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* CYLINDRICAL STOCHASTIC INTEGRAL 

by 

M. METIV 1ER and J. PELLAUMAIL 

Summary 

In the first part of this study, we construct the stochastic 

intégral J Y dM where Y is a "weakly" predictable process 
a» 

and M is a "cylindrical" square integrable martingale. This 

last notion généralises the case where M is a "white noise 

in time and space". 

In the second part, this construction is extended, when M 

is not square integrable, by a regionalization procédure 

(Cf. [l8] 1 ) ; this procédure is a generalization of the 

classical procédure of localization. 
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J± F I R S T P A R T 

CONSTRUCTION OF THE STOCHASTIC INTEGRAL WITH RESPECT TO PROCESSES 

OF LINEAR FUNCTIONNALS 

INTRODUCTION 

For the purpose of studying stochastic partial differential équa­

tions it is worth considering perturbations which are "white noise in tirae 

and in space". The mathematical expression of such and object is a cylindri-

cal measure, or a linear random functional as studied for example in [l] 

, or [8] . Considering the spécial case of "cylindrical brownian motion", se-

Q veral authors defined a stochastic intégral with respect to such a stochas-
F 
2 tic process (cf. for example [7] and [il] ) • In [7] the operator valued 
o 
S processes, which are integrated with respect to the cylindrical brownian 
o 

^ motion, are such that the intégral process is a (Hilbert valued) Martingale. 

S 
M The purpose of this part is to show that, in a very gênerai context, 
z 

[> it is possible to developp a theory of stochastic intégration with respect 

S 
en to "cylindrical martingales", which extends in a natural way thé classical 
»—* 2 

1 L -stochastic intégral with respect to square integrable martingales (real 

or Hilbert valued) as studied in [ l o ] , [ l4J , [ l8] for example. This part 

gêneraiizes and complètes [ 1 4 ] * . 

Hypothèses and notations are given in the first paragraph. In the 

second one, the notion of cylindrical martingale is defined and the parti-

cular case of "white noise in time and space" is specially studied. In the 

third paragraph, we define and study a process Q : the rôle of this process 

is analognous to the rôle of the "quadratic variation" for a real square 

integrable martingale. The stochastic intégral is constructed in the fourth 

paragraph. The case where the processes considered are Hilbert-space valued 

is more specially studied in the fifth paragraph. 
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I - N O T A T I O N S 

1 - 1 In ail this paper we will assume that T is the closed inter-

vall [o,l] in a basic probability space (ft,^, p) and an increasing family 

FC)^ T * R + °* sub-o-algebras of & with the usual following completion 

assumption : 5* is P-complete and ail the P-null sets in 3? are in ^ 

for every t. 

(5) will mean the set of "predictable rectangles" : (F*]s,t])CQ*T 

where s £ t, s,t £ T and F £ (£*s-

3 ? will be the algebra of subsets of °.><T generated by ^$1) . 

is the a-algebra generated by $ , i.e. : the a-algebra of 

predictable subsets of T*&. 

1-2 is the space of real martingales M which satisfy the 

following properties : 

(i) ( M t ) t ^ T is a right continuous and with left hand limits 

process 

(ii) ^ Mt*tfcT i s a s < ï u a r e ~ i n t e 9 r a t ) l e Process 

(iii) ^ Mt^t€.T ^s defined up an indistinguability that 

is to say, if, P [sup |M - N | ] = 0, then M and N corres-

t t T Kl 
pond to the same élément of t/fo # 

(iv) M = 0 
o 

If M and N are two éléments of A , we consider < M , N > ^ | = E [M ^ . N ^ ] 

it is well-known that J&> is an Hilbert space for this scalar product 

(cf. [17]). 

1-3 Hl and € will dénote real Banach spaces. The norm will be 

written : | | • | l H » I I • I l € » e t c If B is a Banach space, then B' will 

dénote the topological dual of B (set of continuous linear form) endowed, 

if not otherwise specified, with the dual Banach norm. 

If H) and € are Hilbert spaces, the scalar product in those spaces 

will be denoted by < - ' - >

m * < * ' * >

G ' o r simply, <•#•> if there is no possible 

confusion. 
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We recall that the algebraic tensor product Hl © G can be endowed 

with several norms, giving rise to several complétions of G : 

- Hl 'ê G is the completion for a norm such that every continuous 

bilinear mapping b : (B 0 G) IK. can be factorized in a unique way as 

b = \JL o II where II is the canonical inbedding n(x,y) = x ® y and ir is 

a continuous linear mapping from HI(S^ <E into iK, with same norm as b. The 

norm Hl G is often called the trace-norm and denoted | | • | | T r • Recall 

that if € = H| is an Hilbert space and b(x,y) = <x,y> the corresponding 

linear form u, on Hl 0. Hl is called the trace-form and denoted Tr. 
b 1 

- If Ht and <E are Hilbert spaces, H ® 2 C is a Hilbert space with 

scalar product the extension of <x <2> y, x 1 ® y ' > = < X ' X , > J J • < y » y ' >

€ • 

- Hl® <E is a Banach space, the norm of which will be more easily 

described later. 

The three topolocies induced by the three considered topological 

tensor product on B <2> G are comparable and we have the canonical continuous 

injection. 

Hl ® G C-*H § 2 G C-*Hl® e € . 

1-4 There is a unique injective linear mapping of Hl ® G into 

the vector space of linear operators with finite range from B into G, asso­

cia ting to x ® y the operator h < x' n >jjj Y* This linear mapping has exten­

sions which are : 

1°) isometry from Hl <S>̂  <E onto (Hl ; G ) , the Banach space of 

nuclear operators from B into G with the trace norm ; 

2°) isometry from B 0^ £ onto ^ (Hl ; G) the Hilbert space of 

Hilbert-Schmidt operators from B into G with the Hilbert-

Schmidt scalar product ; 

3°) isometry from B 0^ G onto °ÊC(** ? G) i the Banach space of 

compact operators with the usual norm of bounded operators. 

In as much x <& y can be identified with a bilinear continuous 

form on (Hl x G) or a continuous linear form on H ® G, through the formula 

<x ® y, x' ® y'> = <x,x'> . <y,y'> 
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there is also a continuous linear extension of the preceding linear mapping, 

into an isometry from (Hl (3̂  G) ' onto (Hl ; G) , the Banach space of linear 

bounded operators from a into G with the usual norm. (This isometry is in 

fact the one which associâtes to a bounded bilinear b on (H| x G) the bounded 

linear operator b in cfi (H ; C) such that <b(x), y> = b(x,y).). 

