process 1dX can be

consicered as the ysual integral of Y, considered as a real

function defined on Q' =0 x(Tv{o}), with respect to % i

it is possible to write the theorem J.5 in this new context.
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EXERCISES

EXERCISE A.1

Let (2, GF P, (F)

t'teT
stochastic basis defined by

) be the probabilized
2 = {a,b} (set in-
cluding two elements a and b), ((= @(;z) (set in-
cluding all the parts of §), P({a}) = P({b}) = é‘
T = [O,IJ (unit interval of the real line),

‘fr = (4,Q) (trivial og- algebra) if t g 1/2 and
t§t=§ if t o> 1/2.
1°/ We put u{a) =1 and u(b) = 1/2

v{a) = O and v(b) = 1/2

Are u and v stopping times ?

2°/ Have you ¢t =(t+ for each element t of T ?

3°/ Are u and v stopping times for the family

(% )

?
t+'t € T

4°/ 1s [:o,u[ a predictable set ?

5°/ Is X = 1[:0 ul: a predictable process ? an adap-
'

ted process ?

6°/ Let (wn)n>obe the sequence of random variables

defined by, for each integer n, wn(a) =1 and
wn(b) = 1/2 + 1/n. We put w = inf.w_ . Is w_a
n>o o

stopping time ?
Is w a stopping time for the family (‘(t)teT ?

for the fami =4 2
or e family (S.t+)t€T

EXERCISE A.2

We define (Q,‘(, P) as in the exercise 1.
Let Y be the process defined by Yt (b) = O for each
element t of T and Yt(a) =0 for t < 1/2 and
Y(a) =t - 1/2 if t 2 1/2. For each element t of T,
let £ be the o-algebra generated by the random
variables (YS) (i.e. the smallest 0 -algebra

s gt
for which these random variables are measurable).

Compare these O-algebras (gt)teT and the o-algebras

1 .1, rocess Y
(({t)tGTOf the exercice A.1. Is the proces

adapted, or predictable, with respect to the stochas-

tic basis (Q,(,P, («;) )

t'te T
Q% B, (cg’t)

) is often called the canonical sto-
chastic basis of the process Y.

In this situation,

teT

EXERCISE A.3

Let (u(n))n ° be an increasing sequence of

>
stopping times. We put u = Sup.u(n). Is u a stopping

. n>o
time ?

EXERCISE A.4

You can do the exercices A.4 and A.5 toge-

ther. Let (i,‘F1P,<q;;)
T = [0,1]

or false : (to show that one of the following asser-

bea i i i
£ ET) stochastic basis with

Say if the following assertions are true

tion is false, you can use the exercise A.1).

1°/ Let u be a T-valued random variable defined on

(Q:IE/,P) ; then u is a stopping time if and only
if, for each element t of T, the set
A= {w: u(w) < t} belongs to ((t.

2°/ Let u be a T-valued random variable defined on
(Q,@/,P) ; then u is a stopping time if and only
if, for each element t of T, the random variable

(u A t) is @t-measurable.

3°/ Let u and v be two stopping times with u 2 v.

Let w the random variable defined by

wiw) =1 if u(w) > v(w)

w(w) = u(w) if ulw) = viw)

Then w is a stopping time.

EXERCISE A.5

Do the exercise A.4 if the family (‘g,c)teT

is assumed to be right continuous.

