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BILLIARDS IN POLYGONS 

by 

Carlo Boldrighini, Fichael Keane, and Federico Marchetti 

The présent paper answers s orne questions concerning 

a particular classical dynamical System, namely, billiards with 

one bail in a plane polygon. In the case where the région con­

sidérée! contains a convex obstruction, a certain number of re-

sults have been obtained (see e.g. [S ] , [?])• Thèse Systems 

turn out to have strong ergodic properties (i.e. Markov par­

titions can be constructed), due to the exponential scattering 

which occurs at the obstruction. However, if the boundary and/or 

obstructions have zéro curvature, very little is known. 

VJe consider in the following a point mass moving in 

a given non-self-intersecting plane polygon, with the usual ru-

les of reflection when the point mass hits a side. It is shown 

first that, for each initial point and almost ail initial direc­

tions, the orbit cornes arbitrarily close to at least one vertex 

of the polygon. This yields in particular a coding procédure for 

the orbits, and implies that the corresponding dynamical System 

has zéro entropy. Next, we concentrate on the simpler case where 

ail angles of the polygon are rational multiples of IT . This case 

can be reformulated in the context of interval exchange trans­

formations (see j^2j and [3]). We show here that for almost ail 

starting conditions, the corresponding orbits are dense in the 

polygon. Finally, we discuss two interesting physical inter-
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pretations of our results. 

Many interesting problems remain to be solved, even 

in the case of a triangle. In particular, we have not been able 

to prove in gênerai that if 'the angles of the polygon are ir~ 

rational, the corresponding dynamical System is ergodic, or 

even that there exists a dense orbit (either in the polygon or 

in the phase space). 

Some of the results given here have been présentée! 

in a preliminary way by one oi us in [2] . More recently, 

A.P. Zemljaxov and A.B. Katok have obtained analogous results 

by quite différent techniques (see [9] ). Research was done during 

a visit by the second author to Camerino, sponsored by the Ita-

lian C.N.R. 
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§ 1. - Définitions and Notations 

Let P dénote the interior of a non-self-intersectmg 

polygon in the plane with vertices , siaes a^ , and angles a^ 5 

i - l,...,n. We consider the géodésie flow on P with the usual 

reflection rule on the boundary 9P. 

A line élément u) - (x,6) of this flow is given by a 

point x G P and an angle 6 e R / 2TT Z . We think of a line 

élément as a s mal], arrov; issuring from the point x and pointing in 
the direction 0, measured from a fixed référence direction which we 
shall take to be A^A^. 

On the boundary, we make the following identifications 

concerning line éléments : 

1° If x e dP is not a vertex, then x lies on a 

unique side a^ of P which makes an angle, say g^, with 

our référence direction ^ ^ ^ 2 > " ^ e î^entify ^ n "this case the 

line éléments (x, 3.. + 6) and- (x, ^ - 6) for each 0 < 6 < TT . 

2° If x e 9P is a vertex, then we identify ail line 

éléments (x,6), 0 < 9 < 2TT . 

The phase space Q of our géodésie flow Is then given by the set 

of ail line éléments. Under the obvious topology, fi is compact 

and metrizable. 

Consider now the one-parameter semi-group . ( Ŝ . ) ^+ 

of transformations on fi defined as follows : If ( X
0 > ® Q ) e ^> 

then S (x ,6 ) = (x. 9 0 . ) is obtained by starting at x^ and drawing -t o o t t J o 

a continuous path inside the polygon consisting of straigt line 

segments and of total length t , and ending at the point x^ in 

the direction 6^. The straight line segments should (except for 

the first one, which begins at x Q in the direction 6 Q) begin 
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and end (except for the last one, which ends at in the 

direction 8^) on the boundary 9P, and the direction change at 

the boundary in passing from one segment: to the next one is made 

in accordance with the identification in 1°. If the path should 

hit a vertex S before attaining length t , then we define 

x 4 - S . In particular, S^Cx ,6 ) = (x ,0 ) if x is a ver-
t * 5 t o o o 5 o o 

tex, for ali t > .0. The reader will easily see that thèse re-

quirements define uniquely for each t > 0 and that (S^.)^ p + 

is a semi-group of measurable transformations on 0, . 

For t N< 0, we define S. by setting S^Cx ,e ) = (x,_5e_J ^ t ° t o o t t 

iff S . (x ,6 +ÏÏ) = ( x ^ ô . +ÏÏ) . Then on the set fi1 of line 
-t o o t t 

éléments oo for which S^oo is not a vertex for ail t e R, each 

transformation Ŝ . is continuous and (S ^ is a one-parameter 

transformation group acting on fiT. Moreover, []' is a dense G-
b 

in Çl. 