1-5 We shall note c£ (B, G^) the vector space of the linear 

continuous operators from B with its strong topology into G with its weak 

topology a (G, G ' ) . If u is an élément of ofi (Hl, G^) , the adjoint u* of 

u is defined as a linear continuous operator from G* with its weak topology 

o(€',.€) into H * with its weak topology a ( B ' , H ) . 

1-6 Random variables with values in Hl will be strongly 

measurable mapping from Œ into B . If such a random variable X has the proper-

ty E ( | | x | | a ) < », then tor^x(a)) ®X(io) is a strongly measurable random 

variable with values in B €> B , and as ||x ® y | | T r = ||x|| | | y | , X ® X 

is an integrable mapping from into B ® ^ B . As a conséquence E ( X ® X ) 6 B ^ B 

and is called the covariance of the variable X. 

If to X is moreover associated the continuous mapping X : 

h ^ < X , h > from B into L^(Œ,^, p) f this mapping appears to be Hilbert-Schmidt. 
fR % 

And it can be shown that conversely to every linear mapping X from Hl into 

L^(Œ,^, P) there can be associated a random variable X with values in B , 
Hl 

such that <X,h> = X(h) a.s, if and only if X is Hilbert-Schmidt. The Hilbert 

Schmidt norm | | x | | 2 of X is then equal to / E ( | | x | | ^ ) . 

1-7 To abbreviate the writting we will writte 

- l£(n.5V P) P * o 

^ t = L R ( f i ' ^ t ' P ) P * ° 

1-8 The norm in «4 1 ( B ; G) will be written ||•|| T r , the norm 

in d? 2(H) ; G) : | | - [ . | H # S i the norm in ofi(Hi ; G) : | | • | | b -
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II - CYLINDRICAL MARTINGALE 

II-l Définition 

If H is a Banach space, we shall say that M is a 2-cylindrical 

martingale on Wif$ is an élément of o£ (H1, (M), that is to say that M is 

a linear continuous mapping from H' into (for the strong topology of m' 

and the Hilbert space topology of <M> ) . 

II -2 Quadratic Doléans's measure 

r» 

Let M be a 2-cylindrical martingale on the Banach space Ht We 

consider the function m defined on [ J t x (H' (g) H')] by : 

, V A = (Fx]s ft]) € % , V(h,g) e (H* * H H , 

Ci 

£ [m(A)j (h <S> g) = E {1 [M (h) .M (g) - M (h) .M (g)]} 
2 * . t t S S 
O 

s 
P It is well-known that, for each élément (h,g) of (HP x 9 ' ) , 

there is a unique real measure defined on which is an extension of m(.) (h <E> g ) . 
|3 Then, this extension m defines a mapping from o into the alge-
z 
jg braic dual of (H 1 <8) H' ) . 

w We shall say that this extension m is the quadratic Doléans' 

x measure of M. In fact, we are essentially interested in the case where the 

total variation of m is finite, m being considered as an application of 

into the Banach space (HT (S^ ET) , dual of the fcensor product Ht' (S^ HT. 

(Ni 

That is the case (CfJI-5 below) in particular when M is a "white noise in 

time and in space" : in our context, the mathematical définition of such a 

process is the following : 

II-3 Cylindrical brownian process (définition) 

Let H be a Hilbert space and w a cylindrical martingale on H. 

We shall say that w is a cylindrical brownian process if, for each finite 

family (ty2<k<n o o n s t ^ t u t e ^ °f éléments of B, ^t^k^l<k<n ^s a n n ^ ( ^ m e n ' 

sionnal brownian motion such that E Tw.fhJ. wjh.)~\ = t<h. . h.>Tn for 
u t v t ,7 •* v Q B 

ail pairs (h. , h.) of éléments of B. 
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II-4 Proposition (elementary properties of the cylindrical 

brownian motion) 

Let B be a Hilbert space. Let w be a cylindrical brownian 

motion on B. Then, we hâve : 

1°) w is an isometry from B into (M> 

2°) For ail éléments h of B and for ail éléments A = (F*]s,t\) of^, 

we have : 

E ilF [w*t(h) -ws(h)]
2) = [(P<5>v)(A)] . 

3°) Let m be the quadratic Doléans's measure of w. Then, the total 

variation of m is v - P 0 p where u is the Lebesgue measure 

dm 

4°) Let Q - be the Radon-Nikodym derivative of m with respect to 

v. Then, for ail éléments (t,os) of (T x Q) and for ail éléments 

of (B x H), 

Q [h ®g] (t,u>) = <h,g>m 

Proof 

1°) For each élément (h,g) of (Hl x Hl) , we have : 

<w(h), w ( g ) > ^ = E [wjOO.w^g) - w Q(h).w Q(g)] = <h,g> f f l 

then w, considered as an élément of (a, M> ), is an isometry. 

2°) We consider h e Hl and A = (Fx] S ft]) t • The random variable 

w t(h) - w g(h) being gaussian and orthogonal to & / w e have : 

E U p . [w t(h) - w s(h)]
2}=P(F).E{[w t(h) - w s ( h ) ]

2 - } 

- P(F).(t-s).||h||* = (P ® y)(A).||h||* 

3°) Let u be an élément of a ® a with u = > X. . . a. ® a. 

(i,j)elxl 1 , 3 1 3 

where ( a ^ i € r I

 i s a n orthonormal family in HL Let m be the quadra­

tic Doléans's measure of w. If A = FxJs,tJ is an élément of & , 
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we hâve î 

<m(A),u> - ? X. . E {l„.[w.(aj w.(a.) - w (a. ) w(a.)]} 
(i.j>£l*I ° R T 1 T J 3 

• i jx '
 ( F ® M > ( A ) * ( P ® P ) ( A ) ' ' ' U " l 

then, P €> y » v is the total variation of m considered as a measure with 
-a. 

values in (H €)j H) 1. 

4°) Moreover, for each pair (h, g) of éléments of HV 

m(Fx]s,t]) (h €) g) = (P ® U) (Fx]s,t]) .<h,g> a and this proves the 4°) 

, III ~ THE PROCESS Q 

O 

m III-l Hypothèses 

S 

o For ail the following parts, we consider a Banach space H and 

a 2-cylindrical martingale M on Hj. We note m the quadratic Doléans's measure 

g of M. We suppose that the total variation v of m is fini te. 

