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* A BASIC COURSE ON GENERAL 

STOCHASTIC INTEGRATION 

by 

M. METIV 1ER and J. PELLAUMAIL 

Summary : 

This course on the stochastic intégral is "self-contained". 
The reader is only expected to have a knowledge of classical measure theory. 
The fundamental parts of the course are the following : construction of the 
stochastic intégral and the Ito formula (gênerai hilbertian non continuous 
case), existence and unicity of a "strong" solution for very gênerai diffe-
rential stochastic équations, basic properties of martingales and Doléans 
measures, construction and properties of the Meyer process associated with 
a Doléans measure, Burkholder inequalities, stochastic intégral considered 
as a group-valued intégral. A new inequality for semi-martingales is also 
established and used in several parts of the course. 

The methods used are quite différent from those of the Strasbourg 

school. 
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A BASIC COURSE ON GENERAL STOCHASTIC INTEGRATION 

The existence and unicity of a "strong" 

solution of the stochastic differential équation 

dXfc = a(t,X) dZ^ is proved when a dépends on the whole past 

INTRODUCTION history of the process X and is lipchitzian ; the 

proof is based on the fixed point theorem , * the 

process Z being assumed to satisfy an inequality, which, 

in paragraph G, turns out to be fulfiled for a very 
This course on the stochastic intégral 

large class of processes : actually, ail the real 
is "self-contained ; except in paragraph J, the 

semi-martingales. 

détails of ail proofs are given. The reader is 

expected to have a knowledge of classical measure The définitions and classical properties associated 

theory and speciaUy the properties of the space L 2, with martingales and Doleans functions are given in 

the properties of the conditionnai expectations paragraph E : in particular, we give conditions for the exis 

and some properties of equi-integrable families tenœof a Doléans measure, we prove the Doob theorem 

of random variables. Of course, the understanding o n ^ e existence of a "cadlag" modification for some 

is easier for the reader already familiar with the processes, the "stopping" theorem for martingales or 

classical study of elementary processes, in parti- Doléans measures and the Doob inequality for square 

cular the brownian motion. integrable martingale ; we also study the stochastic 

intégral with respect to a square integrable martingale. 

It is often possible to read a paragraph T h e M e y e r p r 0cess associated .with a Doléans 

without knowing the previous paragraphs ; more measure is constructed in paragraph F. 

precisely, the planning is as follows : 

A new inequality for semi-martingales is 

proved in paragraph G. 

A 

The Burkholder inequalities are proved in 

s' paragraph H and a new inequality is also given. 

B ^ E j For convenience of notation, there is no 

/ \ i / P \ paragraph I. 
c D F G H In the paragraph J, the stochastic intégral 

is defined and studied as a classical intégral with 

In other words, knowing the paragraphs respect to a group-valued, or vector-valued, measure. 

A and E, one can read the paragraph G (for S o m e exercises are given and naturally 

example). exercises A.l, A.2, etc are related to paragraph A 

An extensive table of contents is given B A ' B - 2 ••• t o paragraph B, and so on. 

atthe end of this course. S o m e bibliographical notes are given immediately 

In this course, we are specially concerned prior to the bibliography and the table of contents, 

with the "hard" parts of theorems ; some easier facts 

and elementary counterexamples are given in exercises 

at the end ; some of thèse exercises are 

fundamental , specially ail the exercises on the 

brownian motion (Cl, 2, 3, 4) but are not used 

in the course. 

In paragraph A, we give elementary 

définitions and properties from the theory of sto

chastic processes as studied in [Del^ (stochastic 

basis, stopping time, predictable set, etc..) 

The stochastic intégral is defined in 

paragraph B for a very large class of processes. 

The Ito formula is proved in paragraph 

C for non continua»» processes with values in a 

Hilbert space. 
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if, for each élément t of T, the set {LO:U(U)) £t} 

A - STOCHASTIC BASIS belongs to the a-algebra . 

If u and v are two stopping times, it 

is easily seen that u V v and u A v are also stop-

ping times. 

If u is a stopping time, one notes 3̂  

the a-algebra defined by : 

^ u = {a : A 6 3r and, Vt é. T, (A n [u*t] ) 6 îr} 

If s belongs to T and if u = s (for each co) . we 
A-1 . STOCHASTIC BASIS : DEFINITION Z (f 

see that = £ (then there is no possible 
u s 

Let T be a part of the real line. We confusion in the notations). 

shall call stochastic basis & family (fi,$, (É^) t ) 

such that (fi/̂ ) is a measurable space and tLT^ 

is an increasing family of sub-a-algebras of*3r . A-3. STOCHASTIC INTERVAL 
If (i],^,P) is a probability space, we shall call 

^ /C rzL Let u and v be two stopping times ; one 
the family [QfV,P, (Co ) ) a probobzUzed sto-

. 7 . fc notes Ju,v] the part of (fixT) defined by : 
cnasttc bas7,s or, only, a stochastic basis. 

(a),t) £.]u,vl if and only if u (a)) <t^v ( 0 ) ) 
In the following, T is always the unit J J 

interval [û,lj of the real line or (N the set One defines [u,v[,... in the same way. 

INU{oo} where/N is the set of the integers. We Such sets are called stochastic intervais. 

shall note T' = T\{0> and fi' = fixT'. Moreover we T h e r i / t h e r e . g a n a m b i g u o u s n o t a t i o n , 

shall note Too the supremum of the éléments of T. b u t / ± n t h e g e n e r a l c a S G / t h e r e i s n o p o s s i b l e 

Intuitively, fi is the space of ail the "possible confusion : if u=s and v=t are two "fixed" stop-

events" and ^ is the a-algebra generated by the p i n g t i m e s ^ t h e s e t = c a n b e a p a r t 

events realized before the time t. It is often of T or a part of (fixT) as above. 

bet1. er to forget this point of view. 

In ail the paragraph A, we consider a 

probabilized stochastic basis(fi,$,P,(5^) f c f c T).
 A~ 4- PROCESS (définitions) AND FRENCH NOTATION 

CADLAG 

We shall say that this basisis complète 

if the space (fi, £,P) is a complète probability T h e W Q r d .. p r o c e s s-. h a s s e v e r a l d i f f e r e n t 

space and if, for each élément A of ? such that meanings in probability theory. 

P(A) = 0 and for each élément t of T, A is an 
If (H,^S) is a measurable space, we 

élément of . 

shall say that X is an H-valued process if X is 

For each élément t of T, we note a n H _ v a l u e d m a p p i n g defined on (fixT). On the 

t+ = Do^t+e a n d W e S h a 1 1 S a Y t h a t t h S f a m i l y contrary, we shall say that X is a "process defi-

(5* ) is right continuous if 9* = ?T for each ned up to modification" if X = ( x J t £ T is a 

élément t of T. mapping from T into L q (fi,$,P) . 

If H is a Banach space (with its o-alge- If X and X' are two processes, we shall 

bra of borelian sets), we note L H(fi,^,P) the say that X' is a modification of X if, for each 

o t 

complète metric space for the convergence in proba- élément t of T, Xfc = X' t a.e. 

bility which contains ail the H-valued ^-measu- L e t R b e a t o p o l o g i c a l s p a c e < L e t f b e 

rable random variables. a n H _ v a l u e d f u n c t i o n d efined on T. We shall say 

that f is a cadlag function if, for each élément 

j t of T, f is right continuous and with left limit 
A" 2- STOPPING TIME AND NOTATION * u ( i n f r e n c h § f e B t £ o n t i n u e j ? r o i t e e t a d m e t u n e 

/ 0 <T>, limite à gauche). 
Let u be a measurable mapping from u?,Jr) - - -

into (T , f), where € is the a-algebra of Let X be an H-valued process ; we shall 

borelian sets. One says that u is a stopping time say that X is a cadlag process if, for each élé

ment w of fi, the scorple function t~*f(t) = X ( W ) is 
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cadlag as defined above. A-7. éff AND THE STOCHASTIC INTERVALS ju,v] (lenma) 

We shall use also the notations caglad ^ £ U i d e n t i o a l & t h e a l g e h r a 

(left continuous and with right limit) , laglad , g e n e r a t e d h y t h e stoohastic intervais >,z>] 

(with left and right limit), and so on.... u ^ y ^ s t o p p i n g H m e s ( i. e. t h e 

In the same way, we shall say that a number of éléments of u(W and v(iï) is finite). 

process X is continuous if, for each élément U) of ft, 

the sample f u n c t i o n t~+f (t) = x^Cca) is continuous. Proof 

One says that two processes X and X* are 1°) First, we prove C($. It is sufficient to 

indistinguishable if P({a) : ̂ t, \(^) ï X't(u))})=0. prove that, if B = F x] s,t] is an élément of S>, 

_ ,, . , then B is also an élément of c3È' ; but B = lu,v1, 
Actually, m the followmg, we consider •* J 

„ _. , . ^ . J L . • I. I. • I • *. where u are v are the stopping times defined by 
processes defined up to indistmguishability. 

v((u) = t tfu>) and u(u)) = t if wd(Q\F) and u(œ)=s 

If X is a cadlag process, one notes . _ M 

if (i) t F. 
^ t - ^ t É T ^ ^ t f e T t h e caglad process, 

unique up to an indistinguishability, such that 2 < > ) ^ w e p r o v e g,c $ L e t u be a simple stop_ 
= l i m . X f o r each é lément t o f T. 

t g ^ s ping time. Then, there exists a finite mcreasing 
séquence (t(k))ĵ ^̂ jj °f éléments of T and an asso-

Moreover, if X and Y are two cadlag . ̂  , , " ± » £ , ^ 
y ciated séquence ^ ^ ^ i ^ ^ n o f éléments of *s* 

processes such that X is a modification of Y, s u c h 

then X and Y are indistinguishable (we have 

Xfc (OJ) = Y (w) for each élément t of T except a) for each integer k , F(k) belongs to ^ t ( j c ) 

if there is a rationnai number q such that 

X (a,) j Y (co)). b ) ( F ( k î ) U k « n i s a P a r t i t i o n o f « 
q . q 

A-5. PREDICTABLE SETS ; NOTATIONS & , <# and ffi c) u = ̂  t ( k ) , 1 F ( k ) 

We shall note 2» the family of parts A -i -I 
Then we put B = (F(k) x]t(k),lj) (for 

of = ftxr' such that A = F xJs,t] where F belongs 
each integer k) and (B, ),., is a partition of 

to câ . We shall note dt the algebra generated by -, n * 
s ^ J u , l J . That proves that j u , l j is an élément of do 

Ji . We shall note y the CJ-algebra generated by 
^ - and complètes the proof. 
S\» (or C\>) : the éléments of this a-algebra are 
called the predictable sets. One says that an 

(H,^6) -valued process is predictable if this pro-
rtjv Vô A-8. ADAPTED PROCESS 

cess is measurable relative to o and fl6 • 

A-6. DECOMPOSITION OF EACH KTJCMF.NT OF & (lpmma) One says that a process X or a process 

X defined up to a modification is adapted (with 

If AU an élément of * , there existe p e s p e c t t Q t h g s t o a h a s t i o b a s ù s (Q.f.Pffy^) 

a finite family (A<)ieI of eUments of$3 uhich i f > f m £ a c h e U m e n t t Q f T > ^ p m d o m variable 

is a partition of A. xj.lis ^-measurable. 

Let u be a T-valued function defined on 

" and measurable relative to S and {> . It is 

Let <*' be the class of ail the éléments e a s i l y s e e n ^ ^ d e f i n i t i o n s i f f i p l y ^ u i s 

A of * such that there exists a finite family a s t o p p l n g t i m e i f ^ o n l y i f t h e p r o c e s s 

(A.) . x _ of éléments of 3& which is a partition v 1 * *. ^ 1 îfc I X = 1r r is adapted. 

of A. To prove that it is sufficient to L L 

prove that (b* is an algebra. For that, it is suf

ficient to prove that, if A and B are éléments of , n T,„.1_T„ _„ r, m^^ T„ T^ ,-, 
A~^- AN EXAMPLE OF STOPPING TIME (lemma) 

(X ', it is the same for ASB. Then, we suppose 
n 

that B = U B . where ( B . ) 4 . is a finite Let H be a Banach space . Let X be an 
i = i i l^i^n r 

^ ., JjC. „ ^ H-valued adapted process, right or left continuous. 
family of éléments of J6 . We defme C^, by recur- * r 47 ' 

, a _ Let u 2?« a stopping time and a be a real number. 
rence, by C = A and C. = C . B . . We have c c 

1 +, 1 1 . ^ For eac/ï élément a> of îî. put : 
C n + ^ = A \ B . Reasonning by récurrence, it is suf
ficient to prove that, if D is an élément of tfc%, vM = inf.^t : t6Tjt*u(u)j \ \^^^~x

u(^)(^\ I > a \ 

it is the same for D \ B . ; it is sufficient to 
î 

prove that if D is an élément of (R» and that is 

easy to verify. 
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and D(d)J = T<*>= Sup. t if the set above is empty. A-ll. PREDICTABLE SETS ASSQCIATED TO THE FAMILY 

Then v is a stopping time with respect to the fa- ^ ̂ t+* (proposition) 

""-^ (^t+}t£T ' The o-algebra (? of the predictable sets 

associated to the family & ttT ̂ s ^1,e s a m e ^^ian 

the o-algebra of the predictable sets associa

it is sufficient to consider the case ted to the family (^^+*t £T * 

where T = [o,l]. In this case, let Q' be the set 

of rational numbers belonging to T and let Proof 

(S(n)) n > o be a séquence of finite parts of Q* W e h a v e ± f fi i s a n 

increasing to Q'. We put : e l e m e n t Q f w e h a v e H x ] s # t ] = ^ ( H X-] s +£ ^ 

V(a»=inf. j t : téQ-,t>u((U)f ||xt((0)-Xu(u)(o»)||>a ( w h e r e / f Q r e a c h ± n t e g e r ^ H x ] s + i / g ° i s a n ele-

vn(0))=inf. | t : tes(n),t^u(a))#||xt(aï)-Xu (ui)||>a \ ment of ïP. Then S* +C *5* 

(with the convention v'((o) = 1 or v (u) = 1 if the 
n 

sets above are empty). A-12. LEFT CONTINUOUS PROCESS AND PREDICTABLE 

It is easily seen that, for each element PROCESS (proposition) 

0) of Q, v' (u)) = v(oj) and v* (a)) = inf. v (w). It is 
n>o Let H be a Banach space ; let X be an 

also easily seen that, for each integer n , v i s „ , 7 -, 7 , , , , ^ 7 „ . 
2 n H-Valued caglad adapted process ; then X ̂ s a 

a stopping time. Then, we have only to prove that ^ j-, u-i n - m • ̂  

* 2 * predzctable process, Specrally, zf u %s a stoppzng 

the limit v of a decreasing séquence (v(n)) . of . . 7 . ,. ... 

* ^ n>o t%me9 the real process U n %s a pred\ctable 

stopping times is a stopping time for the family process ' 
Proof 

Let t be an element of T ; we put : . ~. 

j 1°) We can assume that the family (S'.).(mT is 

A ={UJ: V(OJ) > t} and A(n,k) = {œ : v (a>) > t + - } . . 

n K nght contmuous (cf. A-ll above). Moreover, it is 
We have A = U { ̂ \ A(n,k)}. Moreover, the set . - n 

. . ̂  ^ sufficient to consider the case where T = 0,1 . 
k>0 n>0 ^ L J 

^ A(n,k) belongs to « ^ t + 1 / k '
 t h u s A belongs to 

2°) First, we consider the case where X = Y• l-« n 
(?\ , for each integer k ; then A belongs toi* . <2?^U'-' 
"^t+l/k t+ u being a stopping time and Y being an J-^-measu-

. r a b l e random variable. Then, for each integer n, 
and that proves that v is a stopping time with 

rfa" w e put : 
respect to the family ( ) f c ^ 

u(n) = £ k.2~ n . lr -n -n-. 
A-10. STOPPED PROCESS AND LOCALIZATION (définitions) k > 0 lK ^ * u J 

Let u be a T-valued random variable defined on ) W e h a v e u ( n ) + u t h u s x = l i m ' Y- 1]u(n) il ; 

and X be a process. Let Z be the process defined by : 
now, for each integer n, Y.l q -i is a predic-

Z (u>) = X. (03) if t < u(u>) Ju(n),lJ 
t t table process (this is easily seen as in A-7 abo-

Zt(a>) =
 x

u ( a ) ) (w) if t i u(0)) ve) , then X is also a predictable process. 

On says that Z is the process stopped at the ran

dom variable u. If u is a stopping time and if X is L e t u and v be two stopping times and Y be an 

an adapted process, it is easily seen that Z is * u-measurable random variable. Then the process 

also an adapted process. x = Y , 1]u,v] i S a P r e d i c t a b l e process because 

Let X be a process. It is often useful X = Y-lj u > 1j ~
 Y , 1 ] v , l ]

 ( c f * 2 < > ) • 

to consider an increasing séquence (u(n)) . of 
n-̂ o 

stopping times such that lim p[u(n) < i[ = 0 4°) Now we consider the gênerai case.For each 
n"*°° n , , integer n, let (u(n,k)).. be the increasing 

and to consider the processes X which are the k>o 
séquence of stopping times (cf. A-9)) defined by 

process X stopped at the stopping time u(n). This 

récurrence by u(n,o) = 0 and 

procédure is called localtzafoon. In this situa

tion, one says that X is locally boundedy locally u(n,k+l) = inf.jt : t*u(n,k), | |x -X | | > - \ 
measurable, etc.. if each process X (which is 

, _ (and u(n,k+l) = T» if the set above is empty). 
the process X stopped at the stopping time u(n)) 
is bounded, measurable, etc.. 
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B - STOCHASTIC INTEGRAL 

For each élément OJ of fi , the function 
B-l. GENERALITIES 

t ^ X (œ) is caglad ; thus, ît is 

classical and not too difficult to prove that, J n ^ p a r a g r a p h B / w e c o n s i d e r a 

for each integer n, there exists an integer probabilized stochastic basis (fi,3 ,P, fc) t ^ ) 

k(n,w) such that u(n,k(n,a») = 1. That ^ ^ ^ H , j ^ K ^ a 

means that, for each integer n, the bilinear mapping fronL(Hxj) into K which, to (y,x) 

séquence of the sets (u(n,k) < 1) k > Q élément of HxJ, associâtes y.x élément of K. The 

is decreasing to the void set ; then noms in H,J and K will be noted | | . | | , | I - | I j 

we can put : and I I • I l K respectively. Moreover, for the conve-
nience of notations, we shall suppose that 

X = E Xu(n,k) + *1lu(n,k) ,u(n,k+l)] T=[o,ll. 
k>o J 

n . What is the problem of the stochastic iyitegral ? 
Moreover, X is a predictable process (see 2 ) 

above) and the séquence ( x T 1 ) n > 0 converges Let Y be an H-valued process (usually Y is a pre-

uniformly to the process X ; thus X is a dictable process) and X be a J-valued process 

predictable process. defined up to modification ; then, the problem 

is : 

A-13. PRELOCALIZATION 
1 ) to definej for each élément t of T, the ranaom 

Let u be a stopping time and X be a variable Z, - f Y . dX = [ l-i ,-\(s).ï . dX 
u t ) s s ) \o3t\ s s 

cadlag process ; let X be the process defined o 

by : 

2°) to study the process (Z ), T thus defined up 

xfc(w) = xt(a)) if t < u(o)) to modification. 

= x „vx W if t ï U(U3) 

uiwj- Actually, one considers processes X which 

u have a cadlag modification ; we shall note also X 
We shall say that X is the process X 

this cadlag modification, defined up to indis-
stopped just before the stopping time u. If X is 

tinguishability. Then, it is natural to define 
adapted, it is the same for X . As in A-10, it is 

Z (0)) as the usual intégral of the H-valued sample 
often convenient to consider a séquence (u(n)) 

n>o function s Y g (U)) with respect to the "measure" 

of stopping times and the séquence ( x U ( n ) ) n > Q

 o f dX g (u)) (a) being fixed). 
associated processes. We shall call this procédure 

/x Actually, this building is not possible 
prelocalization. If, for each integer n, X is 

in the gênerai case ; indeed, for many processes, 
bounded, continuous, etc.... we shall say that X 

specially the real brownian motion, for each ele-
is prelocally bounded, continuous, etc.... 

ment 0) of fi, the sample function t f (t) = Xt(d)) 

is not with bounded variation ; then, dXt(oi) 

A-14. PREDICTABLE STOPPING TIME (définition) ^ D e i n 9 fixed) does not define a measure. 

T . 7 . The building that we give now is not the 
Let M be a stoppzng fome. One says 

, i , • J' _i_ i t ' r* . more gênerai, but it is very elementary. 

that u ts predictable tf there extsts a séquence 

(u(n)) n > Q of stopping times increasing to u 

and such that, for each integer n, and each ^ 

élément o> of fi, B " 2 * ^ S I M P L E C E S S E S ; NOTATION / (H)_ 

Qi(n)] (u)) < U(OJ) We shall note £ (H) the vector space of 
the H-valued and (t> tsimple processes, i.e. the 

In this case, 1o,uf = U 1o»u(n)l 

J ' U L ^ ju,mn,j processes Y such that Y = Z a. . 1 where 

is a predictable set. itl 1 A U ) 

(a^K^j is a finite family of éléments of H and 
(A(i))^ is a finite associated family of éléments 
of o#. 
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We can assume that, in the previous writ- condition B-3-(i). Let Y be a process which be-

ing, the sets (A(i)) i f e l are disjoint and belong longs to L*(fi* ,*?,a) . For each élément t of T, 

to (cf. A-6). w e c a n define the random variable Z f c by : 

In this case, we can build the stochas- f 
Z = \ U -r.Y.dX 

tic intégral as suggested above ; for each élément z J J0,t-J 

u) of fi, we can define 

Then, the process Zvs defined up to modification, 

zt(o)) = J ljQ^t-j (s) .Ys(oj) .dXs(o)) if x is a cad- and is called the stochastic intégral process of 
Y with respect to X. 

lag process ; if X is defined up to modification, 

it is the same for the process Z. 
f B-5. DOMINATED CONVERGENCE THEOREM 

Then, the stochastic intégral J Y.dX 

We consider the hypothesis and notations 

is the linear mapping defined on ?(H) , with values given in B-l, B-2 and B-3. Moreover, we suppose 

in L o

K(Œ,(^,P) , such that, for each élément that the family (ff̂ ) ̂  is right continuous, the 

A = Fx] s,t] of & and each élément a of H, if basis (fi,îF,P, (3̂ ) ̂  is complète and that X is a 
Y = a # 1 A ' W e h a V e : cadlag adapted process. Let ( Y

n ) n > Q a séquence of ( f Jk simple processes such that, for each integer n, 

Y.dX = j a.lfl.dX = l p .a .(X t-X s) 
[ l | Y - Y \\l . da < 8" n 

The problem is to extend the mapping J u n 

Y Y.dX to a larger class of processes 

than the class of the <#-simple processes. F o r e a c h i nteger n, let z n be the cadlag process 

For the convenience of notations, we write defined by z" = J l j ^ j .Y^dX ; z
n can be select 

f Y dX instead of Y dX = I Y dX cadlag because X is a cadlag process and Y N is an 
i Jfi' J]o,l] 3* -simple process ; thus Z is unique up to an 

indistinguishability. For each integer n, we put : 

B-3. A FIRST EXTENSION 

u(n) =inf.|t : | | Z ^ + 1 | | K > 2-"| 

Let X be a J-valued process, defined up 

to a modification, which satisfies the following a n d u ( n ) = 1 i f t h e s e t t*30™ i s void-

property : L e t G ( n ) b e t h e s e t d e f i n e d hY 

(i) there exists a positive measure a defined on the G ( n ) = S ̂  : [ u( n)]^) < 1 \ 

O-algebra of predictable sets and such that, For each simple stopping time v, we have : 

for each H-valued and ât-simple process Y, 

we have : E ( | I z ^ 1 1 | 2 ) - E ( | | J 1 ] q ^ . ( y ^ + 1 , .dx| | 2, 

E (\\\ ï.dx\\2) < f . da , 
J J « l-i 1.1 |y - y I \i . da < 2.8"n 

J J°'V1 V V H 

In this case, the mapping Y'"M Y.dX 

defined on /(H) and with values in L*(fi,£,P) T h e n W e h a v e ^ s a m e i n e < I u a l i t y f o r a gênerai 

is uniformly continuous if we consider t (H) as stopping time (such a stopping time being the 

a subspace of L^(fi',^,a) ; then, there is an Uni- decreasing limit of a séquence of simple stopping 

que extension of this mapping in a linear continuous t i m e s c f - t h e e n d o f ^ P r o o f o f A" 9> « T h u s ' 

mapping from L* (Q,^a) into L* (fi,#P) (the ^ inequality is satisfied for v = u(n) and we 

space £(H) being dense in L^ (fi',*?,a) ) . The image h a v e : 

of a process Y belonging to L*(fi',S\a) by this 2 ^ - n ̂  E ( ) _ zn +l ( | 2 ) ^ 4 - n > p ^ G ( n ) ] 

mapping will be noted Y.dX and will be called u ( n ) u ( n ) K 

the stochastic intégral of the process Y with N R /,. 4 I , n -n j ^ 
v J r Then P[G(n)J < 2.2 and P(G) = 0 if 

respect to the process X. 
' G = A j U G(n)J . Thus, if is> d. G, there exists 

k>o n^k 
an integer k such that, for each integer n > k, 

B-4. THE STOCHASTIC INTEGRAL PROCESS n l . n n+1 . . -n ^. ^ _ _ 
Sup |j Z -Z | | ^ 2 . This means that, for each 
t t t 

Let X be a process which satisfies the élément a) of fiVG, the séquence ^ z

t ^ ^ n > 0

 i s a 
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Cauchy séquence which converges uniformly to a U) for each H-valued ^-simple process Y and for 

function Zt(u)) ; the process Z is a modification eaoh stopping time u, 

of the process Z. Then, we have proved : 

E j 11 f Y.dX-Y . (X -X )\\2 l 
If x has a modification which is a cadlag adapted ]°j"J " U ~ " w 

process. it is the same for the process z. t 9 i 

Actually, we have proved more than that : 

let X be a cadlag process which satisfies the pro- Then^ m Q a n t h e stochastic intégral f Y.dX 

perty B-3. (i). Let ( Y N ) n > Q be a séquence of H-valued f o p e a c h H _ V a l u e d pvedictable bounded process Y 

processes which converges to Y in the following i n t h e f o U o w i n g w a y . 

sensé : for each integer n, /||Y-Y | | .da £ 8 n 

n

 n Let u be a stopping time such that 
For each integer n, let Z be a cadlag process 

Sup . (A ) < +°° . We note X the process defined 
which is a modification of the stochastic intégral u-

process /Y^.dX ; we can prove as above that : by : 

.» -, X U = X . 1 r r 

the séquence ( z

n ) n > 0 converges almost umformly to L 0 , lH 

a cadlag process which is a modification of the F o r e a c h H _ v a l u e d $-simple process Y, we 

stochastic intégral process z = /Y.dX. have : 

We note that, if (Y ) is a séquence f u ( 
N N > ° Y.dX = Y.dX - Y _.(X -X ) 

which converges to Y as in the dominated convergence 1 ]°/u] U u u~ 

theorem, there exists a sub-sequence (Y ) 
n(k) k>o 

which converges as above ; thus the sub-sequence Then, we can define the stochastic inte-
( Zn(k) }k>o ° f t h e c a d l a 9 stochastic intégral g r a l z £ = J Y . d x

u

 a n d th e cadlag stochastic 

processes associated converges almost uniformly to ]°'u] 

the cadlag stochastic intégral process Z =| Y.dX. intégral process Z U = J Y.dX U as in B.4 and B.5 for 

each H-valued bounded predictable process Y. More-

This theorem is very useful to prove many Q V e r / ± f u a n d v a r e t w Q s t o p p i n g t i m e s s u c h ^ 

properties. We give some examples : 
Sup (A ) + Sup (A ) < + 0 0 , the cadlag stochas-
zn u- 1 v-

If X has a modification which is a continuous k)fe" u v 

tic intégral processes Z and Z are indistingui-
(or predictable, etc..) process, it is the same 

f shable on the stochastic interval L u A v f (this 
for the stochastic intégral process Y.dX. • *-

J is obvious if Y is an Go -simple process and is 

If u is a T-valued random variable, the stochas- t r u e ± n ^ g e n e r a l c a s e b y t h e d o m i n a t e d conver

tie intégral process stopped at u is the same as g e n œ # 

the process stochastic intégral of Y with respect 
Then, we consider a fixed H-valued 

to the process X stopped at u. 
bounded predictable process Y and the séquence 

If u is a T-valued random variable, we have : /„/~\\ ~-p ~+-~ . • „ _ • -, , 

' n>o stopping times defined by : 
Z -Z = Y .(X -X ) if Z is the cadlag stochas-
u u- u- u u-

f u(n) = inf. j t : A > n 
tic intégral process Y.dX and if X is a cadlag * t ' 

adapted process. (and u(n) = 1 if the set above is void). 