Dénote by dx normalized Lebesgue measure on P and 

by d0 normalized Haar measure on R /. 2 T T Z . Since d x O P ) = 0, 

there is a well-defined probability measure m on fl corresponding 

to the product measure dx x d0 on P X R / 2 T T Z . It is easy to 

see that for each t, S^m = m, and that m (0,*) - 1 . The triple 

(Œ 5 ( S ^ ) ^ will be called billiards on P . 
5 t t e R 

Note that il is just the phase space of a mechanical Sys­

tem consisting of a newtonian particle moving inside the polygon 

P with constant speed. The time évolution is the one corres­

ponding to absence of forces inside P and elastic reflection 

conditions atthe boundary. We have defined S in such a way that 

the vertices act as sinks, for simplicity. There is a more natural 

définition which consists in doubling each vertex and defining 

reflection at the vertex as a limit either from one side or from 
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the other, but this involves a rather complicated description of 

the phase space. (The transformation in £4 acts on vertices cor-

rectly if we use this more natural définition). 

We now set 

ÇIQ = {o> = (x,9) z fi : x £ dP} 

and 

nf = fi C] fif 

o o 

It will be useful to define a transformation T : fi — > fi 
o o 

induced by the semi-group (S^) ^ ^+ . If (x,6) e C o , then 

we set 

T ( x > e ) = s t (x,e> ( x ' e ) ' 
O 

where 

t (x,9) = inf {t > 0 :.S^(x,0) e fi } . 
o t o 

Let m be the probability measure on fi corresponding to the 

^ 4 - J sin(Pi" e)d9 , , , n product measure d x Q x ^ , ( X Q e a^) 7 where C îs a 

normalization constant. Then Tm = m , m (fi*) = 1 , and T is 
o o o o 

continuous and invertible on fi^ . Ergodic or asymptotic proper-

ties of (S^) ' ^ are reflected in ergodic or asymptotic pro-

perties of T . 
Finally, for o) e fi we define 

O r b + U ) = {S o) : t e R + } 

Orb~ (a)) = {Sa) : t e R~ } 

Orb (oo) = * {Sa) : t e R} , 

and if o) = (x o*6 0> and S (oO = ( x t , 6 t ) (t e R) 5 
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Orb + (eu) = { x + : t £ 0 } 
s t 

Orb" (a)) = { : t >< 0} 
s t 

Orb (o)) = { x^ t e R} 
s t 

Thèse are called respectively the forward orbit, backward' orbit, 

orbit, forward spatial orbit, backward spatial orbit, and spatial 

orbit of oo. The orbits of ai e f!Q under T are defined simi-

larly and will be denoted by the same symbols. 

§ 2 - Statement of the problem and remarks 

Let us begin by stating a few natural questions which 

one is quickly led to ask concerning billiards in P . 

Problem ^ 1 . Does there exist a line élément w e fi whose 

orbit is dense in fi ? 

Problem ^ 2 . Does there exist a line élément oo e fi whose 

spatial orbit is dense in P ? 

Problem ^ 3 . Are almost ail orbits dense in fi ? 

Problem Are almost ail spatial orbits dense in P ? 

P r o b l è m e s . Is the ''billiards" dynamical System (fi,(S,), D , m ) 

ergodic ? 

Problem If an crbit is (spatially) dense in (P)fi , is it 

uniformly distributed ? 

Thèse are only a few examples of what one is really interested in, 

namely, the description of asymptotic and ergodic properties of 

a bail bouncing around in a polygon. We should begin at once by 
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stating that, even in the case of a triangle, except for a few 

obvious examples and the small contribution we shall make below, 

nothing is known concerning the answers to any of the problems 

stated. 

We continue by making three obvious remarks concerning 

the problems. 

Remark ^1. One might be led to conjecture that perhaps ail 

orbits of . w e 0.T would be dense, or spatially 

dense. In certain cases, at least, this is not true. 

In particular, if P is an acut.e triangle, imagine a 

miniscule ring around each side of the triangle, take a pièce of 

string, and pull it through each of the three loops. Now pull both 

ends until the string is taught and connect the ends. The rings 

will slip on the sides until an equilibrium is reached, and this 

equilibrium yields a periodic orbit under Ŝ _. 

Equivalently, this orbit is the one obtained by joining 

the bases of the three heights of the triangle. 

There are even in this case uncountably many periodic 

orbits, which can be obtained from the one above by a slight per­

turbation in one of the points of the orbit, maintaining the same 

direction. Ail of thèse orbits have twice the length of the ori­

ginal one. 