S ^ 

(g V/e writte Q the weakly predictable process, (H/ ® ^ S ) '-valued, 

w Radon-Nikodym derivative of m with respect to v. 

i 

III - 2 Proposition 

Let v be a positive measure defined on the tribe of prediotable 

sets, Let V be the increasing "natural" process (cf. [5 ~[) associated to v. 

Let r be a reàl measure defined on the tribe of prediotable sets : we suppose 

thon \r\ $ v if \r\ is the total variation of r. Let Q be the prediotable 

Radon-Nikodym derivative of r with respect to v. For each élément to of , 

the real function Q(.,tn) is a borelian function. Then, we can define the 
process (RJ.,m by R.M - Q(s,tn).dV M (this intégral being 

t t t r t )]o,t] s 

calculated by trajectories), Then, the process f ^ ^ y ^8 ^ e "natural" 

procèss associated to fl. 
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Proof 

Let P be the class of the real prediotable processes such that, 

for each trajectory w, the real funç^çn Q(.,u>) is measurable with respect 

to the Borel tribe ; f is a vector space such that, if ( Q n ) n > Q As an increa 

sing séquence of éléments of If which converges to Q, then Q is also an 

élément of P ; moreover, ail the processes 1 with A £ 'S are éléments of € 

Then, P is the set of ail predictable sets. Then, the process (R t) is well-

defined. If Q = l f t with A it is évident that R is a predictable process 

Then, the same property is satisfied for ail bounded predictable processes 

by linearity and dominated convergence (cf, for example, the theorem 

of [ l 4 ] ) . 

To prove that R is the "natural" process associated to r, it is 

sufficient to prove that the Doléans's measure associated to R is r. Then, 

it is sufficient to prove that, if A = F*]s,t] is an élément of ^ , we 

have : 

r(A) = E [l F.<R t " R s > ] 

This property is évident if Q * 1 with B ; it is also 

satisfied for each bounded predictable process Q by linearity and dominated 

convergence. 

III-3 Theorem (properties of the process Q) 

Let B be a separable Banach space. Let m be a function defined 

on the tribe of predictable sets with values in the dual B* of B ; we suppose 

that m is o-additive for the topology o(B',B) and the total variation v of m 

is finite. Then, this total variation is a-additive. Let Q be the Bf-valued 

and weakly predictable process, Radon-Nikodym derivative of m with respect 

to v. Let V be the increasing "natural" process associated to v. Let S be the 

B'-valued process defined by 

StM = | Q(s,u).dV8M 

this intégral being a '^eak intégral by trajectories". 

Then, for each élément x of Br, the process <S,x> is, up to 

an indistinguability y the "natural" process associated to the real 

measure <m,x> . 

We call S the natural Process of m. 
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Proof 

The a-additivity of v and m is a well-known property for vector 

measurec Then 9 is well-defined by a "weak" Radon-Nikodym theorem (cf. [ 1 2 ] ) . 

The end of the theorem is a corollary of the proposition III -2 above. 

IV - CONSTRUCTION OF THE STOCHASTIC INTEGRAL 

IV-1 Introduction 

The purpose of this part is to define the stochastic intégral 

| Y.dM where Y is a "weakly predictabie" process with values in cfc (H ,6^) 

<>> 

(cf. 1-5 above) , and where M is a cylindrical martingale on H such that 

the total variation of its quadratic Doléans's measure is finite. 

Q r^R ail this part, Hl and G are Banach spaces, Hl being reflexive, and M is an ele-

2 ~.ent 3rjf(Hi' , Jt>). We supnose than HT is a separable space. Wt. note m the 

S " *> 
5 quadratic Doléans's measure of M and v the total variation of m where m 

S 

6 is considered as a (Hl* Ht') '-valued measure. We suppose than v(k * T) < +°°. 

§ We note Q the predictabie process, Radon-Nikodym derivative of m with respect 

M tO V. 

j § We shall say that a 06 (Hl, £ ) -valued process Y is "weakly 

en 
predictabie" if, for each élément (h,g) of H * €' , <Y(h) ,g> is a real 

en 

1 predictabie process. 

IV-2 cj$ -step process and stochastic intégral associated 

We note (S the set of the processes Y such that Y = l u^'^^(^j 

where (u.) . , T is a finite family of éléments of °G (Ht, C ) and (A(i)) . r 

is an associated family of éléments of âfè . 

We rem^rk that, in this situation, we can suppose that the sets A(i) belong 

to ^ and are pairwise disjoint (cf. [18 \) . 

Let Y be an élément of £ with Y = X U 4**ar\ where, for 
ifcl 1 A U ) 

each élément i of I, A(i) = (F(i) * J s ( i ) , t(i)]). For each élément g of C , 

let Z(g) be the real martingale defined by : 
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[Z(9>] t = S U F ( i ) • \ <* « [\(9)] > 

1 e i ]s(i)At,t(i)At] 

where u i is the adjoint operator of u^ . 

This defined a cylindrical martingale on € that 0e shall note 

| Y.dM and eall the stochastic intégral of Y with respect to S. 

The problem is to extend this construction to "weakly predictabie" 

processes Y as done, for example, in [l4] in the case of processes in the 

strict sensé. 

For this extension, the following remark is fundamental : 

IV-3 Remark 

Let Y be an élément of J with Y = l u..l where the 

i « i 1 A ( 1 ) 

sets ^ ( i ^ j ^ j ; a r e pairwise disjoint and, for each ifel, A(i) = F(i) *]s (i) , t (i)l ; 

then, we have : 

the random variables 1 „ , . , • TM .̂ , . . - M ...1 fu.*(g)l being pairwise ortho-
F(i) L t{i.y s d H L 1 1 

gonal in L ^ f t , ^ , P) , we have also : 

I |z(g) [ £ = | [Y* (g) <g)Y*(g)] d m 

flxT 

where Y is the adjoint of Y, 

finally, we obtain : 

| | z ( g ) | | ^ = | Q [Y*(g) ® Y* (g)] d v 

The fundamental idea is to consider a norm (cf. IV-6 below) associated to 

this formula. 

