
PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

TOMOYASU NAKAGAWA

TERUO USHIJIMA
Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type
Publications des séminaires de mathématiques et informatique de Rennes, 1976, fasci-
cule S5
« Journées « éléments finis » », , p. 1-24
<http://www.numdam.org/item?id=PSMIR_1976___S5_A13_0>

© Département de mathématiques et informatique, université de Rennes,
1976, tous droits réservés.

L’accès aux archives de la série « Publications mathématiques et informa-
tiques de Rennes » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PSMIR_1976___S5_A13_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 1 -

Numerical Analysis of the Semi-linear Heat Equation 

of Blow-up Type 

by 

Tomoyasu NAKAGAWA 

Information Processing 

Research Center 

Central Research Institute of 

Electric Power Industry 

Otemachi Bldg. 

1-6-1, Otemachi, Chiyoda-k*'. 

Tokyo, Japan, 100 

Teruo USHIJIMA 

Department of Information 

Mathematics 

University of Electro-

Communications 

1-5-1, Chofugaoka, Chofu-shi 

Tokyo, Japan, 182 

§1 Introduction. 

Let ft be a bounded open set in lRn with a smooth boundary 

r « 3ft . We take the continuous problem of 

( " f t " * U + f ( u ) ' * £ 0 I t > 0 

(E) | u(t,x) = 0 , x e r I 

V u(0,x) = a(x), x e ft. 

For simplicity we assume that f is twice continuously 

differentiiable satisfying that 

(1) f(u) and f"(u) > 0 for any u e R 1 

and that for some positive y and C 

(2) f (u) > C u 1 + Y as u « . 

The initial data a(x) is continuous on "ft vanishing at r , the 

totality of such functions is denoted by C Q(ft). By Kaplan's 

classical argument [ 6 ], the. solution u(t,x) tends to infinity 

at a finite time T for some a(x). This fact is called the 

blowing-up of solution, and the time T is called the blowing-up 

time or the finite escape time. Fujita studied extensively 

this problem in [ 3 ], [ 4 ] .and so forth. There are also 

some works based on different .criteria by other authors, for 

example, Tsutsumi [9], [10], Ito [5], among others. 

The purpose of this paper is to provide a numerical method 

of (E) by making use of the finite element approximation of 

lumped mass type, based on Kaplan-Fujita's criterion. One 

of the authors already investigated an algorithm for the difference 

approximation to (E) based on Tsutsumi's criterion in [ 7 ]. 

The present work is one of its continuations and based on the 

recent work of the other author [11 ]. The finite element 
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version of the algorithm in [ 7 ] will be justified in the 

forthcoming paper. 

In Section 2, a reformulation of Kaplan-Fujita1 s criterion 

will be presented so that it is appropriate to our purpose. 

The approximate problem will be stated in Section 3, and an 

algorithm for controlling time steps will be described in 

Section 4. The rigorous justification will be done in Sections 

5 and 6. Finally in Section 7- some numerical illustrations will 

be given. Details of numerical results will be reported 

elsewhere. 

We remark that it is straightforward to modify the present 

result to the case of the condition (1) holding only u ^ 0 under 

the restriction of the initial data a(x) >̂  0. 

We should like to express our sincere thanks to Mr. Y. 

Yuzurihara for his help in the computation of our model problem. 
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§ 2 Kaplan-Fujita's criterion. 

Let A denote the smallest eigenvalue of - A with the 

Dirichlet boundary condition, and let denote the eigen-

function associated with X, $ (x) being normalized as 

j" <J>(x) > 0 , x e ft , 

I J 4>(x)dx = 1. 

Denote by J(t) the inner product of u(t,x) and <J> (x) , i.e., 

J(t) = (u(t,x), <D(x)j ? = J u(t,x) (DCx)dx. 