EXERCISE B.1

Let (2,6,p, (%)

t'teT
We note K the vector space of all the real cadlag

) be a stochastic basis.

processes adapted to this stochastic basis. We suppose

that there exists a positive mapping N defined on K

such that
(1) N(X + Y) £ N(X) + N(Y)
(ii) N(aX) = |a|.N(X) for each real number a

(iii) N( Z X)) € L N(Xn)
n>o n>o

We note H the vector space of the elements X
of K such that N(X) < + «, We suppose that, for each
element X of H and for each real f—simple process
(cf. B.2), the process Z defined by Zt = Y.dx

Io,t]
N(Z)€ N(X) . Sup.|Y ()]
t,w

is such that

Prove, by reasoning as in B.5, that H is a

complete space.
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EXERCISE B.2

Let (Q,@P, (f()

tteT
basis. Let X be a real cadlag process adapted to

) be a stochastic

this stochastic basis. We suppose that there exists
a positive measure a such that, for each real
dfisimple process (cf. B.2), we have

E.(| JrY.dX |) g{j[y|2,da 372

Is it possible to build, as in B.3,
the stochastic integral Y.dX for all the processes

Y which belong to Lz(Q x 1,46%,a) 2

EXERCISE C.1

Let X and V be two real continuous proces-
ses ; we suppose that V is with bounded variation
and that X satisfies the assumptions given in C.5

(thus, notably, we can use the Ito formula).

i°/ For each integer n, let (u(n,k))k>O be the se-

quence defined by recurrence by u(n,0) = O and
uln,k+1) = inf}t : t 3ulnk),

- +v - | > !

e e L AV At

Calculate [M,V]l ,id est

lim. Z [M

-M 1.[v -v 1
o koo u(n,k+1) ‘u(n,k) u{n,k+1) ‘u(n,k)

2°/ Prove that the quadratic variations DW,M] and

&W+V,M+V] of M and (M+V) are equal.

3°/ Prove the following equality (integration by

parts}

t t
MV-MV = VvV .dM_ + M .av
t't o o o S s ° s s

Indication

apply the Ito formula to the process
(Mt'vt)' considered as an |R2—valued process,

and to the function (x,y) axx.Y = F(x,y)

4°/ Let W be a brownian motion ; by admiting that
W = X satisfies the assumptions given in C.5
(see the paragraph E), prove that W is not a
process with bounded variation (see the 1°/

above)

5°/ Study the case where X and V are two real cadlag

processes but X and V are not continuous processes.

EXERCISE C.2

Let X be a cadlag real martingale and Y
be a real predictable uniformly bounded process. You

will admit that X satisfies all the properties given

in C.5. Let Z be the cadlag process defined by :

Zt = JJOItJY.dX.

1°/ Prove that Z is a martingale
2°/ Let H be a real predictable uniformly bounded

process. Prove that we have

[ sem]

Tod 7 Jou]

(id est, with the symbolic differential nota-

H_.Y_.dX
s’ 's s

tion, if 4z = YdX, then HAZ = H.Y.dX).

3°/ Prove that we have :
_ 2
(z.2], - [z.2], = J]o't] vo_.a[x.x]
where [.“] is the quadratic variation.
(id est, with the symbolic differential notation,
alz,z], = v2_.a[x.{] .

EEQESEEEQE : For all these questions, you can

begin to consider the case where Y is an

Li:simple process (cf. B.2).

EXERCISE C.3 (some properties of the brownian motion)

Let (wt) ]be a real brownian motion.

te[o,1
You will admit that this process satisfies all the
properties given in C.5 and you can use the exercise

Cc.2 1°/ and 2°/.

1°/ Let F be an element of Q?; . We put :
= ia(Wgyy~ Ws)
£w = et .e ]

Show that the function f, considered as a function
of u, (F, s and a being fixed), satisfies an ele-

mentary differential equation.
2°/ Calculate £(u)
3°/ calculate E[ela(ws+t_ W) l{?;]

4°/ What does that mean ?

EXERCISE C.4

Let (W, ) be a real brownian motion with

t'teT
T = BL!]. For each integer n, let Y" be the real pro-

cess defined by

n 2

Y=Ew
k=0 l (k+1).2-n

-n
Wiy 0mn = ¥ p-n

- W 2-n|

k.20, (1) .277]

Is Y an adapted process ? Is Y a predictable
process ? Is Y uniformly bounded ? Prove that the se-

Yn.dx goes to

lou1]

; n
quence of random variables Z =



the infinity, almost surely, when n goes to

the infinity {(ycu can use the exercise C.!1.4°/ ).