Ail thèse properties are obvious if Y is We have lim P [u(n) < l] = 0 because the 

an ir> -simple process ; they are true in the gene- „ „„ _ . c. . . ,, „ 

^ ¥ v v 2 * process A is a finite cadlag process. Moreover, 

ral case by the dominated convergence theorem u(n) 
Sup. [A , . 1 < n. Let Z be the cadlag stochas-

tic intégral process Y.dX defined, as above, 

up to indistinguishability. Let Z be the process 

B-6. A SECOND EXTENSION defined up to indistinguishability by 
z.i = z u ( n ) 1 

We consider the hypothesis and notations ' [o,u(n)*[ * [o,u(n) [ 

given in B-l and B-2. Moreover, we suppose that a n d z -z Y (x -x ) 

there exists a real positive finite increasing 

adapted cadlag process A such that the following T ^ _ , ». t_ 
r s r Let B be a process which satisfies ail 

property is fulfiled : ., c ^, T _ 
r r ** J J the properties of the process A. Let v be a stop-
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ping time such that Sup (B ) < +°°. We can build suppose that : 
v u& v~ 

Z with the help of the process B. Then, we can see _ 
v X

u " ai F(i) 
as above that Z.lr r = Z . 1r r a.e. u i G I v ; 

[o, v L L° ' v L 

with, for each élément i of I, a. £ H and F(i) € ̂  ; 
Then the process Z, defined up to indis- r

 u 

in this case, Y = L a .1 . 1r r ; if we put 
tinguishability, dépends only on the processes Y i€I v ' L ' L 

and X ; it does not dépend on the process A ; u ( i ) = u i f W 6 F ( i ) a n d u ( i ) = 1 i f W * F ( i ) ' w e 

We shall call it the cadlag stochastic intégral h a v e Y = . ^ ai' 1[u(i) ,l[ a n d t h a t p r o v e s t h a t Y 

process of the process Y with respect to the is an optionnal process (u(i) being a stopping time 

process X. for each élément i of I). 

B.7. REMARK 2°/ Now, we consider the gênerai case. For each integer 

We shall see after that there exists a n > 0 ' l e t ( u ( n ' k ) ) k > o b e t h e s e ^ e n c j ^ o f stopping 

process A fulfiling the condition B-6-(i) for a t i m e s ( w i t h re3pect to the family (^ +> t fcT : 

very large class of processes X (specially the class c f ' A * 9 ) d e f i n e d b V u(n#0) = 0 and : 

of ail s emi-martingale s in the finite-dimensional u(n,k+l ) =inf {t : t̂ u(n,k)|| X - X , 1 X | | >— } 
t u(n,k) 1 1 n 

case). 
Let X be the process defined by X? =• X . 

Now, we can see that the class of processes t , n utn/ ; 
for u(n,k) £ t<u(n,k+l). The process X is well 

X for which tehre exists a process A fulfiling the n - _ 
defined because [u(n,k) < 1J + 0 and it is optionnal 

condition B-6-(i) is a vector space and contained k-*» 

ail the cadlag processes of finite variation (by the ( c f - t h e 1 V a b o v e ) ; b u t t h e ^quence . ( X n ) n > o converges 

Cauchy-Schwartz inequality applied for each sample uniformly to the process X ; thus X is an optionnal 
c . . x process. 
function). * 

B .8 - OPTIONNAL SET AND PROCESS (définitions) B .10 - STOCHASTIC INTEGRAL WITH RESPECT TO A CONTINUOUS 

PROCESS (proposition) 

Let & be the o- algebra generated by the 

stochastic intervalls ] ^ u [ 3 for ail the stopping Let X be a Banach space valued continuous 

times u, This o-algebra is called the o-algebra of process which satisfies the properties given in B.63 the 

the optionnal sets. One says that X is an optionnal process A3 considered in B.63 being continuous. 

process if X is measurable with respect to this 

o-algebra &. L e t ( u ( n ) ) n > o b e t h e s e ( ï u e n c e o f stopping times 

defined by u(n) = inf. {t : A^> n } . For each integer 

Of course, the a-algebra 5̂ of the predic- n, let a be the measure defined on 
n L° ' U 

table sets is contained in the a-algebra &"of the ç 

optionnal sets (because lo,ul = O lo,u + -(*). a

n

( B ) = E * U , *B ( t ) , d A t * 

n>o n JJo^(n)j 
Conversely, let^' be a a-algebra such that 

contained in &• ' and such that, for each stopping B * ^ F u b i n i t h«orem, a n is a finite positive 
. . r,7 i-. . ̂  x», ., ^ . „^ . • . measure ; let a be the restriction of a to the time u, lui belongs to , then q^is contained in n n 

a-algebra (9" of the optionnal sets ; for each stopping 

time u, we have : 

B .9 - RIGHT CONTINUOUS AND OPTIONNAL PROCESS a ( [ul ) = a ( M ) = 0 
~————————"~————~*————-——-————————————— n u •* n ** * 

(proposition) 
Then, the adhérence of ^ (H) (cf. B.2) in 

Let H be a Banach space ; let X be an H ~ . ^ 
L (Sr,Cr,a ) contained ail the uniformly bounded option-

H-valued adapted cadlag process ; then X is an option- n 

, nal processes (cf. the end of B . 8 ) . 
nal process with respect to the family i^f^+)^ ^ T 

P r o o f Then, if Y is a uniformly bounded optionnal 
process3 it is possible to de fine the stochastic inte-

1°/ At first, we prove that Y = X .lr .ris an option- r „ . , . „ „ 
u L U , 1 L grau process Z = j Y.dX exactly as vn B.6 ; moreover 

nal process if u is a stopping time ; X being „ . 
Z %s a conttnuous process. 

adapted, X^ is an ̂ ^-measurable random variable, 
thus it is sufficient to consider the case where 
X is an 'f'-simple random variable. Thus, we can 
u u 
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C - ITO FORMULA 

C l - INTRODUCTION 

We put T = [p,l]. 

Let X and f two real functions, X being defi

ned on T and f being defined on the real line. Under 

the adéquate hypothesis, we have 

d f(X) = f(X) dX 

and this formula is fundamental for ail calculations 

in differential équations. This formula can be also 

written more precisely 

f (X J-f (X ) = f • (X ) . dX 
t ° J]o,t] 

Now, we consider the case where X is a real 

continuous process, f being a real function defined on 

the real line ; then, in gênerai, we have not the pre-

vious equalities, but we have : 

df (X) = f ' (X) d X + |- f" (X) d <X> 

or, more precisely : 

f (XJ - f(X ) = f (x ) dX + i f" (X ) d<X> 
t o 11 4.1 s s 2 J - ] - | s s 

where <X> is an increasing process associated to the 

quadratic variation of X. This equality is called the 

ITO FORMULA : it was proved for the first time for the 

brownian motion in [[ïto] • 

Of course, this formula is fundamental for ail calcula

tions in differential stochastic équations. 

Before proving this formula, we give the fun

damental idea of the proof. 

If X is a function, let us recall a proof of 

the equality given above : 

if ( t^ c^^<j c < n ̂
s a n increasing séquence of times 

such that t =0 and t =t, we have : 
1 n 

n-1 

f(xt)-f(xo) « & < x t ( k + i r
f < W J 

" Ji f'(W- kWirxt(k)] +T \ 
Now, if Sup [t(k+l) - t(k)] goes to zéro, for some 

k 

functions f and X, the first sum converges to 

^f'(Xg)«dX^ and the second sum converges to zéro. 

Now, if X is a process, in gênerai, the second 

n-1 
sum J R does not go to zéro. 

k=l K 

Then, we use the Taylor formula and we have : 
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n~l noted ||.|| _ . With the canonic extension of the 

f(xt, - f (x o) - J f (x t ( k ). [x t ( k + 1 )-x t ( k )] 
K _ 1 scalar product defined above, H 0 H is a separable 

* n-1 n-1 
+ 1 V f /y \ Ty _ Y V + Y p* Hilbert space : more precisely, (h 0 h ) ^ ^ 
+ 2 f ( X t ( k ) K LXt(k+l) Xt(k)J \ n m n>0,n>0 

k=l k=l /v 
is a base of H 0 H. If x and y are two éléments 

For some functions f and for some processes X, when of H, we have : 

Sup [t(k+l) - t(k)J goes to zéro, the first sum 
k l | x « y | | H s = l|x||H.||y||H 

converges to the stochastic intégral 

f'(X ). dX , the second sum converges to 
Jj°'t] s~ s At last, the mapping (x,y) x 0 y from (H x h) 

into (H 0 H) is a continuous bilinear mapping. 

— f"(X ). d <X> and the third sum converges 
2 J-i -i s— s 

J 0 ' ^ Ail the previous properties are well-known 

to zéro. a n c: easy to prove. Let us recall also that, if H 

We shall prove the Ito formula for processes i s f i n i t e dimensionnal, H O H = H 0 H is isomorphic 

with values in a separable Hilbert space H. In our t o t h e s P a c e o f a 1 1 d * d ^atrix : more precisely, 

context, to suppose that H is separable is not a l e t ( V l ^ d b e a n o r t h o n o r m a l b a s e o f H, 

restriction ; moreover, it is not more difficult to ^ i ' ^ i e i b e a f i n i t e f^^Y of pairs of éléments 

d d 

prove the Ito formula when H is an Hilbert space of H, with x = 7 x h and v = 7 v h 
i ^ i,n n J i L_ Jri,n* n' 

that when H is a finite-dimensionnal vector space. n 1 n _ 1 

It is also possible to prove this formula when H a n d (X 1,Y 1) be the pairs of matrix defined by 

is a Banach space (cf. [br pj ) . . (x. \ /y. \ 
X 1 = I • ' I and Y 1 = I • 1' I then the one-to-one 

In the following, (hn) n>Q ^ill be an orthogo- \x. ^/ ^ ' d / 
nal base of H. Moreover, as in the previous para-

graphs, we shall consider a probabilized stochastic mapping which associâtes the d x d matrix 

basis(tt P 3 ($.).^m) and we shall suppose r ^ i i t-r 
t t e T (( I x

i f j y i # k

) ) j , k = l X - ( Y ) to the élément 
that this basis is complète and right continuous i€ I iei 

(cf. A-l). We shall suppose also that T - [0, î] . ( T x. © y. ) of H © H is an isomorphism from H © H 

i€I 1 1 

into the vector space of ail d x d matrix. 
C.2 - TENSOR PRODUCT AND HILBERT-SCHMIDT NORM : 

For the convenience of the reader, we shall 

We shall note H 0 H the tensor product of H explicit the Ito formula when H is finite dimen-

by itself. If x and y are two éléments of H, we sionnal in C-8 after. 

shall note x ® y the tensor product of x and y. 

A 02 
If x = y, we shall note x 0 x = x 

C.3 - QUADRATIC VARIATION : 
Let (x^yj i I be a finite family of pairs 

of éléments of H ; let z = [ x. ® y. be the Let X be an H-valued cadlag process. We shall 
i f e 1 call the quadratic variation of X the positive in-

element of H 0 H associated to this family. creasing right continuous process D defined (up to 

an indistinguishability) by : 
We consider also similarly z' = £ x' 0 y' 

j€J D 3

 2 

Dt = lim.sup l |\X(k+1)t2~nAt - X^-n ^\\ a.e. 
If we put n-*» k>0 

<z,z*> = y y <x.,x!>.<y.,y,.> L L i l i l 
i £ I i^J J For each pair (s,t) of éléments of T with 

s < t and D̂_ < + 0 0 a. e., we have : 

this defines a scalar product on H 0 H. 2 

We shall note H ® H the space H 0 H complétée for V D s = 1 A ^ U P J Q

 1 | X(k +l) 2"
nAtVs " ^ - " A t V s " ' a- e" 

the topology associated to this scalar product ; 
A 

the norm on H 0 H associated to this scalar pro- W e g h a l l s a y t h a t t h e p r o c e s s x i s o f f i nite 

duct is called the Hilbert-Schmidt norm and will be q u adratic variation if D j < +» a.e. 
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The set of the processes which are of finite Then the processes S, Q, V and C are well defined, 

quadratic variation is clearly a vector space. More- adapted, cadlag, of finite variation and C is conti-

over, if X is a cadlag process of finite variation, nuous((H 9 H) being with its Hilbert-Schmidt nonn). 

then X is also a process of finite quadratic varia-
Moreover, we have the Ito formula : 

tion. 

C.4 - DIFFERENTIAL (CONVENTIONS) : ^Xt^ ~ ~ *L ^Xs~ '^X8 

Let H and K be two Hilbert spaces, f be a " \ ^ ^"^X

S-^
X

S"
 X

s-^
2'h fjj t^"^

Xs- '^V8 

K-valued function defined on H and twice differen- f 

tiable. We shall note f and f" the first and - CftJ ^f'(XsJ.dXs + j j ^"^a^'^e 

second differential respectively : the second 

differential will be considered as a K-valued 

linear mapping defined on H Q H ; if (x,y) is an 

élément of (H, H 0 H), we shall note [f "(x)] (y) Proof 

the value of this second differential considered at 
,. „ ^ The proof has two parts ; in the first part 

the point x and applied to the vector y. 

(C-6), we study the processes S, Q, V and C ; in the 

second one (C-7), we prove the Ito formula. 

Before, we remark that : 
C.5 - ITO FORMULA : 

a) we can suppose that the family (^S^ t € T
 i s right: 

Let X be a cadlag process, adapted to the continuous (cf. A-ll). 

complète stochastic basis (Çl3^3 ^J^^t^t£T^ 

b) by prelocalization (cf. A-13), we can suppose 

and .with values in the separable Hilbert space H. t h a t fche q u a d r a t i c v a r a t i o n d of X is uniformly 

We suppose that X is of finite quadratic varia- bounded by the real number d and the norm of the 

tien D. Moreover, we suppose that there exists p r o c e s s x i s u n i f o r n ) l y b y t h e r e a l n u m b e r a. 

a positive increasing right continuous adapted 

process A such that (cf. B-6) : 

C.6 - THE PROCESSES S, Q, V AND C 

(i) for each Hilbert space K, for each ^ w & p r Q V e ^ f i p 8 t p a r t Q f ^ 

vu -simple process Y with values in J>(H 3K) 3 

« 7 7 1°/ S and Q are well defined. 
for each stoppzng time u, we have : - * 

, , For almost ail the éléments U) of we have 

ElUl Y.dX\\2}tE(Au_{l 0>u[\\^\\
2.dAt}) 

±°>u\- J L Z | |x (u) - X (u) | | £ d 

s<t s~ 

Let f be a K-valued twice differentiable 

function, defined on the Hilbert space H; we t h u s g ((tf) ifl ^ d e f i n e d ( f o r e a c h e l e m e n t u Q f Q ) 

suppose that the second differential f" of f is ( l e t u s r e c a l l t h a t | | x«*| | « ||x||2 ). 

uniformly continuous on ail the bounded subsets 

of H 
J * Moreover, the Taylor formula gives : 

Let S, V and C the processes defined 

by : f(xt) - f(XtJ - f(X tJ (Xt- X ) = 

® 2 

S(t) = Z (X- X _) rl . 

s*t s { j - t 5 _ f ' [xt_+ s(xt- x tj] ds } (xt- x^)®
2 

Q(t) = l [f(X ) ~ f(I ) ~ f'(XsJ(Xs- X J] 
s&t 

The function f" being bounded by the real num-
<S>2 <2>2 f -

Vit) = X, - X - (X <2)dX + dX O X ) ber C on the domain | x * a, the terms of the 
0 Ho f~\ ~ S S 1 2 

J -* equality above are less than - C. | |xfc- Xfc_| | . 

C(t) - Vit) - Sit) Thus, the process Q is well defined as above. 

where (X _ O dX + dX 0 1 ) is a stochas- Of course, the processes S and Q are cadlag 

J * L and of finite variation ; thus, they are defined up 

tic intégral and S.V and C are (H O H)-valued. • j. ̂ - • i_ 
y 3 to indistinguishability. 
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V"(l) = z (x - X ) 
2°/ The processes S and Q are adapted k=o v(n,k+l) v(n,k) 

00 

We shall prove that the process S is adapted ; - Z (x - x ^ <5ù y 

k = Q

 V v(n,k+l) v(n,k) ; ® Xv(n,k) 
the proof is about the same for the process Q. 

Let t be a real positive number. Let b(n) a decrea- Z x <g> ( 

sing séquence of real positive members such that k=o v < n ' k ) ^ v(n,k+l) Xv(n,k)^ 

lim.b(n) = 0. 

For each integer n>o, let (u(n,k)) be the 
82 02 

increasing séquence of stopping times defined by ( t h e f i r s t s u m i s ' o f course, equal to Xj[ - X Q ) 

récurrence by u(n,l) = 0 and : Let Zn(t) be the predictable process defined, for 

u(n,k+l) = inf {s : s£t, s*u(n,k), ||x -X ||>b(n)} e a c h élément (t,oj) of the stochastic interval 
s u (n, K) 

and u(n,k+l) = t if the set above is void. 1v(n,k), v(n,k+l)1, by Zn(t) = X 
J v(n,k)" 

The process X being cadlag, for each integer n, We put : 

(u(n,k) <tl i 0 . For each integer n, let W^be -n, 4 02 ©2 f rn n -t 

k-*» n v (t) - - x 0

2-j [z n( U) 0 ax u + d x u « z
n

(u)J 

the random variable defined by : J°'tJ 

O 2 W e h a v e = V n(l) and, if (t,u) € [v(n,k) ,v(n,k+l [, 
Wn = (Xu(n,k) " Xu(n,k)- ) _ 

v n(t) - ̂ (t) - [x - x ( ^ 
u t v(n,k)J 

(W is well defined : cf. the 1°/ above). 
n 

If the séquence (b(n)) . decreases sufficien-
n>o 

The séquence of random variables ( W n ) n > Q con- tly quickly to zéro, the séquence of processes 

verges a.e. to a random variable W (cf. the 1°/ (V> n> 0 converges a.e. uniformly (cf. B.6) to the 

above), then W is ^-measurable ; now W = S(t) a.e.; process V ; then, it is the same for the séquence 

thus S is an adapted process. (V11) 
n>o 

3°/ The processVis the "tensor quadratic variation" Moreover, that proves that, for each élément u) 

of the process X of ft, the total variation of the process V is less 

than d. 
Let b(n)be adecreasing séquence of real positive 

numbers such that lim.b(n) = O . For each integer n, 

n̂ co 4 / The process c ^s continuous 

let (v(n,k)) k > Q be the séquence of stopping times 

defined by récurrence by v(n,l) = O and W e choise the séquence (b(n)) n > Q such that, for 
each integer n, b(n) * (-)2 and we define the se-

v(n,k+l)=inf.{s : s>v(n,k),||X - X || > b(n)} n 

s vvn,*; quence of stopping times (v(n,k)) k > Q as in the 2°/ 

and v(n,k+l) = 1 if the set above is void. We have above. 

lim P([y(n,k) < t] ) = O. F o r e a c h P a i r o f integers (n,k) , we put : 
k-x» 

A(n,k) = {o, : | | X . . - X , ^ I I > - } 
For each integer n,let \r be the cadlag process vm,Kj v(n,k)- n 

defined. for each élément (u),t) of the set 
. B(n,k) = Q \ A(n,k) 

[v(n,k), v(n,k+l) [, by : 

k - i

 En,k " Xv(n,k) * 1B(n,k) + Xv(n,k)-* *A(n,k) 

V t * .L ( X v ( n ( j + l ) - ^ ( n . i ) ) *
2 a n d . n n 

3=0 For each integer n, let S (t) and W (t) be the 

0 0 - ~ processes defined, for (t,U)) élément of 

1 j = 0

 V v(n,j+l) v(n,j)' [v(n,k), v(n,k+l) [ , by : 

n k ®2 k &2 

We have : k R 2 

W ( t ) = £ ^(n.D-^vto.J-l)) •1»(n l j) 
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The total variation of the process (S-S11) 2°/ For each integer n, we have : 

converges a.e. to zéro. Moreover, on A(n,j), we f ^ x ^ _ f ^ _ 

1 o 
have : 

• i 1 2 .^tf<x

v(n,k+i)'-
f(x

v(n,k))]C
1

A(n,k+1)

+1

B(n(k+1)] 

I ! x

v (n, j) ~
 Xv(n,j)-^ ^ n" Using the Taylor formula, for each n, k and 0), 

there exists ^ (GO) bounded as after (cf. 5 ° / ) 

we, have and such that : 

M w ^ t j - S ^ u l l ^ . j j j l x ^ ^ . j - X ^ ^ ^ j r ^ ^ ^ . j f^ Xv(n,k +l))-
fK(n,k)> f ,( Xv(n,k))[ Xv(n,k +l)-

Xv(n,k)] 

x ® 2 

and that shows that the séquence of processes ( w n ) n > 0

 + 2 f"^ Xv(n,k)^ ^ Xv(n,k+1)~ Xv(n,k)^ 

converges, to the process S, a.e. uniformly. 

+ R . (u>) n ,k 

For each integer n, let C11 be the process defi

ned, for (t,U)) élément of [v(n,k) ,v(n,k+l) [, by : 

(Actually, we shall use this identity only on the 

n

 k ©2 s e t B(n,k+1)). 

C (t) = ^ l X

v( n,j)~
 x

v ( n f j _ i ) J • 1

B(n,j) 5 

Thus, we have : f(Xj-f(X ) = E £ a 1 , with 
1 o . n,k 

n n k > ° 1 = 1 

= V (t) - W (t) 

If the séquence (d(n)) ^ converges sufficien- n ' k ^v(n,k)^'^Xv(n,k+1) Xv(n,k)^ 
n>o 

tly quickly to zéro, the previous results show that 2 _ 1 f„ ^ ^ ? 2 

the séquence of processes (C11) n > Q converge a.e. uni- n ' k 2 v(n,k) * v(n,k+l) v(n,k) A(n,k+1) 

formly to V(t) - S(t) = C(t) : thus C is continuous, 3 
a = R . 1 

the jumps of c n being less than 1/n. n ' k n ' k B(n,k+1) 

, , an,k = t" f , ( xv(n,k) ) ( Xv(n,k+l) " X

Y ( n , k )
) + 

5 / At last3 we remark that : 

X® 2 - x® 2 = V(t) + f [X 0 dX + dX ® X ] f ( Xv(n,k+l) ) " f ( X v ( n , k ) ^ * ^(n^+l) 

t o h r\ L s _ s s s _ J 

a 5 - i r ( - ® 2 

thus the stochastic intégral can be defined with n ' k 2 %(n,k)^*^Xv(n,k+l) Xv(n,k)^ 
respect to the process X (we are in the situation 

given in B.6). Now, we prove that I a n k c o n v e r 9 e s a« e« for 
k^o ' 

l£i«£5, when n goes to the infinity. 

C.7 - PROOF OF THE ITO FORMULA < f „ „ 
3 ° / We have L a 1 = f[z (t)l. dX 

k^o n , k J]o,ll U t 

Now, we prove the second part of C.5. J J 

where Z is the process defined as in C . 6 . 3 ° / 

1°/ Ail the intégral and processes considered in C .5 above. If the séquence (b(n)) n > Q converges to 

are well defined (up to an indistinguishbility) ; zéro, f'[zn(t)].dX converges a.e. to 

moreover, thèse processes are cadlag ; to prove 

f f ' (X,. ) .oX 

the Ito formula, it is sufficient to prove that J JQ,l3 

the two members of this formula are equal a.e. 

for each élément t of T (t fixed). It is suffi- 40/ z ^ ^ c o n v e r g e s a ^ to - y ( f" (X _) .dS 

cient to prove that for t = 1. k^° ' J 0' 1] ^ t 

because f" is uniforly continuous and the proof 

We consider a decreasing séquence of real posi- C.6.2°/ (the total variation of the process (S-Sn) 
tive numbers (b(n)) which converges "sufficien- converges a.e. to zéro). 

n>o 

tly quickly" to zéro. 

