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P. MICHEL 

COINCIDENCE VALUES AND SPECTRA OF SUBSTITUTIONS 

In the recent upswing of ergodic theory, symbolic dynamics has 
come to play an increasingly important role, both in proving general theorems 
and in providing concrete examples of dynamical systems with desired properties. 
The earliest examples of this type (Morse J2lJ , 1921) are constructed by the 
use of substitutions, and the idea of substitution dynamical systems was forma­
lized by Gottschalk and Hedlund ([If] , 1955). Their topological properties have 
been studied extensively by Gottschalk ( JV[ , 1963), Kamae ( [V}, 1972) and 
Martin ( Q.5J , 1971). On the other hand, measure - theoretic properties ot subs­
titution dynamical systems have only recently been investigated (Kakutani |7J , 
1.967, Keane [lo] , 1968, Jacobs-Keane [6~] , 1969, Neveu [23] , 1969, Coven-Keane 

\l] > 1971, Keane [If] , 1972, Klein [14] , 1972). 

These results all deal with metric properties of substitution dyna­
mical systems generated by substitutions of constant length. 

In general, metric properties of dynamical systems are of more interes 
for ergodic theory as well as more difficult to establish. In particular, the 
interesting case of substitutions of non-constant length has (with the exception 
of the classical special cases considered by Morse and Hedlund [22J , 1940, 
and Kakutani [s] , 1972) scarcely been touched. 

In [l7] , [lc[l, it was shown that any substitution minimal set: pos­
sesses a unique invariant probability measure, thus providing a canonical dyna­
mical system associated with the substitution. In the author f s thesis f l9 j 
ergodic properties of certain classes of substitutions of non-constant length 
were developed, and this article contains essentially these results. 
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A substitution 9 over a finite alphabet I is a map from I 
to *J x n. Here we shall principally be interested in the case I = { 0 , 1 } , 

and & can be represented as 
o o o 

0 > ao al a* - 1 
0 : o 

1 1 1 1 > a Q a x ...... 

If a° = 0 and a"*" = 1 , then two one-sided infinite 0 - 1 sequences o o 
a o o o o 
y 0 = w = w w- w 0 

o i l 
and 

o i 1 1 1 1 
9 1 = w = w w- w 0 

o 1 2 

can be generated in an obvious manner by successive replacement of a symbol 
i by the block 9 i• 

In the first paragraph, we study the coincidence density d(B) of 
such a substitution, defined as the density of the set of integers k for 
which w® = w* . A method is developed for calculating d(©) , and this method 
suffices to calculate d(Q) for the classes of substitutions which are studied 
in the sequel. It is a rather surprising fact that the coincidence density 
does not always exist. 

In the second paragraph, we study the class of substitutions 
defined by 

o >o n + 1" p 1 o p 

e : 
1 > 1 0 n , n >_ p >̂  0. 

It is shown by using a modified continued fraction expansion developed in 
[ 1 2 ] , [ll] that the associated dynamical systems have discrete spectrum 

and that all eigenfunctions are continuous. The proof is rather complicated, 
but we have not succeeded in finding a simpler one. 
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In the last section, an example is given of a substitution 
dynamical system with partly continuous spectrum. The methods here have been 
used subsequently by M. Dekking and he has been able to extend this result to 
a much larger class of substitutions. 

Many questions remain to be answered, and in Q}] a systematic 
study of substitution dynamical systems and their topological and metric 
properties will be published. 

The author is grateful to M. Keane for valuable advice in the 
writing of this paper. 
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I - COINCIDENCE VALUES. -

A substitution <r over a finite alphabet I is a map from 
I to U i n . n>2 

Tue substitution & associates to each letter i (- I a block 
C* i = a 1 a^ ... at 1 . We say that O is of constant lenght if £. = 

o 1 i 1 ^ 
for all i, j c I ; otherwise (r is of non-constant lenght. 

If €- is a substitution, then for any block b = b b,,,. b . C. I n 

* J o 1 n-1 we define O b = £? b <r b, . . . 6 , o 1 b . n-1 s In particular, we may define the substitution f- for s 1 
s+1 . s. 

inductively by setting i = (& i) (s >̂  1) 
th s . s The k element of G i will be denoted by G " i(k). 

s 
Now let i £ I such that for some s j> 1, the block & i begins 

2 s s with the letter i. Then the block t i begins with the block G i, the 
3s. . . 2s. 

block 4r i begins with (r i, etc, and we can define an infinite sequence 
0 0 . ns & i as the 11 limit 11 of O i. This sequence will be denoted by 

i ~ . i i i 
W = ^ 1 = W W-. w 0 . . . o 1 z 

In this paragraph, we shall assume that I = { 0, 1 } and that 
0 and O 1 begin with 0 and 1 respectively. Our goal is to study 

the subset of IN defined by {n c iN : w° = ŵ " } 
J n n J 

and in particular we shall calculate the relative density of this set in 
certain cases. We call 

card (ncflSI : n < N and w° = w"'"} j f< • \ I • n n d(b) = lim -
N - * X > 

whenever this limit exists, the coincidence density of O . 

I - 1 Balanced blocks and balanced substitutions. 

Definition 1. 
The blocks b = b b, ... b _ and c = c c. . . . c . are said to be o 1 m-1 o 1 n-1 

equivalent (b /-O c) iff m = n and card { k ; b^ = 0} = card {k : c^ = 0} . 
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Lemma 2 
Each pair b, c of equivalent blocks of length n admits a unique 

decomposition into a sequence of pairs of minimal equivalent blocks, in the 
following sense : 

1) There exist integers r >̂  1 and n Q = 0 < n^< n^ < . . . <n^ = n 
such that for each 0 <_ t < r , the blocks 

b b ,- .... b - 1 

and 
c c - .. . . c -

n
t
 n t + 1 n

t + i " 1 

are equivalent, and 

2) The sequence n , ... , n^ is maximal with respect to the 
property 1 ) . 