This exercice shows that it is not possi-
ble to build the stochastic integral for processes
Y which are only measurable with respect to the
J-algebra (‘x‘/®€ (where f is the o-algebra of the

borelian sets of T).

EXERCISE D.1 (The Ornstein-Uhlenbeck process)

Let W be a real brownian motion. Let f be

a real continuous function defined on the real line.
Let xO . a , and b three real numbers. We put :

t t

t - ~

z.=e"x + J {93 figyas + J TSN g
t [e} s

o <}
1°/ Compare the process 2 and the process X which is

a solution of the following differential equa-

tion
t ft N
= + + r .
Xt xo JO b dws JOLaXS + f(s)] .ds

Indication

you admit (see § E after) that you
can apply the theorem D.5 and the Ito formula

ta t -sa
to F(t,Y = + .f . + Y
o F( t) te { X fo e (s).ds t}
where ¥ = e_sa.b.dw

t s

o]

2°/ Study E(Xt).

3°/ Prove that X is a gaussian process, id est

for each finite family {t(k)} of elements

1<k<n

of T, the random variable {Xt(k)} teken TS @

gaussian random variable

Indication

you can begin to prove that, for
some "good" functions f, the process %, defined

f(s).dW_ , is a gaussian process
t ] s

o,t]
by using the exercise C.3.

EXERCISE D.2Z

Let (2,9 B, (F )

YJbeastochastic basis

t'te T
with T = ED,ll. Let (Zt)te'r and (vt)téiT be two real
continuous processes such that we can apply C.5 and
1, . = - ) ,
D.5. We put : W v, + 1/2[v,v]_ and
= - tr, T - a2
C, = exp(-W ). JOLgxp.(wSJ;.(gLS uLZ,VJS)

Compare the process C and the processz Y

which is a solution of the following differential

t
e tio Y =4Z_-Z_ + Y .dv
qua n t t Q ( s <
[e]
Indication You can apply the Itco formula tc the
- . —a 5
function F{a,b) = b.e and to the processes (A,B)

. t . -
where A = W,_ and B, = [ exp(W ). {d2 - :
t t t o U *P vs)‘ (“s

il S)

Moreover use the exercises C.l and C.

EXERCISE D.3 (see [Woz] and [All] )

Let (!?,KS‘J,P, ('{t) teT)be a stochastic basis
with T = [O,l]. Let (Bt)tegoe areal brownian motion.
Let n be an integer. Let (B ) e the process defined

; t'tar .
by B) = 0, and, for each element t of [k.2™", (k+1).27"].

B: =B + 2% (t-x.2™n

- 7
1B ety 2mn 7 By on)
Let T be a real function, defined on the
real line, such that its thirst derivative is uniformly

n N .
bounded. Let X the continuous process defined by

(this integral being defined, as usual, for each ele-

ment o of ).

The problem is to see if the sequence of

n . .
processes (X ) converges, when n goes to the infi-

n>o
nity, tc the continuous process X defined by

t . .
X, = jo O(BS).dBS {this integral beingan usual sto-

chastic integral).

n
1°/ For each integer n, is the process B adapted ?

is this process continuocus ?

2°/ When n goes to the infinity, does the sequence of

n .
processes (B ) converge, uniformly for each

n>o
sample function, to the process B ?

. n

3°/ For each integer n, we define the process A by
27y

A = I B

.2™n
k=0 K

1 - -
Tx.27", (ke 1) .270]
n n
Is the process A adapted ? Is the process A pre-
n
dictable ? Is the process A continuous ? Does the
n .
sequence of processes (A )n“~ cenverge, uniformly
o

for each sample function, to the process B when n

goes to the infinity ?