IV-4 Lemma (topological) 

We consider u e (H1 ^ H') v and g £ G'. Let v* 
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be the adjoint of v. We suppose that Hl* is separable. Let ^ x

n ^ n > 0 b& & 

séquence of éléments of B1j dense in B'. Let B^ be the vector space genera-

ted by ix-,}-, , . Let * r a projector of HtT onto BT which is a contraction, 
K ii:K£n n n 

Thens we have : 

u [(v* o g)®(v* o g)] - lim u [ f i r ' o / o g)0(-nr o o g)] 

# * 02. 
and lim u { [(v o g) - (v ' o v o g)] } - 0 

rc-H» n 

Proof 

If we consider v, g and e > o, there exists k > o and w 6. H* 

such that ||v o g - w | £ e ; this implies , V n > k : 

I ! |tt« o v* o g - v* o g| | $ | \ir ' o v* o g - w | | + ||v* o g - w!| 

n n n rfl ri 

< | | tt • o (v* o g - w) | | + £ 
n H 

<: 2e 

* y 
then tt̂  o v o g converges strongly to v o g in Hl' . The lemma follows 

from the continuity of u for the strong topology of H' and from the conti-

nuity of the mapping (x,y) ̂  (x O y) for the " trace norm " on (U* ® l H ' ) . 

IV-5 Preliminary proposition 

1°) We suppose that W is a separable Banach space. Let Q be a 

(B1 0^ Hi')'-valued and weakly predictable process. Let Y be a "weakly predictable" 

«jf ( B[3 € o )-valued process (cf. the end of IV-1 above). Let Y* be the 

adjoint of Y (with values in 06 (C\ Br )). Then, for each élément g of G'3 

il y. o <J 
the process Q [Y (g) & Y (g)~\ is a real (positive) predictable process. 
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2°) We have an analoguous resuit if we put9 in the 1°) above3 

the condition "for each élément u> of U s the mapping t Q(t,u) is borelian" 

in the place of the condition "predictable". 

Proof 

We prove the 1 ° ) : the proof of the 2°) is absolutely analo­

guous. We consider Q, Y and g. We consider also a séquence (tt*) of 

^ n n>o 

projectors as in the lemma IV-4 above. This lemma implies : 

lim Q f (tt • o Y* o g)®(ir' o Y* o g ) l = Q T(Y* o g)<2>(Y* o g)] 
n n J 

n-H» 

But, for each n, Q [(tt' o Y* o g)®(ir' o Y* o g)l is a real predictable 
n n # * 

process. Then, the same is true for Q [(Y o g)<S(Y o g)] . 

IV-6 Définitions of O =g 

Let * be as in IV-5 and pcsitise. Fer each élément g cf Z', ~v shail 

dénote by *t„ the vector space of zhe precesses Y such that 
d 

(i) V(t,u)€. ]c n , l\ Y(t3bi) is a linear operator with domaine [Y(t,u)] 

in H and range in <£ such that Q [ï*(g) &Y*(g)] (t3u) is "well-defined" 

(cf. below) 

(ii) Q [Y*'g^ ®Y*(g)] is a (real positive) predictable process (finite or 

infinité) 

We give now two différent examples where Q [y* (g) ® Y * (g)] (t,co) 

is "well-defined". 

1 ° / Let (t,u>) be an élément of ]o,l]#ft ; Q [x*(g) ® Y * ( g ) ] is "well-defined" 

in the following case : we suppose that H and € are Hilbert spaces and 

let Q 1^ 2(t,o)) be the self-adjoint operator such that Q 1 ^ 2 o Q 1 ^ 2 = Q ; 

if S)[x(t,a))] 3 Range (Q 1^ 2) and if the linear operator Y(t,u)) o Q 1^ 2(t,u)) 

is extendable into a bounded linear operator from H into G, then 
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Q [ Y*(g) (x) Y*(g)] (t,ai) is well-defined by : 

Q [ Y*(g) Q Y*(g)] (t,u>) = [Y(t,u>) o Q 1 / 2 ( t , w ) ] * (g) 

2°/ If Y is a process with values in £ (Hl , (Ê ) "weakly predic­

tabie" (cf. the end of IV-1 above) then the conditions (i) and (ii) 

above are satisfied (cf. the proposition IV-S above) . 

2 IV-7 Définitions of N and ? 

£ g g 
z 

g For each élément g of G* and for each process Y belonging to 3 

g we note : N (Y) = { J Q [Y*(ç) <$Y*(g)]. dv } 1 / 2 

jg This quantity, finite or infinité, is well-defined (cf. IV-6 
S ^ 
2 above) . If M is a cylindrical brownian raotion (cf. II-3 above) , we remark that 
z 

S f 

g N (Y) ={ ||Y*(g)|| 2. dv} 1 / 2 

^ g JfocT 
i 

We note (f the adhérence of £ , for the semi-norm 

above, in the set of ail "weakly •predictabie" processes Y . 

The mapping Y Y.dM(g) = Z (g) , defined for Y ^ , admits 

an unique extension to S which is a linear continuous mapping fram (? 

(with the topology associated to N ^ ) into çM> (cf. the remark IV-3 above) . 

IV-8 Définition of b 

We shall say that a process Y belong to £^ if the two follo-

wing properties are satisfied : 

(i) for each élément g of G', Y e (cf. IV-7 above) 
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The maaping Y Y.dM is extendable in a continuons linear 

mapping from £^ (with the topology associated to If(.)) into 

For each élément Y of ï^3

9 we shall note j Y.dM the cylindrical martingale 

associated to Y and we shall call it the stochastic intégral of Y with 

respect to M. 

IV-9 Theorem 

We consider the hypothèses given in IV-1. In this case3 for 

each élément g of G', £g (cf. IV-7 above) contains the vector space of the 

processes Y with values in <*& (flf, GQ) (cf. I-S above), "weakly predictabie" 

(cf. the end of IV-1) and such that N (Y) < + «. 
9 

Moreover, £ (cf. IV-7 above) contains the vector space of the 

processes with values in (3, d ), "weakly predictabie" and such that 

sP(Y) < + • (where &(Y) = { f Q [Y*(g) <8> Y*(g)\.dv } * ). 

Proof 

The second part of this theorem is an easy conséquence of 

the first part. 