Proof : Define n.. as the minimal number for which b , . . . , b ., and 
1 o' 9 n l 

C Q , ... , c

n _ i a r e equivalent, etc. 

Lemma 3 
If b ^ c , then 0 b 

Proof : Let k and n-k be respectively the number of zeros and ones in b 
(and in c ) . If U q and V q are the number of zeros in 6 0 and O 1 
respectively, then the number of zeros in 6 b (and in 6 c) is u Qk + v (n-k). 

A similar calculation holds for the number of ones. 

Definition 4 

Let Q be a substitution over I = { 0,1 } such that 0 0 and 0 1 
begin with 0 and 1 respectively. We set n Q = 0 and define n inducti­
vely for t >_ 1 by 

n. = m f { n : n > n 4 , + l , w w w . t - t-l n t _ 1 n t _ 1 + l nfc-l 

1 1 1 . 
W W . . . . W . } 

nt-i n t - i + 1 V 1 

We distinguish two cases : 
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Case 1. = 0 0 

In this case, we say that 0 does not possess balanced blocks. 
Case 2. 1 ^ < 0 0 

In this case, lemmas 2 and 3 imply that n t < 00 for all t, 
and we say that G possesses balanced blocks. 

In case 2, we set 
O O O n a (w w . . . w \ 1 

w w . . . w / I 

* nt-l nt-l + 1 n t _ 1 7 J 

A 

and we call the elements of I balanced blocks for <b 
It can happen that I is finite or infinite. In case 1, we set simply 
I = 0. 
Lemma 5 . 

If ( ° J € I, then 6 b ~ G c. 
Any pair of minimal equivalent blocks b ! , c ! of 9 b and Q c 

/ b !\ ^ 
given by lemma 2 are such that [ ,1 £ I. 
Proof : , 

/ b \ * 
If £ I, then by definition b c and hence 9 b 9 c 

by lemma 3. Now let b" and c" be 0-1-blocks such that w° begins 
with b f lb and w"̂" begins with c , !c. Since 0 w° = w° and O ŵ " = w^", 
w° and w^ begin respectively with 0 (b"b) and 0 (c"c). 
Moreover, by the definition of I, we may choose b 1 1 and c" such that 
b M ^ c". Then b"b - c"c and 0 (b,!b) = 6(b") 0(b) 

^ 0 (c M) G (c) = G ( c M c ) . 
If n Q = 0 < n^ .... < n^ is the minimal equivalent decomposition of 
0 (b"b) and G (c"c) , then since 6 (bff) ̂  0 ( c f ! ) , the construction of 

lemma 2 shows that for some t, n t is the beginning index of 0 (b) in 
0 (b!tb) , and hence n < ... < n

r yields the minimal decomposition for 
6(b) and G (c). 
It follows from definition 4 that if b', c' is a pair of minimal equiva-

/ b '\ ^ 
lent blocks of 0(b) and Q (c) (given by lemma 2 ) , then £ I. 
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A. 
Corollary 6. If 1 ^ 0 , then 0 induces a map 

§ : £ O ! n 

n>l 
where 9 is the minimal decomposition of (^^) 

If I is finite, © will be called the balanced substitution associated 
with O . 
Remark : © does not satisfy strictly our definition of 11 substitution ", 
since 9 l can be of length one for some l 6 I. 

1-2 Coincidence density. 

In this paragraph, we shall assume that G is a substitution over 
I = {0,1} such that G 0 and G 1 begin with 0 and 1 respectively, 
and also that I is non-empty and finite. If i Q £ I is the first balan­
ced block of the minimal decomposition of w° and w''" (as described in 
definition 4 ) , then it is obvious that 8 l begins with i . 

o o 
Thus 6 i = w = w w- ... exists, where w e l for each n £ N. o o 1 n 
For any l £ I, we set 

- //k\ . . card { n fc. fN : n < N and w_ = I } d(i) = lim - u 

A simple application of the Perron- Frobenius theorem (see e.g. Q.8]) 
shows that this limit exists for each l t I and that the convergence rate 
is exponential. Obviously d(1) >̂  0 and dCi) = 1. 

In order to formulate our next theorem, we shall need the following notation. 
Let l ^ I with T = f b\ and b = b . . . b n , , c = c ... c„ , . 

\cl o £-1 ' o £-1 
We then set I (l) = t and 

c(i) = card {n : 0 < n < £ and b = c } 
— n n 

Theorem 7 
Let G be a substitution over I = { 0,1 } such that © 0 begins 

with 0 and 0 1 with 1. If I is non-empty and finite, then the coinci­
dence density d(6) exists and is given by the formula : 
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J* c(i) d(i) 
d(e) = 

^ A (i) d(t) 

Proof : 
A. 

Let (n t) be the sequence of definition 4. Since I is finite, 
n
t +-^ - n t is bounded, and thus 

d0r) = i i m card { n t-,jN : n < n r and_y° = w n > 

t n t 

if the right - hand limit exists. Now 

card {n <z tN : n < n and w° = w"̂ "} = < c(l') card { m c iN : m < t 
t n n 1 c 1 

and w = l" } m 
and = J^<? £(i*) card { m ( |N : m < t and w = 'l } t i£i m 

Thus 

card { n < (N : n < n and w° = ŵ " } 
t n n 

£ card {m c |N : m < t and w = 1 } 

v card {m t IN : m < t and w = 1 } 
iti u ; t 

and the latter expression tends to 
g« c(l) d(i) 

Z Hi) d(i) 
le i 

as t tends to infinity. 