5 ° / The function f" being uniformly continuous, (for 

We define the stopping times v(n.k) as in C.6.3V | | x| | fi a ) f f o r e a c h e > Q / w e h a v e > f o r „ s u f f i c i e n . 

and the sets A(n(k) and B(n,k) as in C . 6 . 4 % tly large, if to ç B(n,k+1) : 
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Then the processes S. ., Q, V. . and C. . 
^ 1,3 i,3 # # i,3 

4 are real., weZZ. defined, cadlag processes of finite 
6°/ Z a converges a.e. to Q(l) (cf. the 

V s n

 n ' k variation and c. . continuous ; moreover, the 
proof of C.6 . 2 V ) 

processes s

i i r V i i a n < ^ C i i a r e vncreasvng. 

7°/ At last, we have : Moreover, we have : 

a 5 = ±- f " (X ) U ® 2
 - X® 2 

n ' k 2 v<n,k) * ( V ( n ' k + 1 ) V ( n ' k ) f(X.)-f(X )=Q(t)+ [ J i C f i j t f 

Xv(n,k) L x

v ( n # k + 1 ) -
 x

v ( n f k ) J « 

- [x - x 1 Q x l s^ dx dx S~ 
Lv(n,k+1) v(n,k) J v(n,k) i 

J 2 : ! — • -fsJ 

If we define Z 1 1 as in C.6 . 3 V above, we 3°**] Z>3' ^ ^ J 

Q(t) + f z a ^ V . 

2 Z a , - f"(X^ ) .dV = 0 

n ' k J]ofi]
 fc" fc 7 f a 2/g aJ J 

[f» ( z
n ) - f-(x, )].dx 0 2 ] M ^ ^ Z'J 

J]o,l] fc Proof 

" j-j ^[f" (z n).Z -f" (Xt_) .Xfc_] ® dXfc Th^s i s a particular case of the 

theorem C .5 above ; we have only to prove that the 

~ L _ f " (z ) , d x

t ® z " f " ̂ Xt-^ , d X t * ® X t - processes V i ± and C i are increasing ; that proceeds 

of the proofs C . 5 .3°/ and C .5.4°/. 

C 9 — REMARK. 

By the dominated convergence theorem " 

(cf. B.4) , when n goes to the infinity, ail the n ^ 
In C . 5 , we supposed that f" is unifor-

previous intégrais converge a.e. to zéro (cf. C.6. 
mely continuous on ail the bounded subsits of H. 

5 ° / above) and that complètes the proof. n n . 

Actually, m the proof of c . 5 , we exactly used the 

following property : 

C .8 - ITO FORMULA : FINITE DIMENSIONNAL CASE for each pair (a,c) of positive numbers, there exists 

a positive number rj such that : 

We suppose that R is S finite dimensionnal ||x|| £ a , and||y|| £ e implies 

vector space and (h ) is a base of H. Let X , , 1 ©2. . . , , , ? 

^ j ' i ^ n 1 ||f(x+y)-f(x).y- ± f»(x).y*|| < n ||y||2 

be an H-valued cadlag process adapted to the complète 
stochastic base ( l î,^,P, (^ ) ) with T = To,il 

V ' t t e T L J C.10 - BROWNIAN MOTION (DEFINITION) 

we suppose that X is finite quadratic variation Let X be a real process. One says that 

and satisfies the condition C.5.(i). We shall Write X is a real brdfcnian motion, with respect to the 

n . stochastic basis (fi,y,P, (̂  ) ) with T = [b,l"|.if 
X = Z X 3.h. t t & T 1 J 

j=l 3 X satisfies the following properties : 

Let fie a real function defined on the ( i > X i s a ««tinuous process 

real line and twice continuously differentiable. J i s a s ^ a r e "tegrable martingale, id est, 

E(X^) <+<*> and, for each pair (s,t) of éléments of 

We consider the following real processes T with s < t, we have : E(Xt|5^)= X g a.s 

with l^i^n and l^j^n : (iii) the quadratic variation [x,x] of X is 

defined by [ x ,x j ^ = t (for each élément w of fi). 
5. At) = Z (XL-XL )(XJ-X1 ) = S. .(t) W e s e e i n t n e following paragraph E 

,Q S S— S S— Q "L 
e ^ 3 (cf. E-ll) that X satisfies ail the hypothesis 
. n %f v v given in C .5 • thus, it is possible to apply the 

Q(t) = Z [f(X )-f(x_) - z & (x J.(x%-x\A 
s s %xi

 s s ° ITO Formula to a brownian motion. 

7. At) = t.kî^J -f (Xi .dX} + ^' .dX1) C - H - NOTATION [X,Z] 
tjj t t o o U * s- s s- SJ 

3 Let X and Z be two real processes 

C. At) - V. At) - S. At) which satisfy ail the properties given in c«5. 

1**0 -̂jj ISJO f -i 

In the exercises, we note |X ' Z J t n e quadratic 

variation" associated to the processes X and Z. 

More precisely, [X,Z] is the cadlag process 

defined by : 
[ x , z L = X. .Z -X .Z - I X^ .dZ - Z .dX 
l Jt t t o o J j Q f t ^ s- s J j Q r t - J s- s 
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D.3 REMARKS AND CONVENTIONS : 

a) The a-algebra of predictable sets of the cano-

nic basis is gênerated by the sets GXFxJ s,t] 

D - STOCHASTIC DIFFERENTIAL w h e r e G i s a n e l e m e n t o f # s ' a n d F i s a n élément 

EQUATIONS o f ^*s ' a c t u a l l Y ' i t : sufficient to consider 

the case where G is the set of the cadlad func-

tions x such that x = x(u) is an element of H 
u o 

. 1 . GENERALITIES : . _ ^ „ ^ _ . ^ ^ „ 
with u < s and H borelian set of H. 

o 

In this paragraph D, we consider : 

m r .-\ . j . . * . i c ^ i i > b) Let a(x, w, t) be anj& (H,H)-valued process 
T = [p,lj, the unit interval of the real line ' ' a 

H,K two separable Banach spaces and oôa(K,H) defined with respect to the canonic basis BH. LetX 

w . i£ ,„ „v rr ., i . ^ be an H-valued process defined with respect to the 

a subspace of db (K,H), the space of the linear * * 

s- . 4. « 4-v initial basis B . In the following, we consider 
operators from K to H ; on this subspace 
*p . „. . , , . . c processes Z such that Z(a)) = a [x{m) ,aj,t| ; 
c£ (K,H), we consider a norm such that, if u * t u J 

^ in this situation, for the commodity of nota-
s an element of £ (K,H), I Iu| I > Sup.| |u(k)| | 

a i i i i —,i i i IH tions, we shall not write the symbol U); then, 

we shall write Z f c = a(X,t). 

( iï, , P, < ^ . ) t € T ) = B
1 a "stochastic basis" 

c) we shall consider stopping times such that : 
ith the usual assumptions, i.e. for each element t of 

, C = ̂  £ anà A 6 f t i f P(A) = O. We w - inf {t : t > ». t < v, | |xj | > d 
t. . . s t 

s>t 
In this situation, if the set above is empty, 

hall call this basisthe "initial basis".We note n „. t x _ x 

we define w(w) = v(u)) . 
^ the algebra generated by the sets F x Js,t] 

ith F £ ; the a-algebra generated by ̂ i s the 

s d) Let u and v be two stopping times.. We define 

-algebra o f predictable sets. the stochastic intégral Y.dX as usual and 

J u' v] 
we define : 

.2. CANONICAL BASIS (DEFINITION) : Y.dX = Y.dX - Y (X -X ) 
J]u.v[ i]u,v] v" v v" 

We shall use the french notations "cadlag" 
, ,,, , . , , . c , (when thèse terms are well defined) . caglad", and so on ; more precisely, let f be a 

eal function defined on T ; we say that f is cadlag 

f, for each element of T, f is right continuous and If v is a predictable stopping time, the set]u,v[ 

as left limit. (in french : continu à droite et a l s a Predictable set, then we have : 

ne limite à gauche). We say that a process X is L r y.dX = li r Y.dX 

J J u,v[ J Ju,vL 

adlag i f , for each element 00 of Œ , the sample function 

A^-* Xt(o)) is cadlag. 

Let D H be the space of ail H-valued cad- e ) L e t u b e a stopping time and let X and Y be 

ag functions defined on T. For each element t of t w o Presses, the process X being cadlag ; then, 

, let©** the a-algebra generated by the sets we shall note Sup. || Y .dX ||2 the random 
t<u 'Jo,t] S S 

w : X (cû) £ H } with s £ t and H borelian set 
s o o 

• H variable U defined more precisely by : 

f H ; we define S> = S> 1. The family 

D Hxtt , 3> H03r («J is a "stochastic U ( w ) = Sup | | Z f c (u)) | |
 2 

t t t C T t<U (U)) 

asis" that we shall note B H and we shall call where Z is the cadlag process, unique up to 

he canonicalbasis(for the H-valued processes défi- indistinguishability, stochastic intégral of Y 

ed with respect to the basis B 1 ) . with respect to X, i.e. defined by 

Z t = U «r Y .dX . 
t J J o , t J s s 
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D.4. PROPOSITION : 1 j i t h l h & U B u a i assumptions, (cf. D.l above), that 

. i ji w e shall call the initial basis. Let Z be a K-valued 
Let A be a danacn space. uet X oe a cadlag 

, ,. ., . . cadlag process, defined and adapted with respect to 
H-valued process, aejzned and adapted wzth res- j 

. . . . . . . I , . . the initial basis 3 . We suppose that there exists 
pect to the zmtzal casis B . Let a(x,^,t) be a 

, „. , 7 . , CL real positive increasina process Q, defined and 
K-valued process, defvned and predictable wzth " " j 

, ... . ti adapted with respect to the initial basis a , such 
respect to the canomcat, casvs B . Let Y be tne ' « 

. , , , that, for each (strongly) predictable (K,H)-valued 
process defined by : Y+(u) - a(X(u)3u3t). Then, J v v r a 

t . „ " . -, uniformly bounded process Y, and for each stopping 
Y %s a K-vatued process, predvctable with respect 
, . . , . 7 7 . J T v / i • J t^me u> w e h a v e (°f- D^3.e. above) : 
to the zmtzal basis B . Moreover,Y ̂(&) zs depen-

ding only on the values Xg(u>) for s < t (then, it ( i ) E^Sup\\\^ Yq.dZQ\ \
 2^(Qu_. jj \ \ Y

t ^ ' d Q ^ 
is possible to de fine Y (ui), when X is known t u \o,t^ \o,u[^ 

t S yy 
«t. . Let a(x,m,t) be an «a (K,H)-valued process, 

only for s < t). a ' r 

defined and predictable with respect to the canonical 
q 

basis BL . We suppose that a is locally lipschitzian in 

EE°.°.É : the following sensé : 

1°) First, we consider the case where there exists 
(ii) For each real positive number d, there exists a 

k élément of K, u < v < w éléments of T, H bore-
/fT ° right continuous increasina adapted process L-, 

lian set of H, F élément of such that, if d 
v such that, if (ui,t) is an élément of (Œx T), if 

H 

J = {x : x u £ H q} , (x,x') is a pair of éléments of-D with 

Sup \\x || £ d and Sup \ \x' j | £ d, then we have : 

then, a(x,a),t)=k.lJ(x). lp((j). 1 (t) sçt S s4t S 

J v, w] 2 9 

| \a(x,&, t)-a(x',co, t) | | 4 L^(tii) .Sup \\ x

s~
x^ I I 

Let F' be the set defined by s<t 
F'= {OJ:X (OO) 6 H }. The process X being adapted 

u J? Let u be a stovping time and X1 be an H-valued cad-
F* belongs to <J\ ; we have also : 

u lag adapted process stopped at u. Then, there exists a pre-

Yt(oj)=a[x. (w) ,oj,t]=kJJ[x.(oj)]. lF(w) i (t) dictable (cf.A.14) stopping tméMmd an H-valued cadlaa process 
Jv,wJ 

X, defined and adapted with respect to be initial basis 
k. 1F(co) . 1 F, (w) . 1 (t) ^ unique up to indistinguability, with the following 

Jv,wJ 
properties : 

then Y is a predictable process and Ŷ fo)) is 

only depending on X (w) for s < t. (iv) if <d belongs to the set{ v < 1} , 

lim.sup. \ \Xt(u>) | | - + <» 

ft a(X s) dZ 3 ' s 

L e t ? x be the family of ail the K-valued pro- ^ ^ s t o c h a s t i c i n t e v v a l s this intégral 

cesses a, defined with respect to the canonic h e i n g a n u s u a t s t o c h a s t i c integral. 

basisB and such that, if Y = a(X,t) , Y is a 
Then, we say that X is a strong solution of the 

predictable process with Y only depending 
stochastic differential équation dX= a(X,t),dZ on 

on x for s < t. The space G is a vector ^ c t 
s the stochastic interval Juj Y [ j with the initial 

space and a monotone class ; moreover, , 7 

X value X . 
contains ail the processes a=k. 1^. 1^. 1-|̂  

io Proof : 
as defined in the 1°) above. Then,G x contains 

, , J . ^ . , I By localization, it is sufficient to consider 
ail the predictable processes (cf. the remark 
^ -, . the case where Q.is uniformly bounded ; then, in the 
D.3-a). 

right term of the inequality D.5(i), we can write : 

EJ[ p l | Y t M
2 . « t i insteadof E(Q u_.jf | | Y F C | |

 2 .dQtj) 
D.5 : THEOREM : (J]o,u[ ) f JJ°' uL ' 

L 7 rr.77_ . , , that we shall do henceforth. In the following we shall 
Let H and K be two separable Hzlbert spaces. Let 

T ^ omit the symbol OJ if there is no possible confusion. 
r = la'Jh> P> <3t)tf:'I1 h e a s t ° ^ t i a t*™™- T n e f o l l o „ i n g proof is a natural generalization of the 
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classical study of ordinary differential équations D.7 - EXTENSION PRINCIPLE FOR SOLUTIONS 

based on the fixed point theorem. This proof has 
We consider the hypothesis and notations 

three steps : 

given in the theorem D.5. Then for each e> 0 

1°/ unicity : Lemma D.6 there exist a stopping time v and an H-valued cadlag 

2°/ Extension principle for solutions (D.7) adapted process X, defined on the stochastic inter-

3°/ Maximal solution (D.8) val [u3v\ , which satisfy the following two proper

ties : 

D.6 - UNICITY „ „ 
(i) P([v>u] > P(lu < ÏJ) - e 

We consider the hypothesis and notations ( U ) xt = X
u + f* a(X,s)dZs on the stochastic 

given in the theorem D.5 above. Let X and X' be u 
, . 7 - ̂ . interval {(t,ui) : u(u>) * t * v(u) } 

two adapted cadlag processes wfoch are solutzons 

of the équation D.5.(v) on the stochastic intervais 

^Ujv] and lu,v'"] respectively and which are equal 

on the stochastic interval i«i -i 1°/ Let X° be the process defined by : 
\o,uj 

Then, X.lr . and X'.lr . . i are X°(œ) = X U ( O J ) 
lu,vAv'l \u,vkv'\ t 

two indistinguishable processes. 
Let d be a real number such that 

Proof : P [ Sup | |Xfc| | > d ] < e. 
t£u 

Let X and X' two solutions on Ju,v] and Let L = L^d be the "Lipschitz process" asso-

]u,v*J respectively. We define : ciated to 2d which appears in D.5.(ii). 

u* = inf {t : ||xfc- X^|| > O, t ^ u , t £( vAv' )}. Let v" the stopping time defined by : 

If P [ U ' < (v Av') 3 = O, the lemma is proved. v" = inf.{ t : t * u , Qfc- > } 

Then, we suppose that PQI' < (vAv')J > O. The pro-
_ „. , . j -m . . The process Q being right continuous, we have 

cesses X and X' being cadlag, there are a real number 
P ( fv" > ul ) = P ( fu < il ) 

d and a stopping time w' such that : u a u 4 

Sup (||x|| + ||x'||) £ d L e t W b e t h e T ~ v a l u e d random variable defined 
u,^s<w' s s o n ( D H ^ H } b y w ( x ) = i n f ^ t . | | x | | > 2d}. 

P ( [ w > u ' ] ) > 0 and w' « (vAV). ' We put a'(x,oj,t) = a(x,oj,t) where xfc =
 x

t ^ w 

It is easily seen that a' is predictable with respect 

_ . T . ., (lT . , . . „ . ̂  _ to the canonical basis B H (actually, if we- put Let L^ be the Lipschitz process" associated 
, T.- -, ., ,. . ^ C ,. .. w(x,œ) = w(x) , w is a stopping time with respect to to d which appears in the condition D.5.(n). Let w

 H 

, _ _̂ .. -.xr-.v. B ) ; moreover : be the stopping time defined by : 

. a(x,o),t).lP 1(x) = a'(x,oj,t) . 1 r - (x) and 
w = inf.{t : t * u \ t < w' , Q - Q | > - i - } L0'WJ [°'WJ 

| |a' (x,oj,t)-a' (x* ,o),t) | | ̂ L2d(oj). Sup | |xg- | | 

The processes Q and L^ being right continuous s<t 
. u T W T ^ i"t \ >v ̂  mi. J .c- f o r each pair (x,x*) of éléments of DH. we have P(|_w > u'J ) > O. Then we define : 

h - E { Sup. | | x

s ~
x | | ) 2°/ Now, we can define a process X on the stochastic 

u£s<w 
interval £u,v'2 such that 

Then, we have (cf. D.3-e) : 

, Xfc = ̂  + a'(X,s) dZ 
h = E{Sup.|M [a(X,r)-a(X',r)].dZ | | 2} ] u , tl S 

\j<g<W •'H U s i ^ 

J ' J on this same stochastic interval by the classical pro-

^ „ r f n , , ,..2 -> cedure ; we recall this procédure for the convenience 

* E { L J |a(X,r)-a(X',r)II .dQ> (cf D.5-(i)) 

J U ' W L o f t h e r e a d e r * W e define the séquence (X ) n > Q by the 
following way : 

* E{[ L d . Sup .||x -X'||
2.dQ } (cf.D.5-(ii)) x£ + l = X

U + { a'(X

n,s).dZ 
JJu,w[ u<r<w IV'tj 

If we put h = e\ Sup ||xn+1- x" || 2j , we have : 
1 (u^s^* S S ) 

h * — h (cf. the building of w); then h = O and 

that proves the unicity. 
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h n ~ E i S U P ^ L -, C a ' ̂ x ,r)-a'(xn 1 ,r)] .dZ r

 1 12| Now, we suppose that there exists an integer 
(u*s<v' JJu,s] ) / r 

(cf. D.5.(i)) k s u c h t h a t p C L r ( k ) = w a n d w < 1J) = 2e > O. Accor-
if n n_i ? i ding to the lemma D.7, we can extend the solution 

* EU a' (X ,r) - a' (X ,r) . d& J 
fUu,v' £ J (r(k),X.l-jQ r ( k ) j ) on a stochastic intervall 

(cf. D.5.(ii)) ]o,r(k) V r'] where P([r'>r(k)]) >P([r(k)<l]) - e 

4 E l L . S u p l l x I 1 " ^ 1 I | 2* L9ri- d 2r-( B u t t h a t implies that P([ r' > wl ) > e and this is 
' Jlu,v'[ u£r<v' Z a M t- j 

impossible by the définition of w. 

4 y n

n _ j (cf. the définition of v') 

D.9 - RE MARK 

Thus we have h^ £ 2 n - h Q . That implies that 

the séquence of processes (xn. ln r) ̂  converges L e t c b e a measurable mapping from (H x T) 
Ju,vl n>o 

almost everywhere, uniformly for each sample func- i n t o a B a n a c h s P a c e K w h i c h i s continuous with res-

tion, to a cadlag process X on the stochastic inter- P e c t t o t h e f i r s t variable. For each élément (x,u),t) 

vall ]u,V [ ; we have the same property on the sto- o f ^ Q * T ) ' w e P u t a < x ^ , t ) = ̂  .c(x£,t) 

chastic intervall ]u,v'] because (actually, a does not dépend on w ) ; it is easily 

x

n _ x

n _ a i ( X

n ~ ^ v') (Z - Z ) • seen that a is well defined and is a K-valued pre-
v' v'- ' ' v' v*-

dictable process with respect to the canonic basis 
then, on the stochastic intervall 1u,v'l , we have : H 

B . Thus, this situation is a particular case of the 

X = X

U + L «i a' (X ,s).dZ situation studied before. 
t J]u,tl s s 

,̂ , i , D.10 - LEMMA At last, we put 

v = inf. { t : t > u, u £ v' , I |x^ I I > 2d } . _ 1 # , „ .„ „ „ n ̂  _ • 
1 1 t 1 1 Let W be a family of éléments ofofjÛ&l? ) 

The process X being right continuous, we have such that w and w = w' P.a.e. implies w'eV)1; 
P([V > u]) > 1 - e for ea°h élément w of Vf3 we suppose that O £ w£ 1 . 

Than there exists an increasing farrrily (w ) 
but, a* l-i -i = a 1 .l-i -i and that proves the „ „ «.» , . „ - n n o 

Jo,vJ J°' VJ of éléments of Vf such that, if we have 
lemma D.7. â i a _ 

w€ w and w ^ Sup .w F.a.e. 
n 

n 
then w = Sup.w P.a.e. 

D .8 - MAXIMAL SOLUTION n n 

Proof 

Now, we prove the theorem D.5. Then, we 

consider the hypothesis given in D.5. Let f be the canonical mapping from 

^fœ(Qf^fP) into Loo(fi,
<?',P) and tlf' be the subset of 

P r Q O f L œ defined by W = f fUf) . OnW'we consider the 

We consider the family ^ o f the pairs (v,X) usual partial order £ ; according to Zorn Lemma 

where v is a stopping time and X is a solution of there exists a "maximal"ordered family ( w ^ i e l

 o f 

D.5.(v) on ]u,v^ - The set is not empty accor- éléments of W*; if b = Sup E(w^), there exists an 

ding to lemma D.7. We dénote by w the essential su- "j" ̂  1 

increasing séquence (w') extracted from the pre-

premum of thèse stopping times v and by (w(n),X ) n n . 

n>o vious family such that b = Sup E(w') (there exists 

a séquence of éléments of £7** such that (w(n)) t n>o n 

n>o a cofinal séquence) 

is a séquence increasing (a.s.) to w ; such a séquence , , # . - . , \ 
and that proves the lemma (consider a séquence ( w

n' n > 0 

exists because of the following property : if (v',X*) i • 
such that w^ = f(w ) for each integer n). 

and (v",X") are two éléments of » 

(V W , X - ^ o ^ ' J + X ^ J v . ^ n J )

 D > 1 1 _ CONDITION FOR NON EXPLOSION 

is also an élément of (see D.6). 
^ _ _ „ r • 4- j We consider the hypothesis and notations given 

According to the lemma D.6, it is possible to defme v t r 

r r . „ . „n . in the theorem D.5. Moreover, we suppose that the 
the process X on lp,w! by X. 1-» . X . l-i .-i 

L ]o,w(n)l o,w(n)| 7 7 . . , 

J J J u three followtng conditions are fuufited 

For each integer k, let r(k) be the stopping time (.)t ^ ^ ( e t r o n g l y ) p r e d i c t a b t e ,H)-valued 

defined by r(k) = inf. { t : t i w and | |xj | >k}. ^iformly bomded process Y, and }or each stop-

If, for each integer k, p(fr(k) = w and w < il) = O, . 
> L J vint time u> we have : 

the theorem D.5 is proved. 



- 18 -

E | sup||[ Y s.dZ s| |
2 U E j Q u | M v

t l | 2 - d ô t | (because of the inequality (a+b) 2 4 a 2 + 3b 2 if 
( « u j}o,t] ) ( ']o.u] ) | b | > | a | ) B 

Q ts locally integrable, id est theve exists We put : 

an increasing séquence ^u^n^n>0 of stopping 

times such that lim .p[u(n) < l] = O and, Y = E ( x*'* 1[w' < l] ) ^ x = E { X** 1[w<l] ) 

for each integernn? E^u(n)^ < + 00 

Then, we have : 

(iii) there exists a positive number c such that, ( . f l 7 ) 
H y x v<3E Sup II a(X,s) .dZ | \ 

for each élément (x,u),t) of (D x lî x T) , ( w*t£w' Uw,t] s ) 

we have : \[ 2 ) 

||a( X, U,t , M 2 < C( 1 + Sup ||,J| >, < 3 E l J]„,„.] C < 1 +w^ W.
l | X t l 1 '•«•i 

S<t f V 

Tften P([v = l]) = 1 if v is the stopping time ^ 3 E^J-j f-
 c ( 1 + 4d) .dQg j 

considered in the theorem D. 5 . Afc>2*eci>£r'J 

toe t/ze following inequality : n C(l + 4d) El^,- QJ 

E d j x j l 2 ) £ E J Sup ||x t||
2j. 3C q.exp(12Cq) 

t è n But 4d £ 4E(X*.l r = 4x ; 

where x is the unique solution as considered L w ll 

in the theorem D.ô and where q = E (Q^~ Q u) thus, we obtain : 

y £ x + 3 C(l + 4x) E(Q w,- p^) 

Proof 

we have also : 

For each stopping time w, we put 
M I .2 x * 3 C- E<2„- 2 > e xP- * 12C E(Q f - Q ) } X* = Sup | |x I | . For each £ > O, there exists a po- w u w u 

t^w 

sitive number r such that a n d 9 i v e s : 

P(F) i 1-e if F = { O J : X* « r } ; Y * 3 C - E ^ W . " ^xp. { 12C £(0^.- } 

Thus, by considering the process X only on the set 
Then w' belongs t o * : this is impossible 

F x T, we can suppose that g < + » if we put 
„ ° because w was an élément "maximal" in Mf : 

g = E(X*) . r -
° thus P(|w < 1J) = 0 and that proves the theorem. 

Now we consider the set w of ail the stopping times 

w such that if w'is a stopping time with w 1 £ w, we 

have : 

E ( îC'-1[w<1]> *^K]-3C%,< e * p < 1 2 c v > 

where q = E(Q - Q ). 