To prove the first part, we consider a "weakly predictabie" 

process Y such that N (Y) < + « . Let g be an élément of G'. Let (ir') ^ 
g n n>o 

a séquence of projectors as in the lemma IV-4 above. We consider : 

A = {(u>,t) : Q [(ir' 0 Y* o g)® 2] S 2 Q [(Y* o g ) ® 2 ] } 
n u n 

Y = 1 . , . [Y O ( T T » ) * 1 
n A(n) u n * 

(Y*Is well-defined because H is reflexive) 

The séquence of processes Q [ ( T T ^ o Y* o g - Y* o g)® 2] 

converges to zéro (cf. the lemma IV-4 above) ; but, for each n, if u £ A ( n ) , 

Q [ ( ^ o Y* o g - Y* o g)® 2] ,< 3 Q [(Y* o g ) ® 2] 
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Then, we have lim N ( Y - Y ) = Q by the Lebesgue dominated convergence 

theorem. Moreover it is easily seen than Y belongs to £ since < Y ,g> 

n • g n_ 

is strongly predictable and N ^ ( Y ^ ) < + « . Then Y belongs also to £ ^ . 

IV-IO Theorem 

We consider the hypothèses given in IV-1. In this case, the 

mapping Y j Y.dM is a linear isometry from £^ (with the semi-norm 

Hb(.)) into c£(G',JC) (cf. the end of 1-4). 

Moreover if Y is an eler.enz of £ ^ , the quadratic Doléans 's 

measure z of Z - \ Y,dM is the (G' &^ G') f-valued measure defined by 

z(9j €>g2) = | ( « [^(g2) © y*(GJ] } dv 

for each élément (g^ ®g^) of G' 

j If 3 and G are reflexive Banach spacec, the process Q [Y* (• ) ® Y* (. )] is a 

n (G' & 7 G') '-valued process. 

! 
j In thzs case, the total variation r of z (considered as a (G' ®^ G ') '-valued 

' measure) is such that dr - | \ Q [y*(.) ® Y*(.)\ 1 1 ^ , ̂  G')' ̂ V 

j Then, this total variation is o-finize. 

') 
» Proof 
i 

* 1°) The norm of J Y.dM considered as an élément of c£(G', cM>) 

is equal to 

I I Y . dM | | = ^-S u p _ _ _ _ N ( Y ) 

| | Y | 1^ then the mapping Y j Y.dM is an isometry. 

2°) Let Y be an élément of S with Y = Z u..l ,.x where 

i t i 1 A U ) 

the sets (A(i)) . are pairwise disjoint. Let i be an élément of I and let 

B be an élément of contained in A(i) with B = F*]s,t] . For each élément 

(9 1 / 9 2) of (G
1 x G ' ) , we have : 

(z(B) ) (g 1 ® g 2 ) = E {lp. [(Mfc o u* o g ^ (Mfc o u* o g 2)-(M g o u* o g ^ (M s o u* o g^"] } 

= I 2 [ Y * (g,) t8> Y*(g ) J dv 
J B 
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Then the same equality is true for each predictable set B and for each 

élément Y of £ ̂  by linearity and density. 

3*) For each (t,w) é. (Txft), Y (t,co) is a continuous linear 

mapping from G* with the topology a ( G ' , G) into H' with the topology 

a(»' ,H) . 

If H and G are reflexive Banach spaces, this implies than 

Y (t,uO is a continuous linear mapping from G* with its strong topology 

into H' with its strong topology (cf. [ 4 ] ) • 

Then, Q [Y* ( . ) < 8 > Y * ( . ) ] induces a process with values in 

(G* ® G ' ) ' , weakly predictable. Then, the end of the theorem is évident. 

V - MORE WHEN H AND <C ARE HILBERT SPACES 

V-l Introduction 

If Hi is a separable Hilbert space, the previous proofs can 

be a little simplified ; actually B and Ht' can be identified and, in the 

lemma IV-4, it is convenient to consider an orthonormal basis {x } and 
n n>o 

the orthogonal projector on the space Hi' generated by { x i } i ^ w 

Moreover, we have some ôther results. 

V-2 We consider the hypothèses given in IV-1. Moreover, we 

suppose that Hl is a separable Hilbert space. The process Q takes its values 

in the cône of positive éléments of ( H ® . Ht)'. Then, there exists a process 
1/2 1 

Q , with values in the set of self-adjoint linear mappings from Hl into Ht , 

such that, for each (t,co,h) e (T x Q x Ht , 

1/2 2 
| | Q T o h|| a(w) = Q T [ h ® h] (o)) 

Then we have : 

N G ( Y ) = J | | Q O Y*(g) || a . dv 

If M is a cylindrical brownian motion (cf. II-3 above), for each élément 

1/2 

(t,u>,h) of (T x fl x Hfi , [Q (o>) J (h) = h . 
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V-3 Condition to obtain a genuine process 

In the preceding parts, we have supposed that M is an élément 

of Q$ (Hf', JfL ) . 

If Hl is a Hilbert space and if M is an élément of ^ 2(HJ', J(o) 

(cf. 1 -4 above) , there exists a genuine process M, with values in H, such 
~> 

that, for each élément h of HJ, M (h) = <M,h> . In this case, the quadratic 

Doléans's measure of M taxes its values in (B © B) ' = B © B which identi-
/%. e _ * 

fies itself as such, as a subspace of (B ® B) ' . Moreover, (cf. [_16 J ) , Q 

takes its values in B ® Hl and is strongly predictable. 

If M is an élément of cj§ (H*, cfb) and if HC and € are Hilbert 

spaces, it is interesting to obtain a sufficient condition on Y such that 

~£ = | Y.dM is an élément of oê ̂  (HT, 3o ) : in this case, there exists 

^ a genuine process Z associated to Z as above. 

k The following theorem gives such a sufficient condition. 

M 
2 

S 
o V-4 Theorem 

p 
î> fre consider the hypothèses given in IV-1 and we suppose that 

G g and G are separable Hilbert spaces. 

g 
w Let Y be a (B, G^)-valued (cf. 1-5) process weakly predicta-

ble (cf. the end of IV-1). 