This remark leads us to two more problems which we have 

not been able to résolve. 

P r o b l e m ^ 7 . Does any polygon (and in particular, an obtuse triangle) 

have periodic orbits ? 

Problem # 8 . Let us call two orbits équivalent if they have the 

same length. In an acute triangle (or in any polygon), 

do there exist infinitely many pairwise non-equivalent 

orbits ? 
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For the examples discussed in Remark 3 below, the ans-

wer to Problèmes can be seen to be "yes" • 

Remark ^ 2 . A particular,. case of interest, which we shal 1 go into 

more deeply in a later paragraph, is the one in which ail Lhe an­

gles otgs--- of . P a r e rational multiples of ÏÏ . Let us call 

such a polygon a rational polygon. In this case, the answer to 

Problems^l ,^3 and^b is certainly "no". To see this, consider a 

point which arrives at side a^ with an angle 6 , leaves at an 

angle of -G , and after bouncing off side aj__i returns to side 

a^ at an angle 0 + 2a^. This situation is gênerai, i.e. if we 

start off with an angle 0 , then the only angles which we can ob-

tain at later or earlier times are those of the form ±0 + E ± 2 ^p(j) 

where ^P(j) dénotes the angle the side which is met at the j - th 

reflection makes with our référence direction. If P is rational, 

the angles which are attainable form a finite subfgroup of 

R / 2TT Z translated by 0 , and hence no orbit can be dense in Q . 

We shall see later that the answers to Problems *^2 and"^4 in this 

case are "yes", whereas the answer to P r o b l è m e s seems to be "no" 

in light of . In passing we note also that if a bail is shot 

in the direction of a corner and does not hit the corner, then 

after a finite number of bounces it will "corne out" of the corner. 

Remark ^ 3 . In some spécial cases we can arrive at our goal of 

describing the orbits with a good deal of accuracy and answer the 

problems posed. Consider a point which is about to bounce off a 

side, and its orbit. Instead of stopping at the side and reflec-

ting, it is the same if we continue the orbit in a straight line 
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and reflect the polygon P around the side. If P is a polygon 

whose reflections pack the plane (e.g. an equilateral triangle, 

or a rectangle, or a 45° right triangle, and a few others), then 

the corners of the' ref lect'ions of P form a regular grid in the 

plane and we leave it to the reader to see that the problems can 

be solvedr. Note that ail polygons having the property described 

are rational. 

§ 3 - A gênerai resuit 

In this paragraph, we describe a resuit valid for ail 

polygons which, although it falls short of answering our problems, 

seems to be of interest. 

Theorem. Let x e P . Then for almost ail 6 e R / 2TT Z , the set 

Orb (OJ) 

s 
(where o> = (x,9)) , contains at least one vertex of P . 

Proof : ' Set &*(9) = Orb g( o)) . It suffices to show that for any 

fixed 6 > 0, the set 

N = {9 : dist(0Te), {A i | i = 1. . . n}) > ô } 

has measure zéro. By a well-known theorem (see e.g. £6] ) , almost 

ail points of N are points of density of N . That is, for al­

most ail 9 £. N, 

° | N n | 0 O 3 e G + e| I 
lim ~ = = 1 , 

e—*o 

where | .| dénotes Haar measure on R / 2TT Z. Thus if N contains 

no points of density, then |N| = 0 '. 

Suppose that 9 Q belongs to N . Let e > o be fixed. 

Consider the line éléments (X,9 q) and ( x , 9 Q + e ) . We may assume that 
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both line éléments belong to . Thus there exist two increasing 

séquences s 1 , s 2 , ... and , ... of positive numbers suo^ 

that the orbit of (x,6 ) meets the boundary of P at the suc­

cessive times ŝ ., s 9 , ... * and the orbit of ( x , 8 Q + e) meets SP 

at the sucessive timds t^, t^ -> ••• • Choose n ^ 1 minimal such 

that the side which contains S (x,6 ) is différent from the 
s n o 

side which contains ^ (x 50 + s ) . That such an n does exist 
t o 

follows by using the device o± Remark^"3 : drawing staight U n e s 

from x in the directions -J and 6 + G , and assuming that 
o o ^ 

S (x,6 ) and (x,6_ + s) lie on the same side of P , we may 
s 1 o t^ o J 

reflect P around that side. As we continue this process, the 

lines grow farther and farther apart, until the first time where 

a refelction of this type places a vertex of P in the cone crea-

ted by the two lines. The following n will then have the desired 

property. 