4°/ we consider the following processes

[adi=1

t n

J J(a).4B"
S S

O

t

3

t
" = f '@l . @ - a".as”
S s s <

( gD n _ A0 _ N

| (87).a8? ~ ¢} - b,

Study the convergence of tne vequences of processes
n a
(cH) s (D)
GG n-c

n .
and {R ) when n goes te the
T

infinity ;

n

D 2n

. . £ n -
2993595399_' calculate D(k+1).2_n

n

i o ~ n
and find an adegquate bound for R(k+1).2'n Rk.Z‘n

wnat does that mean 7
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EXERCISE D.4

Let £ and g be two real functions defined
on the real line ; we suppose that the derivative f°'
and g' of £ and g are continuous ; moreover, we sup-
pose also that, for each real number x, we have

g'(x) = £ [q(x)j . We put T = [0,1]

o
1°/ Let (Xt)t eT

which satisfies the properties given in the

be a continuous adapted process

theorem C.5 (i.e. such that we can apply the
Ite formula) ; let A = [X,X] be the quadratic
variation of X. We consider the following diffe-
rential equation

t
¢ = glo) + J £(v) . fam + an]

o]

Show that the solution of this differential

equation can be written Yt = g(Zt) where

t
Z, = X+ A - 1/2 L[f gz )] -du,

and where U is a continuous adapted process

with bounded variation (calculate U).

Indication

and show that g(Zt) is a soluticon of a diffe-

rential stochastic equation.

2°/ Verify that you have g'(x) = f[g(x)] in the fol-

lowing two cases

x and g = C ex where C is a real number

o
h
x
n

b) f(x) = sin x and g(x) = arcsin[ ———L~—-]
where C is a real number and ch{(c-x)

when x < C.

EXERCISE E.1

Let (2,0, (€ )

t'teT
being right continuous.

) be a stochastic
basis, the family (d;t)t€ T
Let {u(n)}n>obeasequence of stopping times which is
strictly increasing to a stopping time u. Is the set
]o,u[ a predictable set ? Let X be a real cadlag
process such that its Doléans function d(X) is well
defined and C-additive. Let Z be the process X stop-

ped just before the stopping time u, id est

Zt(u) = X () if t < ulw)

Zt(w) = Xu(”)— (i) 1f t = ufw)

For each predictable set A, compare
4(z) (A} ana  ax)(aNnTo,u)
EXERCISE E.2

Let M be a continuous Hilbert space va-
lued martingale. Prove mhat M is a locally (cf.A.lC)

Cadarde Ln

: you can apply the Ito formula to g(Zt)

EXERCISE E.3

Let (2 ,(;,P, ( f{t) teT)beastochastic basis
with T = [0,1].

° e areal continuous process which
1°/ Let (Nt)t er a p
is a martingale and a process with bounded va-

riation. Prove that Nt = NO a.s.

Indication

you can begin to suppose that N is
a square integrable martingale ; thus, you can
prove that the process EJJG is equal to zero
(cf. the exercise C.1) and study E[(Nt— NO)2] H
at last, you can use the exercise E.2 above.

o
2°/ Let (wt)tcT

grable martingale and (Vt)

be a real continuous square inte-
be a real conti-
teT °
nuous increasing process ; we suppose that
VO = Wo = 0. Prove that the two following proper-

ties are equivalent :

2
a W =V )ieq

b) v = [W,H]

is a martingale

Indication

study the process V - Dﬂ,wj and apply the 1°/

to prove that a) implies b) you can

above.

3°/ Let (Mt)teT and (At)te

adapted uniformly bounded processes. We suppose

szua real continuous

that AO = Mo = 0 and that (a ) is an increa-

t'teT
sing process. Prove that the two following pro-

perties are equivalent

A,
a) for each real number A , the process 2 is a
A .
martingale where 2 1is the continuous process

; A 1 2
defined by 2, = exp.()\Mt -3 A 'At)
b) the process M is a martingale and A = [h,M]

Indication

to prove that b) implies a), you

can use the Ito formula ; to prove that a) implies
k), you can derivative twice with respect to A ’
consider the case where A = O and use the 2°/

above.

