PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

Nobuo Aoki

Ergodic Automorphisms of Compact Metric Groups are Isomorphic to Bernoulli Shifts

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule S4

« International Conference on Dynamical Systems in Mathematical Physics », , p. 1-10

http://www.numdam.org/item?id=PSMIR_1975____S4_A2_0

© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ERGODIC AUTOMORPHISMS OF COMPACT METRIC GROUPS

ARE ISOMORPHIC TO BERNOULLI SHIFTS

NOBUO AOKI

I wish to discuss its title. Let X be a compact metric group and μ be its normalized Haar measure. Then (X, μ) is a Lebesgue space. Let Γ be an automorphism of X, then Γ is an invertible measure preserving transformation of X onto itself. Our problem is concerned with measure theoretic properties of Γ .

Throughout this given a transformation of any group, a restriction on a subgroup and an induced transformation on a factor space will be denoted by the same symbol as that of the original transformation, if there is no danger of confusion.

Today we will outline a proof of the following

Theorem 1. An ergodic automorphism of a compact metric abelian group is a Bernoulli shift.

The result has recieved the most attension in the literature.

In a two-dimensional torus, Adler and Weiss [1] proved the result using Ornstein's Theorems. In recently, Katznelson [4] showed the result in an n-dimensional torus. Lind [5] gave a proof for the case of an infinite-dimensional torus. The proof which Totoki and the author [2] proved was done independently of Lind's work. The techniques I use are due to Katznelson [4] and Totoki and the author [2].

In order to outline Theorem 1, we prepare the following $\frac{\text{Proposition 1.}}{\text{Proposition 1.}} \quad \text{Let } X \quad \text{be a compact metric abelian group} \\ \text{and } \sigma \quad \text{be an ergodic automorphism of } X. \quad \text{Then there exist subgroups} \\ X_D, \ X_A \quad \text{and } X_B \quad \text{such that } X_D \quad \text{is a } r \text{-invariant totally disconnected} \\ \text{subgroup, } X_A \quad \text{and } X_B \quad \text{are } r \text{-invariant connected subgroups of } X \quad \text{and} \\ \text{dynamical systems } (X_D, \sigma), \quad (X_A, \sigma), \quad (X_B, \sigma) \quad \text{are ergodic, and} \\ \text{further } (X, \sigma) \quad \text{is an algebraic factor of } (X_D \otimes X_A \otimes X_B, \sigma \otimes \sigma \otimes \sigma). \\ \end{cases}$

The proof uses the results of Entropy Theory together with the results of Group Theory.

<u>Proposition 2.</u> The dynamical systems (X_B, f) and (X_D, f) have the Bernoulli properties.

We can prove that X_B is locally connected and so by [2] we have (X_B, σ) has the Bernoulli properties. The Bernoulli properties of (X_D, σ) is an indirect application of the results of Yuzvinskii [12].

To show the dynamical system (X_A, f) has the Bernoulli properties, let G_A be the character group of X_A and U be the dual automorphism of G_A induced by $(Ug)(x) = g(f^{-1}x)$ for $g \in G_A$. Each $g \in G_A$ satisfies the following condition

We denote by \overline{G}_A the minimal divisible extension of G_A and by \overline{U} the automorphism of \overline{G}_A extended by U. If \overline{X}_A is the dual group of \overline{G}_A , then \overline{X}_A is a compact connected metric abelian group. If \overline{F} is the dual automorphism of \overline{X}_A induced by \overline{U}^{-1} , then as (X_A, F) has the ergodic properties, it is not hard to see that $(\overline{X}_A, \overline{F})$ has the ergodic properties. Since $G_A \subset \overline{G}_A$, let us define $X_1' = \text{ann}(G_A, \overline{X}_A)$, then the dynamical system $(\overline{X}_A/X_1', \overline{F})$ and (X_A, F) are isomorphic. And so if $(\overline{X}_A, \overline{F})$ has the Bernoulli properties, then Ornstein's theorems imply that (X_A, F) has the Bernoulli properties. Therefore, using Propositions 1 and 2 it follows that (X, F) has the Bernoulli properties.

We resolve this difficult with some lemmas.

Let $\overline{G}_A = \{f_1, f_2, \dots\}$. We denote by G_n the subgroup of \overline{G}_A generated by $\{\overline{U}^j f_k : -\infty < j < \infty, k = 1, 2, \dots, n\}$ for n > 1. Then we have $\operatorname{rank}(G_n) < \infty$ for n > 1. Let $X_n = \operatorname{ann}(G_n, \overline{X}_A)$ for n > 1, then we have $\overline{F} X_n = X_n$, n > 1 and $X_1 \supset X_2 \supset \dots \supset \bigcap_{n=1}^{\infty} X_n = \{e\}$. Since each f_k satisfies the condition (A), we have for each k > 1 $f_k = \overline{U} f_k^{m_1(k)}$ $\overline{U}^p k_{f_k}^{m_p(k)}$

for some $p_k > 0$, $l_k > 0$ and some $(m_1(k), \ldots, m_{p_k}(k)) \neq (0, \ldots, 0)$.