' M 1/2.. 

a) The process \ \Y o Q I l # £ is a real predictable process. 

b) Then, we can de fine : 

f . . 1 / 2 , , 2 1 / 2 

N (Y) = { \\ï o Q || . dv } 
à hxù H. s 

(f 2 = { 7 ; Y ± E h

 S N2(Y) < * « } 

27*2 mapping Y ^N^(Y) is an hilbertian semi-norm on <f 2 associated 

with the positive bilinear form defined by, if (9JC^Jc>0 ^s a n ortho­

normal basis of G : 

(Y1 , y ; <^i> f { z Q [Y*(g.) <S> Y*i\•-..;] h a Y 
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îTze mapping Y Y . c i W induces a linear isometry from £^ into 

c& ) ; then, if Y is an élément of £^, there exists a genuine 
2 

process Z, with values in G, such that, for each élément g of G : 

<Z,g> = *Z(g) = ( | Y.dM)(g) 

e) Moreover, if Y is an élément of £^, the quadratic Doléans's measure 

z of Z = Y.dM is the (G 0 G)-va lued measure defined by 

z(g1 &g2) = | ( Q o [Y*(g2) e> f(g2ï] ) .dv 

The (G ® G)-valued "natural" process <z> associated to z is related 

to the (B® W '-valued "natural" process <m> associated to m by (see II1-3) 

<2> - [ d <m> o (Y* ® Y*) 
t J s s 

o 

Proof 

a) Let ^ K ^ K > 0

 a n orthonormal basis of €. We have : 

1/2 o n l'2 - 9 
(||Y o Q | | h s ) 2 = lim { Z ||q o Y * ( g k ) | | ; } 

n-x» k=o 

n 

= lim { Z Q [ Y (g ) ® Y ( g ^ ] } 

n-H» k=o 

1/2 

then | | Y o Q || is a real predictable (cf. IV-5 1°) above) 

process (finite or infinité). 

b) For each élément g of €, we have N ( Y ) $ ^ ( Y ) . Then, ^ 2 is the 

vector space of o ê (B, G )-valued ani"weakly predictable" (cf. the 

end of IV-1) processes Y such that < + °°. 

c) is évident. If Q is canonically associated to Q, we remark that the 

considered positive linear form can also be written : 

( Y , Y ) Tr ( Y Q Y * ) . d v 
1 Z JflxT 1 z 
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d) Let Y be an élément of Z with Y = Z .1 and, V i Ê I , 

ifcl 1 A ( 1 } 

A(i) = F(i)x] s(i) ,t(i)] (the sets ^ ^ L ^ i e i being pairwise dis­

joint) ; let ( 9 n ) n > 0 an orthonormal basis in G. The square of the 

norm of j Y.dM in c ^ 2 *
G ' °^ ) i s e < ï u a l t o : 

< || [ Y.d^|| ) 2 = ( Il f ï . aSH ) 2 

i <*j(e, * ) ' h . s . 

i i < | < v i & 

• n!c

 { J l

 E U F ( i ) [ * > V * n > t < i > - ^ . ' . ( i ) ] 2 » 1 

3 - t \ i z ||g o u . ( g n , | | B } av 

g l f e I F(l)x ]8(i).t(i>] n >'° 
o 

| - [ | | Q 1 / 2 o V * | | 2 . d v 

J T x a H. s 

3 r 
H I /O 

g then the mapping Y Y.dM is an isometry . 

en 
^ e) The proof of e) is the same as the proof of IV - lo2° ) (cf. also, 
O 

V - 3 ) . 
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B S E C O N D F A R T 

LOCALIZATION AND REGIONALIZATION 

I - DOOB-MEYER DECOMPOSITION THEOREM 

1 - 1 Définition 

Let us writte - i P 3 ^ , P) where p o. Let B be a 

Banach space. Then a famïly X = €T ctR J w ^ e r e * t 

€&(/B;tP

t) for 
every t, will be called a p-process of stochastic linear functionals (S.L.F.) on B 

«M 

If for every h £ the real process (X (h)) ^ is a martin-

galey the process X will be called a p-cylindrical martingale. This is a 

generalization of the définition given in A - II-l. 

1 - 2 Doleans 1 measure of a process of linear functionals 

We extend here the concept of Doleans' measure as first defined 

in [5] for real sub-martingale and extended since then to vector valued 

quasi-martingales (see jfor ex. } [ l 5 J ) . 

oi 

To every process X of S.L.F. on the Banach space 6 , we associate 

the additive functions with values in B' defined on the set of predic­

table rectangles by 

( 1 - 2 - 1 ) al ]s,t] x F) = E [l_.(X. - X )] fctB' 

X J * F t S 

Such a function on has clearly an additive extension to the 

algebra $ gênerated by & . We call it again. 

1-3 Définition 

If the additive function a y on $ has a bounded variation (for 

the norm oftB'), the process X of stochastic linear functionals, will be called 

a cylindrical quasi-martingale on B. 

This clearly generalizes the classical définition (see [15]). 

We have then the 
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1-4 Proposition 

For X to be a generalized quasi-martingale, it is neoessary 
h 

and sufficient that the family of real additive measures (ot̂ J associated 

with the real processes (X(h)) | |^| |<^ be of bounded variation, and that the 

set of those variations |o^.| has a supremum in the ordered set of bounded 

positive measures. 

Proof 

This cornes from the fact that the total variation of a x can be 

approximated by sums of the type 

£ E d F |x t (h.) - X g (h.)| ) h , £ B , ||h.|| $ 1 

i i i i 
« 

o 

* while the supremum of the variations can be approximated by sums of the type 

H 
Z 
0 . 
SA H . 
Q Z la 1 ]s.,t.7 x f.| = Z |E {1 [x (h.) - X (h.)]} | 
> . 1 X J l l J i 1 . ' F . L t. l S . i J I 

f l î i l i 

? 
3 It is easily seen that both supremum coincide. 

I 
f 

en 1-5 Doob-Meyer décomposition theorem 

1 Let X be a cylindrical quasi-martingale on B (cf. 1-3 above). 

Let a- be the Doléans's measure of X and let v be the total variation of ct~. 

Let (V^te.! ̂ e ^Le rea^ "natural" process associated to v. Let ('Z-Jte.T ^e 

the B'-valued and weak predictable process, Radon-Nikodym derivative of 

with respect to v. Let (Y^) tk,T ^ e P r o o e s s defined by : 

Y+ = f Z M . d V M 
t J s s 

o 

This intégral being a weak intégral calculated "by trajectories". Let Y be 

the cylindrical process associated to Y by Y (h) = <Y,h> . 

Then, X - Y is a cylindrical martingale. Moreover, for each élément h of B, 

<Y,h> is the "natural" process associated to X(h), up to an indistinguashi-

bility. 
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Then to define the stochastic intégral with respect to X, it is sufficient 

to define the stochastic intégral with respect to Y (weak intégral "by tra-

gectories") and with respect to the cylindrical martingale X-Y . 

