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NUMERICAL SOLUTION OF THE TRANSONIC EQUATION BY THE 

FINITE ELEMENT METHOD VIA OPTIMAL CONTROL. 

M.O. Bristeau, R. Glowinski, O. Pironneau 

o o o 

ABSTRACT 
It is shown that the transonic équation for compressible potential 

flow is équivalent to an optimal control problem of a linear distributed 
parameter System. This problem can be discretized by the finite élément 
method and solved by a conjugate gradient algorithm. Thus a new class of 
method for solving the transonic équation is obtained, It is particularly 
well adapted to problems with complicate two or three dimensional geometries 
and shocks. 
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2. INTRODUCTION 

The transonic équation is a non linear partial differential équation 
which has an elliptic behavior in the subsonic régions of the flow and a 
hyperbolic behavior in the supersonic régions. At the interface the normal 
component of the speed of the flow can be discontinuous (shocks), Some 
finite différence methods have been successfully developped even for 
flows around simple 3HD objects (Jameson (1974), Garabedian-Korn (1971)). 
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However the method of finite différence is not well suited to complicate 
geometries. An alternative approach using finite éléments was studied by 
Gelder (1971), Norries & de Vries (1973), Periaux (1975) but their methods 
explode at supersonic speeds. Following Gelder's approach we shall replace 
the transonic équation by the minimization of a functional in an abstract 
space, a problem which can be solved by the methods of the theory of 
calculus of variations and optimal control theory. 

3. STATEMENT OF THE PROBLEM 
Stationary adiabatic monophasic compressible flows, in which the 

effects of viscosity are neglected, are well described by the set of 
équations 

/ 8pu 3pu 3puA 
(3..) 7 . (pu) = 0 ( _ L + - r i + . 1 _ 3 L 0 

\ x, x 2 x 3 / 

(3.2.) P - P o 0 - & 

(3.3) u = V<J> (u. = , i = 1,2,3) 
i 

where p is the density, u is the speed of the fluid and where P Q>C^ 
and y are constants (y^l.A for di-atomic gas, see Landau-Lifchitz (1971). 

Y-l 1 
We shall dénote k = — , a^l/y-l. Therefore, if Q is the région 
occupied by the fluid, one must solve the nonlinear partial differential 
équation : 

(3.4) V- (l-k|V(|>|2)aV<j) = 0 in ft 

with the boundary conditions 

(3.5) «frir, = <j>, 
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Where r and Y^ are parts of the boundary dQ, of Çl. We shall assume that 

Tj u = dQ, and n = 0. In addition, if there are shocks (i.e. 

lines or surfaces where the tangential speed of the flow is continuous 

but the speed normal to thèse lines or surfaces is discontinuous) then, 

across the shock : 

( 3 . 7 ) (pu) + = (pu) (Rankine-Hugoniot condition) 

( 3 . 8 ) u + < u (entropy condition) 
n n 

where it is understood that the particules of the fluid move from - to +• 

Note that ( 3 . 4 ) multiplied by w eC*(ft) and integrated by parts, 

leads to 

(3.9) f (l-k|V<j>|2)aV<J) Vwdx = [ (l-k|V<j>|2) g 9 w d r 
J Q J r 

V w e C ^ Q ) s.t. w | r j » 0 ; $\T « 0 

If the notion of derivative is extended and the space C*(fi) is replaced by 

H 1 (ft) = {weL 2(!î) |Vw e(L 2(^)) 3} then ( 3 . 9 ) is called a weak formulation 

of ( 3 . 4 ) - ( 3 . 6 ) . Note that it contains ( 3 . 7 ) . 

4. GELDER'S ALGORITHM FOR SUBSQNIC FLOW 

For notational convenience we suppose I ^ 2 ~ 0» Consider the 

functional 

( 4 . 1 ) E (cf.) = - f ( l - k | V 4 > | 2 ) a + ' d x 
J il 

we shall say that (J) is a stationary point of E q on 

( 4 . 2 ) H^(ft) = {(^eH1 (fl) |<j>| r , = 0 } 

if 

Ô E Q = Eo(<J>+64>) - E ((J>) = o(ô<t>) V6(j» eH^Cfi) 
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Since, from (4.1) 

(4.3) 6E = f 2k(a+l)(l-k|V<|>|2)aV<f>VÔ<j>dx + o(ô<|>) 

° J fi 

any stationary point of E q on H^j(£2) satisfies 

f (l-k|V(f)|2)aV<])Vwdx = 0 V w e H 1 (ft) 

Thus ail stationary points of E q on (Çl) such that $\T ^ « <J>Q | TJ and 

which satisfy (3.8) are solutions of our problem. 

