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in time and space".
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A FIRST PART

CONSTRUCTION OF THE STOCHASTIC INTEGRAL WITH RESPECT TC PROCESSES
OF LINEAR FUNCTIONNALS

INTRODUCTION

For the purpose of studying stochastic partial differential equa-
tions it is worth considering perturbations which are "white noise in time
and in space. The mathematical expression of such and object is a cylindri-
cal measure, or a linear random functional as studied for example in [1]
or [8] . Considerinc the special case of "cylindrical brownian motion", se-
veral authors defined a stochastic integral with respect to such a stochas-
tic process (cf. for example [7] and [11] ). In rﬂ the operator valued
processes, which are integrated with respect to the cylindrical brownian

motion, are such that the integral process is a (Hilbert valued) Martingale.

The purpose of this part is to show that, in a very general context,
it is possible to developp a theory of stochastic integration with respect
to "cylindrical martingales”, which extends in a natural way the classical
Lz—stochastic integral with respect to square integrable martingales (real
or Hilbert valued) as studied in [10] ' [14] B [18_] for example. This part

generalizes and completes [14] ‘.

Hypotheses and notations are given in the first paragraph. In the
second one, the notion of cylindrical martingale is defined and the parti-
cular case of "white noise in time and space” is specially studied. In the
third paragraph, we define and study a process Q : the role of this process
is analognous to the role of the "quadratic variation" for a real square
integrable martingale. The stochastic integral is constructed in the fourth
paragraph. The case where the processes considered are Hilbert-space valued

is more specially studied in the fifth paragraph.

I - NOTARIONS

I-1 1In all this paper we will assume that T is the closed inter-
vall [0,1] in R+, a basic probability space (ﬂ,g, P) and an increasing family

(/S‘ t)te Tm* of sub-g-algebras of 5’ with the usual followlng completion

assumption : (S is P-complete and all the P-null sets in 5 are in ét
for every t.

@; will mean the set-of "predictable rectangles” : (Fx]s,t])CQXT
where s ¢ t, s,t €T and F ¢ ’f’s.

d:) will be the algebra of subsets of QXT generated by @1 .

@is the O-algebra generated by % , l1.e. : the O-algebra of
predictable subsets of Tx{.

1-2 Vﬂ is the space of real martingales M which satisfv the

following properties :

(i) (Mt)teT is a right continuous and with left hand limits
process

(ii) (Mt)teT is a square-integrable process

(iii) (Mt)teT is defined up an indistinguability that

is to say, if, P [Sup IMt‘NtI ] = 0, then M and N corres-
teT
pond to the same element of '/,Z .

(iv) M =0

If M and N are two elements of V%, we consider <M,Nf‘ = E [Ml'Nl] ;
it is well-known that t/ﬂ’ is an Hilbert space for this scalar product

(cf£. [17]).

I-3 H and € will denote real Banach spaces. The norm will be
written : HHH ‘ HHG , etc.... If B is a Banach space, then B' will
denote the topological dual of B (set of continuous linear form) endowed,

if not otherwise specified, with the dual Banach norm.

If B and € are Hilbert spaces, the scalar product in those spaces

will be denoted by <"'>H\ ’ <"'>G . or simply, <.,.> if there is no possible

confusion.
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We recall that the algebraic tensor product H® € can be endowed

with several norms, giving rise to several completions of H® G :

- m@i € is the completion for a norm such that every continuous
bilinear mapping b : (B ® 6) > K can be factorized in a unique way as
b = u, © Il where I is the canonical inbedding I(x,y) = x@®y and u, is
a continuous linear mapping from Hl@ € into K, with same norm as b. The
norm Hl® ¢ is often called the trace-norm and denoted || l[ . Recall
that if & = Hl is an Hilbert space and b(x,y) = <X'Y>B the corresponding

-~
linear forn W, on Hl@l H is called the trace-form and denoted Tr.

A
- If W and & are Hilbert spaces, Hl®2 & is a Hilbert space with

scalar product the extension of <x ® y, x' ®y'> = <x,x'>m . <Y,Y'>G .

~
- H.I®€ & is a Banach space, the norm of which will be more easily

described later.

The three topeclogiez induced by the three considered topological
tensor product on B® & are comparable and we have the canonical continuous

injection.

P ~ Pl
HI®1 € <_9HJ®2 4 qm@s € .

I-4 There is a unique injective linear mapping of HI® € into
the vector space of linear operators with finite range from M intec 6, asso-
ciating to x @ y the operator h ~» <x,h>Hl y. This linear mapping has exten-

sions which are :
~
1°) isometry from HI®1 ¢ onto cCI(H\ ; &), the Banach space of
nuclear cperators from H into & with the trace norm ;

A
2°) isometry from H®2 & onto "(,2(!*1\ ; &) the Hilbert space of
Hilbert-Schmidt operators from B into € with the Hilbert-

Schmidt scalar product ;

3°) isometry from Hl@E & onto oCc(ﬂ ; 6), the Banach space of

compact operators with the usual norm of bounded operators.