Theorem 8 
Let C be a substitution over I = { 0,1 } such that O 0 begins 

/ \ 

with 0 and £ 1 begins with 1 . If I is non empty, finite, and if 
^ / o\ ^ 
0 = (\ € I, then d(G) = 1. 
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Proof : Suppose 0 appears at place s in w . The block in w , 
(k) ° (k) k beginning at place S

Q & Q
 a n c * o f length ZQ is the block CI (0), 

and thus : 

card {n ( (N : s £ ( k ) < n < (s + 1)£ ( k ) and w° = w 1 } o o ~ o o n n r 

% 
o 

But : 
card (n ( iN : s I ^ < n < (s + 1)& ^ and w° = w 1 } o o — o o n n 

o 

card (n c N : n < (s + 1) & ^ ) and w° = w 1 } 
• <so + 1> — • h 2 "— 

card (n ( (N : n < s £ ^ and w° = w*} _ o o n n 

o o 

and the latter expression tends to 
(s Q + 1) d (G) - S q d(0) = d © 

as k tends to infinity and thus d (£•) = 1. 

Remark : We have C ( I iff 1 ( I . 



- 10 -

1 - 3 Examples and counterexamples 

In this section we shall determine I and d(c^) for some cases 
of substitutions on I = (0,1) . I n general, this seems to be a difficult 
problem, and it would be interesting in view of our applications in II 
and III to have a method for determining d(G) for any substitution £ . 

The first case to be considered is when & is of constant length t . 

According to [lj , we separate substitutions into two classes, discrete 
and continuous. 

If 0 > aoax .... a . ^ 
t: : 

1 > b D b 1 .... b A - 1 

then t: is continuous iff â . £ b̂ . for all 0 ^ k < £, and discrete 
if for some k , a, = b, . W e recall that only the case a = 0 and b^ = 1 ' k k J o o 
is being considered. (This is not really a restriction, since using the 
normal form of [l] we may always find another 6 satisfying this condi­
tion with the same orbit closure.) 

Proposition 9 
If & is of constant length 1 ^ 2 and if G Qfi)= 0 and 6 K̂ )= 1, 

then 
i) d(G) = 0 if is continuous and 

ii) d(L) = 1 if G is discrete. 

Proof : If h is continuous, then w° ^ for all n , so d(£) = 0 . n n 
If O is discrete, then 

card (n < £ k : w° + w 1 } < (A - l ) k 

n n — 
and this implies d(0) = 1. (See also QQ ) 

In the case of constant length, the relation between fc> on I 
and d(^) is not as essential as in the case of non-constant length. 
It is not hard to see that if 9 is of constant length I . with 8 0(1) = 0 
and (? 1(1) = 1, then I is finite and non-empty iff the number of ones 
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in & 0 is the same as the number of ones in 0 1. 
We now investigate the more interesting and difficult case of non-constant 
length. Let G be a substitution over the finite alphabet I, 
If i,j c I, we set 

« , . . : = card { k : 0 < k < I. and G i(k) = j } 

The matrix M = M(<?) = ( £ . . ) • • T is called the G - matrix. 
i j i , J t I • 

For any s 1, if 
M S = [A < S > ] u ij J 

then = card { k : 0 < k < £,£s) and Si(k) = j } 
(s) v s . where & = . % %. • denotes the length of the block & 1. 
i J^I i j 

If we take I — {0,1} , then the matrix M(G) has positive 
integral entries. Therefore its eigenvalues and \^ a r e real 
and distinct, and the larger eigenvalue An is larger than 1. 

2 . 
By replacing 9 by 0 if necessary, we may assume taat An >_ 0. 

A o i f 
(This changes neither I nor d(G), since w and w remain the 
same.) 

We distinguish four cases : 
1. Xl > 1 > * 2 = o. This means det(M) = 0 and tr(M) = \ ^ 
In this case, we can see that d(9) always exists, is rational, 

and there is a method for calculating d(G). Since we shall only need to 
calculate d(^) for the Q of section III, we adopt a simpler technique 
which may not work for the general case. Suppose that 

m I"1 i 
M = 

2 2 
Then there are three possibilities for Q : 

: o-*oi : . 0 - ^ 0 1 0 - ^ 0 1 
1 j.1001 1 —->1010 1 — > 1 1 0 0 

In the case of h-^, we have 

M ( ° o ) , C DM), 0 ] 
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A / 0 \ ^ 
Thus by theorem 8, dfe^) = 1 since 0 = [ 0 ) £ I • 

/ \ 

In the case of I remain the same and d C C ^ ) = 

For C-^, the situation is different. We have 

I = $ / 0 1 1 \ (10\ (01\ / 1 0 0\ / 1 1 0 \ / 0 0 1\ / 1 1 0 0 \ / 0 1 0 1 U 
(liio/ y voii? lio/ > \ooih \ on/ > \ioo' > \0101/ , VllOO/J 

= {a, b, c, d, e, f, g, h} with i q = a. 

The calculation of ^(^3) c a n be simplified (also in the other cases) by 
identifying the pairs (a, e) , (ft, c) , (d, f) and (g, h ) . This yields 

ss A A 

a — » a b b d 
b > a d 

3 d > g g 
A A A A 
g > a b d g 

A 

(where we have modified vr ̂  and I according to our identification). 
The matrix of 9 ^ is 

" 1 2 1 0 " 
1 0 1 0 
0 0 0 2 
1 1 1 1 - —* 

The corresponding frequencies, lengths and coincidences are : 
d(a) = d(b) = d(d) = d(g) = \ 

c(a) = c(d) = 1 t(a) = i(d) = 3 
c(b) = 0 £(b) = 2 
c(g) = 2 UG) = 4. 
This yields according to theorem 7 , ^(0^) = 3" • 

We note that these examples show that d(k) does not depend only 
on the b - matrix, but also on the distribution of zeros and ones in k 0 
and 1. 

2. XL > 1 > X 2 > 0. This means 0 < det (M) < tr (M) - 1 . 
A 

In this case, we do not know whether I is finite, infinite or 
empty, or whether d(k) exists for a general substitution Q . We shall 
restrict our attention to the case where 

file:///ooih
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"n+1 1 1 . 
M<0) = -I . n > 1 . 

n 1 

Then the possibilities for b are 
o > o n + 1 _ p 1 o p 

9 : 0 < p < n. 
i > i o n - -

where 0 = 0 ... 0 k times. 