' w ' u 

According to the lemma D.10, there exists 

a "maximal" increasing séquence ^ w ^ n ^ n > 0 °f éléments 

of V ; if we put w = Sup w(n) , we see that w e V 

(Lebesgue theorem). n > ° 

Now, we suppose that P([w < 1J ) > O ; 

then, there exists a positive number d such that 

P(F) > O if F = | o) : W(OJ) < 1 and d £ x£ £ 2d J and 

such that d £ E(X*.l r «n ) • 
L W < 1 J 

Let w* be the stopping time defined by : 

if w 4L F, w 1 (ou) = w(o)) 

if m e F, w'(o))=inf .{t : t*w(oj) ,x£>4d, t*v(oj) } . 

On the set £w'< lj , X*, ̂  4d (because 

X is right continuous) then we have : 

X|J. « f + 3. Sup ||x t- X w||
2 

w^t^w' 
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such that A 4 0 , we have lim v(A ) = 0. 
n n 

E - MARTINGALE AND DOLEANS MEASURE 

Proof 

1°) Let (A ) . be a séquence of éléments of $ 
n n>o ^ ^ 

such that A \ 0 ; we put a = — lim. v(A ) ; 
n n — 4 n-~> 

In ail this paragraph E, we consider we suppose that a > o and we shall prove that there 

a probalilized stochastic basis (Çl, (£,P, (3 f̂c) t ) ; is an impossibility. 

we shall note T°° = Sup.jt : t£T j and we suppose 

that T°°is an element of T. 2°) For each integer n, let (B(n,k) ) be a 
l^k£b(n) 

finite partition of A^ such that, for each integer 

k, B(n,k) is an element of & (cf. A-6). 

E ' U DOLEANS FUNCTION (lemma and définition) F o r e a c h p a ± r ( n # f c ) Q f i n t e g e r s , w e h a v e 

_ ^ £. B(n,k) = F(n,k) x]s(n,k),t(n,k>] . 
Let X be a process, or a process défi- "* w 

ned up to a modification, with values in the Let s*(n,k) be an element of T such that 

Banach space H and such that, for each element t s(n,k) < s*(n,k) < t(n,k) and 

of T, x t is an element of L*<fl ,£,P) . For each v(]s(n,k),s'(n,k)]) < a.2 _ n. ^ 

element A = F x ] s, t] of J f we put 
x(A) = E ("l . (X -X )] . For each integer n, we put : 

u F t s 
b(n) 

It is easily seen that x can be enten- C(n) = U (F(n,k) x]s'(n,k),t(n,k)] ) 
k=l 

ded, on a unique way, in a function defined and 
additive on 3§ . _ b(n) 

C(n) = V (F(n,k) x [s'(n,k),t(n,k)]) 
k=l 

We shall note d(X) this function and 

we shall call it the Doléans function of the n n 
D(n) = C\ C(k) , D(n) = S\ C(k) 

process X. k = 1 k = 1 

Actually, we are chiefly interested in b(n) 
S(n) = U (fl x]s(n,k) ,s' (n,k)1) 

the case where d(X) is Cf-additive : in this case, -J ** 

one calls it the Doléans measure of the process X, 
We have : 

The following lemma is fundamental to A(n) CJS(n)UC(n)J 

possibly prove that it is so. 

If we remember that A(n) + 0 , we have 

n 

A(n) CJD(n) U \ U S(i) j j 
E.2. LEMMA (sufficient condition to have a r* outer i=l 

"Doléans measureP) a n d ^ i m p l i e s v [ A ( n >] < v [ D ( n>] + a . 

Let v be a positive function defined on 
<ib , . j ~ 11 * ^7 . . 3°) Moreover, for each integer n, C(n) being con-
(Aî which satisfies the following three properties : 

tained in A(n), we have D(n) + 0 . 

(i) for each pair (A,B) of éléments of 7k\ n-*30 

v(A) £ v(AUB) £ v(A) + v(B) For each integer n, let u(n) be the simple stopping 

time which is the "beginning" of the set D(n), i.e. 

(ii) for each element s of T, lim v(Q, x ] s,t]) = 0 

t i S [u(n)](oj) = inf. jt : t é.T, (aj,t)£D(n)j 

(iii) for each inoreasing séquence (u(n))n>Q °f 

simple stopping times such that Let u> be an element (fixed) of SI and let D(n,w) the 

lim P Ju(n) < T^ - 0, we have : compact subset of Tdefined by : 

n-*» 

lim v (]u(n)9T*$) = 0 D(n,u>) = \t : t£T, (w,t)£D(n)j 

Then, the following property is fulfiled : We have (a) being fixed), D(n,U)) \0 ; then there 

exists an integer k such that Dfk/W) = 0 (property 

(iv) for each séquence (A ) ^ of éléments of DR C _̂ . . ^. ^ . r ,, ,-t . . __ 
J H n n>o J J ° of the compact sets) ; that means that |u(k)J (u))=T°° ; 
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thus, we have proved that T h e condition (ii) is the same as the following 

_ . one : 
[u(n) < T°°J + 0 

r r > c o (ii) 1 there exists a positive decreasing function 

Then, there exists an integer j such that f defined on R + such that lim f(x) = 0 and, 
x-x» 

, , for each élément A of c/farid for each real 
v (]u(j), T°°J) < a (cf. (iii)) 

strictly positive number d, we have : 

we have : 

v [A(j)] * v [D(j)] + a (cf. 2°) above) P( l l ^ - ^ l > d ) * f (d) 

* v (]u(j) , T « ] ) + a 
Let Q' be the set of the rational numbers belonging 

£ 2a 
to T. For each élément t of Q', we put Z = X 

and this is impossible by the définition of a. t t 

At first, we shall prove that the process 

( Z t ) t 6 Q l is ladlag. 

E«3. REMARKS L e t a p a i r Q f rational numbers with 

a < b. 

1°) In this paragraph e, w ^ shall .use the lemma 

above for an additive function v : in this case, 
2°) Let S be a finite part of Q* ; let )t(k)(_ • 

if the conditions E.2-(i), (ii) and (iii) are sa- * ' Uk^n 
be the increasing séquence of the éléments of S. 

tisfied, v is a Doléans measure. 

Let ( u ( k ) î i£j^2n b e t h e a s s o c i a t e d family of 

simple stopping times defined by récurrence by 
2°) The proof of this lemma E.2, is a natural 

u(l) = 0 and : 
generalization of the associated basic lemma when 

Q has only one élément (deterministic case). u(2k+l) = inf. \ t : t6S, t > u(2k),Z > b j 
u(2k) = inf. j t : 1£S, t à u(2k-l),Zfc < a J 

E.4. EXISTENCE OF A CADLAG MODIFICATION (theorem) and u(j) = 1 if the sets above are void. 

, , +

 L e t A(j,S) be the domain wheœ the process (Z ) 
Let X he an adapted process defined up to t t£S 

^ . W . „ . 7. . has more than (j-1) upcrossings of the interval 
modification, with values in a finite dimensio-

1 j. j • ? u. j.- • -u [a,b] ; if 0)6fi, we have 

nal vector space H and nght continuous in proba- w 

bility (i.e., for each élément s of T and for each - either ajfcA(j,S) and this implies 

e > o, lim .P [ |\X -X \\ > e] - 0). We suppose j 

^ s . , E [ Zu(2k +1)-
Zu(2k)^^ j * ( b - a ) 

that X satisfies one of the following two proper- k=l 
t X e S *" - or 0)£A(j,S) and this implies 

(i) for each élément t of T, X^_ is an élément of ^ 

ifa&.P) and the set ^ [ z

u ( 2 k + l > - z

u ( 2 k ) ] < - < V a > " 

\z : z = [d(X)](A), A 6 c&\is bounded in H, 
(we have z

u(2k+l)~
Z

u(2k)
 < 0 ° n l y i f 

i.e. there exists a real number a such that, 

for each élément A of flf , \\ \d(X)] (A)\\< a. Zu(2k) < a a n d Zu(2k+l) = X l ) * 

(ii) the set j 3 ; z * J 1 ̂ dX,A i.<%\ (this intégral Then^ w e h a v e . 

being defined as in B-2) is bounded (in the 

Bourbaki sensé)in LEJÇlfÊ,P). \ \„ -7 1 ̂  . « x . ,„ 

k

l

= 1 L Z

u (2k +l)-
Zu(2k )J > ̂ ( b- a )- 1A( j,S)-

( Zr a ) 'WfcS) 

Then there exists a process ï, defined 

up to indistinguishability, which is a modifi- If the condition (i) is fulfiied, we put : 

cation of X. ^ 
cj = jlbraT C» + E <l«1-«l>] 

P r Q ° f If the condition (ii) (i.e. (ii)') is 

1°) It is sufficient to consider the case where fulfiled, we put : 

T = [u,l]. It is also sufficient to consider the 

case where X is a real process (look at the pro- C = f [j(b-a)] 

jections on a base of H). 
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In ail the cases, we have X is a supermart4ngale (resp. a submartingale) if 

P [A(J,S)J 4 C and lim . C = Q . the Doléans function is négative (resp. positive). 
J
 j-H» J 

3°) Now, we consider an increasing séquence 

(S(n)) ^ of finite parts of Q 1 such that E' 6- EXAMPLE OF SUBMARTINGALE (proposition) 
n^o 

Q' = O S(n). Let A(j,Q') the domain where the 

n>0 Let M be a martingale, defined up to 

process < Z t > t é , has more than (j-1) upcrossings modification, with values in the Banach space H. 

of the interval [a,b] ; we have A(j,S(n)) + A(j,Q'), L e t f b e a convex real positive function defined 

and this implies P [A(J,Q')] * C . Thus, if o n t h e r e a l U n e ' L e t x b e t h e r e a l Process defined 

A(Q') is the domain where the process ( Z ^ ^ Q , t o modification by Xf = f(\\Mt\\). 

has an infinity of upcrossigns of the interval Then, X is a submartingale . 

[a,b], we have P [A(Q') ] = 0. 

Proof 

4°) If we consider the family of ail the pairs of 
Applying the définition above, we see that 

rational numbers a and b, we see that, with the 
this proposition is a corollary of the following 

probability one, there do not exist two différent 
inequality : 

real number c and d such that X upcrosses infini-

tely the interval [c,d] . ^DËÎD_î^quality : 

But, a classical resuit says that this Let Y be an élément of L^{iï,$~,P) and ̂  a 

is équivalent to say that the process X is a.e. sub-a-algebra o f £ ; let f be a convex real positi-

ladlag. v e function defined on the real line ; we have : 

5 ° ) Then, for each élément (U),t) of f £g (y 1^)] £ E [f(Y) 1̂ .] 

( [O \ A(Q* )]XT), we can put 

This inequality is obvious if f(x) = ax+b ; 
Y (U))= Z ( w ) = lim . Z (w) 

s^t
 S thus, we have the same inequality in the gênerai 

Let t be an élément of T and lt(kn case because a convex function is the supremum of 
t > k>o 

be a séquence of éléments of Q' decreasing to t ; a family ( f

n) n> Q

 o f functions such that 

the séquence of random variables ^ t ^ j ^ ^ c o n ~ f (x) = a x + b 

verges a.e. to Y (by the définition of Y^) and in 

probability to Xfc ; then Yfc = Xfc a.e. and Y is a 

modification of X. E > 7 > EQUI-INTEGRABILITY 

Let H be a Banach space. 

E.5. MARTINGALE (définition and lemma) L t (A ) be a family of éléments of 

L , P ) . One says that this family is equi-inte-
Let X be a process, or a process defzned 1 

grable if, for each e > o, there exists n > o such 
up to modification, wtth values ^n the Banach 

that PCF) < r] implies (for each integer n), 
space H and such that, for each élément t of T, X, 

H a ? EC1-. \\A \ \) < e . 
belongs to LjC^&^P). One says that X ̂ s a mar- F nx 

tingale if the associated Doléans function is I t i s w e l l k n o w n a n d e a s y t o verify that 

identically null. a n equi-integrable séquence ( A

n ) n > Q

 o f random 

It is easily seen that this condition variables which converges a.e. to a random variable 

is équivalent to say that, for each pair (s,t) of A converges also to A in L^(ft,9^,P). 

éléments of T, with s < t, we have : Moreover, let A be an élément of L^(ft,£,P) 

t-S and ( B ) v be a family of sub-a-algebras of 6 ; 
E(X t ) 9 y = X s a.e. 3 n n > ° « 

if we put A = E(A | w ), the séquence (A ) ̂  is 
n tfn n n>o 

More generally, if u and v are two 
equi-integrable. 

simple stopping times, we have = E (Xv l 5̂ ) 

if u 4 v (cf. A-2 for the définition of *3?u
 and 

A-7). 
If X is a real process, one says that 
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E , Q, THEOREM E * 9• POLEANS MEASURE FOR A SUB-MARTINGALE 

Let X be a cadlag process, with values Let X be a real positive process defined 

in the Banach space H, such that, for each élément up to a modification and fulfiling the following 

t of T, X belongs to L^tt,^\p). We suppose that three conditions : 

the Doléans function d(X) of X is o-additive. We ( i ) f o p e a c h e l e m e n t t û f T y ^ b e i o n g s t o 

suppose also that, for each decreasing séquence L (tt (f P) 

('u(n^n>0 °f simple stopping times, the associated 

séquence (x

u(n)^n>0 °f random variables is equi- (ii) ^x^t£,T ^s a SUD'^nartin9a^e 

integrable. 

(iii) X is right continuous in mean, i.e., for 

Let ube a stopping time. Let X' be the e a o h e U m e n t s o f ^ w e w . 

process X stopped at u (i.e, Xt~Xtr\u' T^en, ^ m ]?(\x -X \) - 0 

for each element B of pff , we have : t±s 

R,, , , R,, . -T -I Then the doléans function x of X is o-additive. 
[d(X')\(B) - \d(X)\ (Br\]o,u\) 

Specially, if X is a cadlag martingale Proof 

and if u is a stopping time, the process X stopped W e c a n s u p p o s e t h a t T = [o,l]. The Doléans 

at u is also a martingale : in this case, we have : f u nction x of x is positive (cf. (ii)) and additi-

fl£ _ , n£ . ve ; then, it is sufficient to prove the condition 

u t ]o,u] 2*> t ]o,u] E.2-(iii). 

Let (u(n)) n > Q be a séquence of simple 

p r o o £ stopping times such that fu(n) < il + 0. We have : 

1°) The proof of the first part of the theorem is 
. . . x(Ju(n) = E [x -x . J 

easy when u is a simple stopping time. w 1 u(n)-' 

S E [(X -X . . ) +] * E 1V.1 , /] and 
L 1 u(n) J i- 1 A(n)-1 

2°) We consider any stopping time u and a process 
that implies lim x(lu(n),lj) = 0 . 

X fulfiling the properties given in the beginning ^ J A 

of the theorem. Let (u(n)) n > Q be a séquence of 

simple stopping times which decreases to u (cf. the 

end of the proof of A- 9)..Let B = F x ]s,t] an E ^ LEMMA 

element of ; we have : 

R , , V-I , r. , ,i Let s and t be two éléments of T with 
rd(x')J(B) = E [l . (X -X ) ] J 

F t*u s/\u s < t. Let H be an Hilbert space. Let Xq and Xt 

- lim E [1F. ( x t A u ( n ) - X s A u ( n ) > ] be an element of l\(ÏI, $q,P) and of l\(I^P) 

n->C0 respective ly. We suppose that E(X^ 1 5̂ J. - Xq 

because the séquence (X̂ _ , ,) ^ is equi-inte- a.e. 
^ T A U ( n ) n>o ^ 

grable and converges a.e. t o X U u ^ z h & ^ e l e m e n t o f L ^ £ j P ; > T h e n 

R -, «7 -, we have : 
= lim [d(X)] (B A Jo,u(n)J) 

n~HX> 1°) The random variables Z and (X-X ) are ortho-

= [d(X,](B 0]0,u]) gQnal in fyag>V) 

3°) Now, we suppose that X is a cadlag martingale. 2°) E(\ \x -X | \2) - E(| \X | |2 - \ \X [ \2J 

V S H u n S n 

For each simple stopping time u(n), we have (cf. 
E " 5 ) ,V Proof 

X = E(X \ & ) 

u^n) T°° u(n) W e n Q t e < f > t h e s c a i a r p r oduct in H. 

then, the family (X ) n > Q is equi-integrable ; 1 G ) E ( < z , x x >, = E(<z, E[(X -X )\ & 1 » 

T S
 L t s S J 

thus, we can use the first part of the theorem ^ 
because Z is ¥ -measurable 

and we have d(X 1) = 0 ; that means that X 1 is a s 

martingale. = o . 
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2°) b = E(||x -X ||*)«B(<X.-X , X -X >) 2°) For the notations, see the paragraph B. 

T S N u S u S 

« E(<X,,X >> - 2.E(<x ,X >) + E(<X ,X >) Let Y. be an i/^-siaple J-valued process. 

t t S t S S _ 

We have : 

Now, E(<Xs,Xfc>) « E(<X s, E(Xfc» ^ ) >) Y = i ] I **-A*M *" ^ 1 

because X g is ̂ ^-measurable ; then of the finite set I, a i belongs to J and 

A(i) = F(i) x J S ( i ) , t(i)] belongs toj?; we can 

E(<X ,X >) = E(<X ,X >) and also suppose that the S E T S (A(i)). „ are dis-

S w S S 1 ^ X 

joint. If i ̂  j, W E have F(i) n F(j) = <A 
b = E(<X .X >) - E(<X ,X >) 

t t s 5 o r t(i) * s(j) or t(j) * s(i) ; then 

= E(| |xj | 2) - E ( | |Xs| |
2) t h e random variables (ja ±.l A ( 1 ) .dM,^ x 

are orthogonal in L^a^P). 
Then, we have : 

E.ll - SQUARE INTEGRABLE MARTINGALE : E ( | | fY.dH| 6 - J E(| | la.. 1 . . . . dMJ | ^ ) 
Let H be an Hilbert space, let M be an ^ i i i 12 M m 2 y < l ||a || .E(l | | M - M . Il ) 

H-valued martingale defined up to modification i€l 

J*te suppose that M is a square integrable martin

gale, i.e. for each element t of T, * \ | |a.| | 2.E { l p ( i ) . ( | | M t ( i ) | | - ll
M

s ( i )l|
2)> 

E(\ \M^ \ < +<x>. We suppose also that M is right i € 1 

continuous in quadratic mean, i.e., for each *cf* E , l 0 ~ 2 ) 

element s of T, lim.E(\ \m.-M \ \2) = 0. f o 

*+* * j IMIj • dv 

Let v the Doléans function of the process 

N defined up to a modification by = \ \M^ \ \ . 

Then, we have : 3°> I f Ilx**llK =1l
xllH"

1|y|'j' t h e i n e q u a " 

lity above becomes an equality and this proves the 

1°) v is positive and o-additive. isometry. 

2°) let J and K be two Hilbert spaces ; 

we consider a bilineav continuous mapping from 4°) At first, we consider the case where M is 

(J x g) into K which, to (y,x) element of (J x H) a r e a l martingale. By the 2°) above, we can use C.6- 3°) 

associâtes y.x element of K. We suppose that a n d quadratic variation V of M is the cadlag process 

I \K « I 1*1 \ r I 1*1 l r Let Ybean &-simple V defined by Vfc = M
2 - M 2 - 2 Ms_ dM s 

J-valued process. Then, we have : 0 2 

. . and E(V ) = E(Mp - E ( * T ) . 

^ I l k ^ l l ^ d||y|| 2

r^ (cf. b-3). 

J A J E/ Now, if M is an H-valued martingale, then M takes its 
values in separable subset H of H ; let (h ) be an 

jp /OV o n n>o 
3°) The mapping which, to Y € ir(Çl',\¥,v), n d orthonormal basis of H ; for each integer n, let M be the 

associâtes the random variable stochastic inte- 0 v n n 
f H SF% real martingale such that M = £ M h ; let V be the 

gral \Y.dM is an isometry from L^fŒ1r, S*,v) into n>0

 n 

lF(Çi,^-, P). quadratic variation of M n ; then, we have V = £ V11 

and E(VJ = E(||M -M II2). n > ° 
t 1 1 t o 

. 4°) M is a process of finite quadratic 

variation. 
E.12 - A DOOB INEQUALITY (PROPOSITION) 

Proof : 

Let p and q be two real positive numbers such 

1°) N is a sub-martingale (cf. E-6). t h a t \ + \ = 2> ^ < P < ^ - L e t (X

t

)ta[oJl\
 h & a r e a l P o s i H v e 

Moreover, if S belongs to T and if t I S decrea- right continuous (for each sample function) sub-martingale 

sing t o s , lim. E(N t-N g) = O (cf. E.10-2
0)). SUQh that EOp) < We put : YM = Sup.X (tû). Then 

t+s 1 fT 

we have : E(YP) Z f.EO?). 
Then, we can use e.9 and T H I S proves the 1°). 1 

file:///m.-M
file:///Y.dM
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Proof E (Y^) ^ Ẑ ~r • • . dP 
P ifi 1 

, , _ ^ ^ . . , Now, if we use the Holder inequality, we obtain : 
Let Q' be the set of the rationnai numbers 

belonging to [o,l] ; then, we have Y = Sup. X and D r P ll/p r q(p-D iVq 

t«Q' Z E(Y P) < ^E- [ E ( x P ) J / P . [>(Y q^ P ')] / q 

that proves that Y is ï-measurable. 

_ ^ , . - . . •... , . . but q(p-l) = p, then, we have : 
Now, let d be a real number with d > 1. ^ 

p r Y P ^ s r E f x P ^ 1 / q T E r Y p n 1 / q 

For each n, let v(n) be the stopping time defined by M ' p-1 L 1 J * y j 

v(n) = inf. { t : X > d n } (and, of course, v(n)=l ,_. _ ^ „ / „ P x ^ ™ ., . 

t At first, we suppose that E(Y*)< +°° ; m this case, 

if this set is void). We note A(n) = [ï H 1 , 
J we obtain : 

and a = p[A(n)]. We have : 

« i , , » » , • [ x,.,* ^ 1 - 1 / 9 * 1 / P 

1 v ( n ) n W ( n ) 1 

a n d \(n)Aa^(n) = V W d ) t h e n b u t i " 1 ^ " 1 / cl' t h e n w e h a v e : 

"» ' d ~ n " L > ^ E < ï P > « 

Moreover : , p . , 
Now, if we have E (Y ) = +°° , we consider the cadlag 
martingale X(n) defined by : 

E(Y P) £ d P. 7 (a -a A d n p 

L n n+1 
n < 5 X(n)= E[(X A n ) | { T ] a n d we put Y(n) = Sup. X (n) ; 

, „ 1 t t 

< d P V a . [ d n p - d ( n - 1 ) p ] 

n L J by the previous proof, we have : 

Now, if we use the inequality obtained above, , p % . p r, % pi 
E(YP(n) ^ q . E [(X^n)*] 

we have : 
but, Y £ Sup. Y(n), thus (Lebesgue theorem) : 

E(Y P) * d P. I d"n.(( X l.dP).(d
n P-d ( n- 1 ) P) 

nea •'A(n) E(Y P) £ q P . E (XP) 

If we put B(n) = A(n) s A(n+1), we have : 

Exceptionnally, in the two following propositions, we 

E(Y P) £ d p l l ( f x dP) d~ n ( d n p - d ( n _ 1 ) p ) suppose that the set T is open on the right. 

ne» kàn JB(k) 1 

< d P y ( f X dP) d~ n ( d n P - d ( n ~ 1 ) P ) E * 1 3 ~ C 0 N V E R G E N C E 0 F A SUB-MARTINGALE (PROPOSITION) 

keZ n^k JB(k) 1 

Let f*£^£C|p jĵ 6 a sub-martingale defined up 

But, we have also . ^ modification and such that Sup. E(\X.\)=K <+<*> 

kp tz[o,l[ 

l d n . ( d n p - d ( n 1 ) p ) £ x ~ 1 / p dx = . d k ( p 1 } Then, there exists a cadlag process (Y.), r , r 

nik J 0 P - l y F t t<z[o,l[ 

which is a modification of X and there exists a random 

„ variable Z such that Z - lim. Y,. 
then : t n t 

E ( Y

P ) < P d P £ ( f x dk(p-l) ^ Moreover, if the values of X are négative, for each 

P ~ l kea •'B(k) 1 élément t of T, we have E(Z \ $ ) >„ X p.8. 

but, on B(k), d £ Y, then we have : 

Proof 

E(Y P) s . d P. x . . Y P _ 1 . dP 

P - 1 JÇl W e P u t Xi = 0 ' l e t x b e t^ i e D 0 1 ^ 1 1 3 function 
of the process (X ) ; let A be an élément of (M ; 

But, this is true for each real number such that ^ L° ' J 
there exists a partition (B,C) of A and an élément t of T 

d > 1 ; then we have the same inequality for d = 1, - -, -, n 

with t < 1, such that Bc]o,t] and C = Hx J t,l] with 
Hec5\ (consider the last time t where the value of 1 

t A 
changes). 
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We have o < x (B) x (] o, t] ) ̂  K ; 

Moreover, x(C) = E [l H-(Xj-Xj.)] = - E ^ . X ^ , 

then |x(C)| £ K ; then, the Doleans function of X is 

bounded and it is possible to apply the theorem 

E.4 to the process (X). r ."i and that proves 
t te|̂ o,l_[ 

the first part of the theorem. 

Now, we suppose that X is a négative 

sub-martingale. Let t be an element of T ; 

we put Y = Y . . We have : 
n 1-1/n 

E(zl5j ^ E (Y > X^ for 1-1/n >, t. 
t n t t 

But, {E(Y I )} . is an increasing family 
n t n>o 

of random variables, then (for 1- ̂ - ̂  t), we 

have (Fatou lemma) : E ( Z I Ï ) ̂ E(Y | S ) >. X . 

t n t t 

E. 14 - CONVERGENCE OF A MARTINGALE (PROPOSITION) 

Let E be a finite dimensionnal vector space. 

Let (X^te. [o 1 [ a n ^~va^ue<^ martingale defined up 

to modification. We suppose that the family 

r iT ̂ s equi-integvable. Then, there 

t ~ts G. \0j I L 
exists a cadlag process Y, which is a modification 

of and a random variable Z such that : 

(i) Z - lim. Y 
t a t 

(ii) for each element t of T3 X - E(Z \ ̂ _) a.s. 