In as much x ® y can be identified with a bilinear continucus

form on (Hl x &) or a continuous linear form on H® G, through the formula

<x®y, x' @y'> = <x’x'>8 . <y,y'>G

- 4 -

there is also a continuous linear extension of the preceding linear mapping,
into an isometry from (R @1 €)' onto Cg (A ; €), the Banach space of linear
bounded operators from H into € with the usual norm. (This isometry is in
fact the one which assoclates to a bounded bilinear b on (H x &) the bounded
linear operator?: in o (m; € such that <-;J(x), y> = b(x,y).).

I-5 We shall note &£ (], Gc) the vector space of the linear
continuous operators from H with its strong topology into 6 with its weak
topology 0{G, &'}). If u 1s an element of 08 (R, Gc)' the adjoint u* of
u is defined as a linear continuous operator from G' with its weak topology

0(6', €6) into H' with its weak topology c(R', H).

I-6 Random variables with values in Hiwill be strongly 5;-

measurable mapping from {I into B. If such a random variable X has the proper-
ty E(I ]Xl l;) < o, then wreX(w) ® X(w) 1is a strongly measurable random

variable with values in H® H, and as |[x ® y]| ITr = ||x| ’H [yl iHI F X O X
is an integrable mapping from Q into H®1 H. As a consequence E(X ® X) & m§1 )2 ]

and is called the covariance of the variable X.

If to X is moreover associated the continuous mapping ;'(
h ~<X,h> from H into L2(Q, f, P), this mapping appears to be Hilbert-Schmidt.
And it can be shown that conversely to every linear mapping ,)\(’ from HI into
L (Q ‘?, P) there can be associated a random variable X with values in R,
such that <X,h> = X(h) a. s, if and only if X is Hilbert-Schmidt. The Hilbert

Schmidt norm ||x|[2 of X is then equal to ¥ E(HXHH)

I-7 To abbreviate the writting we will writte

®P = LR(n.‘S', P) pzo
‘&P (n, e B p2o0

I-8 The norm in 41'(H i €) will be written |]. the norm

HTI'
in cxz(m; €) : ”Hus . the norm in b(m ; €) : ”Hb .
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II - CYLINDRICAL MARTINGALE II-4 Proposition (elementary properties of the cylindrical

brownian motion)

II-1 Definition
—_ Let H be a Hilbert space. Let © be a cylindrical brownian

If i i a Banach space, we shall say that M is a 2-cylindrical motion on H. Then, we have :
martingale on H'if W is an element of of (H', ll), that is to say that M is
a linear continuous mapping from H' into l/’g (for the strong topology of H'
and the Hilbert space topology of M )- 2°) For all elements h of H and for all elements A = (FX]S, t]) of (R,

we have :

1°) © is an isometry from H into M

II-2 Quadratic Doléans's measure

. £y, B, -3 w1’ = [reww] |4l
Let M be a 2-cylindrical martingale on the Banach space H. We
consider the function m defined on [fﬁ, x (B' @H')] by : 3°) Let m be the quadratic Doléans's measure of o. Then, the total

vartation of m is v = P ® u where u is the Lebesgue measure
Va=@x]s,tD€R . Vomaoe @ xan , n
4°) Let @ = = be the Radon-Nikodym derivative of m with. respect to

[m(A)](h ®qg) =E {11-‘ [ﬁt(h) .;lt(q) - ﬁs(h) -ﬁs(g)]} v. Then, ?‘Zr all elements (t,w) of (T x Q) and for all elements
of (Hx H),
It is well-known that, for each element (h,g) of (H' x B'),
there is a unique real measure defined on {P which is an extension of m(.) (h ® qg). Q [h @g] (t,w) = <h’g>11~l
Then, this extension m defines a mapping from T into the alge-
braic dual of (H' ® H'). v Proof

We shall say that this extemsion m is the quadratic Doléans’
1o

~
measure of M. In fact, we are essentially interested in the case where the For each element (h,g) of (H X H), we have :

total variation of m is finite, m being considered as an application ot ®

~ ~ ~ ~ ~ ~
into the Banach space (H' ®1 H')', dual of the tensor product H' ®1 H' . <w(h), w(g)nk = E [;1 (h) .wl(g) - wo(h).wo(q)] = <h,g>y
~
That is the case {C£II-5 below) in particular when M is a "white noise in then :', considered as an element of c{; (H,v'& ), is an isometry.
time and in space” : in our context, the mathematical definition of such a
process is the following : 2°) We consider h € H and A = (FXJS.t])(: % . The random variable

~
wt(h) - ws(h) being gaussian and orthogonal to @,s ;, We have :

II-3 Cylindrical brownian process (definition)

fod ~ 21 _ '~ ~
; E {1pe [ -V m]2 =mm) E([F ) -V m]2-)
Let H be a Hilbert space and w a cylindrical martingale on H.

2 2
= P(F).(t-s). = (PO .
We shall say that D isa cylindrical prowmian process if, for each finite (F)- (t=5) - | |n] II:l ® @ @a.||n| [a

family (h,) eonstituted of elements of H, (i,(h,)) s an n—-dimen-
k" Igksn ; ;A (0, Igsksn 3°) Let u be an element of H® A with u = ) Ai,g -2 ®a,

sionnal browmian motion such that E [wt(hi)' wt(hf)l:t<hi . hj>b! for (1,3) eIxx ' )
where (ai)ieI is an orthonormal family in H. Let m be the quadra-

all pairs (h. , h.) of elements of R.
7 ? ..7 tic Doléans's measure of w. If A = Fx]s,t] is an element of @) .
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we have ;

@@= 2 A L. E {1F.[;'zt(a1) W, (a

~ ~
-%_fa,) W@
(1.j)eIXI ilj s i ]

5
=g M,y BOWMA <@ ®w . ||ul],

then, P ® p = v is the total variation of m considered as a measure with
A
values in (H ®1 H)*.