Let us look at 

4 - < E ( « + A Ô 4 0 ) L 0 - 2 k ( a + l ) f ( l - k | V c ^ | 2 ) a [ V 6 c 0 V ô c D - ^ ( V ^ V 6 ^ ) 2

 ] d x 

dXZ A ~ ° Jft (l-k|V<J>|z) 

with our notation the mach number is such that 

M 2 = 2ka(l-k|V<f>|2)~1 |V()>|2 

therefore, if 6 is the angle between V(J> and V6<{>; 

2 

= -2k(a+l)f p ( l - M 2 cos 2 6)|VÔ(t)|2 dx 

dA J a 
This shows that if in some part of the fluid M > 1 , E is not convex and 

the solution of (3.4)-(3.8) is only a. saddle point of E, On the other hand, 

if M < 1 in Çl then E is convex and the solution of (3.4)-(3.8) is a minimum 

of E. This fact was utilized by Gelder (1971) and Periaux (1975) for cons-

tructing a solution of (3.4)-(3.8). The functional E is minimized by a 

gradient method with respect to the H* (ft)-norm ; i.e. {(J) } 9 is constructed 

j n n^z 
by solving for 4> n +j

 e H (Œ) : 

p V<f> . Vwdft = 0 V w e H 1 , ^ ) , (({) ..-<(>• - 0 
J ^ n n+1 oî Tn-rl M 1 1 

This method works very well (less than 15 itérations in most cases) and 

it is désirable to construct a method as near to it as possible, for 

supersonic flows. 
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5. FORMULATION VIA OPTIMAL CONTROL 

Along the line of §5 we shall look for functionals which have the 

solution of (3.4)-(3.8) for minimum. Several functional where studied 

in Glowinski-Pironneau (1975) and Glowinski-Periaux-Pironneau (1976). In 

this présentation we shall study the following functional : 

( 5 . 1 ) ECO = [ p(|VÇ|2)|V(<}»-0|2 d x , P ( | V Ç | 2 ) = ( l - k | V Ç | 2 ) a 

where <j> = <j)(Ç) i s t h e s o l u t i o n i n H ' (Œ) of 

( 5 . 2 ) J p ( | V Ç | 2 ) V(|)Vwdx = 0 VweH^j(fl) , $|r, - <j>, 

Proposition 1 

Given e > 0 small the problem 

(5.3) min {E(Ç)|ÇeH} 

where H = { Ç G H ^ Q ) ] ^\T] = $ |V£(x)| < k~ 3 / 2(l-e) a.e. x e «} 

has at least one solution and if AÇ ( x ) < +<» V x e Çl , it is a solution 

of (3.4)-(3.8) if it exists. 

Proof 

Let {£ n) be a minimizing séquence of E then Ç^e H implies that 

2 — 1 2 r 
Il VÇ || < k (1-e) ^dx, therefore a subsequence (denoted {£ } also) 

n J j6 n 

converging towards a Ç e H can be extracted. 

From the définition of p , and <}), 

(5.4) ea||V(<j> - * ) | | 2 < f P n V(<b-$) 7(6-*) dx = f (p - p ) V*V<<|> - $ ) d x 
j Q n n n J f i n n 

«iiv(<f>n-4>)iii r ( p - p ) V 4 i d x i 
J n 

But p -> p weakly therefore (f) <f strongly in (ft) . The functional E 
n n 

is convex and continuous in therefore it is weakly l.s.c. so that 
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(5.5) E(Ç) ^ lim E(Ç ) 

Therefore (5.3) bas at least one solution. Since any solution of (3.4)-

(3.8) is a solution of 5.3 with and E(£) = 0, then E(£) = 0 and 

X = <j> ; therefore Ç (and <J>) is a solution of (3.4)-(3.7) condition (3.8) 

can be rewritten : V • u < + 0 0 , hence A£ < + 0 0. 