If p = n, I = { a,0,1 } with a = ( 1 Q ) = ? Q , 

and a a 0 1 0 
/X A A /\ A-p 
e : o > 0 1 0 

A A -pi 
1 H O 

Thus O i l and d(e) = 1. 
A . . . . . A / 0 0 1\ . [ 0 1\ 

If p = n-1, I = {a, b, 0, 1} with a = ^ Q J = t Q , b = ^ Q J 

A A AN A A n ~ 1 A 

and a > a 0 b 0 1 b 0 
b > a 0 b 0 
A ^2 A ^n-l 0 > 0 1 0 
A ^ A n 1 > 1 o 

A A 

This yields again 0 e I and d(Q) = 1. 
Finally, if 0 _< p <_ n-2, we have 
T - / 0 n + 1 _ P 1 \ 

I = {a,b,c,0,l} with a = ^ n+l-p ) = 1 o ' 

A / 0 1 \ , * I 0 n " P 1 \ 
b = ( i o) ' C = (i o- p) ' 

2 > a (on £ ) n - p e p a o p 

b , a o p a o p 

e : c .. -> a con b ) n - p _ 1 3 p s w 

8 > ^ n + l - P - -p 
A A AN 
1 •> 1 0 

-A A 

Here again, 0 £ I and d(9) = 1. Thus we conclude for any © with matrix M 
that d(©) = 1. 
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If M is any matrix with positive integral entries and det(M) = 1, 
then we can find at least one substitution ^ such that M(' ) = M and 
d(»0 = 1. We omit the proof since we ^hall not use this fact. 

3 - > * 9 = 1. Tiiis means det(M) = tr(M) - 1. 
In this case, we conjecture that I is empty or infinite. A calculation 
due to M. Dekking shows that if 

e . 0 0 0 1 
1 1 — 1 1 0 0 1 

and 0 - 0 1 0 
t : 
2 1 xi 1 0 1 0 , 

then dO-^) = and ^(C^) does not exist . Note that 

M (u^) = MCO^)• We also conjecture in this case that d(G) cannot be equal 
to 1. 

4 - X > X 2 > 1. This means det (M) > tr (M) - 1. 
We conjecture here that d (G) does not exist. The only thing we can 
prove is that if I > I. - + 2 

oo — ol 
and H -, > I - + 2, 11 — lo 

then I is empty or infinite. We have not succeeded in calculating d(G) 
for any G satisfying this condition. 
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II - A CLASS OF SUBSTITUTIONS WITH DISCRETE SPECTRUM. 

In this paragraph, we consider the substitutions 

. o ~> o n + 1" p 1 o p 

P * i 1 0° 

for 0 <. p _< n. As we have seen in 1.3, d(^p) = !• This will enable us 
to prove that & has discrete spectrum. 

P 

In general, if 6 is a substitution over I = {0,1} and if 
© 0 and & 1 both contain 0 and 1, then the subset 

Z s X(&) = {x e I : for all p <_ q , x
p

x
p + ^ •••• x

p + q a P P ^ a r s in some 0 0 } 
Z 

of I is compact, invariant under the shift T (defined by ( T x ) ^ = xk+i^> 
and for each x <C X(G) , the orbit 
Orb(x) = { T Sx : s e I } is dense in X(G) . (sae e.g. [b\ ). 

By Qlfj [l8| , there is a unique probability measure y^ such 
that y ̂  (X(6)) = 1 and T = U Q . The spectrum of © is the spectrum 
of the unitary operator (which we shall also denote by T) induced by T on 

2 
the space (L (X(G), y^ ) . The substitution G has discrete spectrum iff 
2 

(L (X(G) ,]1Q) is spanned by the eigenfunctions of T . We shall prove the 
following result : 

Theorem 10. 
For any 0 <_ p _< n, & has discrete spectrum. 
The proof is rather long and we shall separate it into several 

parts. 

II. 1 - The sturmian case 

0 > 0 1 o n 

If p = n, that is, 6
n
 : i Qn > i t : i s n o t 

hard to see that the substitution 

o — > o n + 1 i 
n : 

1 — > o n 1 
satisfies X(G^ = X(n) and y ^ = y . (In general, if the two blocks 

n " 
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V 0 and <r 1 of a substitution end with the same symbol, we may 
11 transfer 11 this symbol to the beginning of the blocks without changing 

X(fc) or y G •) _ 
Let M = M (n) = n + 1 

n 1 
2 

Then the characteristic polynomial A - (n+2) A + 1 of M admits roots 
A^ > 1 > A 2 > 0 , with A^, X2 irrational and 

1 - (n+l)A 
( , ) X k - 1 - X k ( k - 1 , 2 ) . 

We consider now the compact space Y = (R/^ , provided with normalized Haar 
measure v . The transformation 

S : Y ^ Y 
defined by 

Sy = y + A 2 (mod 1 ) , 
satisfies S v = v , and the spectrum of the dynamical system (Y,v, S) 
is discrete with eigenvalues exp (27rikA2) > k e 1L (|j8J). 

Proposition 11. 
There is a continuous map ^ : X (n) — > Y such that 

o T = S ^ v| and such that <p u = v . Moreover, 
1 -1 . n -1 { y c Y : card (y) > 1} is countable, and card v|> (y) <_ 2 for 

each y ^ Y. 
Proof : Let w <r. X (n) be the point for which W q = 0 , w_^ = 1, and 
w = x] w. A simple calculation using (*) for k = 2 shows that w t = 0 
if Sl (0) * [b, (1 - A 2)Q and w t = 1 if SZ (0) £ [l - A 2 , l Q . 
Since the orbit of w is dense in X(n) , for any x C-. X(n) , we may find 

t, 
a sequence of integers t^ such that x = lim T k w . 

k-*» 
Then lim t, A 9 (mod 1) exists, and if we set 

k+~ K Z 

v| (x) = lim t^ A 2 (mod 1 ) , then vp has the desired properties. 
k-*» 

Corollary 12 
If p = n, then has discrete spectrum. 
This result is essentially contained in the results of Hedlund 

and Morse on Sturmian sequences (see £ 2 2 J ) . 