4°) Moreover, for each pair (h,g) of elements of H{

m(FX]s,t]) (h®g) = (P @ y) (FX]s,tJ) .<h,g>ﬂ and this proves the 4°).

I1I - THE PROCESS Q

I1II-1 Hypotheses

For all the following parts, we consider a Banach space H and
a 2-cylindrical martingale 'fl‘l on H. We note m the quadratic Doléans's measure

-~
of M. We suppose that the total variation v of m is finite.

We writte Q the weakly predictable process, (H 61 H)'-valued,
Radon-Nikodym derivative of m with respect to v.

III-2 Proposition

Let v be a positive measure defined on the tribe of predictable
sets. Let V be the inereasing "natural” procese (cf. [5]) associated to v.
Let » be a real measure defined on the tribe of predictable sets : we suppose
than |r] s v if |r| is the total variation of r. Let Q be the predictable
Radon—Nikodym derivative of r with respect to v. For each element w of Q ,
the real function Q(.,w) i8 a borelian function. Then, we can define the

process (R by R, (w) = Qle,w).dV _(w) (this integral being
t o t]’ 8

caleulated by trajectories). Then, the process (R,) teT 18 the "naturql”
procegs assoctated to Q.

Yier

Proof

Let B be the class of the real predictable processes such that,
for each trajectory w, the real funcsion Q(.,w) is measurable with respect
to the Borel tribe ; € isa vector space gsuch that, if (Qn)n>o 1s an increa-
sing sequence of elements of ¥ which converges to Q, then Q is also an
element of P ; moreover, all the processes 1A with A e’g are elements of f .
Then, P is the set of all predictable sets. Then, the process (Rt) is well-
defined. If Q = IA with A&&, it is evident that R is a predictable process.
Then, the same property is satisfied for all bounded predictable processes
by linearity and dominated convergence (cf, for example, the theorem
of [1a]).

To prove that R is the "natural" process associated to r, it is
sufficient to prove that the Doléans's measure associated to R is r. Then,
it is sufficient to prove that, if A = Fx]s,t] is an element of 5:3 , wWe

have :

@) =k [1.® -R)]

This property is evident if Q = 1}3 with B &'gl ; it is also

satisfied for each bounded predictable process Q by linearity and dominated

convergence.

IXI-3 Theorem (properties of the process Q)

Let B be a separable Banach space. Let m be a function defined
on the tribe of predictable sets with values in the dual B' of B ; we suppose
that m is o-additive for the topology o(B',B) and the total variation v of m
is finite. Then, this total variation is o9-additive. Let @ be the B'-valued
and weakly predictable process, Radonm—-Nikodym derivative of m with respect
to v. Let V be the increasing "natural process associated to v. Let S be the
B'—valued process defined by

St(m) = I Q(s,w).d‘/s(m)
o,t]

this integral being a "weak integral by trajectories”.

Then, for each element x of B', the process <S,x> is, up to
an indistinguability ;  the ™atural" process associated to the real
measure <wMm,x> .

We call S the natural Process of m.
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Proof

The o-additivity of v and m is a well-known property for vector
measurec. Then @ is well-defined by a "weak” Radon-Nikodym theorem (cf. [_'12]).
The end of the theorem is a corollary of the proposition III-2 above.

IV - CONSTRUCTION OF THE STOCHASTIC INTEGRAL

Iv-1" Introduction

The purpose of this part is to define the stochastic integral

J Y.dM where Y is a "weakly predictable" process with values in & (B ,Gc)

(cf. I-5 above), and where ﬁ is a cylindrical martingale on H such that

the total variation of its quadratic Doléans's measure is finite.

wr all this part, Hl and G are Banach spaces, Hl being reflexive, and ’b\i is an ele-
TEent Iz(Hl' R J{a). We suppose than H' is a separable space. wc¢ note m the
quadratic Doléans's measure of ;l and v the total variation of m where m

is considered as a (H' ®1 H') *-valued measure. We suppose than v(i. X T} < +=,

We note Q the predictable process, Radon-Nikodym derivative of m with respect

to v.

We shall say that a d) (B, GU)—valued process Y is "weakly
predictable" if, for each element (h,g) of B x &', <¥(h),y> is a real

predictable process.

Iv-2 z -step process and stochastic integral associated

We note & the set of the processes Y such that Y = I ui'lA(i)
1 el
where (“i)ief is a finite family of elements of ob (H, € ) and (A(i))ier

18 an assoctated family of elements of 0@ .
We remark that, in this situation, we can suppose that the sets A(i) belong
to @ and are pairwise disjoint (cf. [18 ]) .
LethbeanelementofgwithY= I u,.1_ .
Lol iTTA)
each element i of I, A(l) = (F(i) x Is(i), t(i)l). For each element g of &',

where, for

~
let Z(g) be the real martingale defined by :

~ 10 -

[Z(g)]t= R CHP J am [ui'(g)] }

tel s (AL, £ (1) AL]

*
where ug is the adjoint operator of u; .