L 2(ft) J " 

Definition 1. The classical solution u(t,x) of (E) 

J-blows up at t. = T if and only if 

I u(t,x) e C([0,T),C n( ft)) satisfies (E), 
(3) • 0 

{ lim J(t) = <*> . 
t+T 

Let J 1 be the largest positive root of the equation of 

- XJ + f(J) = 0. 

If the equation has no positive roots, then let J 1 = 0. 

Proposition 1. The solution u(t,x) J-blows up at a 

finite time T if and only if there exists a > 0 such that 

( u(t,x) e C ( [ 0 , t j , Cn(ft )) satisfies (E) , 
(4) 1 I 

VJ(t Q) > J 1. 

Proof. The necessity of the condition (4) is obvious. 

The sufficiency criterion due to Kaplan is as follows. Let 

[0,T) be the maximal existence interval of u(t,x). By Jensen's 

inequality, we have the following differential inequality for 

•T(t) : 

(5) af 1 ^) > " A J ^ ^ +--f(J(tn t e [0,T), 
on account of the convexity of f and the normalization 
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condition of <J> . This inequality implies first that 

(6) a ^ ^ 5
 > 0 f o r t i V 

In fact, unless this were true, there would be > t Q such 

that a^(t x) « 0 and g|j'(t) > 0 for t Q < t < t ^ The first 

condition and the inequality. (5.) shows 

0 > - X J C t ^ • f ( J ( t 1 ) ) . 

Since the quantity - AJ • f(J) is nonnegative for J £ J 1, 

we have 

J(t r) < J 1 < J(t Q), 

But this is impossible since 

J ( t x ) - J ( t Q ) - J ' * 1
 ^ ^ à s > 0. 

to 
The condition (6) implies tha.t 

- XJ(t) • f(J(t)) > 0 for any t > t Q , 

which in turn implies 

, J f t ) dJ 

1+ Y-

Since we assumed that f(u) £ Cu for u » , the right-hand 

side of (7) is uniformly bounded. Hence we have that the 

solution u(t,x) blows up at finite T. 

Corollary 2. The blowing-up time T is bounded from above 
as 

T - t o + W o r " * ^ * 
Proof. This follows from thè estimate (7). 

- 5 -

§3 Setting of the approximating problem. 

Let ( « n ; h > 0) be the family of polyhedral open 

domains contained in satisfying 

\ max dist(x, Ty 0 as h + 0. 

U«r h 

Here is the boundary of fi^. 

Definition 2. The set (g^ = ( S ^ } is a triangulation 

of the polyhedral open domain fl^ ^ a n c * o n l y if 

r (i) J , k-1',2,'"", are nondegenerate closed 

n-simplices, the number of which is finite, 

I 

j (iii) the face of'S^) i s either a face of another 

1 n-simplex of-CS^ or else is a portion of the 

boundary of 12^. 

fk) 

In the following, we shall omit the superscript (k) of J 

for simplicity of notation. Let b^, , b n denote n+1 vertices 

(or nodal points) of an n-simp-lex S. In terms of the 

barycentric coordinates ( X Q(xJ, X n(x)), x e S, define the 

barycentric subdivision ^^(gj °f kg * n ^ s u c ^ that 

Bb 0(S)
 = { x ; 1 i * 0

{ x ) / ( V x ) +
 X i t * B - > 1 / 2 » : 1 - i - n } 

The "lumped mass region" associated with node b is given as 

B b " g Bb(S) 

in which U denotes the union, with respect to all n-simplices S 
S 
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having b as their vertex. The characteristic function of 

is denoted by w^(x). 

By appropriate renumbering of all nodal points of all 

simplices in(§^, let b^, . D J J denote the interior nodal 

points of fl^, and let t> N + 1,. ^ N + M denote the boundary nodal 

points of fl^- Define the two functions w^(x) and w\ (xj, j=l, ;? ;
vN, 

such that 

r Wj(x) is a linear function on each S satisfying 

" j C b k } 6jk f o r k = 1 > N + M ' 
v w. (x) « w, (x) . 