See also , N$J . 
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II - 2 Martin 1 s result 

In the case 0 _< p < n, we shall need a result given in Ql6^] 
? 

Let Y = fR/Z , let A = A be the smaller root of A - (n+2) A + 1 = 0, 
and denote by S the rotation 

S y = y + A mod 1 (y £ Y) . 

Theorem 13 (Martin Ql6] ) 

There exists a continuous map h from X (<ê ) to Y such that 
h (T x) = S h (x) (x c X )) . 

Our procedure in the following will be to show that h is one-to-one 
on a set of measure one, so that h actually represents an (almost-continuous) 
isomorphism between (X (0 ) , T) and (Y, S ) . It then follows immediately that 

has discrete spectrum. 
P oo 

We define w = w c- X ) by setting 
w = ( , w ^ , w q, , ... ) 

with ( w , w n , w 0 , ) = lim 0 S (0) = 0 n + 1 " P 1 0 P ... 
° 1 2

 s - * » p 

and ( .... , w , w , ) = " lim " 9 S (0) = ... 0 n + 1 " P 1 0 P . 
s-K)o P 

By composition of h with a rotation of IR / H , we may obviously assume that 
the h of theorem 13 satisfies 

h ( w ) = 0 t iR / Z. 
We remark that the result of Martin applies to a much more general situation, 
but that his methods yield little information concerning non-continuous eigen­
values . 

II - 3 Continued fraction expansion 

In this section we define a symbolic system (̂ ,t) and relate this 
system to the rotation (Y, S ) , where S y = y + A and A is the smaller 
root of A 2 - ( n + 2) A + 1 = 0 . 
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Details of the proofs can be found in [l3»] . 

Since X = — t ~ " ^ T — a 5 
n + I - A 

we have the following continued fraction expansion for : 

n+2 : 
n+2 - — — n+ 2 - , 

c 
Consider a sequence 

(o>x, ... , o>k) e { 0, 1, ... , n+1 } k . 

Such a sequence will be called admissible if it contains no block of the 
form n+1 n^ n+1 = n+1 , n, n, . . . , n^ n+1 , j >_ 0 

" J~Yimes 

We set 

ft = { 03 = (00-^5 > • • • ) : 0 £ ^k — n + ^ " ' 

(o)̂ > ••• > 03 ^ ) admissible for all k >_ 1 } 

Obviously, ft is a compact subset of { 0,1,...,n+1} 
A map x : ft ? ft is defined by setting 

T ((A)) = ((jJ-̂  + l, 0)2 y 0)g> •••) 

if (a)-̂ +l, 0)2 > 03^» . . . ) is admissible, and by setting T (OJ) be the first 
admissible element of ft following 00 in the lexicographical ordering 
otherwise. This defines the pair (ft,x). We remark that x is injective, 
x(ft) = ft ^ (0,0,0,...), and x is continuous except at u> = (n,n,n,....) 
(see [ 13 ] ) * 

Now define TT : ft y (R I by 

TT (o)) = 0) k X 

Theorem 14 [13] 

a) IT is continuous, onto, and TT o x = S o IT 
b) IT is one-to-one on 7 r ^ ( ( R / £ - £ A ) 

c) If I a » • • • » a k l = { : = a i 
for 1 i <_ k } , 
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then T ( [a ^, . . . , a ^ ) is an interval in (R / % and 
v ( * (IT01! > ••• > a

 k]) ) 
takes one of the two values X k or X ^ ( l - X ) . 

Next we consider the orbit of the point w = (0,0,0,...) . 
k 

By the definition of t , x o> (k 0) are points of the form 
(^, w . , u m 0, 0, 0, ... ) , and all points of this nature belong 
to the forward orbit of w . In particular, the point 
" (J) - (.Q> °> °> •••>£* o, o, ... ) 

V» 1 l = * v———« 
j - 1 times 

corresponds to an integer which we shall call C. . That is, 
t j w = ^ (j) . it is easy to see that 

c i = 1 

C 2 = n+2 
and 

C j + 1 - (n+2)C j - (j > 1 ) . 

Lemma 15. 
The sequence Cj A-̂  is bounded. 

Proof : Obviously, C. = a ^ + b —̂ -r- for some constants a and b . 
J A J 

Thus Cj A J « a A 2 j + b < |a| + | b| . 

It follows also from the construction in QJ} that Cj A = A J 

mod 1 • Hence Cj A > 0 mod 1 and 
CO ^ 00 

it (w) = . Z a). AJ = . z
n a). C. A 

J=l J 3-1 J J 

For a) of the form (gô , ... , oj. , 0, 0, 0, .... ) this just means 
k 
2 . C 

k J-l J ' 
i r ( u ) = I u . C. X = S (0) , 

j = 1 -1 J 

which also follows from the definition of the C'. s • We shall need also 

the following notation. Let $ R / Z - Z X . By. theorem 146), there exists 
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a unique 03 = ( a ^ , a> 2 > • • • ) ^- ft S U C H T H A T TT (O>) = B . W e set 
m--l 

* m m j=l w j °j ( m ^ 1 } -

Then 3 is a non-negative integer and m g 

lim S m (0) = g 
m->oo 

II - 4 A null set in ft . 

In this section we shall prove a technical lemma necessary for 
the proof of theorem 10. 

Let N = { a) €. ft : {k : 03 ̂  = 00 = 0 } is finite } 

Lemma 16 
v (TT (N)) = 0 

Proof : If we set 
N Q = { 00 £ ft : 00 does not appear in w } 

then by the definition of x , N C ^ ^ t S ( N Q ) . 

Thus it suffices to show that v ( T T ( N q ) ) = 0. 