»
JY.dM and

This defined a cylindrical martingale on € that we shall note
eaqll the stochastic integral of Y with respect to M.

The problem is tc extend this construction to "weakly predictable"

processes Y as done, for example, in [14} in the case of processes in the

strict sense.

For this extension, the following remark is fundamental :

IV-3 Remark

Let Y be an element of § with ¥ = I u .1 where the
. i "A(1)
iel
sets (A(1)); ., are pairwise disjcirt uud, for each i& I, A(i) = F(i)x]s(i),t(i)];

“hen, we have :

179

12 ~ ~ * 2
I ie,):l B ey gy - B ] It @]) (

the random iabl . [H - M * i irwi -
ndom vari es lF(i) [Mt(i) Ms(i)l [ui (g)l being pairwise ortho

gonal in Lz(ﬂ,@, P), we have also :

[z

2
g = J o of@]an
QxT

*
where Y is the adjoint of Y,

finally, we O

1z @)

The fundament

this formula.

btain :

H;= j oM@ erwlav
QxT

al idea is to consider a norm (cf. IV-6 below) associated to

IV-4 Lemma (topological)

We consider u e (H' @1 2)' v eﬁ(li, Go) and g € €'. Let o
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be the adjoint of v. We suppose that H' is separable. Let {x } _ = be a

sequence of elements of H', dense in H'. Let Hr; be the vector space genera—
ted by {xk}lsksrz . Let TTr'L a projector of HI' onto Hr; which i3 a contraction.
Then, we have :
u [0 0 @)@ 0 g)] = 1im w [(n! 0 ™ o gh&(n! o W™ 0 g)]
e n n

ad  lin ui [0 0g) - () ot 0] 1=0
n—m

Proof

If we consider v, g and € > o, there exists k > o and w € H!

k
*
such that Hv o g - w||ﬂ, £ € ; this implies , ¥ n % k
Hﬂ'ov*oq—v*ogli s”v'ov‘og—w” +|[v*7q—w:
n 'y’ n H' H'
*
g ' o (v o -w + €
Hrro v og-wll,,
< 2¢e
* * .
then “;‘ 0 v o0 g converges strongly to v o g in B'. The lemma follows
from the continuity of u for the strong topology of H' and from the conti-
A
nuity of the mapping (x,y) ~» (x @ y) for the " trace norm " on (B ®1 B').

IV-5 Preliminary proposition

1°) We suppose that H' is a separable Banach space. Let @ be a
(H' 31 ') valued and veakly predictable process. Let Y be a "veakly predictable
.Z’( o, Go)—valued process (cf. the end of IV-1 above). Let * be the
adjoint of ¥ (with values in ob (G(;, Hé) . Then, for each element g of €',
the process [Y‘(g) ® Y‘(g)] ts a regl (positive) predictable process.

"

- 12 -

2°) We have an analoguous result if we put, in the 1°) above,
the condition "for each element w of Q , the mapping t ~ Q(t,w) is borelian”
in the place of the condition "predictable".

Proof

We prove the 1°) : the proof of the 2°) is absolutely analo-
guous. We consider Q, Y and g. We consider also a sequence ("x'\) o of

projectors as in the lemma IV-4 above. This lemma implies :

] %* * *
lim @ [(n' oY og)® ' oY o g)] =g [(Y o g)®(¥ o g)]
o n n
* * . .
But, for each n, Q [(erx oY o g)®("r.1 oY o g)] is a real predictable

* ¥
process. Then, the same is true for Q [(Y o g)®(Y o 9)1 -

IV-6 Définitions of Q
=L rlOnS O 59

Let @ be a3 in IV-§ and positice. For eack element 5 of €', o snal!

cemcte by 4. the vector space cof tne prccesses Y such that
g

(1) ¥(t,we 10,11 ®a, Y(t,w) is a  inear operator with domain O [¥(t,w)]
in H and range in € such that 1) [Y*(g) Q Y*(g)] (t,w) is "well-defined”
(ef. below)

(Zi2) 3 [1’* 3. ®Y*(g)] s a (real positive) predictable process (finite or

infinite)

We give now two different examples where O [Y*(g)@Y’(g)] (t,w)

is "well-defined”.

1°/ Let (t,w) be an element of ]O,l]@ﬂ ; O [X*(g) ®Y*(g)] is "well-defined"
in the following case : we suppose that B and € are Hilbert spaces and
let Ql/z(t,m) be the selfadjoint operator such that 91/2 o QI/2 =0 ;
if @[X(t,w)] 2 Range (Ql/z) and if the linear operator Y (t,w) o Ql/z(t,w)

is extendable into a bounded linear operator from H into G, then
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. | _ 2
(31)- vl =) <+w
lgee,Tgitez 9

Q [Y*(g) & Y*(g)] (t,w) is well-defined by :

o~ . a . -
0 [¥@ @ Y] (. = [¥(tw o Ql/z(t,u))]* (@ Thebmaapzng Y NJ Y.dM 1is extendable in a continuous linear
mapping from f (unth the topology assoctated to Nb (.)) into °G’ (', A).
For each element Y of f , we shall note | Y. a7 the eylindrical martzngale
assoctated to Y and we shall call it the stochastic integral of Y with
20/ If Y is a process with values inf(ﬂl , &) "weakly predic- ~
o respect to M.