J j 
Let and be the sets of linear combinations of (x) and 
w.(x) for j «'1, N, respectively, i.e., 
J N 

J V h
 { { V G h

 ajV' 
1 _ N 

V, = (u, ; u, = E a.' w.} . h h h j j 
The two functions u^ e and u^ e specified by the same 

coefficients a j = a j 1 » j 1 > 2, • • • , N, are said to be 

associate each other. Introduce the mappings and 1 

such that 

( K h : % + G h > 

where u^ e and u^ e are associate each other. 

Introduce the space X which is the space C Q ( ^ ) normed with 

the maximum norm. Similarly, introduce the finite dimensional 

spaces and X ^ which are and V ^ , respectively, normed with 

the maximum norm. Define the operator ^ by 
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. N 
(PiUMx) = Z u(b.)w (x) for u e X. 

1 1 j = l 3 3 

Clearly the mapping ~ , 

P H : X - X H , 

is the projection of X onto X^-

In terms of the above defined concepts and notations, 

define the operator in X^ by 

(A,u,,v,) _ * -(Vu, ,Vv,) 
h h h L 2(^ h) h h L2(fth) 

for uh z X h , v h e X h , 

Gh = Vh' ĥ = K h V 
and the nonlinear mapping f. in X, by 

N n _ N 
f(u h) - Z f(o.)w. for u, = Z a w . 

n j = l J 3 n j-1 J 3 

Let n: denote the ordered set (x^, T^, t2»'"*) with 
elements x > 0, n = 0 , 1, 2-, • • • . The set x will be called the 
time mesh vector. Now we state our approximating 

scheme. 

u h(t) = u h ( t n ) , t n < t < t n + 1 , 

( E h ) \ u h(t + 1 ) - u, ( O 

^ % ™ - V 
where a^ = P^a. 

Proposition 3. If ( Vw. , Vw.) ^ 0 for i ^ j, 
1 J L 2( flh) 

1 < i < N, 1 < j <= N + M » then it holds that the smallest 
eigenvalue of -A^ is simple, and that there is the associated 
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eigenfunction <J>n(x) normalized as <J>h(x) >, 0 (x e ft^) and 

'nhVx>dx - x-
Proof. As is well known, the operator A^ is invertible. 

By the criterion due to Ciarlet-Raviart [ 1 ] , the operator 

(-Â ) 1 is a nonnegative element of L(X^). Namely we have that 

(-Aj^'^u^ >, 0 for any u^ e X̂ . with u^ £ 0. Consider the matrix 

expression of the eigenvalue problem -A^^ * ^ j ^ * T n e problem 

is reduced to - XjM $> where A and IM are the stiffness 

matrix and the mass matrix, respectively, and f> is an N-vector. 

Applying Frobenius 1 Theorem to the nonnegative matrix (-A) *1M, 

we have the conclusion. 
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§4 An algorithm for controlling time steps. 

Define J^(t), the discrete analogue to J(t), by 

J h ( t ) = ( u h ( t , x ) , * h C x ) ) L 2 . 

Let J^* denote the largest positive root of the equation of 

-A hJ +• f(J) = 0. 

If the equation has no positive roots, then let J^1 = 0. 

Define x^ by the formula, 

(10) x h = min ||w || 2 / || Vw || 2. 

l<i<N 1 1 

Choose a fixed value of x which is not greater than x^. 

Then our algorithm for controlling the time step a n is 
given by 

• X Q - i, and 

( I D r T i £ W i 5
 <

 JhX-
Tn 1 J h ( t ^ " J h ( t 1 ) 

min {T, -X hJ h(t n) * f(J^"(t n)) } ° t h e r w i s e > 

for n = 1, 2, 3, * *•*. 
Fig. 1 shows the general flow' chart to calculate u(t R) 
by (E h

I) with (ID . 

Definition 4. The solution u^(t,x) of (E^) where tr is 
the time mesh vector obtained by the algorithm described 
above, J^-blows up at t = T^ if and only if 

T, = E x < oo . 
h n=0 n 

Proposition 4. The solution u^(t,x) J^-blows up at a 
finite time T^ if and only if there is a t n ^ 0 such that 
(12) J h(t nJ > J^. 