EXERCISE E.4 (Girsanov theorem)

2,%,p,
Let (2,5 (:gt)tET
that we note B(P), with T = ED,I]. In the following,

)beastochastic basis,

we will consider a probability Q defined on (Q,G:
and such that, if Z1 = g%» is the Radon-Nikodym
derivative of Q with respect to P, then there exists
two real numbers o and £ such that O <a<8 and,
for each element w of Q,ﬂéizl(m) < g .

In this case, (Q,'{,Q,(‘gt)teT) is also a

stochastic basis that we note B(Q).
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1°/ Let X be a real process adapted with respect 1°/ Is (Xn)neT a martingale with respect to the
to B(P) ; is X adapted with respect to B(Q) ? stochastic basis (Q,‘;,P,(egn)ncfr) ? Is the
family (Xn) eT uniformly integrable ?
2°/ Let M be a real martingale with respect to B(P); n
is M a martingale with respect to B(Q) ? 2°/ calculate Sup E(IX |) and E L—Sup IX | :[
n>o n n>o n
In the following, if M is a martingale with res-

o - i - 1 i -
pect to B(P), we say that M is a P-martingale 3°/ We put Xp = x];_l:; Xn iis (Xn)ncT* a martin
{(and the same for Q). gale with respect to the stochastic basis

& ? is i tingale ?
Let (Mt)teTbe a real continuous P-martingale @, S"P'(f(n)ne'l’*) ? is it a supermartingalie

such that Mo = 0. We put A = [M,M] and we sup-

se that M and A are iformly bounded.
po unitormly bounde EXERCISE F.1 (cf [DEL])

3°/ LetYbeareal predictable uniformly bounded pro- We put : Q = [0,1] ’ { = (-algebra of the
cess. Compare the stochastic integral deM borelian sets of  , P probability on (Q,‘{) ’ T=[O,1].
calculated in B(P) and in B(Q). for each element t of T, g = og-algebra of all the
borelian sets contained in [O,t] ' «‘;t = O-algebra
4°/ Let (Rt)teTlBareal predictable uniformly boun- on {} generated by gt : more precisely a subset A of
ded process. We put : 2 belongs to‘(t if and only if A belongs to %t or
t . _
Xt = Mt - I RS.dAS if i;/— B U]t,l] where B belongs to ‘%t' Then
[} i i is.
0 . : , (Q, ,P,(gt)te,r) is a stochastic basis
Z_ = exp. R .dM_ - = R. . da
t o S s 2 o © ]
a 1°/ Is the family (t(t)tG.T right continucus ?
Q measure defined on (Q,'{) by a - %

° i ; N <
and, for each real number . 2°/ Let v be a stopping time ; prove that v(s) s

and v(t) < t implies v(s) = v(t). (almost surely).

2]
1

_ t 2
£ = exp- % )\jo Rs dAs + Mt 3 A At%
3°/ Let u be the T-valued random variable defined on

t t .

- L . . o s _

A exP‘U ()\+Rs).dMs— ; J ()\+RS)2.1 S‘ by u(s) s ; is u a stopping time ? is u a predic
o o table stopping time ? is u a totally inaccessible

~
]

. . 5
We suppose that X is uniformly bounded. stopping time 2

a) Is Z a P-martingale ; 4°/ We suppose that there exists t €]O,1E such that
Indication : you can apply the Ito formula p({t}) > 0 ; let w the T-valued random variable
to the function f(x) = e* and to the process defined on by :

_ ot 1ot 2
Iy = Io Ry-aM, -3 J’o Rg-dag w(s) =1 if s #t and wlt) = ¢t

b) bDoes Q satisfy the properties given at the Is w a stopping time ? Is w a predictable stopping

beginning of the exercise ? time ? Is w a totally inacessible stopping time ?