table" (cf. the end of IV-1 above) then the conditions (i) and (ii)

above are satisfied (cf. the proposition IV-5 akove).
IV~-9 Theorem

We consider the hypotheses givem im IV-1. In this case, for
each element g of €', g (ef. IV-7 above) contains the vector space of the
processes Y with values 1,n o (n, € ) (ef. I-5 above), "weakly predictable"”
(cf. the end of IV-1) and such that Ng(Y) < + o,

Iv=7 Definitions of N  and Zg Moreover, eeb (ef. IV=7 above) contains the vector space of the

For each element g of €' and for each process ¥ belonging to Q ?;ocesses with value”z in og(H G )y "weakly predzctable " and such that 9
. 1/2 (Y) < + » (yhere N (Y) = { J Q Y (g)® r* (g)].dv } ).
ve note : B (0 ={[y 0 [P@ @ ] ) gZﬁEWﬂ o I 1-

This quantity, finite or infinite, is well-defined (cf. IV-6

above). If 'D‘i is a cylindrical brownian motion (cf. II-3 above), we remark that

Proof
Ng(Y) ={ J I]Y*(g) | [2 } 172 The second part of this theorem is an easy consequence of
xT the first part.
- To prove the first part, we consider a "weakly predictable"

We note G" the adherence of ¢ » for the semi—norm N g

process Y such that N (Y) < + » | Let g be an element of 6'. Let (";1)
above, in the set of all "weakly predictable” processes Y. g

n>o
a sequence of projectors as in the lemma IV-4 above. We consider :

The mapping Y "-)J Y.dﬁ(g) = 'Z(g) , defined for Y ¢ é' , admits

. . . by « * @2
an unique extension to £ which is a linear continuous mapping fram éﬂg An = {(w,t) : Q [("l'.l oY o 9)62] £2Q [(Y o qg) ] }
(with the topology associated to Ng) into l (cf. the remark IV-3 above).

= v '
_ n = lam - [¥ oty 1
IV-8 Definition of & b (Y*1s well-defined because H is reflexive)

- * * @2
We shall say that a process Y belong to éeb if the two follo- The sequence of processes @ [(ﬂ;l oY og-Y ogq) ]

wing properties are satisfied : converges to zero {(cf. the lemma IV-4 above) ; but, for each n, if we A(n),

(<) for each element g of €', Y € ‘; (ef. IV-7 above)
g @ [0 0g-v" o] 30 [0 0
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Then, we have lim Ng(Y—Yn) = 0 by the Lebesgue dominated convergence
n—)oo

theorem. Moreover it is easily seen than Yn belongs to 6pg since <Yn,g>

is strongly predictable and Ng(Yn) < 4+ @ . Then Y belongs also to {q .

IV-10 Theorem

We consider the hypotheses given in IV-1. In this case, the
mavping ¥ '\>[ Y.d¥ is a linear isometry from gb (with the semi-norm
¥ i.)) inte o (G', M) (cf. the end of I-4).

Horeover if Y is an elerent of & v s the quadratic Doléans's

~ ~ N
measure 3 of I = Y.dM is the (G' ®Z 5') "-valued measure defined by

* 3
z(g1®g:,) = J { < [Y*(gz) ® Y (g:)-_] }oav
for cach element (51 ®g2) ol el
I" 4 and € are reflexive Banach spacce, the process @ [Y*(.) ® Y*(.)] is 4
A
(Z' @, G') '-valued process.
B
Ir this case, the total variation r of z (considered as a (G' ®1 G') '-valued

measure) is such that dr = ||@ [Y*(.) ® Y*(.)l ]|(G,§1 Gy dv

Then, this total vartation is o~finirce.

Proof

" M
1°) The norm of Y.dM considered as an element of £(G', )

is equal to

[ J Y.aM| | = Su N _(Y)
G by geeTella 9

= HYI Ib then the mapping Y NJ' Y.r:il:4J is an isometry.

2°) Let Y be an element of 5 with Y = I ui'lA(i)
iel

are pairwise disjoint. Let i be an element of I and let

where

the sets (A(l))i er

B be an element of CQ, contained in A(i) with B = FXJs,t] . For each element

(91 B 92) of (€' x 6'), we have :

) - * - * ~ * ~ *
(Z(B))(g1 @92) E tlF.[(Mt ou; o gl)(Mt oy o gz)--(MS ou; o g,) M_ o u; o gz)]}

J 2 Mup®rtien] av
B

- 16 -

Then the same equality is true for each predictable set B and for each

element Y of g b by linearity and density.

%*
3°) For each (t,w) € (TxQ), Y (t,w) is a continuous linear
mapping from &' with the topology oO(€', €) into B' with the topology
o(R',n).

If H and € are reflexive Banach spaces, this implies than
¥ s
Y (t,w) is a continuous linear mapping from €' with its strong topology

into H' with its strong topology (cf. [ 4 ]) .

Then, Q [Y’(.) ® Y'(.)] induces a process with values in

-~
(€' ® €')', weakly predictable. Then, the end of the theorem is evident.