Proof. The necessity of the condition (12) is obvious. 
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The sufficiency criterion, in parallel to the proof of 

Proposition 1, is as follows. By Jensen's inequality we have 

(13)

 h k 1

 Tk

 h k > -vhctk)
 + £ C W 

for k - 0, 1, . 

The convexity of f and thje condition (12) imply that 

V < w < < j h ' w < •••• • 
Let k be an integer greater than or equal to n+1. Then our 

algorithm implies 

W " W l 3 

dJ 
= \ ( V l ) -*.*<W7 
< f J h ( t k } dJ 

where the last inequality follows from the convexity of f. 

Therefore we have 
oo 

T - t - T £ T, 
n k=n +l

 k 

- 'w'V <" • 
Corollary 5. The blowing-up time T^ is bounded from 

above as 

T h i Z n + T n + ' f J£(j) • 
J h l V n 
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§5 Convergence of thé blowing up time. 

Theorem 1. Assume the following two conditions: 

(i) Xh X a n d *h * * n L2(ft) as h -+ 0. 

(ii) Let the solution u of (E) J-blow up at a finite time 

T. For any T f < T 'and for any sufficiently small h, 
T, 

there is a solution u h(t) of (E h

 n ) for 0 < t < T* 

satisfying max ||'u\ (t) - u(t) || ? 0 as h -+ 0. 
0 < t < T t n L (fl) 

Here is the time mesh vector obtained by (11J. 

Then it holds that 

T h + T as h -+ 0 

provided that || || œ + 0 as h 0. 

Proof. Fix T' < T arbitrarily. Then we have from the 

conditions of Theorem 1 

(14) lim J, (t) = J(t) 
h^O n 

uniformly in t e [0,T']. This"implies that T' < lim inf T, . 
h+0 h 

Since T 1 is arbitrarily close to T, we have 

T < lim inf T, . 
= h-0 h 

Suppose next that T" = lim sup T, > T would hold. By Condition 

h+0 n 

2 2 1 
(i) we can find numbers J and h^ in such a way that J > 

oo 

and J 2 _x j ? f(j) < 1 — h o l d f o r a n y h = h 0 * B y ( 1 4) 
2 

there is a number t f < T such*that J^Ct') > J f ° r a n v n < n

0 * 

We may assume that t h < t ' < t h , < T for h < h n. Then 7 n = n+1 = 0 

J h(t
f) = Jh^ tn h- )* B y C o r o l l a r y 5> i z h o l d s t h a t 

T - t h
 < T H + r dJ 

T h *„ ~ T n • J h ( t n

h ) - X h J + £ < J ) ' 

Hence we have 
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h =» n n 2 

< T + 1
 2" 1 T" - ^ . 

Therefore we have lim sup T, < T" a lim sup T, , which is a 
h + 0 n h + 0 n 

contradiction. 
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§6 Convergence of the approximate solution. 

Let n be a sequence tending to zero as h tends 

to zero, and satisfying £ where is defined by the 

formula (10). Let T f be a positive number specified in Theorem 1. 

Consider a family X = (ir̂ : h > 0} of time mesh vectors 

satisfying that 

I I " o o = S U P { T : T £ t rh > - V 
and that 

I I - Z T > T'. 
h 

We can construct a family of solutions (u^ X(t,x) : 0 < t £ T') 

of ( E j ^ choosing as the time mesh vector for each h. Let 

A be the totality of the above index X. Let h(S) denote the 

diameter of an n-simplex S, and let P(S) denote the maximum 

of diameters of the inscribed spheres of S. 