Now consider the set N O Te ,6 + el . If 6 SQ^Q +e , • 

»- o 3 o J o v ^ o 

then the forward orbit of (x,6) under can be thought of as 

a ray of the cone described alone. If 0 e N , then this ray 

cannot corne within a distance of 5 from the vertex of P which 

fell in thé cone at the n"*"*1 ' reflect ion. On the other hand, the 
t h 

distance across the whole cone at the n' reflection is at most 

the diameter of P . Therefore 

l N A ï y e o + el 1 < _ 6 

e diam(P) 

and since the right hand side does not dépend on s , 9 Q cannot be 
a point of density for N . 

We now describe an application of the above theorem. 

If oa s ftr, let us dénote the séquence of sides of P which 

are visited by S u>, t e R 5 by : 
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<p C o) ) = ( . . . ,k_^ ,k o,k^, . . . ) e {a^ |i = l...n}^ 

Now if oo / fiQ and if 0 < t < t Q ( o 3 ) 5 then cp(oj) = ( S^co) . 

Dénote further by <pQ the restriction of <p to the set , and by 

: fiQ > {a^ |i = l...n} ^ the rnapping obtained by only retai-

ning the séquence ^ 5 k^ 5 . . . ) . 

Corollary. is almost surely injective, i.e. there exists a 

subset fi or fi with m (£2 ) = 1 such that co,rie^ 
o o o o 5 1 o 

and cp^ ( OÙ ) = <p*(n) imply o) = n . 

Proof : If o) = (x, 0 ^ and r\ = (y, 02> and 6 ^ ^ 2 , the 

reflection argument shows easily that cp^(o)) ^^ç/ 1""))' F ° r this 

case we do not need the theorem. Suppose now that a) =(x,0) an« 

n = (y,G). A clcser inspection of the reflection argument of the 

theorem shows that if 0 e N (for x) and 0 e N (for y ) , then a 

vertex of P must fall into the strip between the straight lines 

(x,0) and (y,0), so that also in this case ^ q^) ^ ^fo^ 1^ ' 

Corollary. The entropy of polygonal billiards is zéro. 

Proof : This follows from the fact that oo e fi is almost 
o 

surely determined by its -forward side séquence C J ) * ( C Û ) , which 

implies h(T) = 0^ and Abramov ' s formula ["lj . 

We rer.ark that the last resuit Implies an essential 

différence between billiards with one bail (which are "determi-

nistic") and billiards with two balls (which are "random" ; see 

e.g. KUBO [ 5 ] , SINAI £7]). 
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§ 4 - Rational billiards and interval exchange transformations 

We shall prove that the study of asymptotic properties 

of rational billiards reduces to that of certain interval exchange 

transformations, which have been introduced in (see also £2j 

and £ ) . First we recall the basic définitions. 

Let Y = C.0,lC and let n be an integer greater than 

one. Suppose that p = (p^> p 2 , . . . , p n ) is a probability vector 

with p^ > 0 for 1 ^ i ^ n, and let T be a permutation of the 

symbols {l,2,...,n} . We set 

p T = (PT, ... , P N

T) = (P - ,...,P , ) 
1 n x 1 ( 1 ) T - 1 ( n ) 

i 

= 0 , q \ - I P^ = j P x " 1 ^ ) 

3=1 3=1 

and 

Y i = R i - ! • lit 

Then the map T : Y — > Y defined by 

T y = 7 " q i - l + qx(i)-l ( y E Y i ' 1 < 1 < n ) 

is an order-preserving pieeewise isometry of Y (on the "pièces" 

Y^,...,Y ) . It is called the (p 5x) - interval exchange transfor­

mation. 

Obviously, any interval exchange transformation is in-

vertible and its inverse is an interval exchange transformation. 

The map T is continuous except at the points ^i'* *• 5 ^ n - l ' (cal­

led séparation points) where it is continuous from the right. 
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We say that the interval exchange transformation T sa-

tisfies the minimality condition if 

Ml) T is aperiodic (i.e. for each y e Y, the orbit 

Orb(y) = {Ty : n e Z} is infinité), and 

M2 ) If F is a finite union of right open intervais" 

with endpoints belonging to the countable set 

Orb (c.) U {1} , 
oo 1 = 0 ^ 1 

then TF = F implies F = Y or F = 0 . 

The resuit we shall need is the following one : 

Theorem (p3j). T satisfies the minimality condition if and only if 

Orb(y) is dense in Y for ail y e Y . 