A
Is K P- i ? s
o Is t @ martingale 5°/ For this question, we suppose that P is the

Indication : you can use the 3°/ of the exer-

cice E.3 with A= 1.

Lebesgue measure.

Let M1 be the random variable defined by Mi(s) = s.
4d) Using the results above and the equality Let M be the cadlag martingale defined by
Ké = Zt.Ht, prove that Hé is a Q-martingale. Mt = E(M1| r§t) . Calculate Mt. Is M a continuocus

. : rtingale ? What is the quadratic variation of M ?
e) Prove that X is a Q-martingale. marting a

what is the Doléans function of M2 ? What is the

Meyer process associated to this Doléans function ?
EXERCISE E.5 ({See E.13 and E.14) yer p
Is this process continuous ?

We put Q = [0,1] ,t(= o-algebra of the

1
6°/ Same questions as in the 5°/ above when P = (P +P,)
borelian sets of , P = Lebesgue measure, T = N / 27172

where P, is the Lebesgue measure and P2 is defined

1

and T™ = IN U{~} . For each integer n, let X be 1
by P,({3h = 1 ana P, 2\ {35} ) =o.

: R _ 0
the random variable defined by Xn =2 .1[-0,2_,,] and
({n be the o-algebra generated by the random va-
riables (xk)OSkSn . We put'{(m =‘§.



EXERCISE F.2

We consider T = [0,11 o ZEO,I] ’
& - g-algebra of the borelian sets of E,q;;= {gn}
if £ < 1/2 and U§E=3:/if t 2 1/2, MI an element of
h 1/2

Y= 4 =,

1) = 0, Mt = M1 if t

and Moo= 0 if t < 1/2. We suppose that E({M

L (J,W:,P) such that E(M <
1 2
1 l

Is (M) a locally sguare integrable martingale ?

tteT
Is EM,MJ a locally integrable process ? Is it pos-

sible to define a Meyer process associated to [M,Nﬂ?

EXERCISE G.1

We define : T = [0,1] , 2 = {1,2} ,

ﬂf; = {¢,2} if £ < 1/3 and qF; =& if t = 1/3 ,
wS /3w L1y, BUID =p >0, R(Zh =g >0
Pelpyy + M = E(M1|thL

3
with p + g = 1, M1 = q.l{z} -
Is u predictable ? Is u totally inacessible ?

2
calculate E { Sup {MS| }, <M ang BE(oz_ ).
s<u
1f we put A = atb<M>, is the condition (i) of the

theorem G.6 satisfied for suitable positive numbers

a and b {with H=J = K = R in this theorem G.6) ?

EXERCISE 5.2

We consider

(the set of all
the non negative integers) ; for each integer k, let
qu be the g-algebra generated by the atoms
{j}lsjék and P be the probability defined by

Pk} = (%)k” ;

We put u{w) = w, MO = 0 and
_ 1
Meer T M -1 1{j : 3>k}

N

{k}

Is u predictable ? Is u totally inacessible ? Calcu-

late E(iM!u_) and E( Sup lMtlz). If we put

ogt<u
A = a+b[M], is the condition (i) of the theorem G.6

satisfied for suitable positive numbers a and b ?

EXERCISE H.1

We consider T = @ = IN (the set of all
the non negative integers) ; for each integer k, let
QFk be the g-algebra generated by the atoms {j}onSk
and P be the probability defined by

—{(k+1
p{kh = 27 *

defined by

let M be the random variable

1 X
M o= 1 —L . K
® xo k(k+1) {3

and M be the martingale defined by Mk = E(Mwl ﬁr;).
Is the martingale M equi-integrable ? Calculate

E(M*) if M* = Sup.Mk.
k3o

Calculate tim.E (! {

Myrr™ M) HD)
o k

e

1

Let m be the additive function, with values
in Ll(Q,<§:P), defined on the finite subsets of T by
m({k}) = Mk_