V - MORE WHEN H AND €& ARE HILBERT SPACES

V-1 Introduction

If W is a separable Hilbert space, the previous proofs can
be a little simplified ; actually B and B' can be identified and, in the
lemma IV-4, it is convenient to consider an orthonormal basis (xn}n>o and

R '
the orthogonal projector on the space Hn generated by {xk}lsksn

Moreover, we have some bther results.

V-2 We consider the hypotheses given in IV-1. Moreover, we
suppose that Hl is a separable Hilbert space. The process Q takes its values
irlxlghe c8ne of positive elements of (B @1 H) '. Then, there exists a process
Q , with values in the set of self-adjoint linear mappings from H into H ,

such that, for each (t,w,h) € (T x Q@ x H,

172

2
. ©bllgw =9 [hen]

[
Then we have :
172 * 2
N, (¥) = J [l oY (g)llﬂ . av

~
If M is a cylindrical brownian motion (cf. II-3 above), for each element

172
(tush) of (Tx 2 xmw, [o @] () =h.
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V-3 Condition to obtain a genuine process

Dod
In the preceding parts, we have supposed that M is an element

of B, b).

If ¥ is a Hilbert space and if ;4' is an element of %2(5', o&)
(cf. I-4 above), there exists a genuine process M, with values in H, such
that, for each element h of H, ?’l(h) = <M,h> . In this case, the quadratic
Doléans's measure of M takes its values in (B ®e W' = Héﬂ which identi-
fies itself as such, as a subspace of (Héﬂ) '. Moreover, {(cf. [16]) , Q

A
takes its values in B® H and is strongly predictable.

% o Ry ana ~
If M is an element of og (m*, ) and if H and € are Hilbert
spaces, i1t is interesting to obtain a sufficient condition on Y such that
~
‘2( = Y.dM 1is an element of o@ 2(Hl', o'o) : in this case, there exists

-
a genuine process 2 associated to Z as above.

The following theorem gives such a sufficient condition.

V-4 Theorem

We consider the hypotheses given in IV-1 and we suppose that
R and € are separable Hilbert spaces.

Let Y be a °<g (R, Ga)—'ualued (cf. I-5) process weakly predicta-

ble (cf. the end of IV-1).

172
a) The process ||Y o @ |} s a real predictable process.

H.S.

b) Then, we can define :

172 2 172
NZ(Y):{] [{yo @ |} .dvl s+ e
TxQ H.S

o

et
Cl=(v:ve€f, mw <+=)

¢) The mapping Y ~> ”2( Y) is an hilbertian semi-norm on & 2 assoctated
with the positive bilinear form defined by, <f (gk)km 18 an ortho—
normal basis of G :

(¥, , 1, ~>J Cr Qg @3] na
axT  k=¢

- 18 -
. 2 . . . £2 .
d) The mapping Y ~| Y.dM induces a linear isometry from &° into
°62 «, &) ; then, if Y is an element of &'2, there exists a genuine
process Z, with values in €, such that, for each element g of € :

Ll Ll
<Zyg> = 2(g) = ( J Y.dM)(g)

e) Moreover, if Y is an element of & 2, the quadratic Doléans's measure
Ld ~
zof Z= Y.di s the (€ ® €)—valued measure defined by

z(g1 ng) = J‘ {Qo [Y*(gl) ® Y*(gz)] }o.dv

-~
The (€ ® €)-valued "natural” process <z> associated to z ig related

to the (B8® H) '-valued "natural” process <m> associated to m by (see III-3)
p

<@, = r d <m0 (Yo ® Yo
[4
Proof
a) Let (gk)kZO an orthonormal basis of €. We have :
(¥ o QI/zHH.S)2 = lim { ; HQllz 0 Y‘(gk)”; }

noe k=o

n
= 1mf{ X @ [Y‘(gk) ®Y‘(qk)] }

ne k=o

1/2
then ”Y oQ || is a real predictable (cf. IV-5 1°) above)

H.S
process (finite or infinite).

b) For each element g of &, we have Ng(Y) < N2(Y) . Then, Jz is the
vector space of 08 (n, Go)-valued ard "weakly predictable" (cf. the
end of IV-1) processes Y such that NZ(Y) < 4 o

-t
c) is evident. If Q is canonically associated to Q, we remark that the

considered positive linear form can also be written :

(¥, ¥, ~7 J Tr (¥, 2 Y;).dv
QT
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d) Let Y be an element of E with Y = I ui'lh(i) and,v i €I,

iel

A() = F@x]s(),t(1)] (the sets (A(i)), ., being pairwise dis-

joint) ; let (gn)n>o an orthonormal basis in 6. The square of the

’

norm of J Y.dM in o£2(G, (‘) is equal to :

( ¥.aM )
] s et

]

n=o

= 1 { b Ele(i)

2

L ||(J v (g | |y

[(Fou
ou, og

Fi)x]s(i),t(i)]

- 2
i il )

~ * 2
n)t(i) (Mouiogn)s(i)] 1}

172
{z |le ouz(qn)an}dv
no

~
then the mapping Y ~> I Y.dM is an isometry .

e) The proof of e) is the same

v-3).

as

the proof of IV-102°) (cf. also,

- 20 -

B SECOND PART

LOCALIZATION AND REGIONALIZATION

I - DOOB-MEYER DECOMPOSITION THEOREM

I-1 Definition

Let us writte ii = Lp(Q_, 9;_. P) where p % o. Let B be a
R v _ o 5 L p
Banach space. Then a family X = (Xt)teTcR » where X, € B ;H 1:) for
every t, will be called a p-process of stochastic linear functionals (S.L.F.} on B.