Consider now a cylinder set 

fot^, .... , a^J = { a) ft oi£ for 1 <_ i <_ k } 

Let denote the union of all such cylinders of length k with the 
property that no two successive zeros occur in a-^9 ... , â . and 
a-̂ , .... , â . is admissible. Then for each k, 

N o ^ N k . 
and hence 

v ( T T ( N )) < inf v ( T T ( N , ) ) . o - k k 

We shall calculate the number of cylinders in N̂ . . Let p^ , q̂ . , , s^ 

denote respectively the number of cylinders Q a i > ••• > a Q ^ n N k s u c ^ 
that is 0, i, n, n+1 (where i denotes any symbol with 1 <_ i <_ n-1) . 
Then p x = 1 , q1 = n-1 , ^ = 1, s± = 1 

and P 2 = n+1, = (n+2)(n-1), = n+2, s 2 = n+1. 
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Moreover, for k ^ 1, 

q k + 1 n-1 n-1 n-1 n-1 q k 

rk +l 1 1 1 1 rk 

- s k J L i 1 °
 ij i s k . 

The first three lines of this matrix are obvious ; the fourth line is obtained 

by noting that 
k+1 k k k j=l J 

and by the corresponding matrix for k - 1, one <$ets 
rk = pk-i + qk-i + rk-i + sk-i 
\ = p k - i + V i + sk-i 

and r k - s k = r ^ 

Hence k-1 
r, • - s. = s, by induction, k j=l j k J 

If we now calculate the characteristic polynomial of the above matrix, we get 

P(5) - S U 3 ~ (n+l)£ 2 - n g + 1 ) . 
1 2 If T is the larger root of A - (n+2) A + 1 = 0, then one finds that 

1 1 
P (t) 3 8 T > 0 » since P (0) > 0 and P(l) < 0, this implies that the largest 

A A 
root 5 of P (£) = 0 (positive by the Perron - Frobenius theorem) satisfies 
O A 

By theorem 14c, each cylinder £.ct^, 0 1 k̂  °^ Nk satisfies 

V (ir (Q , a j ) ) < X k . 
k 

Since there are asymptotically K . £ such cylinders, we obtain 
k k 0 

v (N, )) < K . £ .a > 0. 
k ~ ° k*» 
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II - 5 Subsets of N related to 6 , n and ft . 

We recall that n is the substitution defined by 

0 — > 0 n + 1 1 
1 — ^ 1. 

If we consider n°° (0) = nS(n°°(°)) = V
Q
 v l v 2 9 t h e n w e 

see that n (0) is made up of a sequence of blocks of the form n S (0) 
s 

and T] (1), for any fixed integer s >_ 1. Suppose that 
0 = k Q< k^< k^< k^< ... is the sequence of integers such that for each j , 

v k . v + i ••• \ . -i j j j+i 
s s is either n (0) or n (1). We then set 

= { k^ , k^, y • • • } 

In the same fashion we define . j ^ for s >_ 1 and for the 
oo 

substitution d ^ (0 <_ p <_ n) , by decomposing @ ^ (0) into its blocks 

O p (0) and 6 p (1). 

Our purpose in this paragraph is to relate the sets '%P and 
s s 

with the sets j g defined by 
00 

^ o = {k e iN : k = u . C. , u - (o».)fe fi , {j : u • 1 0} finite } 
S J S"Tl J J J J 

(s >_ 0) 

Lemma 17. 

For any s > 2, we have T O & P . 
— s — s-1 

Proof : 1. \̂  * s ~ s 

We recall that & ^ denotes the length of the block r) S(0), and 
the length of n S(l)« Since 

n s(0) = n 8" 1^) n 8" 1 (onl) = n ^ V ) n
8 ( D 
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and n s + 1 ( 0 ) = [ n s ( 0 ) ] n + 1 n s ( D , 

we have 
L ( s ) . ,(s +l) (s) 
o o 1 

* ( s + 1 ) = <n +l) A . ( s ) + i < 8 > . o o 1 

This yields the recurrence relation 
* ( S + 1 ) = ( n + 2 ) i l ( s ) 

o 0 o 
with , . / 1 X 

i i o ) = 1 , * . ( 1 ) = n + 2 . o o 
(s) Thus we see that for each s > 0 , & = C , where C . - is the number — o s+1 s+1 

defined in II.3 (by the same recurrence relation). 
Any element in is of the form 

t 
k = . E n a). C. . J=s+1 J j 

(s) If t - s+1, that is if k = co J l C J_1 , then since C = £ ^ and ' s+1 s+1 s+1 o 
oo S 

a) <_ n +l> and since n (0) begins with n+1 blocks n (0) followed 
by one block n (1) we see that k 5,! • 

s 
Moreover, k £ X corresponds to the beginning of a block n (1) if s 
and only if ^s+i = * ̂ o w s u P P o s e that t = s+2, that is, 
k = <Vl C s + 1 + w s + 2 C s + 2 = w s + l C s + 1 + k \ T h e n k' e 

S + 1 S + 1 oo 

and is the beginning of a block n (0) or n (1) in. n (0), 

the latter occurring only if u )
s+2 = n + ^ # 

Now n s + 1 ( 0 ) = n
s(o) n

s ( 0 ) .... n
s(o) n

s ( D , 
v --v 

n+1 times 
s+1 

so that if k' is the beginning of a block n (0), then k is the 
s s 

beginning of a block n (0) or n (1) (the latter only if w
s + ^ = n + l ) 

and k t 31 * . If on the other hand k 1 is the beginning of a block 
s+1 

n (1) then ^s+l — n (since co must be admissible) and 

n s + 1 (l) = n s (0) n s (o) n
s (l). 