Proposition 2 

If Ç|lj = <J>, 6Ç | r j - 0, then 

(5.6) E(Ç+6Ç) - E(Ç) = l\ P(|VÇ| 2) (1+4- M2(1-|VÇ|2-|V<t>(~2))V£;-VÔÇdx +o(6Ç) 

(M 2 = -2p'p _ 1 |V<t.|2 = -2kcx ( 1 -k | V<}) | 2 ) ~ 1 | V<() | 2 ) 

Proof 

From (5.1) and (5.2) 

(5.7) E(Ç+6Ç)-E(Ç) = l\ fcpIVÇ-VoÉ;| V(4>-Ç) | 2-pV(<|>-Ç)VÔÇ+pV(<f>-Ç)-V6<l>]dx 

+ o(6Ç) + o(6<j>) 

where 

p' = - k a ( l - k | V Ç | 2 ) a - 1 

From (5.3) 

(5.8) f pVô(|>Vwdx = -f 2p'VÇ«V6ÇV(J)«Vwdx+o(ôÇ) Vw e H 1 (îî) 

2 

and since p(|V(Ç+6Ç)| ) is bounded from below by a positive number, there 

exists K such that ||Vô<|>|| K | | V 6 Ç | | 

Therefore, by letting w = cj)-Ç in (5.8), (5.7) becomes 

ÔE = -2 f [pV(<f>-£)-VÔÇ + PT(|V(f)|2-|VÇ|2)VÇ-Vôç] dx 
J fl 

and from (5.2) the term pV(J)V6Ç disappears. 
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Corollary 1 

If Ç, 4) is a stationary point of E, it satisfies : 

-2 

(5.9) V-[p(l + ^-0-|V Ç| 2 |V^r2) VÇ] - 0 in Q 

-2 

(5.10) p (1 + (i-| v ç | 2 | v * | ~ 2 ) If | r = 0 ; É | r , = «frj 

Remark : It should be noted that in most cases (5.3) has no other 

stationary point than the solutions of (3.4)-(3.7). Indeed let 

(x ,y ,z ) be acurvilinear system of coordonate such that 
s Ç> s 

VÇ = ( ̂  ,o,o) 

Then, from (5.9),(5.10) 

sHso . £ < • - i v c i 2 i v * r 2 ) ^ ] - o , | i r 2 - o 

or M 2(l- |VÇ| 2 |V^|" 2) L - -2, = 

This system looks like the one dimensional transonic équation for a 

compressible fluid with density 

-2 

p (i + M . (i -1 v c i 2 iv^r2)) 

Therefore, if the Ç-stream lines meet two boundaries and AÇ < +°° at the 

shocks and _2 

»+ x o- i v ç i 2 1 v*r 2> > o 

then 4> = Ç. 

6. DISCRETIZATION AND NUMERICAL SOLUTIONS 

Let ^ e a s e t °f triangles or tetraedra of Çl where h is the 

length of the greatest side. Suppose that 

U T c Q , T n T = or a vertex V T ,T e Ç 

0 

Let * | J T and Tj^> parts of 3fl^ which approximate and T^. 
T e « h 
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Let an approximation of H* (Œ) : 

(6.1) # h = { w h e C°(Qh) |w h linear on T V T 6 ^ } 

Note that any élément of %^ is completely determined by the values 

that it takes at the nodes of *C^. Therefore if we assume that TS^ has 

N = n+p+m nodes P^ with P £ € if i>n+p, P^ e if i e ]n,n+p] , and 

if we define w. e 3d, by 
i h J 

(6.2) w, = 1 at node 1 and zéro at ail other nodes 
i 

Then any function w e i s written as 

(6.3.) d> = Ea.w. 

i i 

Algorithms 1 

Let Ç, = Ç 1 w - > then (5.2) becomes 
i=l 1 

J Cl -k 17Çfa |
 2) aV<J> hVw idx = 0 i=l,...,n+p 

(6.4) n+p . N 

i=l n+p+1 

and (5.6) becomes 

N 

(6.5) ^ S E h = £ ^ X<5Ej + o(6Ç x) 
i=l 

(6.6) 6 E

n = J [ p - P ' d V ^ ^ - I V ^ I ^ J V ^ - V w . dx 

Consider the following algorithm 

Step 0 Choose , set j=0 
— h ho J 

Step 1 Compute (J)^ by solving (6.4) with = Ç^j 

Step 2 Compute (6E?\ , i = 1 , . . . ,N} by (6.6) 