From now on, we fix ℓ_1 , ..., ℓ_n and put

(1) $n_0 = \ell_1 \dots \ell_n$, $k_0 = \max_{1 \le k \le n} p_k$. He denotes the subgroup of G_n generated by $\{f_k, \dots, \overline{U}^{k_0} f_k : 1 \le k \le n \}$. Then H is finitely generated, torsionfree, $\overline{H} = \overline{G}_n$ and $\prod_{j=-\infty}^{\infty} \overline{U}^j H = G_n$. Let $X(H) = \operatorname{ann}(H, \overline{X}_A)$, then the character group of $\overline{X}_A/X(H)$ is H and so $\overline{X}_A/X(H)$ is a finite-dimensional torus.

Lemma 1. If $n_0 = 1$, then $(\bar{X}_A/X_n, \bar{P})$ has the Bernoulli properties.

The proof is a direct application of the result of Katznelson [4]. Lemma 2. If $n_0 > 1$, then $\gamma(x) = x^{n_0}$, $x \in \overline{X}_A$, is an automorphism of \overline{X}_A such that $\gamma \overline{\rho} X(H) \subset X(H)$, and the induced factor $\gamma \overline{\rho}$ on \overline{X}_A/X_n is ergodic.

The details of the proof are found in Chapter 1 of [13].

This lemma is essentially utilized in the proof of Lemma 13.

To obtain $(\overline{X}_A/X_n, \overline{F})$ has the Bernoulli properties whenever $n_0>1$, we construct a sequence $\{P_n\}$ of weak Bernoulli partitions for the dynamical system $(\overline{X}_A/X_n, \overline{F})$ such that $P_n < P_{n+1}$ for n > 1 and $\bigvee_n P_n$ is the partition of \overline{X}_A/X_n into single points.

Let M be a positive integer and let p be a partition of the interval $[0, 2\pi)$ into subintervals of the same lengths $2\pi/M$. The elements of p will denote successively from the left by $p_j = [a_j, a_{j+1})$, $j = 1, \ldots, M$. Let K be an arbitrarily fixed positive integer and set $N_K = n_0^{K^2+K}$ (n_0 is the integer satisfying the (1)) For k > 0 $K_k(t)$ will denote the Fejer kernel defined on $[0, 2\pi)$.

Lemma 3. Let M be a fixed positive integer. Then there exists a positive integer $\ell = \ell(M)$ such that for each m > 2 there is a positive number $\delta_m = \delta(m, M)$ satisfying the following:

$$(1 + m^{-2})(1 - \frac{8}{(m^2 - 1)\delta_m^2}) \gg 1$$
,
 $3^{M+1} M^2 \delta_m < 1/m^2$.

The proof is elementary.

Lemma 4. Let M and δ_m be as in Lemma 3. Then

$$2\pi + 2M(N_k - 1)\delta_m < 2\pi N_K$$
 (2 \le m \le K).

The proof is clear from Lemma 3.

From Lemma 4 we can manipulate as follows. For an arbitrary m such that $2 \le m \le K$, set $p_j(m) = [b_j, c_j)$, $mod 2\pi N_K$, where $b_j = a_j - (N_K - 1)\delta_m$, $c_j = a_{j+1} + (N_K - 1)\delta_m$ $(1 \le j \le M)$. We translate each $p_j(m)$ by $r_j(m)$ $(r_j(m) = 0)$ to the right so that $c_j + r_j(m) = b_{j+1} + r_{j+1}(m)$ and denote the translated $p_j(m)$ by $\tilde{p}_{j}(m)$. Then $\tilde{p}_{l}(m)$, ..., $\tilde{p}_{M}(m)$ are disjoint and each $\tilde{p}_{j+1}(m)$ borders on $\tilde{p}_{j}(m)$ from the right and hence we may set $\tilde{p}_{j}(m) = \tilde{l}a_{j}(m)$, $a_{j+1}(m)$ for $j = 1, 2, \ldots, M$.

In the case M = 3 we have for instance following figure.

(2)
$$2\delta_{m} < r_{j}(m) < 2(j-1)(N_{K}-1)\delta_{m} + 2\pi j/M$$

$$(2 \leqslant m \leqslant K, 2 \leqslant j \leqslant M).$$

Lemma 5. Let M and δ_m be as in Lemma 3. Then there exists a positive integer $K_0 = K_0(M)$ such that for $K > K_0$

$$2\pi + 2M(N_K - 1)\delta_m + 3^{M+1}Mr_M(m) < 2\pi N_K$$
 (2 \left m \left K).