~
If for every h € B, the real process (Xt(h))teT is a martin-
gale, the process X will be called a p-cylindrical martingale. This is a

generalization of the definition given in A - II-1.

I-2 Doleans' measure of a process of linear functionals

We extend here the concept of Doleans' measure as first defined
in [S] for real sub-martingale and extended since then to vector valued
quasi-martingales (see, for ex., [15]) .

~
To every process X of S.L.F. on the Banach space B, we associate
~
the additive functions ax with values in B' defined on the set @p of predic-

table rectangles by
- - ~
(1-2-1) a (Js,t] xm =k [1.& -x)] ew

Such a function on ﬂ; has clearly an additive extension to the

~
algebra Ot generated by . We call it ax again.

I-3 Definition
If the additive function :X on 2' has a bounded variation (for
~
the norm of B'), the process X of stochastic linear functionals, will be called

a ecylindrical quasi-martingale on B.

This clearly generalizes the classical definition (see [15]).
We have then the
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1-4 Proposition

For X to be a generalized quasi-martingale, it ts necessary
and sufficient that the family of real additive measures (a,) associated

with the real processes (X(h)) |1k |<1 be of bounded variation, and that the

set of those vartations |a;| has a supremum in the ordered set of bounded

positive measures.

Proof

~t
This comes from the fact that the total variation of ay can be

approximated by sums of the type

L E(IF.lXt.(hi) - xs.(hi)l )
1 1 1 1

£
h €8, ||hi|] s 1
while the supremum of the variations can be approximated by sums of the type
hi
Ioley Jse ] xor =z le G [k my) - xg o]} |
i i i i i
It is easily seen that both supremum coincide.

I-5 Doob-Meyer decomposition theorem

P .
Let X be a cylindrical quasi-martingale on B (cf. I-3 above).
Let ag be the Doleans's measure of ¥ and let v be the total variation of ag

Let (Vt)teT be the real "natural" process associated to v. Let (Zt}t&T be
the B'-valued and weak predictable process, Radon-Nikodym derivative of ay
with respect to v. Let (yt)teT the process defined by :

t
Y, = J Zs(m) . d '/s(m)

o
~
This integral being a weak integral caleulated "by trajectories”. Let Y be
~
the cylindrical process assoctated to Y by Y(h) = <Y, h> .
~

Then, f-Yisa cylindrical martingale. Moreover, for each element h of B,
<Y,h> is the "natural" process associated to xn) » up to an indistinguashi-
bility.

-22 -

Then to define the stochagtic integral with respect to J‘E, it s sufficient
to define the stochastic integral with respect to 7 (weak tntegral "by tra-
Jectories") and with respect to the cylindrical martingale 37 .

Proof

This theorem is a mere corollary of the theorem A - III-3 above.

This theorem generalizes theorem in [18 ]

II - LOCALIZATION

II-1 Stopped cylindrical process

~”
Let 0 be a stopping time. Let X be a cylindrical process on the

~
Banach space B. Let Z the cylindrical process defined by :

Vher , [Em] - Fml .

tad . ~
(where [X(h)]tl\c is the real process X(h) stopped at ¢ ).

~
Then, we shall say that Z is the cylindrical process g stopped
at 0and we shall note g = (X,)

I1-2 Local cylindrical process (definitions)

We shall say that % is a local 2-cylindrical martingale (resp.
a local cylindrical quasi-martingale), if there exists an increasing sequen-—

ce (cn)n>o of stopping times such that.

@)  tim Plo, <1] =0
nre

(7) Vn, the eylindrical process X stopped at S, is a 2-cylin-
drical martingale (resp. a cylindrical quasi-martingale).

It is easily seen that the previous results (construction of the
stochastic integral, Doob-Meyer decomposition theorem) can be extended to
local cylindrical process as in the real case. The following proposition

gives a sufficient condition to have a local 2-cylindrical martingale.
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II-3 Pproposition
We consider a Banach space such that its dual B' is separable (1i) for each integer n, P [F(n)] x1-2
~
and a cyltndrzcal process X on B such that : As in the real case, to define the stochastic integral J Ya4d ;

~
(i) for each element h of B', X(h) is a loecal square integrable of a €, G )-valued process ¥ with respect to X, it is sufficient to define

real martingale, this stochastic integral for each element w of F(n) (for each integer n).({cf [18]').

.. . . . ~ . Then, it is sufficient to define this stochastic integral with respect to a
(11) for each stopping time o, the mapping (Xt Ao) from B', with ! P

its strong topology, into LZ( Q, 3“, P), with its strong

topelogy, 1s continuous.

cylindrical 2-distribution process in the following sense :

- ~ s
Then, X is a local 2-cylindrical martingale. 1I1-2 Definition

Let X be a eylindrical process on the Banach space B. We shall
Proof say that '}.(, is a cylindrical 2-distribution process if there exists a o-finite
real measure a on msuch that, for each element h of B' with ||h|| s 1,
for each element A of ® and for each real ' —step process with
Sup . ¥, (w)] €1 we have (|| ) v.d Xl )2 < ata)

dense in B'. For each integer n>o, let (¢'(n,k)) be an increasing sequen-
, USREVON g _?mk) tw (e, %,p)

Let a be the positive measure defined on QXT by a = P@u where

p is the Lebesgue measure on T. Let (hn)n>0 be a sequence of elements of B',

ce of stopping times such that, for each integer k>o, a(]U'(n,k), 1])5 2

~
and the real process M(hn) stopped a ¢'(n,k) is a square integrable martin- We remark that, in the real case, this definition is a little

gale. For each integer k, let be o(k) the stopping time defined by different from the definition of a 2-distribution process given in [18}.