Proof 

This theorem is a mere corollary of the theorem A - III-3 above. 

This theorem generalizes theorem in [l8 ] . 

II - LOCALIZATIQN 

II-1 Stopped cylindrical process 

Let a be a stopping time. Let X be a cylindrical process on the 

Banach space B. Let Z the cylindrical process defined by : 

Vh £ B ' , [Z(h)] t = [X(h)] t A ( j 

X(h)J t^ is the real process X(h) stopped at a ) . 

Ai 
Then, we shall say that Z is the cylindrical process X stopped 

at oand we shall note Z^ = (X ) ^ . 
t t t A a 

II-2 Local cylindrical process (définitions) 

We shall say that X is a local 2-cylindrical martingale (resp. 

a local cylindrical quasi^martingale), if there exists an increasing séquen­

ce (°n^n>c °f stopping times such that. 

(i) lim F [on < l] - 0 
nr"*> 

(ii) \/ n, the cylindrical process X stopped at is a 2-cylin­

drical martingale (resp. a cylindrical quasi^martingale). 

It is easily seen that the previous results (construction of the 

stochastic intégral, Doob-Meyer décomposition theorem) can be extended to 

local cylindrical process as in the real case. The following proposition 

gives a sufficient condition to have a local 2-cylindrical martingale. 
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II-3 Proposition 

We consider a Banach space such that its dual Br is separable 

and a cylindrical process X on ÏB such that : 

(i) for each élément h of B', X(h) is a local square integrable 

real martingale, 

(ii) for each stopping time o, the mapping (X, . ) from B', with 

its strong topology, into L (Sl,& y P), with its stvong 

topology, is continuous. 

Then, X is a local 2-cylindrical martingale. 

Proof 

Let a be the positive measure defined on ftxT by a = P0y where 

y is the Lebesgue measure on T. Let (h ) be a séquence of éléments of B', 
n n>o 

| dense in B'. For each integer n>o, let (a'(n,k))^ > o be an increasing sequen-

Q ce of stopping times such that, for each integer k>o, a(]a'(n,k), l] ) £ 2 ̂ n + k ^ 

£ and the real process M(h ) stopped a a'(n,k) is a square integrable martin-
.§ n 

W gale. For each integer k, let be a (k) the stopping time defined by 

î 

a(k) = inf a'(n,k) . We have : 

I n>o 

H 

S a( ]a (k ) , l ] ) * I a( ]a'(n ,k),l] ) £ 2 ~ k 

S n>o 
»-» 

M then the increasing séquence ^ a ^ K ^ k > 0 satisfies the properties II-2-(i) and (ii) . 

III~ CYLINDRICAL REGIONAL 2-DISTRIBUTION PROCESS 

m - 1 Définition 

Let X be a cylindrical process on the Banach space B. We shall 
m» 

say that X is a cylindrical régional 2-distribution process if there exists 

a séquence ^ M ^ n > 0 °f eZements of and a séquence (a

n^n>c °f Q-finite 

positive measures on (P such that 

(i) for each élément h of £' such that \\h\\ $ 1, for each 

élément A of^Pand for each real %-step process with 

Sup . |y < W | S 1 

we have ( | | W j T.d X(h) | | ,2

 f aU) 
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(ii) for each integer n, P \F(n)*\ 1 - 2™ 

\ 
As in the real case, to define the stochastic intégral Y d X 

P m» J 
of a (H, G^)-valued process Y with respect to X, it is sufficient to define 

this stochastic intégral for each élément u) of F(n) (for each integer n) . (cf [l8]'). 

Then, it is sufficient to define this stochastic intégral with respect to a 

cylindrical 2-distribution process in the following sensé : 

III-2 Définition 

Let X be a cylindrical process on the Banach space B. We shall 

say that X is a cylindrical 2-distribution process if there exists a o-fvnite 

real measure a on (J* such that, for each élément h of B1 with \ \h\ \ s 1, 

for each élément A of ® and for each real <É -step process with 

Sup . \Y.M\ * 1 we have ( || f Y.dX(h)\\ )2 < a(A) 

t3iù
 Z }A L*(ïl,$,P) 

We remark that, in the real case, this définition is a little 

différent from the définition of a 2-distribution process given in £ 1 8 J -

It is convenient for our purpose which is not the same as in [| 1 8 ̂  -

III-3 The process Q 

Let Hl be a separable Hilbert space. Let (h ) ̂  be an ortho-
n n>o 

normal basis in HL Let X be a cylindrical 2-distribution process. Let a be 

a a-finite positive measure on fP such that, for each élément (h x b) of 

(H| x 5fc) and for each real step process Y, we have : 

( || ( Y.d x(h)|| ) 2 < ||h|| 2 . a(B) 
J B L (G,y,P) B, 

For each integer n, we consider the set of ail o-finite positive measures 

m such that, for each real ffc-step process Y and for each élément B of 

we have ( || Y.d X(h ) | | ) 2 S m(B) (of course, a is an élément 
J B n l/*(fl,3\P> 

of J ) . Let a be the lower bound of J and let S be the Radon-Nikodym 
n n n n 

dérivative of a with respect to a (S is the lower bound in L4(ftxT,<P, a) 
n n 1 

of the Radon-Nikodym derivatiyes ^ for m £ J^) . 
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For each élément (h © h * ) of Hl <*> Ht with h = l \-\ and 

k>o 

h' = E ^h'^k a n d ^ o r e a c J l e l e m e n t w of fi we define : 
k>o 

Q(h®h')(oj) = E \ - ^ . S k ( o ) ) 

k>o 

By hypothesis, for each integer k, |s (u>) | $ 1. 

Then, for each élément u> of fi, Q(.) ( w ) is a real linear mapping defined 

on (H! ® H) and this mapping is continuous for the trace-norm on Hl © HJ : then, 

this mapping is extendable in a real linear continuous mapping defined on 

(H ® 1 H) that we shall note also Q(.) ( w ) . The process Q is a (Hl <Z>^ Hl) '-valued 

process. 