Step 3 Compute ÔÇ^ = 2 ^ w ^ ^y solving 
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(6.7) [ V 6 Ç h V w . d x = ÔE* i=l,...,n+p 

h 

Step 4 Compute an approximation X^ of the solution of 

(6.8) min f p ( X ) | V(Ç. (X) - <j>,(X))|2dx 
Xe[0,l] J "h n n 

where N 

Step 5 Set £ » Ç (Â.), j = j -H 1 and go to step 1. 

j + 1 J 

Proposition 3 

Let , .}. n be a séquence generated by algorithm 1 such that 

•"1/2 

|VÇ^_.(x)| >$ k Vx, Vj . Every accumulation point of {Ç^^ j>0 ^ S a 

stationary point of the functional 

Where <}>, = è. (Ç, ) is the solution of (6.4), in 
n h n 

5 h = { e h € 3 6 h l | v ç h ( x ) l * k " 1 / 2 V x 6 V 

Proof 

Algorithm 1 is the method of steepest descent applied to minimize 

( 6 . 9 ) in H^, with the norm 

( 6 - 1 0 ) H ^ h i l h = l a V ^ h d x 

h 

Therefore {E, (Ç, .)}. decreases until ÔE, . reaches zéro, 
h hj j hj 

Remark 6 . 1 : ( 6 . 4 ) should be solved by a method of relaxation but (6.7) 

can be factorized once and for ail by the method of Choleski. 

Remark 6.2 : Problem ( 6 . 8 ) is usually solved by a Golden section search 

or a Newton method. 
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Remark 6.3 : Step 5 can be modified so as to obtain a conjugate gradient 

method. 

-1 /2 
Remark 6.4 : The restriction : |u^ (x)| < k in theorem 5.1 is not a 

j 
-1/2 

problem if u is not too close to k otherwise one must treat this 

restriction as a constraint in the algorithm. Also, even though theorem 

(5.1) ensures the computation of stationary points only, it is a common 

expérience that global minima can be obtained by this procédure if there 

is a finite number of local minima. 

Remark 6.5 : The entropy condition AÇ^ < +°° can be taken into account 

numerically. Let M(x) be a real valued function then A£^<M(x) becomes, 

from (6.7) 

(6.11) -E Xj 6E^\ < M(x i) i=l,...,n+p 

Therefore, to satisfy (6.11) at itération j + 1, it suffices to take 

ôE^j = 0 in (6.7) for ail i such that (6.11) at itération j is an 

equality. This procédure amounts to control U) = AÇ instead of Ç. 

7. NUMERICAL RESULTS 

The method was tested on a nozzle discretized as shown on figure 1, 

( 300 triangular éléments, 180 nodes). The Polak-Ribiere method of conju­

gate gradient was used with an initial control : A£ = 0 (incompressible 

flow). A mono-dimensional optimization subroutine based on a dychotomic 

search was given to us by Lemarechal. Several boundary conditions were 

tested 

1°) subsonic mach number M = 0.63 at the entrance, zéro potential on 

exit, the method had already converged in 10 itérations (to be compared 

-13 
with the Gelder-Periaux method) giving a critérium E n = 2 10 

i n i u 
( E h o = 1 0 >' 
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2°) Entrance and exit potential specified. 

For a decrease of potential of c()j - ^ = 0.7 the method had conver-

ged in 20 itérations without including the entropy condition, giving a 

critérium of E 2 Q
 = ^ ^ ^9 t* i e r e s u ^ - t s a r e s n o w n o n figure 2. 

3°) Supersonic mach number M œ = 1 .2 "> at the entrance. 

The method computes a solution that has a shock at the first section 

of discretization. An other boundary condition must be added. One itération 

of the method takes 3" on an IBM 370/158 on this example. 

A three dimensional nozzle is being tested : the resuit will be 

shown at the conférence. 20 to 40 itérations are usually sufficient for 

the algorithm to converge. The results are in good agreement with the 

tabulated data. Simple and multi-bodies airfoils are also being tested. 

For them it is necessary to include the entropy condition ; 80 itérations 

are usually more than sufficient for the convergence. 

8. CONCLUSIONS 

Thus this method seems very promizing. It compares very well with 

the finite différences method available and it has the advantage of 

allowing complicate two and three dimensional geometries. This work 

illustrâtes the fact that optimal control theory is a p^*^ lui tool 

with unexpected applications sometimes. 
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