V y~- S 
n times 
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s s 
Therefore k = k T + ^s+l Cs+1 "*"S t* i e beginning °f a block n (0) or n (1) 
(the latter only if w = n+1), and k ; J l 

s • J. s 

Continuing in this fashion, we have -j c_ 
s s 

2. K , c •>•• s+1 — s 

We use here a method similar to that of I) to compare the sequences 
00 00 

n (0) and £• (0). As in I ) , we defined a balanced substitution n 
associated with n and by setting 

/ n (o)\ / o n + 1 1 \ 
a = U p ( o ) J = Vo n + 1"P 1 o p/ 

b - / n ( 0 ) W f ° n + 1 1 ) 

1g p(d oj li o n + i y 

/ n (0) \ _ ( 1 ) 

° = \ ' © p (0) o / \ o n _ p 1 o p + 1' 

d = I n ( 1 ) \ - f °n 1 ] 
\ - e p (o) ) U n - p i o p/ 

(Note that a, b, c and d consist of pairs of equivalent blocks of the 
same length, but for this purpose we have not decomposed 

/ n°° (0) \ 
/ I into minimal balanced blocks.) 

U;<o ) j ^ - -

Now set 1 = { a, b, c, d } 

and define on I* by 
n+l-p . p-1 , 

a »~>a v b or d 
n * k b >b c n d 

n-p . p , 
c - > a

 r b c r d 
, n-p p-1 d - >a r b c d . 
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Then for each i* = I j £ I , we have 
/ n (A) \ 

" « * > - g c > ) • 
P 

Therefore ^ 

( n ( 0 ) \ 
n"°° U ) = Up<°> J = ( X ° X]L X 2 } = X 

with 

Since for any s 1, we have 

/ " S < V \ / , " s < " i > \ 

and since y. is either n (0) or n (1), we see that this decomposition 
of n (x) corresponds to the set t>b . On the other hand, the ele-
ments are finite sequences of zeros and ones, so that Q (z^) is a 
sequence of blocks of the form 9^ (0) or (1). Thus the same decom­
position corresponds also to a subset of the set . and hence 
%* c . 

S + l — S 
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II - 6 A null set in Y . 

The last preparation for the proof of theorem 10 is a technical 
result. We recall that w° and w''" were defined in I) for l as 

00 
W ° - * P (0) 

1 00 
w 1 = C- (1) . 

P 
It was proved there that the coincidence density ^(k ) = 1 for each of 
the substitutions 0^ , 0 <_ p <_ n , and that the convergence to ^(6^) is 
exponentially fast. 
Let 3 e Y = iR/£ and consider the sequence of positive integers 3 m 

corresponding to 3 as defined in II.3. For each m , let be chosen 
with I k I minimal such that 1 m 1 

o j 1 
w r + k / w r + k • 

p m m M m m 
Now set 

Y Q = { 3 e Y : lim inf | k m | < oo } 
m-x» 

Lemma 18. v (Y ) = 0. 

Proof : By II.3 and \VT\ , the points 0, \ , 2 \ , . . . , (C -1) X 
divide Y into C intervals I. of measures X or X™ (1 - A ) . 

m j v 7 

Let r be a positive integer. Then 
00 

Y = LI ( 3 C Y : lim inf I k I < r } o r=0 1 m 1 — J 

m -> oo 

If we consider now for fixed r and m the set 

{ 3 c Y : | k | < r } , 1 m' — ' 

by the definition of k and because 3 is constant on each interval I.. 
m m j ' 

we obtain o , 1 ^ 

!
s : 0 < s < C , w , ̂  f w A / 

m s +t s+t + r 

v U H i:|k |<rj < a . for some 0 < | t[ * s { 
m c 

m 
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card { s : 0 < s < C , w° ^ w 1 } + r . m — m s s i X . r . -

m 

Since ^ 0 0 exponentially and since 

card { s : 0 < s < C , w ° ^ w * } 
Z_ L > ! - d ( % ) . o 

m 
exponentially (by I.), we conclude that v (Y ) = 0, 

II. 7 . Proof of theorem 10. 

We first show that if 3 Y is such that 3 £ Y q (see II.6), 
3 £ IT (N) (see II.4), 3 Z A (mod 1 ) , and if lim n A = 3 , 

n k oo . k*00 

then lim T w exists, where w = w as in II.2. Let r and s 
be fixed integers >_ 2. Then lim n^ A = 3 implies that for sufficiently 
large k , n, - 3 £. j . By lemma 17, we have n, - 3 C -K> 

K. S S K. S S ~~ JL 
If we write n v = (n, - 3 ) + 3 , we see that the symbol w occupies a 
place in the sequence w which is 3 g to the right of the place 
n k ~ ^s ' a n c l ' ^ n w ' t h e P l a c e n k ~ *"S t h e b e g i n n i n 8 o f a block of 
the form 6 s " 1 (0) or 0 S - 1 (1) (since n. - {T & P , ) . 

p P K. S S"~l 
Since 3 Z A mod 1, we have 3 > 0 0 as s 

s 
Moreover, if s is such that co 0 co , = 00. then \ 0 s-2 s-1 ' s-1 s-3 
^s = 0 ^i C i = 0 w i c i < c

s - 2 > a n d i t : f o l l o w s easily that 
(S-1) _ - ^ ^ £ (S-1) _ - oo as S > oo . 

J. S O S 
Now choose a subsequence s . > <» such that u) 0 a) , = 00. 

u s -2 s -1 
0 0 s u u 

This is possible because 3 = E n o> A ^ TT (N) . Then choose u such 
S —~vj S 

the number k g defined in II.6 corresponding to 3 satisfies | k | >_ r. 
u u 

This is possible because 3 4. Y . Finally, choose K = K(u,s) 
such that if k > K, then n, - 3 £ 3 . I t follows now for u and 

~~" K. S S 
k >̂  K that the blocks U U 
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w , w » w . , , w . 
n k " r n k " r + 1 V 1 " 1 V r 

do not depend on k . Therefore any two accumulation points of the sequence 
n k 

T w agree in the coordinates - r, ... , + r. Since r was arbitrary, 
n k 

lim T w exists. 

Now let h : > Y be the homomorphism of II.2, with 
h(w) = 0, and set 

7 = Y \ (Y U 7T (N) U E A ) . 