Proof 

It is sufficient to consider the case 

where X is a real process. The equi-integrability 

implies 

Sup. E( |x I ) = K < +°°. 
tS[o,l[ 

Thus, we can use the previous proposition E.13, 

and that permits us to define Y and Z. Now, 

the equi-integrability implies that the séquence 

(Y ) ^ converges in mean to Z when n goes 
1-1/n n>o 

to the infinity. 
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F - MEYER PROCESS I n E > 2 , W e gave some conditions such that a is a 

Doléans measure ; notahly, if A is a right 

DEœMPOSITION THEOREMS continuous increasing process, with E(A,-A ) < 
1 o 

the Doléans function a = d(A) associated to A 

(i.e. the function a defined by 

a(F x]s,t]) = E[l .(A -A )J for each element 

F.l - GENERALITIES „ n ^ ^ , • 

F x_|s,tj ofcft) can be extended in a Doléans 
measure : this is a spécial case of E.9 and can 

In this paragraph F, we suppose that 
be directly proved with the Fubini theorem. 

T = h, il and we consider a complète probabilized _ ^ . . t 

I n this case, we say that a is the Doléans measure 

stochastic basis (Çl,&, P f U X K m ) : if we say that . , 7 , 

t t«T 1 associated to A. 
X is an adapted process (or a martingale, or a 

predictable process, and so on . . . ) , that means , . 
In this paragraph, if a is a Doléans 

that X is adapted with respect to this stochastic 
measure, we construct a predictable increasing 

basis. 

process A such that a = d(A) (cf. F. 1 2 ) . A fundamental 

step of this study is the "projection lemma" F.8. 
Moreover, we suppose that the family 

) ~ is right continuous. If F is an element 
"t t«T 
. Ce . , a \(ÏA \ j-t* i ri. F.4 - TOTALLY INACESSIBLE STOPPING TIME 

of \f, we note E(l Ifcĵ ) the left continuous 
. . , , w „ . 4 \ai . - , (lemma and définitions) 

martingale M such that M = E(l„ \o\ ) for each ' 
t F t— 

element t of T. T ^ -L , - ^ - m~ . * i-, • 
Let u be a stopping time. Tne two following 

-, properties are équivalent : 
F.2 - PREDICTABLE STOPPING TIME ANDffi 

(Définitions) ^ P\v=u and u < ï] = 0 for each predictable stopping 
time 

Let u be a stopping time. One says that u is 

• .„ , „ , , xv . (ii) For each séquence (vin)) ̂  of stopving times 

predictable if there exists a séquence (u(n)) ^ n>o J r' ^ 

of stopping times increasing to u and such that^ increasing to a stopping time V, the séquence of the 

for each ( n ( W ) ( [u(n)](a» < u(u)). In this case, one
 Sets (lv(n)> u and u < J l W S ' P' a' f l" increasing to 

notes & u_ the a-algebra generated by the
 t h e s e t \? > u and u < l] 

a-algebras $ u ( n ^ n > 0

 a n d o n e s a Y s t h a t t h e If thèse properties are satisfied, one says that u is 

séquence (u(n)) n > Q is "announcing" u. a totally inaccessible stopping time. 

Attention : With this définition, the stopping time u=l 

If u is a predictable stopping time, the is predictable and totally inacessible. 

stochastic intervall ]o,u[ is predictable because Proof 

] ° ' u [ = ]o,u(n)]. In the same way, |u] is a At firt , we suppose that the condition (ii) is satisfied ; 

predictable set. Moreover, let Z be an-measurable let w be a predictable stopping time and (v(n)) n > Q be a 

random variable : then Z.l is a predictable séquence of stopping times which is announcing w;we have : 

process ; indeed, if the séquence of random variables (v(n) ^ u and u < l} J [y > u and u < Q P-a.s. 
(Zn) _ converges to Z and, if, for each integer 

n -*o 
n, Z n is g? , -measurable, then the séquence of a n d 

u(n) 

oredictable processes (Z n. l-i , . ,T converges [v(n) * u and u < l] | [w > u and u < l]. P-a.s. 

Ju(n) , 1 J n>o " n-Ko 

to the process Z.l r . 

I"'1} thus 

P( [w=u and u < l] ) = 0 . 
F.3 - DOLEANS MEASURE (Définition) 

Now, let ( v ( n ) ) n > 0

 a séquence of stopping times 

We say that a is a Doléans measure if a which is increasing to v. 

is a real measure defined (thus finite) on the 
For each integer n, we put : 

0-algebra of the predictable sets and such that 

a(B) = O for ail the evanescent sets B v ' ( n ) = v ( n ) i f v ( n ) < v 

(i.e. the sets B such that 1 is indistinguishable a n d 

of o). V(n) = 1 if v(n) = v 
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It is easily seen that v' Cn) is a stopping time. Ci) A is real inoreasing and right continuous 

The séquence (v' ( n ) ) n > Q °f stopping times is Cii) Aq = o and E(A^) < f <» 

increasing to the predictable stopping time v' and (iii) For each element F of and for each stopping 

[v(n) * u and u < l] f ( [v > u] V [v' = u] ) . time u, we have : 

If the condition (i) is satisfied, we have ^ ^ _ f E ^ |^ 

P([v* = u]) = 0 : thus the condition (ii) is F u ']o,u\ F ^~ 

satisfied. where a is the Doléans measure associated to the 

process A. 

F.5 - DECOMPOSITION OF A STOPPING TIME (lemma) 

If A is an element of & , if u is a stopping 

Let u be a stopping time. Then there exists time, the process A U, i.e. the process A stopped at 

a séquence ^v

n^n>0 °f predictable stopping times the stoppingtime u, is also an element of S and the 

and a totally inacessible stopping time w such Doléans measure a1 associated to A U is defined by 

that : aU(B) = a(]o,u] fi B) for each predictable set B. 

M C j [a] O ( ̂  [v])\ . Moreover, it is 0 f c o u r s e ' w e h a v e A e s a m e P r°P e r f cy if A is a Meyer 
( ; process. 

possible to suppose that p[v. - v < l] = 0 for 

each pair (jsk) of integers. We have also . . 
r * •> a We shall see in F. 12 that the conditions given 

P[v • = w < il - 0 for each integer j. , 
L J . m the 1°) and in the 2°) are équivalent. 

Proof 
^ ^ mj_. F. 7 - CONSTRUCTION OF A (Proposition) 

Let a be the supremum of the positive 

numbers b such that there exists a séquence Let a be a Doléans measure. Then there exists an 

(u ) of predictable stopping times with element A of% such that a is the Doléans measure of A : 
n n >o w 

!
\ This process A is unique up to indistinruishabitity. 

u:]n, u (u>) = u(o>) j 
This supremum a is reached for a séquence Proof 

(v ) . of stopping times. Let w be the random 
n n >o 

variable defined by : 1°) A is unique up to modification by the condition 

( u(w) if, Vn, u(u) ^ v (w) F.6 (iii) ; then A is unique up to indistinguishability 
W(W) = } n , . , 

j . . _ -i . _ because A is right continuous. 
( 1 if jn with u(w) = v n(w) * 

2°) Let t be an element of T ; for each element H of 
It is easily seen that w is a stopping time and 

J r r we put : 
w is totally inaccessible. 

To have the last property, it is sufficient to v^ (H) = E(l ) . da 
t Jlo,t1 

consider the séquence (v1 ) of stopping times J J 

n n>o 

defined by . T h e function v

T ( « ) I S CJ-additive (Lebesgue theorem) and 

l v (0)) if, V k<n, v«o) * v (ûl) dominated by P ; then we can put 
V n "j dv t 

( 1 if ]k < n, v (w) = v, (u) V. = and this defines, up to modification, an increasing 
n k t dP 

process V right continuous in mean. Let A be a right 

F.6- - MEYER PROCESS AND NOTATION 6 (Définitions) ^. ,. n. • 

• continuous process (m the strict sensé) which is a 

1°) Let A be an increasing (real) process ; we say modification of V. 

that A is a Meyer process if Aq = o, E(A^) <, 

and A is a predictable right continuous process. 3 9)Let Y be an element of L»(fi,̂ f,p) ; we have : 

2°) We note 6 the set of the processes A which E (Y 1 ^ ) .da = Y.v (du) 

satisfif the following properties : 1 ° ' 1 

Indeed, we have this equality if Y =1 with F £ 
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(by the définition of v) ; then, we have this 1°) The processes B n

 a n d c
n are defined up to 

equality in the gênerai case by linearity and indistinguishability, the séquences ( B n^ n > 0

 a n d 

density. (C ) are decreasing and, for each integer n, 
n>o 

B" > B. 

4°) A is an adapted process, indeed : . . 
Let c be a positive number. For each integer 

r r n, let v(n) be the stopping time defined by : 
v (H) = ! E U J £ ).da= E [E(1 | £ > | § M . d a j 

t J]o,t] S " J]o,t] v(n) = inf. t : B^ - B t > J 

r The séquence (v(n)) is increasing to the 
= E(l !c?).v (dw) (cf. the 3°) above) n > ° 

H t t stopping time v. 

. For the convenience of notations,, we note 
5°) For each element (F,t) of& x T, we have : r - i i 

|v = uj the set j 0) : v(w) = u(w)v , and so on ... 

E(l .A ) = v (F) = Ed-lc?* ) - d a 

F t t J - j ^ ^ j F s - 2°) For the convenience of notations, we put 

û = 2 n.u, v = 2 n.v, vin") = 2 n.v(n) , 6 = C? Q _ n 

Then the property F.6 (iii) is satisfied if u is a ^ Q (K+i,.*. 

simple stopping time ; thus, we have this same D = ^ w : k * v(n)(u))^ and 

property if u is a gênerai stopping time because a(n.k) = E ^ B n .1 ! %, I 
j v(n) k<;v(n)<k+l Q \ 

such a stopping time is the limit of a decreasing ' 

séquence of simple stopping times (cf. the 2°/ of the c E(B n 1 \i) 
v(n) D'J 

proof of A.12). 
For k.2 ^ t, ^ D -

B isa sub-martingale (because 
(y 

D £ eT, 0-nî then (cf. the "stopping theorem" D . 6 ) , we 
F.8 - "PROJECTION" LEMMA K * z 

have : 

Let u be a totally inaccessible stopping time. a(n,k) £ E(B 1 I <0 ) 
(k+1).2 n* D 1 i 

Let B be the process defined by B - 1 ̂  Ij'^Q^l]* (0 

For each integer n, let Bn(resp.cf1) the right * [u*k+l] d ̂  J 

(resp.left) continuous process defined by : This implies : 

n • E [a(n,k)l = E a (n, k) . 1 

Bn

t = E ( B ( M ) 9-n\%+) if * t < (k+l).2-K L [ 7 ^ < k + 1 ] J 

* 2 l v + i • v ^ K k + 1 ] ] 

Thus, we have : 

n 2 n _ 1 

When n goes to the infinity, the séquence (B")n>Q E D£(n)] = \ E [a(n,k)] 

(rcsp. (Cn)^>G) converges P- a.s. uniformly to k=° 

the process B(resp. C-l^ 7 i ) . - _ _ 
]usl] * E ]< P([u*v+l]) 

Proof T h e n . 

At first, we can remark that this lemma l i m - E [ B

v( n)]*
 p < [u*v a n d u < 1 ] ) 

n-Kc 
is a corollary of the properties of the 

"predictable projections" as studied in [del] ; 3°) T h e définition of v(n) implies : 

this lemma is sufficient for the following and E ^ - \ { n ) ] > e - P ( [v (n) <l] ) > e . P([v<l]) 

allows us to do not use the "section and projection 

theoreros" and the "capacitability theorem" as I f w e c o n s i d e r t h e l i m i t o f t h i s i n equality when n 

done in [dElJ. g o e s t o ^ i nfi nity, we obtain (cf. the 2°) above) : 
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P([u£v and u<l]) - lim.P ( (Wv(n) and u<l]) F. 10 - WHEN a ( [u] ) = a(Œ') (proposition) 
n-H» 

* e.P([v<l]) 7 ^ 
d Let A be an élément of t, . Let u be a predic-

table stopping time. We suppose that a([u\) - a(Q'). 
But [u^v(n) and u<ljt[u*v and u<l1 (cf. F.4) M 7 . . 

u Then the process A ^ s predtctable (z.e. A zs a Meyer 
thus e. (P|v<ll) = O. 

u J process). 
4°) That proves that the séquence (BR) . converges 

n>o Proof 

P.a.s. uniformly for each sample function to the 

process B. But, for each integer n, c n is the left We have : 

continuous process associated to the right conti-

nuous process B

n ; thus the séquence (C*) E ( V V = a ( " ' ) = a ( M ) = E ( V V * 
n>o 

converges P.a.s. uniformly for each sample function 
1 * (Cf. F.9.1°)) . 

to the process C defined by C t = B , id est 

C = 1 j u • That means A has a jump on the stopping 

time u and A is constant elsewhere. Let (u(n)) . be 
n>o . 

a séquence announcing u. Let F be an élément of 
F.9 - WHEN A IS CONTINUOUS (proposition) 

We have (F.6.(iii)) : 

Let A be an élément of £ and a be its Doléans E ( 1 F * A U ) = { E ( 1 F ' ̂ t - ) * ̂ ^ u ] * d a 

measure. We suppose that, for each predictable stop-

ping time u, a([u]) = 0. Then A is continuous (up B u t t h e m a r t i ^ l e E d ^ ^ J stopped at u(n) 

to indistinguishability) , thus A is a Meyer process. . i s indistinguishable of the martingale E [E (lp| | ̂ _ 

stopped at u(n) ; thus, we have the same property 

P r o o f when we stop thèse martingales at u ; then, we obtain : 

E(1F.A ) = [ E[E(1 | <*t _) ( ] . 1-, . da 

1°) Let u be a predictable stopping time and u J u J° , UJ 
(u(n)) be a séquence announcing u. We have : = E|E(1 ) . A "1 

n>o u F u- u — 

O = a ( fui ) = lim . a(1u(n),ul) = lim.E|~A - A . A ^ 
L J J J * - u u ( n ) J That proves that the random variable A is (-y - measu-

n-x» n * u u-
rable and A .lr .i is predictable (cf. the end of F.2) 

= E (A - A ) U LU'U 
u u-

2°) Let u be a totally inaccessible stopping time. F. 11 - INTEGRATION CFA MARTINGALE WITH RESPECT TO AN 

We define the séquence (C11) ̂  of processes as in INCREASING PROCESS (proposition) 

n>o 
F - 8 . For each pair (n,k) of integers, we put : 

Let M bean uniformly bounded right continuous 

D(n,k) = [k.2 n < u £ (k+1) .2 n J martingale and A be an adapted integrable increasing 

right continuous process. For each élément t of T, 

and w(n) = E (k+1).2 n . 1 . . . . , 

k D(n,k) we have : 

We have : r 

i ) E[\ M . dA ] - E \M . (A - A j] 
E(A u- A u_) = lim E [ l D ( n f k ) - ( A ( k + 1 ) . 2 - „ " \. 2-n>] ^ * 8 

n-x» \ k ; 

this and the property F.6 (iii) implies : Proof 
E (A - A ) = lim . [c11- 1-. . . .-il. da We note T* = ( T A T o/tl). Let (T ) . be an u u- I L ]w(n),l|J L ' J' n n>0 

increasing séquence of finite subsets of T such that 

and this limit is equal to zéro (cf. F.8) , , . . m * -, ̂  ~ m , n ^ m 

^ U T is dense in T* and t € T, and O e T. . 
. n 1 1 

n>o 
-,ox m 1 - , ^ . For each integer n, let (t(k)),„ . be the increasing 
3°) Then, for each stopping time u, we have " K k ^ q 

, ^ „ c , ̂  1 0, -.oox \ family of the éléments of T and let M be the process 
E(A - A _) = 0 (cf. F.5 and the 1°) and 2°) above) 1 n 
_ U U. _ / j r . . , ,, defined by : 
Thus, A is continuous (for each e >o, consider the -1 ^ 

stopping time u defined by u = inf. {t : (Afc-At_) >e} M R = E M t ( k - m * ̂ tfk) t(k+l)l 

k=l -I ' 
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The séquence of processes ( M n ) n > 0 converges to The processes A n and B™ are two Meyer processes which 

the process M ; by the dominated convergence theorem, have the same Doléans measures, thus (cf. the 1°)) 

it is sufficient to prove the equality for each pro- a1 and B n are indistinguishable ; that proves that A 

cess M R. But we have : and B are also indistinguishable. 

E rf M n.dAl = Z E<M , , . . TA - A 1 > 3°) Let a be a positive Doléans measure. To prove that 
•Ho t? S k~l f t(k+l) t(kM ^ 

' ̂  there exists a Meyer process A such that a is its 

- r E i M £ A _ A J j Doléans measure, we begin to prove that a = d + I b^ 

k=l » t t(k) \ where d is as in F.9 and b is as in F.10. n ° 

n 
For that, we consider the supremum c of the positive 

= E [ M . ( A - A ) 1 . -
L t t o J numbers b such that : 

(i) there exists a séquence (u(n)) of predictable 
n>o 

F.12 - MEYER PROCESS: EXISTENCE AND UNICITY (theorem) stopping times and a séquence (b ) ^ of Doléans 
^ _ n n>o 

measures such that b = Z b (Q'), 
n>o 

a) If A and B are two increasing Meyer prooesses 
7 . 7 7 ^7 ^ ? - /• /a n i E b (.) £ a(.) and, for each integer n, 

which have the same uoleans measure (i.e. (A-B) n 
n>o 

is a martingale)3 then A and B are indistingui- . , . r . n 
J v b (Œ») = b ( [u(n)J ) . 

shable. 

. , .r „ -un - 4 . It is easily seen that this supremum c is reached for 

b) if a is a positive Doléans measure, there exists 

. 7 -t - • .7 n 7> a pair of séquences (u(n) ,b ) . satisfiing to the con-

a Meyer process A such that a is the Doléans c ^ _ _ n n>o * 

^ ,7 . . 7 . . dition (i), with b = c. We put d = a - Z b . Let D 

measure of tne process A. Moreover this process A * n 

• , . . 7 7- 7 - , i • r- and B be the processes belonging to n ° associated 

is continuous (up to indistinguishability) ij aria n ^ 

7 . , . r i , _ _ 77,7 j ' , w + to d and b respectively as built in F.7. Thèse pro-

only ij a([uj) = 0 for ail the predictabue stop- n * 1 * 

, . cesses are also Meyer processes (cf. F.9 and F.10). 
ping times u. 

Moreover, Z E(B () = Z b (Œ* ) < + °°, then the se-
n>o n>o n n 

c) At lasty an increasing process A is a Meyer process . " _ n _. n ^ n ^ . v o 

° r quence (A ) n > Q °f processes defined by A = D + Z B^ 
if and onlv if A is an element of . J 1 ° , . k=l 
-> *- v converges P. a. s. uniformly, for each sample 

function, (Bore1-Cantelli lemma) to a process A wich 

P r o ° f is a Meyer process and wich belongs to fê. Moreover, 

1°) Let A and B be two Meyer processes such that (A-B) the Doléans measure of A is equal to d + Z b = a . 
n>o 

is a martingale- At first, we suppose that A and B are 

uniformly bounded. We have (cf. F.11 above) : 4°) If A is continuous, for each predictable stopping 

E(M .A ) = E( [ M s.dA s )
 t l m e U ' "'M» = E ( A U - V > = ° < C f - F - 9 - , 0 ) ) 

] 0 , t] S Conversely, if a ( \û\ ) = O for each predictable stopping 
.. . , time, we saw in F.9 that A is continuous. 
if a is the Doléans measure of A, we have (oecause M 
is a predictable process) : 

5°) Now, we have only to prove the c). Let A' be an 
zf x f increasing right continuous process with A' = 0 and 

E( L , Ms«dA ) = M s.da 
JJo,tJ J 0' 1 1] E(AJ) < +°°. Let a be its Doléans measure. Let A be 

r the associated process as built in the 3°) above ; 
M .db = E(M_.Bj (as above) „ . „ J ^ , ^ ^ 

U -i s t t A is a Meyer process and belongs to vl«. : then A is JJo,tJ 

indistinguishable of A' if A' is a Meyer process or 

At last, we obtain 0 = E ^ l t . ( A t -
 B

t ^ J = E i f A ' belongs t o ^ t n a t proves the c) . 

thus M is indistinguishable of O. 

F.13 - BOUND FOR A PREDICTABLE JUMP (lemma) 

2°) Now, we suppose that A and B are two Meyer pro- Let H be a Hilbert space 

cesses such that (A-B) is a martingale, but we do a n d a a ^lêans measure associated to the 
, H-valued process Z.Let A be the Meyer process associa-

not suppose that A and B are uniformly bounded. For 
, . . n . ted to a. Let u be a predictable stopping time. 

each integer n, we consider the predictable set C(n) 
, , % , , We suppose that Z is uniformlu bounded by d 

where (A + B ) >, n and D(n) = Œ\C(n) ; we put ^ K J " * 

n (i.e.\\zt(u)\\è d for each élément (u,t) of (Çl x T)). 

A n , 1C(n) + A , 1D(n) Then we have : 
and B n = n.l . . + B. 1 , V E[I|A - A ||21 ^ 2d.E ( | |A - A \ |) 

C(n) D(n) L u u- ^ 1 1 u u~ ' 
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Of course, the Meyer process A is a right con- CM /-jf 
F.15 - IF <V ^ ^ (remark) 

tinuous predictable process of bounded variation asso- L_ 
ciated to a ; its existence is easily seen. We have : 

x = E F (A - A ) 21 = E / l <(A - A ) d A > ? ° r t* l e c o n v e n i e n c e °f notations, we supposed 
^ u u- Lui s s- ' s CH 

that the family (o£) t T is right continuous. 

In the gênerai case, it is always possible to 
But ( l r - r ( A - A )) isa predictable pro- . n , r i G* 

[uj s s- S £ T r * consider the family (c£ +) t T and to use the 
cess and A and Z have the same Doléans measures , 

results of this paragraph F ; in this case, a Meyei 
thus we have : ctt , 

process with respect to the family (c^. +) t c T

 1 S 

r also a Meyer process with respect to the family 
x = E 1 r -, < (A - A ) ,dZ > tQ> x 

J [u] s s- s ^ t s T ( c f * A * i n ' 

£ 2d.E ( |A - A I ) 
1 u u- 1 

F.14 - DECOMPOSITION QF A MARTINGALE (proposition) 

Let H be a Hilbert space and M be an H-valued 

martingale. Then there exist an H-valued cadlag 

locally square integrable martingale w and an 

H -valued cadlag process of bounded variation Q 

such that M = w + Q 

Proof 

By localiza-

tion, we have only to consider the case where there 

exists a stopping time u and a positive number d such 

that! M (a)) I < d if t < u(w) and M (u)) = M . (co) if 
t 1 t U((D) 

t ^ U((jû) (consider the séquence (u(n)) _ of stop-
n>o 

ping times defined by u(n) = inf. { t : | MJ* n } and 

stop M at u(n)). In this case, we put : 

Z = - M. 1 r r and B = M . l r «n 

Let a be the Doléans measure of B (and of Z) 

and A be the Meyer process associated to a. For each 

integer n, we put : 

v(n) = inf. { t n } since lim.p[y(n) < f] = O 

n-x» 

it is sufficient to prove the décomposition for the 

process M stopped at v(n). 

Because the Meyer process associated to the 
process B stopped at u(n) is also the Meyer process 

stopped at u and associated to B, we can suppose 

that v(n) - u (for the convenience of notations). 

In this case, we have : 

E [(A^_) 2] £ n 2 (cf. the définition of v(n)) 

E [~(A -A ) 21^2d£(||A - A ||) (cf F.13) 
L u u- J u u-1 

thus E (A 2) = E (A 2) < -H» 
1 u 

But M = (A-Z) + B - A where (B-A) is a process of 

bounded variation and (A-Z) is a square integrable 

martingale (E -z|) s.' d" and E ?Ap < +«> ) . 
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Then, we have also : 

G - AN INEQUALITY FOR SEMI-MARTINGALES E(1 A| ̂ ) .E(| |z| | 2 . l A | ^ ) = E ( l J ^ ) .E(| |x| | 2.1 A|^) 

= [ E ( I A | ^ ) ]
2 ||X|| 2 = I|Y|| 2.[E(1 b|^)]

 2 

= E ( 1 B | ^ ) . E ( | | Z | |
2 . I j ^ ) 

2°/ 

G.I. GENERALITIES : 
* • ^ EJI .E(||Z|| 2.1 J « A ) j= E| E(1 !^|).E(||Z||

2.1 J â ) 
The main resuit of this paragraph is the i A M M A 1 <} ^ i A 1 ^ 1 " 1 1 A 1 ^ ] ^ 

theorem G.6 after. It is fundamental to note that i ? ) i 2 ) 

the inequality G.6-U) is onXy concerne* by the " E|E ( 1 ^ ) - E < | |z | | . l j | >^E j l ^ E < | |z | | .ijtj) j 

values of processes Z and A "strictly before" the 

stopping time u. The theorem G.6 gives an example 
, x _ , , Then, we have also : 

where we have the condition (i) o f the theorem 

D.5 above. ( 0 ) 

E 1 A . E ( | | Z | |
2 | ^ ) j 

in this paragraph, we consider a stochas- = E | I . E ( | |Z| | 2 • 1, | ) \ + E)1 .E(| |Z| | 2.1 |û ) | 

tic basis < « / y ^ < t f t > t e T andwe ( ' v B < i ) 

use the french notation cadlag and the conventions = E j l f i . E ( | | z | | 2_ ̂  | ^ } j + E ^ . E ( | | z | | 2 . l f î | ^ ) | 

given in D.3-d) and D.3-e). Moreover, if M is an ( J ( ; 

H-valued square integrable cadlag martingale ,we - E ( | | z | | 2 l ) 

note [M] the increasing positive cadlag adapted B 

process which is the quadratic variation of M, i . e . 
G.3. LEMMA (if only one jump) 

[ M ] T = lim. ) I | l M

( k + 1 ) . 2 ~ n A t " \.2~nA.t \ I ( Let H be a Banach space. Let u and v be 
n-*» f k=0 ) r 

two stopping times3 v being predictable. Let s be an 

and we shall note <M> the "Meyer" process asso- u-valued square integrable random variable which is 

ciated to [M] (i.e. the predictable increasing ' - measurable. We put C = S - E (S | <$^_ ) . 

right continuous process such that jjvfj = O and 
r -r . . 4. • i % Let M fce tfre cadlag martingale defined by 
[_Mj - <M> t is a real martingale) . » » j y 

Mfc = E(c|
cr t). Then M /zas a jwmp on the stopping 

time v and is "fixed" elsewhere. Moreover there exist 

G-2. A LEMMA ON THE CONDITIONNAL EXPECTATIONS : an u-valued square integrable cadlag martingale w 

with the following properties : 

We consider {O,.,**?,V) a probability space3 

5 o- sub-o-alqebra of A an element of and (i) W. 1 r r = M.l P p 

,y> L 0 , U L L 0 , U L 

ti*£/ze a-algebra generated by £j and A. Let z te arc 

élément of JJw/J.P) such that E(z|^) = O. (tkie ùpliea C«]-l[0,u[- M -
1 ^ , » ^ 

1/ ue note B = fi \ A, /aaue : 

(ftj t/ze random measures d<w> arca1 d<M> are suc/z 

(t>> E(l A|^).E(||z||
2.l A|^)=E(l B|^).E(||z||

2.l B|^)a.e. thatd<U> $ d<M> 

(tij E(l B||z||
2) = E j 1A-K ( | |z| |

2| ̂ ) J (t^; /or eacft predictable real positive process Y : 

1°/ The elementary following proof was suggested by If r -, ) 
^ 1 EU Y. (d[w] + d <W>) [ 

J.Jacod. (J]o,u[ 1 

We can write Z = X.1 A + Y.l where X and Y belong 

t o ll^itt, . The property E(z|€^) = 0 implies 

X.E(1A||)=E(X.1A|^)= -E(Y.1 B|^)= -Y.E(1 B|^). 
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Proof : E(Y v.l A-E \ | |E(C! ̂ * ) | | 2 ) 

IV Let (v(k)K teasequence of stopping times w h i c h i s b o u n d e d b Y E < L Y.d<W> ) (see above). 
k>o J ° ' U L 

"announcing" v (i.e. v(k) + v and, Vk,P(fv(k)<vl )=1) 
L J This proves the property (iii). 