Theorem 2. Assume (8) and the following three conditions 

(i) (Vw^VWj) < 0 for iĵ j , 1 < i < N, 1 < j < N+M 

(ii> max h(S) j< h 

(iii) inf min p(S)/h(S) = ij > 0 . 
h S a ^ 

If the unique classical solution u(t,x) of (E) exists in 
t e [0 ,T f] then 

lim max max |u X(t,x) - u(t,x)| = 0 
h+0 0<t<T' xe^ h

 n 

uniformly in X e A 

Proof. This is a slight variant of Theorem 1 . 2 of [ii] , 

in which the uniform dependence of X was not discussed. If one 

checks its proof, the present result can be obtained. As in [11] , 
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we have the expression 

u h

X(t) = U h

X ( t , 0 ) a i i + / o ' u h

X(t,s)f(u h

X(s))ds 

regarding u^ X(t,x) as an<X^ -valued step function where U h

X(t,s) 

and U^ X(t,s) are suitably defined approximating operators of 

e(t-s)A h I t i s t Q b e n o t e d t n a t t h e p r o o f of Theorem l.Z in 

[ 11 ] implies that the families of operator valued sequences 

{iy(t,s): h > 0 } 0 4 s , t , T 1 > X e A and { ^ ( t . s ) : h > 0 } ^ ^ X e A 

ft -s 1A 

K-converge to eK ; as h tends to 0 uniformly with respect to 

the parameters s, t, and X. Here, the operator A is the generator 

of the semi-group e ^ " 5 ^ in X « C Q ( T 2 ) corresponding to the heat 

equation in Q with the Dirichlet boundary condition. This fact 

assures the validity of the present Theorem. 

Remark. Although the twice differentiability of f was 

assumed in [ 11 ], the local Lipshitz continuity is sufficient 

for the present conclusion apart from the assurance of the 

unique existence of the smooth solution of (E). See [ 8 ] . 

Now we establish the condition (ii) of Theorem 1 to our 

solution u^CtJ obtained by the algorithm described in Section 4. 

Because of Theorem Z, it suffices to show that for any fixed 

T' < T one can choose h^ in such a way that u^Ct) never 

blows-up within the interval [0,T'J it h< h Q. This fact 

is also implied by Theorem Z. In fact, let h Q be such that 

max max | u A (t,x) - u(t,x) I <1 
0<t<T' xeQ 1 h 

for any \ E A a n d n < n n i n t h e situation of Theorem Z. This 
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implies that there is a finite number M satisfying 

(1SJ sup || u X (t)|| ? = M - -, 
0<t<T', XeA,h<h Q

 n 

Assume that there is a solution u^(t) J^-blowing up at 

t = T h < T'. Then there is à mesh point t R such that 

|| u h(t n) || > M since ||<|>h|| ||uh(t)|| > Jh(4>n) +
 00. This contradicts 

the condition (15) , since there is a X containing the time 

mesh vector in the form 

T h = <v v Vi' Tn-i' 

where Tj,0 £ j £ n-l^are the mesh lengths determined by our 

algorithm. 

It is seemingly well known that the condition (i) of 

Theorem 1 holds under the same conditions of Theorem Z. We 

skip its proof though we have not known literatures 

containing its proof. 

Finally we remark the following two Propositions in the 

literature which concern the conditions of Theorem Z. 

Proposition 6. (Ciarlet-Raviart [ 1 ].) Define o g by 

a = max {(VX VA • j /|VX | -|VX | } 
S jtfj 1 J R n 1 R n J R n 

in which X^ = X^(x) is the barycentric coordinate x>£ point x e S 

with respect to vertex P^ of S, and I > ) n

 a n c* I I n 

R R 

respectively denote the Euclidean scalar product and the Euclidean 

norm in R n. it a g < 0 for any S ^^S^» then Condition (i) of 

Theorem Z holds. 

Proposition 7. (Eujii f Z ].) Define by 

K, = min K C 

h SeS^ S 



- 16 -

in which Kg is given as 

K S = d i s t Cbi, the face of S not containing b.) 

then is estimated as 

T h > K h
2 / ( n + l ) . 
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§7 Numerical Examples. 