To obtain an interval exchange transformation from ra-

tional billiards, we consider first the dynamical System ( ^ 0 5 T , u o ) 

defined in § 1. Choose a side a and an initial angle 0 q , and 

restrict T to the subset fi of fi consisting of ail pairs of 
o o 

sices and angles actually visited starting from a^ with direc­
tion 0 . We dénote by T the restriction of T to fi . Now fi 

o o o o 

consists of a certain number of sides a^ (we shall see below that 

ail sides are represented) together with angles 8^ , j = 1 , . . . , 

belonging to the side a^. If we draw side by side copies of 
t h 

the side a^ for each i, and then contract the j copy of a^ by 

a factor sin 0^ , then by elementary physics T q becomes a piece-

wise isometry of this collection of intervais, and it is not hard 

to see that if they are correctly arranged, then T q is order pre-

serving. Normalizirig to unit length, we obtain an interval exchange 

transformation (whose séparation points correspond to vertices 

of the original polygon) which we shall also dénote by T Q . 
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§ 5 . - The density theorem 

We first show that for almost ail initial directions 

the interval exchange transformation generated by the billiard 

flow is minimal (in the sensé of §3) and then show that this 

implies density of the orbits on the whole polygon and not 

merely on its sides. 

Lemme : For ail but a countable number of values of 6 o 
the interval exchange transformation generated by the billiard 

flow (according to §*4) is minimal. 

Proof : We exclude ail directions Connecting two or more ver-

tices in the rectified flow (see remark 3 5 §2, and the 

proof of the theorem of § 3 ) . There is at most a countable 

number of such directions. We shall call such directions ex-

ceptional. We shall show that if 6 q is not exceptional, 

T is minimal, o 
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Indeed condition M 1) is satisfied, since no vertex or sépara­

tion point can be periodic and no other point can then be, as 

shown in £32• Suppose now that F is as in condition M 2 ) . 

1 k 
Take x e 8F and suppose' that x = T Q for some k > o and 

some j (the case k < o is treated analogously). Then either 

-1 
T q x is a boundary point of F or it is in D = { q Q , , • . • q }. 

Since F has only a finite number of boundary points, there 

— g 

must be a positive integer s such that T x = y e D. If 

y = q_. , this would imply a periodic orbit for q_. , so that to 

avoid that the orbits of two vertices overlap (we have exclu-

ded such directions) y must be a séparation point, s = 1 

and x must be a vertex. Thus T would leave invariant a 

o 
subset of fi made up of a certain number of whole sides with 

o r 

corresponding angles. But then this subset necessarily coïncides 

with the whole of fi because of the way we defined the set 
o J 

from the start. 

We remark that 6 Q has been chosen, by avoiding a 

countable number of values, in such a manner that the infinité 

distinct orbit condition of [V] is satisfied. This yields an 

alternative proof of the lemma. 

We are now able to prove the density theorem. 

Theorem. If o3= (X jÔQ) and ô is not exceptional, 

Orb +(oo) = Orb~((jû) = P 
s s 

•4- " 

Proof : From the preceding lemma it follows that Orb~(u)) = fi 
0 0 0 

However one easily sees that if ô is not exceptional, no side 

can stay ail the time "in the shade", i.e. ail sides of the 

polygon are represented in Jî . Indeed, suppose that side a^, 

lying between vertices and i s i R ^ e shade, while 

some copy of side a £ _ ^ **~s ^o* ^hen points in a ^ _ ^ in a 
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neighbourhood of are visited by the flow coming from sonne 

other side a. with s orne angle Q3?. If ail points in a. are 

in the shade then ,-is.a direction Connecting with a 

vertex of a., i.e. 6 is an exceptional direction. So, if G 
] o 1 5 o 

is not exceptional some point of a^ is visited and therefore 

the spatial flow is dense on a^. In a similar way one can see 

that no internai région of the polygon can stay in the shade. 

Indeed such a région would be , by définition, an open set of 

polygonal shape, whose sides would consist of segments of tra-

jectories Connecting two vertices and the conclusion follows as 

above. 

This theorem has a simple physical interprétation : 

in a polygonal two-dimensional room with mirror walls and ra­

tional angles, a light ray travelling in a non-exceptional di­

rection does not leave any part of the room in the shade. 

As an application of this theorem note that the confi­

guration space of two pointlike particles of masses m^ and 

m^ moving freely on a segment and bouncing elastically from 

each other and from the endpoints, is a right triangle, 

the angles of which dépend on the ratio of the square root of 

the masses and the flow is a billiard [Y]. We can thus conclude 
1/2 1/2 that if arctg (ir ,' /m„ ) is rational with T T, for almost ail to 1 / 

initial velocities, the phase flow is spatially dense. 
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