For each integer k, E (CI(ty „ .) = O, then 
v (k) 

G.4. PROPOSITION 

|o,v(k)J 

Let H bé? an Hilbert space. Let M be an 
this implies M.lr r = O. Moreover, C being - 7. 

L ° , U L E-valued cadlag square mtegrable martingale. Let u 
<5* - measurable, M = M . This proves that . , . , . -, 7 

v 1 v be a stopping tvme. Then, there exists an E-valued 
M has a jump on the stopping time v and is "fixed" 7. . 

cadlag square zntegrable martingale w with the follo-
elsewhere. 

wing properttes : 

2°/ For the building of W, we can suppose that M is ( i ) W > 1 [ o f U [
 = M* 1 \ p ( t U s i m P U e s : 

stopped at u (i.e. Mĵ  = M^) . Then we consider the ' 1 [o,u[ = ^ * 1 [o,u[>> 

sets B = {lù : v((D) = u(o))} and A = Q \ B, the (ii) the "random measures" d<W> and d<M> are 

a-algebra €^ = , the a-algebra 6̂  generated such that d<W> £ d<M>. 

by and by the set B, the randon variable 

(iii) for each predictable real positive process 

D X = C.1 B - E ( C.1 B| fi») = 1 B . J C-E(C|C|*) j ir ) /, 1 

° ^ E Y.d[w]}= E{ Y.d<W> 
, <>}o,u] ) / J ] o . u ] S 

and the cadlag martingale D defined by D^= E ( D ^ | * J t ) . ^ /• j 

We note that D has a jump on the stopping time v and " E / J ] o j- Y* + d < w > ^ | 

is "fixed" elsewhere (cf. 1°/ above). / r \ 

< e)\ Y. (dfvi] + d <M>) > 

Now we put W = M - D and we shall prove the proper

ties (ii) and (iii) (the property (i) is proved 

above). We note that W = W, = 1 .C + 1 . E(c|€l*). P r Q o f : 

v l A B 1 r\ 

We can assume that H, = M . Let w be 

1 u 
3°/ The stopping time v being predictable, we have : a "totally inacessible" stopping time and let 

(v(n)) be a séquence of predictable stopping times 
<W> = <W> - <W> n o

r - r n ( r -t) 

v v v- such that [uj C [wj U [v^n^J \' w e c a n a s s u m e that 
n>o 

= E ( [ w ] v | ̂  ) the sets C v ( n ) ] n > 0

 a r e disjoint. 

= E < l 1 A - I I C M 2 + >B- I|E(C|-Ç,*)||2 J|t.) 
^ For each integer n we define the random va-

« E ( | 1A.||C|| + 1 B. | |C= | | riable C = M - M and m" - E (C | < ) . 

° n v(n) v(n)- t n 1 J t 
*E([M] v|-t.) < <M> v 

^ We can define M = M - I M (convergent 
n>o 

Actually, we have d<W> £ d<M>, i.e. the property série in the space of square integrable martingales) 
(ii) . and we have [m] = [îî] + 1 [m11] (the sets [v(n)] > q 

n>o 
being disjoint) . Moreover, <M> being a 

4°/ Let Y be a predictable real positive process. . , _ — .̂ . . 

. predictable process, <M> = <M> _ ; this implies 
Then, the random variable Y is -measurable. — — , _ 

v v- <M> = <M> . Then, for each predictable real posi-
r 7 , u u-
We have : 

tive process Y, we have : 
E ( L E ( f Y.dôi>) = E(f Y.d<ïï» 

J°' UJ i]o.u] J]o.u] 

= E(Y 1 ||C||2) + E(Y 1 ||E(C|V)|| 2) . 
V A G = Et Y.d<M> ) 

f >J°-"[ 
The first term is bounded by E( Y.d[w]). _ _ 

']o fu[ (if we define W = M, the properties (i) , (ii) and 
1/2 l < 0 * 

By the lemma G.2, if we put Z = (Y ) .E(C|^A ), (iii) are satisfied for the pair (W,M)). 
the second term is equal to 
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Then, for each integer n, we build a martingale w n for eacî^ élément (y.x) of (H x J)} 

associated to as in the lemma B-3. By additivity, l l i / r l l £ I Iwl I I l:rl I 

the proposition is proved if we put 
Let M be a J-valued cadlag locally square 

W = w + E W = M + E W integrable martingale. Let V be a J-valued cad-
n>o n>o 

lag adapted process of finite variation (i.e., 

for each élément w of Œ, the function s^V (ui) 
G.5. COROLLARY s 

has a bounded variation). We put Z - M + V. 

Let M be an Hilbert space valued square T n e r Ï 3 exists an increasing cadlag adapted 

integrable cadlag martingale. Then, for each stop- process A such that, 

ping u and for each real bounded predictable pro

cess Y, we have : ^ for ea°h stopping time u and for each E-valued 

t . ,p predictable process Y : 
E ( ^ p . | | * -dMJ 1 > 

o*t<u J]o,t] f 2 f 2 

f „ E{Sup|| Y.dz|| * E(A { IIY || .dA }) 

£ 4 . (EJ Y s ^ d < M >

s

 + d M s ) i ) t < U 2°'^ K ]°'U^ 

(see D-3-e) for the notation above). 

(cf. D.3.e) for the notation above). 

Actually, this property is fulfiled for a process Z 

which is the sum of a local martingale M and a process 

Proof : of bounded variation v (i.e. a gênerai semi-martingale). 

Let W be a martingale associated to M 

and u as in the proposition G.4 above. The stochas- Proof : 

tic intégral f-i i Y .dw is well defined (see 
JJo,uJ s s 

the property (ii)) and we have : 1°) The set of processes Z for which there exists 

r r a process A with the property (i) is clearly a 
( Y.dM).l = ( Y.dW)l ^ „ „ . 

1° UL 1° UC vector space. Moreover, if Z = V, is a process 

of finite variation B^ = d||v II and if 

(this is obvious if Y is an ub - simple J J 

•a , , we put A^ = B . the condition (i) is satisfied by 
process, and it is true m the gênerai case by t t 

linearity and density). the Cauchy-Schwartz inequality (applied for each 

"sample function").Then, it is sufficient to prove 
Then, we have : 

the theorem when Z = M is a locally square inte-

E ( Sup )|[ Y dM ||2 ) grable martingale. In this case, the condition 

o£t<u ]°'t] S S (i) is satisfied if we put Afc = (<M>t + fc )+ 1 

= E ( Sup || Y dW ||2 ) Indeed, <M> can be defined by localization 

o£t<u J 0'* 1] S S and the corollary G. 5 is available for a locally 

£ E ( Sup | jj Y dW || ) square integrable martingale (Fatou lemma). 

o^t^u 2°) It is sufficient to apply the proposition F.14. 
£ 4.E (| | Y .dW ||2 ) (Doob inequality) 

' 1 o, ul 

J J G.7 - SUMMABLE PROCESS (définitions) 

^ 4.E ( Y 2 . d [w]) 

J ] o , u ] s One says (cf [Kus]) that x is a p-summable 
r 2 {with p^o) process if the mapping A,\*Jl .dx > 

£ 4.E ( Y .{d[Mj + d <M>}) (Cf. G.4). , . , , -, , f i~ + j j • 

]°'UC S defzned on the algebra <X/ , can be extended zn a 
measure o-additive for the strong topology of 
L (Q,^,P) . We say that x is a prelocally (cf. A. 13) 

G.6. THEOREM P . 

-p-summable process zf there exzsts a séquence 

We consider a Banach space H, two Hilbert ( u ( n ) ) n > o °f st0PPinZ H m e s s u c h t h a t 

spaces J and K, and a bilinear mapping of H x J l i m .p ( [ u (n) < T°° ] ) = 0 

into K which, to (x,y) élément of (H x J), asso- n^°° . ,-

and, for each znteger n, x.l-i .r %s a p-summaDle 

dates y.x élément of K. We suppose that we have, - - , Jo,u(n) J_ 
process (zn [Kusj, such a process zs called locally 
p-summable ). 
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G.8 - CHARACTERIZATIONS OF A SEMI-MARTINGALE 

(proposition) 

Let H be a Hilbert space and Z be an 

E-valued cadlag adapted process. The following pro

perties are équivalent : 

(i) z is a semi-martingale3 in other words Z = M+v 

where M is a local martingale and V is a pro

cess of bounded variation 

(ii) z is prelocally 2-summable (cf. G.7 above) 

(iii) z is prelocally 1-summable 

(iv) Z satisfies the condition G.Q.(i) for each 

Banach space J and each Hilbert space K. 

(v) there exists a real positive finite increasing 

adapted cadlag process A such that for each 

real ^-simple process Y and for each stopping 

Bj||f ï . d z M ^ E ( V . ( j I M I 2 . ^ } ) 
Jjo,uL J ° ' u L 

Proof 

At first, we can remark that this proposi

tion generalizes the theorem 12.3 of Qcus] . 

We saw in G.6 that (i) implies (iv) ; we 

saw in B.6 that (v) implies (ii) ; it is obvious 

that (ii) implies (iii) and that (iv) implies (v). 

Let Z be a 1-summable process ; the Doléans function 

d(X) of X is a-additive ; thus, there exists an 

H-valued Meyer process A associated to this Doléans 

measure ; Z-A is a martingale, then Z = A+(Z-A) is 

a semi-martingale. Now, we suppose that Z is a prelo

cally 1-summable process ; let ^ u ^ n ^ n > 0

 b e 3 1 1 i n ~ 

créasing séquence of stopping times such that 

lim.P([u(n) < l] ) = 0 and, for each integer n, 

X. Ii . . r- is a 1-summable process ; for each inte-
Jo,u(n)L 

ger n, we have 

X , 12o,u(n)[~ X"1Jo,u(n)[ + X > 1[u(n)] 

thus X. l-i . .-i is a semi-martingale ; then, X is 
Jo,u(n)J 

also a semi-martingale and that complètes the proof. 
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N* * 4 5 . i s proved in H.6. The inequality 

N* * 180.N^ is proved in H.9 (actually, it is 

H - BURKHDLDER INEQUALITIES 

possible to do better by using the Khintchine 

lemma). 

Moreover, let [x,X^ be the quadratic varia-

H 1 THEOREM tion process associated to X as defined and 

studied in C.6 3°) : the hypothesis given in 

Let (ft, »p'(3(.>teT) h e a stochastic basis c > 5 a r e s a ti sfied (cf. G.6) ; thus, we have 

and x be a martingale with respect to this . /i ~ 
N (X) = E (/[x,Xjoo) = N (X) ; actually, in this 

basis. 1 

paragraph H, we do not use this property : we use 

For the convenience of notations, we suppose only E.10. 

that T = [o/00] • 
L J H.2 - PROOF OF N t(X) £ 4.N3<X) 

We consider 

N (X) = E {Sup |x |} If Z is a random variable, we put Z + =Sup.(Z,o) 

t £ T and Z = sup.(- Z,o). 

N ; (X) = lim.sup. E [j T. ( X ( k + 1 ) 2 - n -X k. 2-n>
2 ] 1 / 2 1 0> L e t <fy l W b e * P^abilized 

n**00 (k^o J stochastic basis. We note 8^ the space of ail the 

N~ (X) = lim.inf. E |J I ( x

( k + 1 ) 2-n " \ 2 "
n ) 2 ] 1 / 2 martingales X (with respect to this stochastic 

n-*» (k*> i basis) such that X 1 = o and such that, for each 

N (X) = Sup. E jj | Y.dX | J element 03 0 f the sample function k-*Xk(03) is 

l o , 0 Ol "fixed" after its first "going down", id est : 

this supremum being considered for ail the ^ ^ 
- X is an element of L and E(X {&) = o 

processes Y such that n 1 n i 

n-1 w h e r e (U(j)) - for each integer k, X = E(XJcF) 
Y = I li . 4 1 *j *2n K n K 

k = 1 Ju(2k) ,u(2k+l)J J 

- X, . (03) < x, (0)) implies,V j M f X, . (w) = x (03) 
k+1 k k+j n 

is an increasing family of stopping times. 

[ . f i"| If X is an element of ̂  , we put X* = Sup. X, , we 

I ^ ( t ' ^ t l J n U K n k 

say that a martingale Y is a "transform" of X 

this supremum being considered for ail the ( c f m [ B u r] ) i f Y is a martingale (with respect to 
functions f such that ( « ^ P f ( S ) and if there exists a subset J 

k l*k*n 
n-1 

f = Y i , -, Where (t(i)L . rt of K = (k : Kk<n-ll such that Y =X + I (X, 4 -X, ) . 
k = 1

 i]t(2k),t(2k+l)] w n e r e * c l ] " U j < 2 n n 1 ^ k+1 k 7 

If X is an element of and if X is a transform 
is an increasing family of éléments of T. n 

of X, X' is also an element of è5 ; moreover, if 

Then, thèse five semi-norms are uniformly x„ i g a t r a n s f o r m o f x . # x „ i s a ? s o a transform 

équivalent in the space of ail the martingales o f x 

such that x = o. More precisely : 

° 2°) Now, we prove that, if X is an element of 

N^X) <4.N 3(X) ; N

3

( X ) * 8 N

2

( X ) w e h a v e : 

N~(X) *N*(X) ; N*(X) * 45.N (X) E (X*) * 2 Sup. (E(|Y|)} 

+, , ̂  , this supremum being considered for ail the 
N (X) * N (X) ; N (X) * 180.N (X) 

transforms Y of X. 

Then, we consider an element X of ï? . Let d be a 
^ n 
Proof „ . 

positive number. For each integer k, we put 

The inequalities N"(X) S lï+ (X) and A ( k ) _ ; < } ^ ^ ( A ( k ) ) 

k+1 k K W n 

N (X) £ N_ (X) are trivial. The inequality are disjoint (because X <=. ) . 
4 3 n 

Nj £ 4.N^ is proved in H.2. The inequality At first, we suppose that there exists an inte-

^ _ - . ger j such that : 
N3 2 1 S p r o v e d i n H-4- T n e inequality 
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E(X. ..1 *d.E(X..l , . , ) . times defined by : 
3 + 1 A(D) : A(j) 

u(n) = inf. it : X > a"} (and u(n) = 1 if the 
Let k be the first such integer j and Y be n

 fc 

set X > d is void) ; the process (X ) is 
the transform of X defined by Y = X -(X -X ). t u^ k> k * n 

n n k+1 k 
# , a martingale with respect to the stochastic basis 

We put Y = Sup. Y and B(k) =1^0 : X (W) > X (<x>) } ^ 

K k < n k k + 1 k (fi,JlP, c)4 , ) . ̂  . and satisfies the hypothesis 
u(k) l*k*n 

if w<£B(k),X* ^) = Y* (d) and, if B(k) g i v e n i n t h e 1 0 ) ( w i t h u ( k ) i n s t e a d of k) ; 

X*(oj) = Y*(w) + X k + 1 ( ( D ) - X k(U)). Then, we have : then, we have : 

E(X*) = E (Y*) + E [l . (X. -X.Î . . 

«-B(k) k+1 kJ E { Sup. X } * Sup. E { | Y.dx| } 

= E (Y ) + E |1 . (X -X )| l£jv<çn 
LA(k)* k+1 k-l where this supremum is considered for ail the 

(X being a martingale) processes Y such : 

* _ that Y = E M w i t h J C K ={ k : l*k*n-l} 
(because X^iu) * o if w <= A(k)) Moreover, Sup. X f c « a. Sup. Sup. X 

„ teT n>o k<n 
t EfY*) + ( 1 + d) . E d A ( k ) . X k ) 

At last, we obtain : 

* E(Y*) + (1 + d) . E (1 .Y ) . 
A < k ) n E i Sup. X > * 2a. Sup. E( | Y.dx| } 

teT t 

Now, we use the same argumentation for the 

martingale Y : if there exists an integer such that t*1*3 supremum being considered for ail the processes 
r _ - _ Y such that 

E Y. ..1 ,..] £ d.E Y..1 ,. 1 (the sets n 
1 3+1 A(j) 1 L j A(D) J ? 

Y = E 1] "| 

( A ( k ) ) 1 ^ ^ being always the same); we consider k = l Ju (2k) ,u (2k+l ) J 

k, the first such integer j and we consider the 
where (u,(k)) i_ o + 1

 i s a n increasing family of 
martingale Z transform of Y defined by o^k£2n+l 

stopping times. This inequality being satisfied 
Z = Y - (Y -Y ) ; at last, we obtain a subset 
n n k+1 k f o r aii ^he real numbers a with a > 1, it is also 

J of K = (k : l^k^n} and a martingale M satisfied for a = 1. 

transform of X such that : o f C O U r s e , we have also : 

(i) M = X - E (X. -X.) . . 
n n jc.j 3 + 1 3 E (Sup | X J ) * E (Sup X ) + E (Sup - X ) 

t«T t«T teT 

(ii) E(X*) £ E(M*) + (1 + d) E E fl . M ] 

j<cJ A < 3 ) n^ a n d that gives the inequality N * 4 N 3 . 
(ii) if J^J, E [m" + 1.1 a ] > d.E [M -1 A ] 

H.3 - LEMMA 

If we put D = Q \ U A ( j ) , w e obtain : 

Let (̂ ,3%P) be a probabilized space and ^ 

E(M*) = E(M n.l D) + - E E ( l A ( j ) - M j and D e a sub-o-algebra of <f. Let V,X and Z be three 

"leJ éléments of i^CŒ^P) • We suppose that E(z|{p = o, 

E(X*) * E(M*) + (1 + d) E E(l A ( j ).M.) and v and x are^-measurable and |x|.lA > \ ^ \
A

A

 i f 

i n-1 _ A = {w : Z(W) ̂  o>. Then, we have : 

E E U ....M.) < ± E E(l ....M. .)< - .E (M ) , 
•±T

 A 3 3 D • A < 3 ) 3+1 d n i i i i i/2 2 i iv 

3 = 1 E ( | X+Z | - | X | ) £ 6 E (r V + Z - | V | ) 

Thus, we have : 

* 1 + P R O O F 

E(X*) < -j E (M ) + (2 + d) E (M ) 
d n n 

We can suppose that o^VXX (in the gênerai 

But E(M^) = E(M*) = — E(|M J ), then, if we choose case, one considers the sets where V and X are 

d = 1 we obtain • positive or négative). In this case, we put 
B ={o) : (X+Z) (03) < o) . We have : 

E(X*) * 2 . E(| M | ) 

E ( | x + z | - | x | ) = 2 E(|x+z|.l ) (because 

3°) Now, we consider a real cadlag martingale E(Z|T2) = o). 

X with respect to the stochastic basis (ft^P, * ^ V t ô T * 
with T = [o,l ]. Let a be a real number such that 

a > 1 ; let (u(n)) be the séquence of stopping 
n>o 
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But, if W c B, |z(OJ) | * |x(<4 | ^ |v((jj) | thus q-j-1 

3 ( / 7 T 7 - M > <*> > |z«*| | Xq ! \l, ( l X

k + j + l
| - | X k + i

l , + ( | X

k + l
| - | X k l , + 

Indeed, if v and z are two real numbers with B u t 

o<v£z, we have 3 vC^ + z 2 ^ 3 v + z. Then, we q~j~l 
£ ( |x . J - |x, . I) * S 

obtain : k=l 3 + 1 k + 3 

6 E (v^ 2+Z 2- |v|) > 2 E (|z|.l B) * 2 E ( |x+Z | . lg) | x f c + 1 | - |XR | * l X

k + r X

k l * V

q 

^ E (|X+Z| |x|) l Xkl ^ V k ( S e e ^ d e f i n i t i o n o f k> 

H.4 - PROOF OF N 3(X) £8.N 2<X) That implies : 

|x. k S + 2 V 
1 k 1 q 

Let Y be a predictable process such that 
n-1 Thus : E <|X |) S 8. E (V ) 

v v 1 where (u(k)) q' q 
Y = L 11 ... . , 0 1 , n-i l<k£2n 

Ju(2k),u(2k+l)J 
H.5 - LEMMA 

is an increasing family of stopping times ; if 

we put Z =| Y.dX, it is easily seen that Let (fi, 
Kk<q^ ^e a Pr°bàbilized 

- , x - , v , „ A n s , . . stochastic basis. Let (Y ) be a square integrable 
N (Z) * N (X) (cf. E . l l - 4°) ; then, it is k U k*q H y 

2 2 martingale (with respect to this basis). Let 
sufficient to prove that, if X is a martingale 

W be an element of L_(fi,T? ,P) such that ^ o 
and if (t(k)) is an increasing family 1 l fil 1 

l c l c*ï and W. * Y 1 . 

of dyadic number s belonging to T, we have : 1 1 

We put : 
Il q-1 7 1I/2) 

E < E (x -x „ . ) p 8 E ( |x - x l ) r 2 q-1 ? -11/2 

|l k = 1 t(k+l) (k) | ) q 1' W q = [ W? + * <* k +l " V 

Now, we suppose that (X ) 1 - ̂  is a real 
k 1 G c « ï fcfe suppose that, if \y^\ > 2 ^ , then, for each 

martingale with X j = o (and E(|Xq|) < + «) . tnteaer j * 1, Y R + . = Y R = Y q . We put : 

Let V be the quadratic variation of X, id W = W V |Y I . Then, we have : 
q q I q' * 

est V = o and 

* E(W - WJ £ 9.E( lY - Y I) 
k-1 1/2) q 1

 1 q • 1 1 

V, = < I (X. -X .) } 
k+1 . j D+l 3 C 

' D " / Proof 

For each integer k , we put 
It is sufficient to prove that : 

A(k) = Ju) : V *|x |( . Let S be the random 
k k > E (W -W ) £ 8 E(|Y -Y I) 

variable defined by q l 1 q 1 1 

q-1 For each integer, we put : 

S = 1 [ ^ ^ • ( K . u l I - l X J > ] 

k=l A ( k ) k 1 k A( k) ={03 : |Yk|(w) * 6WX and (u>) < 2V*1} 

We have (cf. H.3) : T h e s e t s ( A ( k ) ) a r e disjoint ; moreover 
2*k*q 

E(S) .6 V E [ l A ( k ) . / V 2 + ( x K + 1 - x k )
2 - v k ] l \ - V 1 ! -

1 M k ) 5 « l ' W l a n d 

q-i r , VW) = V W W e P u t B < k » -nNA(k). 

« 6 E E / V 2 + (X -X ̂  - V 

k=l L K jc+ i K J We have : 

\ 2 1 2 q 2 )l/2 

, 6 E(v q) V j V k f 2 « V V i ' - W i ^ V h 1 - B ( k ,j 

/ — 2 1 2 

_ a + x * a + J ~ ( f o r a > o) 

following we do not write the symbol a) for the implies : 

convenience of notation ; let k be the first integer, 
W £ C + D with 

l<k£q, such that U)£.A . for ail the integers 3 
k+D / , 

j>o ; we have : \ 2 q ? f ̂ 2 
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But if w and y are two positive number s, we have : W e p u t x*_ S u p | x | 

/ 2 , 2 . ^ u i^k^î k 

v w + y * w + y then 

q I I 
C *w + E Y -Y .1 2°) We define the séquence (u(n),W ,W' ) 

1 _ _ k k-1 A(k) n nn>o 
k=2 

by the following way : 

Moreover : 

q q u(l) = 1 and W =£ + |X | with E > o 
D = 2W~ Z ( W L ) 2 - iw~ E ( W L ) - 1 A ( k ) R I . 