Then by lemmas 16 and 18, v (Y) = 1. If 3 € Y and if 
-1 . n k x e h ( 3 ) , then there exists a sequence n^ such that T w y x 

(because X(0 ) is minimal) and the corresponding sequence n, X G Y tends 
P K -i 

to 3 (because h is a homomorphism). If now & £ Y, then h (3) must 
consist of a single point, since any sequence n, such that n, A > 3 

n k -1 — will make T w converge. Therefore h is one-to-one on a set h (Y) of 
measure 1, and hence 6^ has discrete spectrum. 
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III - A SUBSTITUTION OF NON-CONSTANT LENGTH WITH PARTLY CONTINUOUS SPECTRUM. 

We have seen in the precading section that a class & ^ of 
substitutions of non-constant length have discrete spectrum. It is natural 
to ask whether any substitution of non-constant length has discrete spec­
trum. In this paragraph, we give an example of a substitution with partly 
continuous spectrum. 

We consider the matrix 

M = 
- 2 2 

and its corresponding substitutions. Among them, only three do not yield 
periodic orbits. They are : 

e , : 0 * 0 1 

1 > 1 0 0 1 

0 , : ° — - * ° 1 

1 > 1 0 1 0 

1 * 1 1 0 0. 

The coincidence densities of these substitutions have been obtained in 1.3 ; 
they are respectively d(Q^) = ^(62) = 1 and ^(G^) = J • 

Again a result in [l(Q yields the continuous eigenfunctions for ©2 

and 9^ , and gives the equicontinuous factor * ^ (3)> ^ 2 ^ e i n § 
the cyclic group of order two and &(3) the 3-adic integers. It is easy to 
see why this is so : the ^ " part is obtained because & S 0 and 6 S l 

always appear in w = at even places, so that one can 11 recognize 11 

by looking at a finite number of successive symbols of a point x X (G) 
whether it is a limit of even or odd translates of w . The TL(3)-part 

(s^ (s^ s arises from the fact that for s >_ 2, the lengths I ̂  ' and £ ̂  yof & 0 
and 0 S l are multiples of 3S""^ , which allows the 11 recognition 11 of a 
point x as a limit of translates n^ of w with n^ mod 3 fixed. 
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The proof of the following theorem is simple in comparison to 
theorem 10 of II. 

Theorem 19 
6^ and have discrete spectrum. 

Proof : Let a = 0 1 and b = 1 0. Then 
9 1 a = 0 1 1 0 0 1 = a b a 
6 1 b = 1 0 0 1 0 1 = b a a 
G 2 a = 0 1 1 0 1 0 = a b b 
fi2 b = 1 0 1 0 0 1 = b b a, 

The substitutions 
a > a b a 

n i : 

b > b a a 
and 

a > a b b 
b > b b a 

obtained in this manner have discrete spectrum (see ) with equicontinuous 
factor £ ( 3 ) , and the homomorphism X(G^) > X ( T ^ ) , i = 1, 2, yields the 
additional factor TL^ in an obvious manner. 
We turn now to the substitution 6 ̂  . As above, let a = 01, b = 11 and c = 00. 

T h e n G 3 a = 0 1 1 1 0 0 = a b c 
& 3b = 1 1 0 0 1 1 0 0 = b c b c 
9 3c = 0 1 0 1 = a a . 

This leads us to consider the substitution of constant length 
a ^ a b c 

n 3
 : b > b c b 

c > c a a 

Lemma 20. 
There exists a continuous map 

TT : X(G J > X ( n ) 
2 

such that TT T = T ^ . 
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Proof : If x = ( . . . . , x_^, x , x^, .... ) L X(d^) 9 the block 1 1 0 

occurs at least once in x at a place k. According to whether k is even 
or odd, we group symbols of x as 

• (^_2 x — l ^ * ^ xo X l ^ 9 ^ x 2 x 3 ^ ' • • • • 
or 

9 ^ X —1 X o ^ 9 ^ xl x 2 ^ ' ^ x 3 x 4^ ' ' 

and replace each group by its corresponding symbol a, b or c. 
(Note that in this 11 canonical decomposition 11 of any point of ^(0^) > the 
block b = 1 1 is always followed by c = 0 0.) 

This yields a well-defined continuous map TT from X($o) to X(n~) and it 
2 

follows immediately that TT T = T TT 

Lemma 21 
The substitution n«j has partly continuous spectrum. 

Proof : The structure group of is Z (3) (see [iff] ) . 
Let a : X d ^ ) > Z ( 3 ) be the corresponding projection. 
Then the subspace H = { f o a : f £ (L2 (Z (3 )) } of /L2(X(n3)) is the 
subspace spanned by the continuous eigeafunctions of T • Moreover, since 
a is almost everywhere 3 to 1 , is not { 0 } 

Let 0 ^ h £ H x and suppose that for some complex £ with |^| = 1 

we have T h = £ h. By ergodicity of (X(rO,T), |h| is a non-zero 
3 3 3 3 constant, and it follows that h £ H and T h = £ h 

3 . k 
Thus g is a 3 -root of unity for some k , and so is 5 . Therefore 
there exists another eigenfunction h Q e H with eigenvalue g , and this 
contradicts the ergodicity of T . 

Theorem 2 2 . 

The substitution 9 ^ n a s partly continuous spectrum. 

Proof : If not, then by lemma 20, would have discrete spectrum, and 
this contradicts lemma 2 1 . 

We remark that the article [2] of M. Dekking contains a syste­
matic development of substitutions of the type considered in this last 
paragraph. 
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SUMMARY 

Measure - theoretic properties of substitution dynamical systems 
generated by some substitutions of non constant length on two symbols 0 and 1 
are studied. For this, a new concept is introduced. The coincidence density of 
a substitution © is defined as the density of the set of integers k for 
which the sequences Q°°Q and Q°\ take the same value in the place k . 
This coincidence density does not always exist. A class of substitutions for 
which this coincidence density takes the value 1 is given and it is proved 
that these substitutions have discrete spectrum and that all their eigenfunctions 
are continuous. An example of a substitution dynamical system with partly conti­
nuous spectrum is also given. 
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