As an numerical illustration, we take a spatially 
7 

1 dimensional problem with ffu) = u . Let ft = (0,1). And 

S h = ([jh, (j + l)h]: 0 < j < 2^} for h = 2" N with positive 

integer N. Then our approximate equation (E, T) is nothing but 
d 2 

the usual explicit difference scheme in which u(x) is 
dx 2 

approximated by the central difference: uCx^h)-2u(x)^(x-h) ^ 
h 2 

As an initial value we take the function 

u(x) - A sin TTX. 

In Figure Z, a comparison between the controlling time 
mesh algorithm and the fixed time mesh algorithm is shown in 

~3 7 
the case of h = Z , T Q = Z*" and A = 1Z. We denote by •, 

and x, the values of u(t,x) at x = 1/Z, calculated by the 

controlling mesh algorithm and the fixed mesh algorithm, 

respectively. We obtained = 0.307 as the approximate value 
of T^ when the controlling mesh algorithm stopped by the 

- 20 
condition of i < 2 , whereas ;the fixed mesh algorithm worked until t = 0.367 when the calculation became unable n 
because of machine overflow-{u > 1 0 ^ ) . 

. \ max J 

In Figure 3, the convergence of u^(t,l/2) 
-1 2 

as h ^ 0 is shown for A = 12, with = Z h . The stopping 
- 20 

criterion is that < Z . Seemingly the round off error 

might effect the calculation in the case h = Z b . 

Our calculation was performed by the HITAC 8Z50, a medium-

sized machine, in single precision arithmetic with a Z3 bit 

mantissa. 

Finally in Figure 4, we present the result of a numerical 
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search for the threshold of blowing up by changing the coef­
ficient A of the initial data a(x), in the case of h = Z ~ 4 

-9 

and T Q = Z Numerically the solution decays exponentially 

if A < 1 1 . 4 7 4 1 7 , and blows up. at. finite time if A > 1 1 . 4 7 4 1 8 . 

It is worth recalling that if J . ( 0 ) > J 1 the solution of (E) 

blows up at finite time. In our sample problem, J(0) > J~ 

is equivalent to the condition of A > 4 T T - 1 Z . 5 6 6 3 7 . 
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I * = ^ 1 1 
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— — T ~ — 

-" "T • < e f? ^ 

T̂ Ĉ  y e s t) e is a prescribed 
(STOP,* small positive 

number. j * 1 
Set T = T ' n 

Fig.'l Flow chart for computing u^(t n) 

by controlled time steps T^. 
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i o 5 p ^ j j ! . 

10 4 
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ÎVariable time steps? / 

t =0.307 when the computation / 
n -20 / 
stopped by the condition of T R < 2 . / 

Fixed time steps? / 

-X—, t = 0.367 when the computation \J I 

n If / 
(stopped by the condition of u

m a x >
1 0 • 1 I 

i* —-—-̂ ji— 
101*"-""""* ~* * 

0. 0.1 0.2 0.3 > t 

Fig. 2 The computed value of u-by the variable time-step algorithm 

and the fixed-time step, algorithm in the case of a(x) = 12sin7Cx. 
— 3 -7 

Parameters : h = 2 and % = 2 . 
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5 f . 

io r 1 ' f f 1 
I ! 

i 

6 X A 

¡"."1 
- log 2 h . c ( Time when the computation ' 

stopped by the condition j 

J 1 0 . 1 6 2 5 ' j \^Su \ 

1 0 3 J 2 ° - 2 0 5 7 L $L1 j 

1 • 3 0 . 3 0 7 5 ; If ; 

X 4 j 0 . 3 1 7 8 $ i 

A 5 ! 0 . 3 1 8 5 i l l / ' 

I D 6 I 0 . 3 1 7 7 ! / / / I 

— ^ — r ¡1 j 

K,i JiL—j 
/A 
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Fig.3 Convergence of profile of u as h 0 in the case of 

dix) = 12sin7Cx. 
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Parameters: h =* 2 and T = 2 . 