It is convenient for our purpose which is not the same as in [18].

o(k}) = inf ¢'(n,k}) . We have :
n>o

II1I-3 The process Q

-k
atJox),1] ) ¢ I alJo'n,k),1]) s 2
n>o Let H be a separable Hilbert space. Let (hn)n>o be an ortho-
. : [ . : . Py
then the increasing sequence (o(k)))oo satisfies the properties II-2-(i) and (ii). normal basis in H. Let X be a cylindrical 2-distribution process. Let a be
a o-finite positive measure onﬂD such that, for each element (h x B} of

III - CYLINDRICAL REGIONAL 2-DISTRIBUTION PROCESS ( x R) and for each real f-step process ¥, we have :

¢ J v.d X || 2
B

L’ @.% ,p)

2 2
ID-1 Dpefinition )¢ ¢ Ilhlla. a(B)

~
L . ,
- et X be a cyltndrfbcal process on the Banach space [B. We shall For each integer n, we consider the set Jrl of all o-finite positive measures

say t % ¢ . . . r . . . .

y that s a cylindrical regional 2-distribution process if there exists m such that, for each real x-step process Y and for each element B of @»
a sequence (F(n))n>0 of elements of ?’ and a sequence (an)n>o of o-finite - 2 ’
positive measures on such that we have ( || J Y.d X(hn) ! |L2 O P )7 € m(B) (of course, a is an element

1 ’

(i) for each element h of B' such that ||h|| < 1, for each of J ). Let a be the lower bound of J and let S be the Radon-Nikodym

element A of P - 3

i f 39 and for each real g step process with derivative of a with respect to a (S_ is the lower bound in L, (QXT,@, a)
Sup . {Yt(w)l 51 dm B

t,0 of the Radon-Nikodym derivativyes = for m € Jn) .

o 2
ve have ( [|1, J Y.d X(h)|| )? s a ()
F(n) 4 [42(9,9’,?) n



= €7 SATYONIIMYW TYOIdANITAD -

- 25 - - 26 -

LV - EXAMPLE
For each element (h®h') of AI® Hwith h = ak.hk and

" k>o
h' = I “1"1'hk and for each element w of Q we define :
k>o
This example shows that for a 2-cylindrical martingale # on
QL @n') (w) = I a, ~0y -5, (w) a Hilbert space H, the total variation of the quadratic Doléans's measure
k>o

m of M is not necessarly finite (this total variation being calculated for

A
By hypothesis, for each integer k, Isk {w) | m considered as a measure with values in (B @1 H' ).

Then, for each element w of @, Q(.)(w) is a real linear mapping defined
Construction of the example :

on (H® W) and this mapping is continuous for the trace-norm on B ® H : then,

this mapping is extendable in a real linear continuous mapping defined on Let (tn) be a decreasing sequence to zero. Let H be an Hilbert
Pa) P
§: ] @1 H) that we shall note also Q(.) (w). The process Q is a (H ®, H) '-valued space, (en) an orthonormal basis of H and let us define the cylindrical mar-
process. tingale :
Moo=zt (©) (ie) 1 (8 B, )
= e ) . -
I11.4 The stochastic integral t n [ n+1’ =[ Yt -t tnAt the1

n ntl

Then, it is easily seen that the construction of the stochas-—
where (B ) is a usual real standard Brownian motion. For every n,
tic Lntegral given in the paragraph A-IV above can be extended in the pre- ~ t

;g (M (e }) + 1is a process with independant increments, zero on ]O,t ],
sent case. Notably, if 6 is a Hilbert space, if Y a -step process with tER n-1

path—w:.se constant on [t w[ For every h ¢ H, the above series converge in

values in (£ (R,¢ ), for each element A of Jg , for each element g of €
L (Q, ¢5":,!’) with

with ]|g]| £ 1 , we have

~ 2 * *
1 J v () . 4R | ) sJ o Y (@® ¥ (9)].da ~ 2 2
a @, %, A i ) |* < [n]lg

(result analoguous to that of the remark A-IV - 3).
defining a process with zero-mean independant increments. But considering

the partxtlon ( ]t ,t ] x Q) of ]0 t] x Q , it is immediately seen

n>o

Let Y be a x (M,€&_)-valued weakly predictable process such
g that, X beeing the process above defined :

that there exists an increasing sequence (A(n))n>o of element of ? with :

1 2
1 r———

® * ~ ~
Sup (JQ Y (9) ®Y (g)].da <+ =} IE |J1,x -X 2
gee, [|allst o L ] n 87t "t L@m@m o -t @ et

o [ ~
Then the stochastic integral 2 = J Y.dX can be defined as in A-IV and Z

is a cylindrical 2-distribution process.
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