2 W 1 k=2 k 1 k=2 A l K ' u(n+l) = inf.{ t : t u(n) , |x | > 2.W'n} 

(Yi ) * >, ̂  being a martingale and W being _ ) w,2
 q 1 n n 2 f ^ 2 

k l<k«l 1 V L " \ , \ ( k+1 V 
P f k—1 1 

-measurable, the expectation of the first 1 ; 

sum above is equal to with Y£ = X [kvu(n)A u(n+l)J 

• [ S T - V V 2 ] ' = su P. { V l . |x u ( n + 1 )|} 

Then, we have E(D) = E(D') with : We p u t ^ = ^ k M l ( n ) V u ( n + 1 ) ] 

1 2 1 q 2 
D' = — - — (Y -Y ) - —-— Z (Y -Y ) 1 

2W q 1 2W k k-1 * A(k) For each integer n, we can apply the lemma H.5 to 
1 1 k=2 n 

the martingale (Y, ) , , which is a martingale with 

_ j_ q r 2 2] k 1 C k ^ 
2 W 1 k=2 L ( Y (Î Y ^ ~ ^k^k-L* **A(k) respect to the stochastic basis (F]/,P U k ^ q ) ; 

thus, we have : 

+ 2w7 < V Y i ) 2 • *B . - » ! , 

Z
 E(W'„+r

Wn)É
 E + 9- f Xu(n +l)-

Xu(n)M 
where n=l N=L 

q r q n 
B = O B(k) = Q\\ U A(k) But, for each integer n, we have V . £ W', thus 

k=2 L k=2 J 0 0 

E(V ) £ £ + 9 L E( |X . . . - X I) 

But, if U > € A(k)
 q n=L U ( n + 1 ) u(n) 1 

l y - Y ! = | Y - Y I £ 2 |Y - Y I For each integer, we put A(n) ={ u(n) < u(n+l)} , 
1 k k-1 1 1 q k-1 1 I q 1 1 

I I ^ . i • i i « » B < n ) = (A(n) O u(n+l) = q} and G(n) = A(n) \ B(n). 
(because Y * 6W,, Y I * 2W< and Y £ 2W ) ^ N 

1 q 1 1 1 k-1 1 1 1 1 1 1 

By the définition of u(n) , if o) £.G(n) we have : 

At last, we obtain : LX (K))| ^ 2 W (W) ^ 2 | X (W) I ; then, in this 

' u(N+L) ' N 1 u(N) 

C + D' < Wj + 8 | Y q - Y t | , id est : c a s e > w e h a v e a l s Q ; 

B « q ) , E ( C + D . , , E ( W l , . S E d Y ^ Y j ) . K ( N + 1 ) - X U ( N ) | l . ) < 3 . [ | W l ) t o . | - | . B ( n ) ( B | | ] 

This implies : 

H.6 - PROOF OF N+ (X) * 4 5 . N (X) ? | X _ X | 3 £ [| | _ | X 1] . T 

- 1 , 1 U(N+L) u n 1 J 1 u(n+L)' 1 U ( N ) 1 G n) 

N=L N=L U A 

1°) It is sufficient to prove this inequality y tv _ Y | 1 
+ 1 U(N+L) U ( N ) 1 'h(n) 

for a martingale X with respect to a stochastic N-L 
(r ^he sets (B (n) ) ^ beinq disjoint, the second sum 

basis (fl^P, ) ) (id est card (T) < +°°) . n>o 
k ! ^ k ^ q is bounded by 2 X*; the séquence OF sets (G(N) ̂  

n>O 

For each integer n, we put X° = X. 1 ̂  | ̂  ^ and being decreasing, the first sum is bounded by 
n 3 Sup (|X ! - |X4 I) * 3 X* 

we consider the martingale X defined by .̂<q 1 k 1 1 1 1 

X,N = E Î X 1 1 ! ^ ). By the Lebesgue theorem, we have i *. u x ^ ^ . , c k q 1 k At last, we have : E(V ) £ £ + 45. E(X ) 
q 

N^(X) = lim. N (X N) and N (X) = lim. N ( X R ) . Thus and that proves the expected inequality when £ goes 

n to zéro, 

it is sufficient to prove the inequality for each 

martingale x ; thus, it is sufficient to prove th* 
n 

inequality if X is a square integrable martingale. 

Let V be the quadratic variation of X, id est : 
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H 7 LEMMA Actually, it is possible to say better (Khintchine 

lemma). 

Let (fi^P) be a probabilized space ; let 
Now, we have to prove that N (S) * E(|S|) 

A and B be two éléments of 9* and i be a one- 5 

(of course, we have N (S) * E(|S|)). 
to-one measurable mapping from A into B which * 

r For each integer k, with U U q , let V be an 
préserves the measure P 3 i.e. P(G) = P I f(G)J ^ k 

__i J-measurable random variable such that o^V <1. 
and P(D) = P If (D) ] if G and D are two k k 

L Now, se suppose that V = 1 if k > p and we prove 
éléments of & with G c A and D c B ; let X be k 

^ at first, that 
an element of L. (fi,ÊftP)sucn t n a t x.l = X ; we 

r i S" 1 ) i ) 
put Y(oa) = x(w) - x [f(ui)J; Zet a be a real E ] | Z v .d (Z -z )| [ * E J I Z V, .d (Z -Z ) | S 

# , k k k+1 k l # , k k k+1 k i 

number. Then we have : 1 k~° ' 1 k~° ' 

if V = V, for k ^ p and V = 1 . 
E( |Y + a.l A - a.l B| ) ^ E( |Y|) k k p 

By convexity, we can suppose that v

k(ti)) = o or 

V (bi) = 1 (for each element œ of fi) . 
Proof 

The inequality above is a corollary of the lemma 
We have : 

H.7 above if we put A = {(l~Vk) (
z

k + 1

_ \ ) > O } and 

E(|Y+a.lA-a.lB|)=E(|x+a|lA)+E(|x-a|.lA) B = { ( 1-V^ ( Z ^ - Z R) < O } and a += 

and E( |Y |) = 2 E( |X |) = 2 E( |X |.1A) Then, by reasoning by recurence on p, we obtain : 

E ( | V v v w ^ - v | > < Ei\V v V i - V I ' 
r +1 r k=0 k=0 

q = E [(X-a) J , s = E [(X+a) ] , 

p = E ( X ) - q , r = E ( X ) - s H.9- PROOF OF N*(X) * 180.N(X) 

u = P({X>o}), v = P ( { X < o } ) 

It is sufficient to prove this inequality if 

Then, we have : ( \ ^ k < q i s a m a r t i n g a l e w i t n respect to the stochastic 

E( |X |)=p+q+r+s ; E(|x+a|.lA) * p+q+au+s basis (fi, &,P ,(£?£) 1 < k ^ q ) • In this case, let (Y^) 1^ k.^ < J_ 1 

. be a family of Rademacher functions defined on another 
E(|X-a|.l ) ^ q+r+s+av ; p ^ au ; r ^ av , 

A probability space (fi',cT ,P'). We put D k =
 x

k + 1 "
x

k -

and that implies : F o r e a c h e l e m e n t w ' of fi', we have : 

E(|x+a|.lA) + E(|x-a|.lA) >A 2 E(|x|.lA> q - 1 

| E Y (aj').D (o)) |. P(daj) < N. (X) 
Jfi k=l K K 4 

H.8 - LEMMA 
This implies : 

Let (Zk) ̂ k ^ q be a martingale with respect . . q_l 

to the stochastic basis iÇl . . ' Z Yv ( a ) ' } -Dv ( ( A ) ) | «P (dw) .P1 (dui ' ) * N. (x) 

k l<k*;n )q Jq, k = 1 k k 4 

we suppose that (z

k"
z

k_^ î^k^q ^
s a f00^^ °f 

Rademacher functions. Let (â^.) 1^ k^ q_ 1 be a
 B Y t h e Fubini theorem, we have also : 

family of real number s. We put f f 3 " * 

k-1 l E Y (o) ' ) .D ((a)) I .P ' (dO)' ) -P (da)) * N. (X) 

V ( V l - V - " ( 8 q l 3 V " ^ 
T/zen, have : But, the lemma H.8 implies : 

E(|S|) -N 4(S) -N 3(S) (S) -̂ Vcdj)2
 f / \ Y kfc . ' ) .D k(u,)| P (du • ) ï ̂  V [ d ^ ) ' ] 2 ^ 

j = l i<; ( k=l ) 
At last, we obtain : 

Proof f (q-1 )l/2 
N 4 ( x ) M n î i ô E [ D

k ^ > ] - p « ^ 
Let us recall that (Z, -Z, J is a Rademacher fi f k=l ) 

k k-1 v 

function if Z -Z = +1 or -1 with the probability 
k k-1 i + 

1/2 respectively. * ïgQ N

2<
x> 

The inequality N 3 (S) * y~- N* (S) is a 

corollary of the inequalities given in H.2 and H.6. 
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H. 10 - THE SPACE H^ (remarks) remarks if Y is a bounded predictable process are 

also available if Y is predictable process such 

Let (fl,*,Pf ( 3 ^ ) ^ , ) be a stochastic basis. t h a t E {L^} < +~ . 

One notes H^ the space of ail the real cadlag * 

martingales X such that N 2 (X) < +°° . If Y is 

an uniformly bounded predictable real process, 

it is possible to define the stochastic intégral 

jydX as in B.6 (cf. F.14). Actually, it is 

not necessary to use B.6 and F.14 if we know the 

inequality N_. (X) £ 8.N* (X) ; in this case, we 

f 

can define the stochastic intégral YdX as 

follows : 

For each (A- simple real process Y (cf. B.2), we put 

N(Y) - lim.sup. E j [ E Y | j . 2 - n - « ( k + 1 ) 2 - „ - X k _ 2 - n )
2 ]1/2j 

rr*» ( k£o ) 

this defines a semi-norm on^(cf. B.2) such that, 

for each element B of we have : 

Il fB *•<« ll L l(n^ fP) *
 8- N ( Y ) 

Thus, the mapping Y""*j Y < ^ i s a linear mapping from % 

into L^ (Œ,£F,P) and this mapping is continuous if we 

consider on H^ the topology associated to the semi-

norm N and, on L^ (Œ,tF,P) , the usual topology. Then, 

this mapping can be extended by density and this 

defines the stochastic intégral JYCIX notably for 

each uniformly bounded predictable real process ; 

moreover, it is possible to define the stochastic 

intégral process Z = JYCIX as in B.5 and we see 

that Z is also an element of H^. We can also prove, 

exactly as in B.5, that H^ is a complète space. 

Actually, if we consider the additive mapping 

B 1 .dX, defined on J( and with values in 

L^ (fi,cJ,P) , we can see that the semi-norm (X) is 

exactly the semi-norm of the semi-variation as 

considered in [Bar] ; thus, this mapping B ~>j lg.dX 

can be extended in vector measure ; that proves 

notably that the family of random variables 

( j YdX), for ail the bounded real predictable 

processes Y, is uniformly equi-integrable (classical 

property of the vector measures : see [[ BDSj ) . 

Moreover, let A be the increasing process-

defined by : 

A - lim.sup. ï I> ( k + 1 ) 2-n A t " ̂ . 2 " " ^ { 

N-K» (k=o ' 

if t is a dyadic number and A^ = lim.A in the 
t l4. s stt 

gênerai case. It is easily seen that A is a cadlag 

increasing process ; A is the quadratic variation 

process of X as studied in C.6. Ail the previous 
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For each élément Y of % , we define the 

stochastic intégral jy.dx as in B.2. Moreover, 

for each élément A ofàfc, we put x(A) = jlA-<3X 

J - STOCHASTIC INTEGRAL CONSIDERED T h e n x i s a n additive function defined on d'and 

AS A GROUP-VALUED INTEGRAL w^th values in L^ ; moreover the stochastic 

intégral Ydx is a classical intégral of Y, 

considered as a function defined on Œ*3 with respect 

to x. 

J.l - INTRODUCTION I n t M s p a r a g r a p h / w e g i v e n ecessary and 

sufficient conditions (cf. theorem J..5) such that 

Let B be a Banach space and X be a t h i s i n t e g r a l c a n b e extended to the family of ail 

B-valued process. We want to build and study t h e u n i f o r m l y b o u n d e d predictable processes We will 

the stochastic integral jYdX if Y is a real u s e t h e l e m m a E 2 a n d ^ t W Q f o l l o w i n g l e m m a s 

predictable process. In B.2, we saw that this w e r e c a l l f o r t h e c o n v e n i e n c e of the reader. 

integral is defined in a natural way when Y belongs 

to the vector space t. The mapping Y ^ Y d X can be J > 3 _ A BOUNDED ADDITIVE FUNCTION (LEMMA) 

considered as a linear mapping from %> into 

L* (fl^P). The problem is to extend this L e t | | J | b e a n F _ n o m ^ f j ^ o ] , o n ^ 

mapping to a family of processes larger than % . vector space 0 and x be anU-valued additive 

From this point of view, we are in a typical function defined on an algebra <k. We suppose that 

situation where we have to extend a classical lim x < A J = ° f o r e a c n séquence (A ) of disjoint 

integral, with values in the group L (̂ cĴ P) and 
g ? éléments ofoT. Let v be the function defined on 
of ail the realc/T-simple . 

. çftby v(A) = Sup I |v(B) | | 
functions {cA being an algebra). Then, in such Be^BcA 

a context, it is possible to use the classical T h e R f f o r e a c h e l e m e n t A o f £ f v ( A ) < + 0 0 

results on vector or group-valued integral. 

Actually, this method permits to obtain some For the proof, see the corollary 4.11 in 

spécifie results. [Dre]. 

In this paragraph J, we consider only the 
J.4 - DANIELL THEOREM 

case where Y is a real process ; the methods given 

here are still available when Y is a Banach space W e c o n s i d e r t h e h y p o t h e s i s and notations given 

valued process ; they are also available if the in J.2. Moreover, let p be a non négative real number. 

"time" T is not an interval of the real line W e s u p p o s e t h a t t h e f o l l o w i n g properties are fulfiled : 

(cf. [MeP-2] ). r 
(i) for each element Y of o, JYdX belongs to L^ 

J.2 - HYPOTHESIS AND NOTATIONS (ii) for each séquence (Y ) . of éléments of % n n^o 

such that Y 4- o, the séquence ( Y dX) 
In this paragraph, we consider : n J n n>o 

B 
converges to zéro in L 

- a Banach space B p 

- a stochastic basis (̂,*Î,P (̂ ?t) t e T ) with T = [o,l] (iii) if ( Y

n> n > 0

 i s a séquence of éléments of 

- a B-valued process X defined up to modification s u c h t h a t E y £ Y , the séquence ([Y dX) s 

n M n o * J n n>o 
We put : rB * converges to zéro in L . 

p 
L = LB(fi,<F,P) with p*o f 

p p Then, the mapping Y^JYdX can be extended in a linear 
r i l 0 , r . mapping, defined on the set of ail the uniformly 
\lx = Q, x (T \{o>) B 

. bounded predictable processes, with vailues in L 

The sets cR> . c/t/ o and e> are defined as in ^ 
and which satisfies the Lebesgue dominated convergence 

A.5 and B.2. We consider also : 
theorem. 

GQ= (Y : Yc'g, Sup| Y (u>)| < 1} 
t,a) This theorem is proved in [Pel-lJ . 
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j .5 - EXTENSION THEOREM 2°) At first, we consider the case where B =JR 

in this case, the spaces L^ = (pour p^o ) 

We consider the hypothesis and notations satisfy the hypothesis of the theorem 3 of f M a o ] ; 

given in J.2. Let p be a non négative real number i e t ( A ( n ) ) ^ ^ b e a s e q u e n c e G f disjoint éléments 

and X be B-valued process, defined up to modifi- G f <*h x being an additive function and x tff) being 

cation, which satisfies the following properties : a b o u n d e d s u b s e t o f ^ f t h e s e r i e ( x ( A ( n ) ) ) i s 

p n>o 
"perfectly bounded" (cf.lMaO~|) ; thus, it is 

(i) for each element s of T, lim (x -x ) = o for 

n-*»
 S convergent. That proves the end of the theorem when 

the usual topology ofhB. B = ]R ; thus, we have the same property when B is 

a finite dimensionnal vector space. 
(ii) {z : Z = 1 .dX, Aê^I is a bounded (with 

J A

 B 

the Bourbàki meaning) subset of L . 3°) Now, we suppose that B is a gênerai Banach 
space. Let v be the non négative function defined 

(iii) for each sequence ( A ( n ) ) ^ Q of disjoint on the subsets of (ŒXT) by : 

éléments of <k, the sequence ( 1 . . .dX) 

J A ( n ) n > ° v(A) = Sup | | x ( C ) | | 

converges to zéro for the usual topology of CcctrCcA 

P 

At first, we prove that the restriction of v to 

Then, the mapping Y ^ j y d X can be extended ^satisfies the properties (i) , (ii) and (iii) of the 

in a (unique) linear mapping, defined on the set lemma E.2. The condition (i) is obviously satisfied 

of ail the uniformly bounded predictable processes, and the condition E.2 (ii) is the condition J.5 (i). 

with values in L^ and which satisfies the following If the condition E.2 (iii) is not fulfiled, there 

dominated convergence property : exist e>o, an increasing sequence of stopping 
time (u(n)) such that F(n) = [u(n)< l] + çzS and 

n>o L -1 

(iv) if (Y ) . is a sequence of uniformly bounded a sequence (A ) of éléments of such that, for 

J n n^o n n>o 

predictable processes such that |YJ £ |YJ each integer n, A^ C(F(n)x T) and | | x ( A n ) | | ^ 8e 

for each integer n and such that Y = lim.Y n W e h a v e v ( F ( 1 ) x T ) = a < + 0 o ( c f . j.3). Let D be a 
f f , „ , 7 set such th.ît D r (F(l) x T) , D e cA and I|x(D)|| ^ a-e ; 

then, we have : YdX = lim. Y dx (for the *~ 11 11 

J B , n~*» ' n let k be an integer such that k>l and I |x(D) .1 „ , M £ £, 
usual topology ofh). A 

P let E be a set which belongs to <A and such that 

n . - 7 , . E c (F(k)x T) and ||x(E)|| * 8 e; We have 
Moreover, if B is a finite dimensionnal vector 

space, the condition (iii) is necessarly fulfiled. | | x ( E V D ) | | * 4 £ or ||x(EnD)|| M e ; in the first 

case, we have : 

||x(EUD M ^ a+£ -£ + (4£-£) a+3£ 

Proof 

In the second case, we have : 

1°) For each random variable which belongs to L^, ||x(D\E)||^a+2 £ 

we put : 

r- , 1 1/2 In the two cases, this implies v(F(l) xT) * a+2 £ 
I I f I I = |f (w) | P.P(dw) if p U (usual norm) , ^ . . . . _ „ _ 
N M p LJ J this is impossible ; then the condition E.2 

(iii) is fulfiled and we can apply the lemma E.2. 

||fllp = | |f (w)P| .P(daj) if o <p£l 

4°) Now, we prove the properties J.4 (ii) and (iii). 

| | f | | q = | J j f (w) | A lj .P(dw) if p = o At first, the set (z = Z =| YdX, Y <= is 

a bounded subset of L^ (according to Prur] , J.5 - (ii) 
. . i , r n and the properties of the F-norm considered). That 

Then | |. | | is an F-norm (cf. [MaO|) associated to 
B raeans that, for each C>o, there exists r|(£) such 

the usual topology of L . r 
p that Sup |Y (0)) | * n(C) implies || YdX | | £ £. We fix 

In the following, we note | |.||instead of t, w 

| | . | |^ and we put x(A) = j l^-dx if A is an élément c a n (^ j^(^) 

of Je. 
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L e t ( V n > o b S a s e ( * u e n c e o f n o n négative (^simple predictable real process. Then, there exists a 

processes such that \ o ; for each integer n, cadlag adapted process Z which is a modification 

we put A(n) = [Y > r\(e)] and B(n) =ft\A(n) ; of Z. Moreover, we have the following domînated 

. . f . . , convergence theorem. 
we have ||J Y^ .1 .dX || * e(because

 y 

Yn , : lB(n) * n ( e ) ) ; m o r e o v e r ' A < n ) + 49 thus If (Y

n^n>0

 i s a séquence of predictable real 

v(A(n)) 4- o (cf. 3°) above) ; then, processes such that Sup |Yn(t,oj)| £ 1 and such 
f n,t,œ 

lim Y .1 .dX = o and that proves the 

n-x» J n A ( n ) that (Y ) converqes to Y, there exists a sub-
n n>o 

condition J.4 (ii). séquence ( Y

n ( k )> k > Q such t h a t t h e séquence 

(z ). associated as above converges P-a.e. 
5 ° ) Now, we prove that the condition J.4 (iii) is n(k) k>o 

uniformly for each sample function to the process 
fulfiled. Let (Y ) be a séquence of non négative 
jl n n>o z associated to Y as above. 
(/̂ -simple processes such that £ Y^ ^ 1. Let e be 

a positive real number ; we consider r\(e) as in the 
. Proof 

4°) above ; we can suppose that H(£) = 1/k 

(k dépends on e) . For each integer n, we put T h i s t h e o r e m c a n b e p r o v e d e x a c t l y as in B . 5 

A ( n ) = [Yn > H(e)] ; as in the 4°) above, we b y u s ± n g fche B o r e l C a n t e l u l e m m a a n d t h e .. o u t e r" 

have to prove that measure v. 

lim Y . 1 .dX = o 

n̂ x, J n A ( n ) J.7 - REMARK 

For that, we consider the following séquences of 
1°) We consider the hypothesis and notations given 

sets : B 

in the theorem J . 5 . If p > 1 , L isa Bcinach 
P 

„ , space ; thus x is a Banach space valued additive 
B(o,o) = Q , B(n,-1) = 0 if nào v 

function : then, it is possible to use éind apply 

B(o,j) = <t> if ĵ l and, for n M and ĵ l , n , , , . , 

J J J ail the classical results on vector measures ; 

B(n,j) = [B(n-l,j-l)n A (n) ](J [B (n-1 , j )\ A (n) ] of course, the hypothesis considered in J .5 are 

more aeneral. 
C(n,j) = B(n-l.j-l) H A(n) = B(n,j)nA(n) 

If j>k, we have B(n,j) = «S ; moreover, for each 2 0 ) T h e s t o c h a s t i c b a s i s ^.V, <9£>t T> being 

integer n, { C < n , j ) } u j < k is a partition of A(n) . f l e f c $ b e fche s p a c e Q f a l l ^ B ! v a l u e d 

At last, for each integer j, the sets {C(n,j)T J J • * ^ c ^ i 
r L -fn>o cadlag adapted processes ; if p^o, for each element 

are disjoint. According to [TurJ and E.2 (iv), Z of we put 

we have : 
lim [ Y 1 dX = O |||z||| = S U D I l Y.dz|| (where I I . M is 
N ^ J n C(n,j) 1 1 1 1 1 'p Y £ | .

 1 1 J M p i" M p 

o 

for each integer j with l^j^k. , ̂ .. , ,, e c -r c , 

r defined as m the proof of J . 5 above and G as in 
But this implies : lim Y . 1 .dX = o (because -r ~v 

I n A(n) J.2) . 
{ C ( n ' j ) } U j < k 1 3 a P a r t " i o n of A(n)) and that We put ij = { Z : Z $ S, | | | z | | | < + <° } 
proves J.4 (iii). P P 

Then, we can apply the Daniell theorem J.4 It is easily seen that is complète for the topolo-

and that complètes the proof. gy associated to the F-norm | | | .| | | (as in B . 5 ) . 

Now, let X be an element of ̂  ; for each element A 
J.6 - STOCHASTIC INTEGRAL PROCESS ^ 4- . . . . , P A / x |\ , 

oft/T, the stochastic intégral process x (A) = H A

d x 

can be considérée3 es an élément of $ ; then x can 

We consider the hypothesis and notations , . , . JL 
be ccnsioerec1 as an additive function defined on ai 

given in the theorem J.5. Moreover, we suppose . ̂  . 
r r ana with values i n J ; moreover, i£ Y is an element 

that x is an adapted cadlag process ( X is a ^ , , P . f 

A of G , the stochastic intégral process YdX can be 
process in the " strict:' sensé). Let z be the * 

considered as the usual intégral of Y, considered as a real 
process defined, up to modification, by ^ 
^ f function defined on P* =fi x(T\{o}), with respect to x ; 
Z = li -tY.dx where Y is a uniformly bounded 
t J J0'1^ it is possible to write the theorem J .5 in this new context. 



- 45 -

EXERCISES 

EXERCISE A.l EXERCISE A.4 

Let (<5̂ t) T ) be the probabilized You can do the exercices A. 4 and A. 5 toge-

stochastic basis defined by : ?u = {a,b} (set in- ther. Let (Q,^,P, ( <*< ) )bea stochastic basis with 

.3 t t e T 

cluding two éléments a and b) , = c? (Q) (set in- T = [Ô, l] . Say if the following assertions are true 

cluding ail the parts of Çl) , P({a}) = P({b}) = y or false : (to show that one of the following asser-
T = C0 , 1J (unit interval of the real line), tion is false, you can use the exercise A.l). 

^ t = (0,Œ) (trivial o- algebra) if t v< 1/2 and 

^ t

 = if t > 1/2. 1°/ Let u be a T-valued random variable defined on 

) ; then u is a stopping time if and only 

1°/ We put u(a) = 1 and u(b) = 1/2 if, f o r each element t of T, the set 

v(a) = O and v(b) = 1/2 Afc = {co: u(co) < t} belongs to fÇ^. 
Are u and v stopping times ? 

^/ ^> 2°/ Let u be a T-valued random variable defined on 
2°/ Have you . for each element t of T ? _ ̂  

t t+ (U, x ,P) ; then u is a stopping time if and only 
if, for each element t of T, the random variable 

3°/ Are u and v stopping times for the family ^ 
; (u A t) is C<f -measurable. 

(CCT ) ? t 
t+ t € T 

3°/ Let u and v be two stopping times with u ̂  v. 
4°/ Is [o,ur a predictable set ? 

u u Let w the random variable defined by : 

5°/ Is X = lj^ ̂  a predictable process ? an adap- w(co) = 1 if u(co) > v(co) 

ted process ? w (co) = u(co) if u (co) = v(co) 

6°/ Let (w ) be the séquence of random variables Then w is a stopping time. 
n n>o ^ ̂  

defined by, for each integer n, w (a) = 1 and 
n 

w (b) = 1/2 + 1/n. We put w = inf.w . Is w a 
n n n EXERCISE A.5 

n>o 

stopping time ? 

Is w a stopping time for the family if^.).tsrv ? Do the exercise A.4 if the family (c5\.).-rT1 

for the family (^ t +^ t e T

 ? i s assumed to be right continuous. 

EXERCISE A. 2 EXERCISE B. 1 

We define {Çl,^, P) as in the exercise 1. Let ( f î,^,P, (̂ )̂ t € T^ b e a s t o c n a s t i c basis. 

Let Y be the process defined by Y (b) = O for each We note K the vector space of ail the real cadlag 

element t of T and Y

f c(
a) = O fo r t £ 1/2 and processes adapted to this stochastic basis. We suppose 

Y(a) = t - 1/2 if t ^ 1/2. For each element t of T, that there exists a positive mapping N defined on K 

let be the a-algebra gênera ted by the random such that : 

variables ( Y

s ) g t (i-e. the smallest a-algebra 
t.. ^ ^ S ^ - i - i v.i ^ (i) N(X + Y) £ N(X) + N (Y) for which thèse random variables are measurable). 