III.4 The stochastic intégral 

i 

P Then, it is easily seen that the construction of the stochas-

2 tic intégral given in the paragraph A-IV above can be extended in the pre-

h sent case. Notably, if G is a Hilbert space, if Y a ^ - s t e p process with 

P values in ofi (Hj,c ) , for each élément A of (fè , for each élément g of G 
a 

ê with ||g|| £ 1 , we have 

M 

I ( | | f Y*(g ) . d x | | ) 2 S f Q [Y* (g)® Y*(g)].da 

H A L (fi,£\p) J A 

w (resuit analoguous to that of the remark A-IV - 3) . 
i 

Let Y be a (H,G )-valued weakly predictabie process such 

that there exists an increasing séquence (A(n)) of élément of with : 
n > o 

Sup { Q [Y* (g) ® Y*(g)].da < + « } 

11*1 1*1 fixT 

t* f «s» _J 

Then the stochastic intégral Z = J Y .dx can be defined as in A-IV and Z 

is a cylindrical 2-distribution process. 
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IV - EXAMPLE 

This example shows that for a 2-cylindrical martingale M on 

a Hilbert space H, the total variation of the quadratic Doléans's measure 

m of M is not necessarly finite (this total variation being calculated for 

m considered as a measure with values in (H €^ H ) ' ) . 

Construction of the example : 

Let (t^) be a decreasing séquence to zéro. Let H} be an Hilbert 

space, (e^) an orthonormal basis of H and let us define the cylindrical mar­

tingale : 

M (h) = E lr r(t) (h I e ) . 1 (0_ » . — 0. ) 
t It ,»| n /" 7 t At t . 

n n+1 L /t -t . . n n+1 
n n+1 

where (3 ) is a usual real standard Brownian motion. For every n, 

«Ni -
(M (e )).-_.+ is a process with indépendant incréments, zéro on |0,t _j, 

t n t feK J n-l J 

path-wise constant on [t^, 0 0^. For every h t H, the above séries converge in 

L 2(û, S ^ P ) with 

* | M t ( h ) |
2 * | | h | £ 

defining a process with zero-mean indépendant incréments. But considering 

the partition ( ]t .,t ] x fi) of ]o,t«l x fi it is immediately seen 
^ •* n+1 n J n>o •* 1 J 

that, X beeing the process above defined : 

E E | | l ( x - X ) | | A * E E 1 (0 - 0 ) 2 = + « 

n n n+1 4 (»&**) n /t -t . n n+1 
n n+1 



- 27 -

R E F E R E N C E S 

[l] A. B A D R I K I A N Séminaire sur les fonctions aléatoires linéaires et 
les mesures cylindriques. 
Lecture Notes in Mathematics N° 139, 1970, 

Springer Verlag. 

[2] N. BOURBAKI Integration, chap. I et II 

Hermann, Paris 1 9 6 5 . 

[3] Y.L.DALETSKII Infinite dimensional elliptic operators and parabolic 
equations connected with them. 
Russ. Math. Surveys, 1967, 22, p. 1-53. 

[ 4 ] N. BOURBAKI Espaces vectoriels topologiques. 
Hermann, Paris 1961. 

[5] C. DOLEANS Existence du processus croissant naturel associé à un 
potentiel de classe D. 
Zeit. W. Theorie 9, 1968, p. 309-314. 

[6] D. DOLEANS-DADE-P.A. MEYER 

Integrales stochastiques par rapport aux martingales 
locales. 
Séminaire de proba IV - Université de Strasbourg -

Lecture Notes in Mathematics , Vol. 124, 

Springer Verlag. 

[7] B. GAVEAU C . R . A . S . , Paris, t. 276, 1973, p. 617. 

[8] I.M. GELFAND and N. WILENKIN 

Generalized functions. 
T. IV, 1 9 6 1 . 

[ 9 ] B. GRAVEREAU - J. PELLAUMAIL 

Formule de Ito pour les processus non continus à va­
leurs dans un espace de Banach. 
Annales I.H.P. Vol. X , 4 ( 1 9 7 4 ) . 

[ 1 0 ] H. KUNITA Stochastic Integrals based on martingales taking va­
lues in Hilbert spaces. 
Nayoya Math. J . ( 1 9 7 0 ) , 3 8 , p. 4 1 - 5 2 . 

[11] D. LEPINGLE - J.Y. OUVRARD 

Martingales browniennes hilbertiennes. 
C . R . A . S . t. 2 7 6 , ( 1 9 7 3 ) , p. 1 2 2 5 . 

[ 1 2 ] M. METIVIER Limites projectives de Mesures. Martingales. 
Annali di mathematica Pura ed applicata IV, 1 9 6 3 , 

p. 2 2 5 - 3 5 1 . 

- 2 8 -

[ 1 3 ] M. METIVIER Martingales à valeurs vectorielles. 
Ann. Inst. Fourier 1 9 6 7 , t. XVII, p. 1 7 7 - 2 0 8 . 

[ 1 4 ] M. METIVIER Intégrale stochastique par rapport à des processus à 
valeurs dans un espace de Banach réflexif. 
Theory of Probability and Its appl. 1 9 7 4 , 5 7 7 - 6 0 6 . 

[ 1 4 ] ' M. METIVIER Intégration with respect to processes of linear func-
tionnals. Séminaire de Rennes, 1 9 7 5 . 

[ l 5 ] M. METIVIER - J. PELLAUMAIL 

On Doleans - Follmer's measure for quasi-martingales. 
III. J. Math. 1 9 7 5 . 

[ l 6 ] M. METIVIER - G. PISTONE 

Une formule d'isométrie pour l'intégrale stochastique 
hilbertienne et équations d'évolution linéaires sto­
chastiques. 
Z.Wahrschemlichkeitstheorie verw Gebecte 33,p.1-18,1975. 

[17] P.A. MEYER Integrales stochastiques I et II. 

Séminaire de Proba I - Université de Strasbourg -

Lecture Notes in Mathematics, Vol. 39, Springer Verlag 

1 9 6 7 . 

[ l 8 ] J. PELLAUMAIL Sur l'intégrale stochastique et la décomposition de 
Doob-Meyer 
Astérisque 9 , 1 9 7 3 . 

[18]'M. METIVIER - J. PELLAUMAIL 

Notions de base sur l'intégrale stochastique. 
Séminaire de Rennes, 1 9 7 6 . 

[ l 9 ] F . TREVES Topological vector spaces, distributions and kernels. 
Academic Press N° 4 , 1 9 6 7 . 

[ 2 0 ] Y O R Thèse de 3e cycle. 
Paris, Juin 1 9 7 3 . 