Mk—l can m be extended in a vector

measure defined on QP(T) and 0O-additive for the

usual topology of LI(R,GK,P) 2

EXERCISE H.2  (cf. [Pel-3])

We consider { = ]O,l] , T = IN (the set of
all the non negative integers),‘S/= J-algebra of all
the borelian sets of ]O,1] , P = Lebesgue measure on
]O,l]. For each pair of integers (n,k} with OSk<2n,
we put A(n,k) = ]k.2_n, (k+1).2—n1 and

5 -1

X =
n

[[ac B}

Latm2x-1) ™ a0

k=1

(Rademacher functions)

We put Y= I %-.Xk (which is an element of LZ(Q,G(,P))
k30

and Yn = E(Ym|ﬂf;) if f;; is the 0O-algebra generated
by the sets { A(n,k)}

ogk<2n *
Does there exist a measure z, O-additive for
the usual topology of LZ(Q,G:,P), defined on gBT . the

o-algebra of the borelian sets of T, by

2k 2™, k2™ = ¥ 2

(x+1y27n T Y om0

Let y be the function defined on Qfﬁy y(np) = f 1A.dY

can y be extended in a measure O-additive for

the usual topology of L2(Q,‘§1P) ? Does there exist a
positive number K such that, for each martingale M,
v S L} 3 1 ’ 3 =
N3(M) K N4(M) if N3 and N, are defined as N3 and N,
(cf. H.1) by considering the norm in L, instead of the
2

norm in L1 ?
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BIBLIOGRAPHICAL NOTES

A. The notions and properties studied in the on predictable projections and predictable sections

paragraph A are now very classical ; the funda- as developped by Dellacherie ; cf. also [Rao] for

mental role of the ¢J-algebra of predictable an attempt in this direction.

sets was disclosed by the Strasbourg school

(cf., notably, [Del]) (see also [Bur]) ; H. The most important inequalities of the paragraph H
the systematic use of the algebra ‘t/is due to were obtained by Burkholder (cf. [Bur]) ; several
the authors (cf. [Pe1—2]) ; this idea has been authors gave simplications with respect to the ini-
also exploited by Follmer (cf. [Fol]) . tial proofs ; ([DOV] ’ [Fef] ' [Gar] ’ [KUS] . etc ...)

the inequalities H.2 and H.9 are due to the authors

B. There are many books and studies on the stochas- the proof of H.9 uses an idea given in [Mey—2] .
tic integral ( ESkoI, [ItK], [GiS], [Kus] . etc...)
in the non continuous case, this integral was The paragraphs G and J are due to the authors
notably studied in [KuW] and E)oM—l:[ ; the cons- (see [MeP-3] and {Pel-4]).

truction given here is due to the authors.

C. The Ito formula is a fundamental point of this
theory ; the first study is, of course, due to
K.Ito {(cf. [Ito]) ; the éeneral Ito formula in
the finite dimensionnal non continuous case was
obtained in [DoM—l] ; the proof given here,
available for Hilbert space valued processes,
is very different from the proof used in [DoM—lJ

and is due to the authors.

D. The use of the fixed point thecrem to obtain
strong solutions for stochastic differential
equations is very classical ; the theorems given
here, available in a very general context, are

due to the authors.

The theorem D.5. generalizes [DoM-2], [Dol—ZJ and

[P ro] .

E. The theorem E.4 is due to Doob ; the formulation
given here is due to the authors (cf. also, [:Ore]) H
the Doléans measure was introduced in [Dol—l] H
its systematic use and study, in particular the
lemma E.2, are due to the authors (cf. [Pel—2]) ;
the stochastic integral with respect to square
integrable martingales was considered in [Cou] and

[KuW] ; the inequality E.12 is due to Doob.

F. The construction and the properties of Meyer pro-
cess were obtained by the Strasbourg school
(c£. ]:Delj) ; the presentation given here, spe-
cially F.7 and F.8, is due to the authors

(cf. [Pel-3]); it does not require the prerequisit
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