Compare thèse a-algebras (^ t^ t f c T

 a n d t n e tf~"algebras (ii) N(aX) = |a|.N(X) for each real number a 

^ t » t É T
 o f t h e e * e r c i c e I s t h e P r o c e s s Y

 N ( y, xn> £ Z N ( x n ) 

adapted, or predictable, with respect to the stochas- n>o n>o 

tic basis (1Î,^,P, ( < Ç j _ m ) ? In this situation, _ ^ _ _ . v 3 t t g T We note H the vector space of the éléments X 
( f i / T ,P, (^Y ) ) is often called the canonical sto- _ , x „ ^ _ , 
' ' J t tCT of K such that N(X) < + ». We suppose that, for each 

chastic basis of the process Y. tt ^ 
element X of H and for each real (A- -simple process 

(cf. B.2), the process Z defined by Z = Y.dX 

i 7 * 1 o, tl 

EXERCISE A. 3 is such that : N(Z)£ N(x). Sup. | Y (w) | . J J 

t ,oo 
Let (u(n)) be an increasing séquence of Prove, by reasoning as in B.5, that H is a 

n>o 

stopping times. We put u = Sup.u(n). Is u a stopping complète space. 
n>o 

time ? 



- 46 -

EXERCISE B.2 in C.5. Let Z be the cadlag process defined by : 

Let (fi, *y%P, ( <3v) 4. _ m ) t»e a stochastic Z = [ Y.dX. 
t J-t -r 

basis. Let X be a real cadlag process adapted to J°' J 

this stochastic basis. We suppose that there exists 1°/ Prove that Z is a martingale 

a positive measure a such that, for each real 2°/ Let H be a real predictable uniformly bounded 

impie process (cf. B.2), we have : process. Prove that we have : 

r f o l / ? H .dZ = H .Y .dX 
E ( | fY . d x|),(f|Y| 2.da> 1 / 2 J ] o f t ] " » J ^ t ] s * ' 

Is it possible to build, as in B . 3 , ( i d e s t ' w i t h t h e ^ o l i c differential nota-

the stochastic integral J ï.dX for ail the processes t i o n ' i f d Z = Y d X ' t h e n H d Z = H.Y.dX). 

Y which belong to L2(fi x T,<P,a) ? 

3 ° / Prove that we have : 

[Z,Z] - [Z,Z] = [ Y3_.d[x,x] 

EXERCISE C l ^ ° J]o,t] 

where [[.,.] is the quadratic variation. 
Let X and V be two real continuous proces-

(id est, with the symbolic differential notation, 

ses ; we suppose that V is with bounded variation r -t 2 r i 

d [ Z ,z ] = Y^_.d[x,x] t ). 

and that X satisfies the assumptions given in C.5 

(thus, notably, we can use the Ito formula). 
Indication : For ail thèse questions, you can 
begin to consider the case where Y is an 

1°/ For each integer n, let (u(n,k)) be the se- <J-
cZ-simple process (cf. B.2). 

quence defined by récurrence by u(n,o) = O and 

u(n,k+l) = infJ t : t ^u(n,k), 

i _ |+|v -V I > 1/n- EXERCISE C .3 (some properties of the brownian motion) 
1 t u(n,k) 1 1 t u(n,k) 1 S 

Calculate [M,V] 1 ,id est :
 L e t ( V t € [o, l ] b e a r G a l b r o w n i a n ™ > t i o n ' 

You will admit that this process satisfies ail the 
l i m ' 1 £ M

u ( n / k + i ) -
M

u ( n , k ) ] - E
Vu(n,k+l)"Vu(n,k)l properties given in C.5 and you can use the exercise 

n-*» k>o n , 
C.2 1°/ and 2°/. 

2°/ Prove that the quadratic variations [M,M] and 

[M+V,M+v] of M and (M+V) are equal. l V L e t F b e a n élément of ̂  . We put : 

f (u) = E[l F.e
i a ( Ws +u"

 Ws)] 

3 ° / Prove the following equality (intégration by 
Show that the function f, considered as a function 

parts) : 

t t of u, (F, s and a being fixed) , satisfies an ele-
M t V t ~ M o V o = ^ ' ^ s + M s * d V s mentary differential équation, 

•'o * o 
Indication : apply the Ito formula to the process 

2 ^ 2°/ Calculate f(u) 
(M

t'
v

t)i considered as an fR -valued process, 

and to the function (x.yj^x.y = F(xfy) y / E[ ei»(« 8 +t- «s> | 
4°/ Let W be a brownian motion ; by admiting that 

4°/ What does that mean ? 

W = X satisfies the assumptions given in C.5 

(see the paragraph E), prove that W is not a 

process with bounded variation (see the 1°/ EXERCISE C.4 

above) 

Let (W^t-^ip b e a real brownian motion with 

T = [p,lj. For each integer n, let Y n be the real pro-
5°/ Study the case where X and V are two real cadlag 

cess defined by : 
processes but X and V are not continuous processes. -n 

n 2 _ 1 W(k+l).2" n ~ Wk.2~ n 

EXERCISE C.2 

Let X be a cadlag real martingale and Y I s Y a n a<*apted process ? Is Y a predictable 

be a real predictable uniformly bounded process. You process ? Is Y uniformly bounded ? Prove that the se-

will admit that X satisfies ail the properties given q u e n c e o f r a n d o m variables Z n = Y n.dX goes to 
J J o , l J 
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the infinity, almost surely, when n goes to EXERCISE D.3 (see [Woz] and [au] ) 

the infinity (you can use the exercise C.1.4 C/ ). 

Let (^< (P, (<< ) )be astochastic basis 
This exercice shows that it is not possi- r -r T 

with T = L ° ' l J - L e t ^ Bt^ t T^e a real brownian motion. 
ble to build the stochastic intégral for processes 

Let. n be an integer. Let (B ) be the process defined 
Y which are only measurable with respect to the n r -m 

> by B = O, and, for each element t of [k.2 n,(k+l).2 J . 
a-algebra <? (where ̂  is the a-algebra of the ° 

borelian sets of T) . B £ = B^^.n + 2
n. (t-k.2"") [ B ( k + l ) - B ^ 2 _ n ] 

EXERCISE D.l (The Ornstein-Uhlenbeck process) L e t 1 b e a r e a l fonction, defined on the 

real line, such that its thirst derivative is uniformly 

Let W be a real brownian motion. Let f be bounded. Let x n the continuous process defined by 

a real continuous function defined on the real Line. n f1" n n 

x' = a(B ) .dB 

Let x q , a , and b three real numbers. We put : •'o S S 

ffc n-_-\ ~ T t t*. c\r> (this intégral being defined, as usual, for each ele-
Z = e t a.x + e ( t S ) a.f(s)ds + e ( t S ) a b dW 
t o J q J o s ment u) of Çl) . 

1°/ Compare the process Z and the process X which is The problem is to see if the séquence of 

a solution of the following differential equa- processes (X11) ̂  converges, when n goes to the infi-
n >o 

tion : nity, to the continuous process X defined by 

X = x q+ T b dW s + f
fc[axs + f(s)] .ds

 Xt = /q 0 ( B s ) ' d B s ( t h i S i n t e ( ? r a l being an usual sto-

o ° chastic intégral). 

Inçlicat-ion. : you admit (see § E after) that you 

can apply the theorem D.5 and the Ito formula l ° / F o r e a c h i nteger n, is the process B

n adapted ? 
to F ( t, Y ) = e t a { x + f e"Sa.f(s).ds f Y } i s t h i s Process continuous ? 

t o J o t 
ffc -sa 

where Y - e .b.dWs 2°/ When n goes to the infinity, does the séquence of 
° n 

processes (B ) . converge, uniformly for each 
n>o 

2°/ Study E ( X t ) . sample function, to the process B ? 

3°/ Prove that X is a gaussian process, id est : 3°/ For each integer n, we define the process A n by : 

for each finite family itik)}.^.^ of éléments 2~n-l 

l£k£n n 

of T, the random variable {x ...} .^^ is a \ \ . 2 _ n ' 1 1 k. 2 _ n , (k+1 ) . 2 " n l 

t(K) 1̂ -ki-n k=0 
gaussian random variable 

Indication : you can begin to prove that, for I s t h e P r o c e s s A ° adapted ? Is the process A" pre-

some "good" functions f, the process Z, defined dictable ? Is the process A° continuous ? Does the 
by Z = [ f(s).dW , is a gaussian process séquence of processes <An) converge, uniformly 

t J -i -t s 
J°,tJ for each sample function, to the process B when n 

by using the exercise C.3. 
goes to the infinity ? 

EXERCISE D.2 4°/ we consider the following processes : 

Let ( i l,^,P, ) Jbea stochastic basis C

n = [ a(A n).dB n 

t t e L t j s s 

with T = f"0'1!- L e t (Z.h ..m and (V ) ̂  ^ m be two real ? 

continuous processes such that we can apply C.5 and t Q s s s Bs 
J o 

D.5. We put : w = - V + 1/2 [v,v] and n ft n n 

t t L Jt r = B

n .dBn - C - D_ 
ft t I s s t t 

C t = exp(-Wt) . | [exp. (W^)] . (dZs- a[z,v]J) ° 
•* o 

Study the convergence of tne séquences of processes 

Compare the process C and the process Y (c") , (Dn) and (R n) when n ooes to the 
n >o nyo n>o 

which is a solution of the following differential infinity ; 

équation : Y = Z - Z + [ t Y . d V n n 

t t o j Q s s *DÉ±£ation_: calculate û ( k + 1 ) # 2 - n "
 D

k . 2 ~ n 

Indication : You can apply the Ito formula to the a n d f i n d a n a d e ^ u a t e b o u n d f o r V + l ) ^ " * ' \.2~n 

function F(a,b) = b.e and to the processes (A,B) What does that mean ? 

where A = and B = ffc fexp(W ) 1 . f dZ - d fz . vl 

t t t ' o - s a ^ s w -s 7 

Moreover use the exercises C l and C.2. 
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EXERCISE D.4 EXERCISE E.3 

Let f and g be two real functions defined Let (fi ,^,P,( T)bea stochastic basis 

on the real line ; we suppose that the derivative f with T = [ o , l J . 

and g' of f and g are continuous ; moreover, we sup-
1°/ Let (N ) beareal continuous process which 

pose also that, for each real number x, we have t t C T 
P -r r i is a martingale and a process with bounded va-

g'(x) = f [g(x)J . We put T = [o,lJ 
riation. Prove that N = N a.s. 

t o 

1°/ Let < x

t ) t f e T

 b e a continuous adapted process ï nÉiSfËÎ20 : y o u c a n b e < 3 i n t o suppose that N is 

which satisfies the properties given in the a square integrable martingale ; thus, you can 

theorem C.5 (i.e. such that we can apply the prove that the process [N,N] is equal to zéro 

Ito formula) ; let A = [x,x] be the quadratic (cf. the exercise C l ) and study E[(N F C- ^ Q )
2 ] : 

variation of X. We consider the following diffe- at last, you can use the exercise E.2 above. 

rential équation : 
2°/ Let (W ) be a real continuous square inte-

rt t t C T 
Y = q(o) + f(Y ) . TdM + dA 1 grable martingale and (V.). be a real conti-
t j s L s s 4 t tt-T 

° nuous increasing process ; we suppose that 

Show that the solution of this differential V = W = 0 . Prove that the two following proper-
o o 

équation can be written Yfc = g(Zfc) where ties are équivalent : 

= x t + A^ - 1/2 I f f g(Z )] .dU a) (W^ - .̂ _ is a martingale 
t t t u S J S t t t 1 

1 o 
b) v = rw,wi 

and where U is a continuous adapted process 

with bounded variation (calculate U). I n^i£ ati2D : t o P r o v e that a) implies b) you can 

^ ,. . , . \ study the process V - rw,w| and apply the 1°/ 
Indication : you can apply the Ito formula to < 3 ( z

t

) 

, , above. 
and show that g(Zt) is a solution of a diffe
rential stochastic équation. 

3°/ Let ( M

t ^ t £ T

 a n c^ ( A

t) t ^ rpte bwo real continuous 

O Q , T r . _ _ ^ , ... r r , ,T . , r , adapted uniformly bounded processes. We suppose 
1°/ Verify that you have g 1 (x) = f [g(x)J in the fol-

that A = M = 0 and that (A ) , m is an increa-
lowing two cases : o o t t€.T 

sing process. Prove that the two following pro-

a) f(x) = x and g = C e where C is a real number ^. . 
perties are équivalent : 

b) f(x) = sin x and g(x) = arcsin . _ , , , . X . 
L ch(C-x) -* 3 each real number A , the process Z is a 

where C is a real number and e x , 
martingale where Z is the continuous process 

when x < C. .̂. X ., 1 ,2 , . 
defined by Z f c = exp.(XMfc - — A .At) 

b) the process M i s a martingale and A = (M,M] 

EXERCISE E. 1 . . . , v . 

ï n ^ iE Ë Ï i 2 n : t o P r o v e that b) implies a) , you 
T ^ / r ^ ^ ^ / z f ^ N , -̂ can use the Ito formula ; to prove that a) implie 
Let (fi,<y ,P, (<V t) t ) be a stochastic ^ ^ 

, ,/*•' x _ . * i J b) , you can derivative twice with respect to X , 
basis, the family <iç ̂ ) ̂  ^ being right continuous. 
T . r . s x . _ ^ ^. . . , . consider the case where X = O and use the 2°/ 
Let lu(n) >^>obeasequence of stopping times which is 

above. 

strictly increasing to a stopping time u. Is the set 

jo,uQa predictable set ? Let X be a real cadlag 

process such that its Doléans function d(X) is well EXERCISE E.4 (Girsanov theorem) 

defined and a-additive. Let Z be the process X stop-
, . . , _ _ ^ 1_. . ̂  Let (fi, <y ,P, (^Ih ^.m)bea stochastic basis, ped just before the stopping time u, îd est : t t € T 

that we note B(P), with T = [ p , l ] . In the following, 
z

t(^) =
 x

t^
a ;) i f t < u((jj) we will consider a probability Q defined on (fi, 

dQ 
r, , x v , , . c . .. , , and such that, if Z = —r- is the Radon-Nikodym 
Z (di) = y (uj) if t u u 1 dP 1 

t u (-̂) -
derivative of Q with respect to P, then there exists 

For each predictable set A, compare two real numbers a and (?. such that 0 <a<8 and, 

d(Z) (A) and d (X) (A O ]o, u[) for each element u) of fi ,tt £ Z t (w) 4 B . 

EXERCISE E.2 In this case, (fi, <^,Q, CŜ J fc fc T ) is also a 

T . M , „... . stochastic basis that we note B(Q). 
Let M be a continuous Hilbert space va-

lued martingale. Prove that M i s a locally (cf.A.1C) 

v-iuauo : i-.tograblt; inairi:. :ah~. 
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1°/ Let X be a real process adapted with respect 1°/ Is (X ) m a martingale with respect to the 
n nfiT 

to B(P) ; is X adapted with respect to B (Q) ? stochastic basis (fi,<y ,P,(<^ ) ) ? Is the 

n n c T 
family (X ) uniformly integrable ? 

2°/ Let M be a real martingale with respect to B(P)> n 

is M a martingale with respect to B (Q) ? 2°/ Calculate Sup E(|x |) and E [sup |x | J 

n>o n>o 

In the following, if M is a martingale with res-

pect to B(P), we say that M is a P-martingale 3°/ W e p u t Xoo = l i m X

n ' i s ( V n C T * a m a r t i n " 

(and the same for Q). gale with respect to the stochastic basis 
T ~ 4 - \ ^ ̂  ,i ^ -. (fi#fy',P,(^/ ) «) ? is it a supermartingale ? Let (M t) t^ Tbe a real continuous P-martingale * n n £T* 

such that M q = O. We put A = [M,M] and we sup

pose that M and A are uniformly bounded. , , _ p T % 

1 EXERCISE F.l (cf L D E LJ) 

3°/ Let Ybea real predictable uniformly bounded pro- We put : fi = [p,l] , ^ = a-algebra of the 

cess. Compare the stochastic integral /YdM borelian sets of fi , P probability on (fi,^), T=|p,l], 

calculated in B(P) and in B(Q). for each element t of T, = a-algebra of ail the 

borelian sets contained in f o , t J , <$*t = a-algebra 

4°/ Let (Rfc) ̂  ̂ Tbeareal predictable uniformly boun- on fi generated by €j t : more precisely a subset A of 

ded process. We put : fi belongs to*j£ if and only if A belongs to or 

X = M - f t R d A ifA = B U]t,l] where B belongs to Then 

t t ''o S S

 t ( l ] , ^ P , ( ^ t ) t Ê T ) is a stochastic basis. 

y j , 1°/ Is the family (<r ) c right continuous ? 
Q measure defined on (fi,1*) by = t t€T 

, c . . . 2°/ Let v be a stopping time ; prove that v(s) < s 
and, for each real number : ^ 

, ( /Y 1 9 / a n d < fc iniplies v(s) = v(t) . (almost surely) . 
H t ^ j - X R s d A s + M t " I X *tj 

3°/ Let u be the T-valued random variable defined on fi 

- exp.jpU+Rj.d^- i f (X +R s)
2.dA s|

 b y U ( S ) = s ; is u a stopping time ? is u a predic-

(•'o «'o ) table stopping time ? is u a totally inaccessible 

We suppose that X is uniformly bounded. stopping time 

a) Is Z a P-martingale ; 4°/ We suppose that there exists t €* ]o,l£ such that 

ïndiÇa£ion : Y o u c a n aPPly th e I t o formula P({t}) > O ; let w the T-valued random variable 

to the function f(x) = e X and to the process defined on fi by : 

J t = /o V ^ s ~ 2 'o R s , d A s w(s) = 1 if s * t and w (t) = t 

b) Does Q satisfy the properties given at the Is w a stopping time ? Is w a predictable stopping 

beginning of the exercise ? time ? Is w a totally inacessible stopping time ? 

c) Is a P-martingale ? c o . „ _ . . . 

t * 5°/ For this question, we suppose that P is the 

Indication : you can use the 3°/ of the exer- . 

Lebesgue measure. 

cice E.3 with A = 1. L e t M^ b e fche r a n d o m variable defined by M J (s) = s. 

d) Using the results above and the equality Let M be the cadlag martingale defined by 

= Z .H , prove that is a Q-martingale. M = E (M. | ^ ) . Calculate M . Is M a continuous 

. „ ^ . ^ ^. martingale ? what is the quadratic variation of M ? 

e) Prove that X is a Q-martingale. 2 

What is the Doléans function of M ? What is the 
_ , _ , M M x Meyer process associated to this Doléans function ? 

EXERCISE E.5 (See E.13 and E.14) 
Is this process continuous ? 

We put fi = [o,l] = a-algebra of the j 
^ 6 ° / Same questions as in the 5°/ above when P = —(P 1+P 9) 

borelian sets of fi, P = Lebesgue measure, T = fN z 1 ^ 
- r , where P, is the Lebesgue measure and P_ is defined 

and T w = IN \J {<*>} . For each integer n, let X be 1 « z 

• „ ^ v. v o n 1 n b v p?(^}> = 1 and P 9( fi\{j} ) = O. the random variable defined by X = 2 .1 r ~_n-i and
 J 2 2 2 2 

n |o,2 nJ 

<y n be the a-algebra generated by the random va-

riables 1 ^ ) ^ . We put < = < . 
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EXERCISE F.2 Calculate lim.E { I (M - M ) } ) 
\ 2k+l 2k 1 ' 

n-x» k=l 

We consider T = [o,ll , 2 = [o,l] , 
^ > Let m be the additive function, with values 

= o-algebra of the borelian sets of = {0,ft} ^ ^ 
, ^t in L (ft,<ry ,P) , defined on the finite subsets of T by 

if t < 1/2 and <y if t >. 1/2, M an element of \ 
t I m({k}) = M - M : can m be extended in a vector 

L.(ft,<V,P) such that E (M. ) = O, M. = M. if t < 1/2 k k 1 
1 l t I 9 measure defined on C S (T) and a-additive for the 

and M = O if t < 1/2. We suppose that E( I M, I") = + ™. J 
t 1' usual topology of h (PUI<Ç,P) ? 

Is ^ M

t ) t £ T

 a locally square integrable martingale ? 

Is [m,m] a locally integrable process ? Is it pos

sible to define a Meyer process associated to [M,m]? EXERCISE H.2 (cf. [Pel-3]) 

We consider ft = ]o,l] , T = IN (the set of 
EXERCISE G. 1 ^ 

ail the non négative integers) , °* = a-algebra of ail 

We define • T = [o lj = {l 2} t h e borelian sets of ]o,l] , P = Lebesgue measure on 

<ft =•• {0,ft} if t < 1/3 and < t = S>(ft) if t * 1/3 , l 0' 1]' F o r e a c h pairj>f integers (n,k) with C*k<2 n, 

u = 1/3 + y . 1 { 2 } , P({1}) = p > O, P({2}) = q > 0 W e P U t A ( n ' k ) ^J^'2'"' ( k + U * 2 "] a n d 

with p + q = 1, M l = q . l { 2 } - p . l { l } , Mfc = E ( M 1 | ^ t ) . X = 1 - 1 

Is u predictable ? Is u totally inacessible ? n k=l A ( n ' 2 k 1 } A(n,2k) 

Calculate E { Sup |M g|
2}, <M> and E(<M>. ). (Rademacher functions) 

s<u 
If we put A = a+b<M>, is the condition (i) of the 1 t , _ ^ 

We put Yœ = Z — .x (which is an element of L (ft,** ,P)) 
theorem G.6 satisfied for suitable positive numbers k>o 

-, , , . „ T v D • ., ̂ ^^^ n r\ o and Y = E (Y |<> ) if (y is the a-algebra generated a and b (with H = J = K = Rin this theorem G. 6) ? n 0 0 n n 

by the sets { A(n,k)} n . 
o£k<2n 

EXERCISE G. 2 

Does there exist a measure z, a-additive for 

We consider ft = T = IN (the set of ail the usual topology of L2(ft,^",P), defined on ^ , the 

the non négative integers) ; for each integer k, let a-algebra of the borelian sets of T, by 
be the a-algebra generated by the atoms 

k n —n —ni 
{j} and P be the probability defined by z(Jk.2 ,(k+l)2 J) = Y

( k + 1 ) 2 - n ~ Y

k . 2
- n ? 

1 <- D 

1 k+1 

2 ' Let y be the function defined on iJ^by y (A) = / 1^-dY • 

We put u(w) = iù, M q = O and can y be extended in a measure a-additive for 

_ x. 1 4 . 1 i the usual topology of L~ (ft,^,P ) ? Does there exist a 
\+l " \ 2 * *{k} + 2 ' Mj : j>k} 2 

positive number K such that, for each martingale M, 

Is u predictable ? Is u totally inacessible ? Calcu- N

3

( M ) * K N 4 ( M ) i f N3 * n d N 4 a r e d e f i n e d a S N3 a n d N 4 

late E(|M| ) and E( Sup | M 11
2) . If we put ( c f - H ' 1 ) b ^ considering the norm in L.. instead of the 

o£t<u norm in L ? 
A = a+b [m], is the condition (i) of the theorem G.6 

satisfied for suitable positive numbers a and b ? 

EXERCISE H.1 

We consider T = ft = (N (the set of ail 

the non négative integers) ; for each integer k, let 

<\. be the o-algebra generated by the atoms {j} 

and P be the probability defined by 

P({k}) = 2 ; let M be the random variable 

defined by 

1 — 2 k . l { k } 

k>o k(k+l) 1 J 

and M be the martingale defined by = E(Moo| 'tf'y) • 

Is the martingale M equi-integrable ? Calculate 

E (M*) if M* = Sup.l^. 
k^o 
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BIBLIOGRAPHICAL NOTES 

A. The notions and properties studied in the 
paragraph A are now very classical ; the funda-
mental role of the $$-algebra of predictable 
sets was disclosed by the Strasbourg school 
(cf., notably, [Del]) (see also [Bur]) ; 
the systematic use of the algebra $$ is due to 
the authors (cf. [Pel-2]) ; this idea has been 
also exploited by Follmer (cf. [Fol]). 

B. There are many books and studies on the stochas-
tic integral ([sko], [ItK], [ G i s ] , [KUS], etc...) ; 
in the non continuous case, this integral was 
notably studied in [KuW] and [DoM-1] ; the cons
truction given here is due to the authors. 

C. The Ito formula is a fundamental point of this 
theory ; the first study is, of course, due to 
K.Ito (cf. [Ito]) ; the generai Ito formula in 
the finite dimensionnal non continuous case was 
obtained in [DoM-1] ; the proof given here, 
available for Hilbert space valued processes, 
is very different from the proof used in [DOM-1] 
and is due to the authors. 

D. The use of the fixed point theorem to obtain 
strong solutions for stochastic differential 
equations is very classical ; the theorems given 
here, available in a very general context, are 
due to the authors. 

The theorem D.5. generalizes [DoM-2] , [DOL-2] and 
[Pro]. 

E. The theorem E.4 is due to Doob ; the formulation 
given here is due to the authors (cf. also, [Ore]) ; 
the Doléans measure was introduced in [DOL-1] ; 
its systematic use and study, in particular the 
lemma E.2, are due to the authors (cf. [Pel-2]) ; 
the stochastic integral with respect to square 
integrable martingales was considered in [cou] and 
[kuw] ; the inequality E.12 is due to Doob. 

F. The construction and the properties of Meyer pro-
cess were obtained by the Strasbourg school 
(cf. [Del]) ; the presentation given here, spe-
cially F.7 and F.8, is due to the authors 
(cf. [Pel-3]); it does not require the prerequisit 

on predictable projections and predictable sections 
as developped by Dellacherie ; cf. also [Rao] for 
an attempt in this direction. 

H. The most important inequalities of the paragraph H 
were obtained by Burkholder (cf. [Bur]) ; several 
authors gave simplications with respect to the ini
tial proofs ; ([DOV] , [Fef] , [Gar] , [KUS] , etc ...) ; 
the inequalities H.2 and H.9 are due to the authors : 
the proof of H.9 uses an idea given in [Mey-2]. 

The paragraphs G and J are due to the authors 
(see [MeP-3] and [aPel-4]). 
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