The proof is elementary.

We set for m such that $2 \leqslant m \leqslant K$ for K > K

(3)
$$\begin{cases} r_{1}^{(m)} = r'_{1}^{(m)} = 0, \\ r_{j}^{(m)} = r'_{j}^{(m)} + 3r_{j-1}^{(m)} & (2 \leq j \leq M) \\ p'_{1}^{(m)} = \tilde{p}'_{1}^{(m)}, \\ p'_{j}^{(m)} = [a'_{j}^{(m)} + 3r_{j-1}^{(m)}, a'_{j+1}^{(m)} + 3r_{j}^{(m)}) & (2 \leq j \leq M) \end{cases}$$

Then $p_1(m), \ldots, p_M(m)$ are disjoint and each $p_{j+1}(m)$ borders on p₁(m) from the right.

In the case M = 3 we have for instance the following figure.

We have for m with $2 \le m \le K$ for $K > K_0$ $3(r_2(m) + \dots + r_M(m)) < 3^{M+1}Mr'_M(m)$.

Hence by Lemma 5 we have for $K > K_0$

$$\bigcup_{j=1}^{M} p_{j}'(m) \subset [0, 2\pi N_{K}] \quad (2 \leq m \leq K).$$

Lemma 6. Let M and δ_m be as in Lemma 3. Then there exists a positive integer $K_1 = K_1(M) > K_0$ such that for $K > K_1$ $\delta_m + r_1(m)/N_K < 2\pi$ (2 \leq m \leq K, 1 \leq j \leq M).

The proof uses (2), (3) and Lemma 3.

Lemma 7. Let δ_m be as in Lemma 3. Then for m satisfying $m > \max(2, \sqrt{M/\pi})$ and $p_j = [a_j, a_{j+1}) \in \beta$, $j = 1, 2, \ldots, M$, $[a_j + \delta_m, a_{j+1} - \delta_m) \neq \phi.$

The proof is elementary.

Lemma 8. We consider the characteristic function $\chi_{p_{j}(m)}$ of $p_{j}(m)$ as a $2\pi N_{K}$ -cyclic function on R^{1} . Then for $K > \max(2, K_{1}, \sqrt{M/\pi})$ and $N_{K}t \in [a_{j} + \delta_{m}, a_{j+1} - \delta_{m})$ for $t \in [0, 2\pi)$, $\chi_{p_{j}(m)}(N_{K}t + r_{j}(m) - s) = 1 \quad (\max(2, \sqrt{M/\pi}) < m \le K, 1 \le j \le M)$

if $0 < s < N_K \delta_m$ or $2\pi N_K - N_K \delta_m - 2r_1(m) < s < <math>2\pi N_K$.

The lemma follows from (2), (3) and Lemma 7.

Lemma 9. Let ℓ and δ_m be as in Lemma 3 and let K_1 be as in Lemma 6. Then if $K > \max(2, K_1, \sqrt{M/\pi})$, for each $m \pmod{2, \sqrt{M/\pi}} < m \le K$) and each $p_j \in p$ there exists a non-negative function $\tilde{f}_{mp_j}(t)$ on $[0, 2\pi)$ satisfying the following:

$$\tilde{f}_{mp_j}(t) \gg 1$$
 $t \in [a_j + \delta_m, a_{j+1} - \delta_m),$

for some constants c_0, c_k, c'_k (k = 1,2, ..., m²)

$$\tilde{f}_{mp_j}(t) = c_0 + \sum_{k=1}^{m^t} c_k \, \tilde{e}^{i(k/N_K, t)} + \sum_{k=1}^{m^0} c_k \, \tilde{e}^{-i(k/N_K, t)},$$
where $\tilde{e}^{i(k/N_K, t)} = e^{ik(t/N_K)}$ and $\tilde{e}^{-i(k/N_K, t)} = e^{-ik(t/N_K)}$ for k,

 $\sum_{j=1}^{M} \tilde{f}_{mp_{j}}(t) \leq 1 + m^{-2} \qquad t \in [0, 2\pi).$

The proof uses the results of Lemmas $3 \sim 8$. We denote by $e^{i(m,t)}$ an exponential function e^{mti} for m. Lemma 10. Let ℓ and δ_m be as in Lemma 3. For each $p_j \in p$ $K > \max(2, \sqrt{M/n})$ we define for $t \in [0, 2\pi)$

$$f_{mp_j}(t) = (1 + m^{-2})\hat{f}_{mp_j}(t) \quad (max(2, \sqrt{M/\pi}) < m \le K)$$

where

$$\hat{f}_{mpj}(t) = 1/\pi \int_{0}^{2\pi} \chi_{pj}(t-s) K_{m}(s) ds.$$

Then $f_{mp_j}(t)$ is a non-negative function on [0, 27) and we have the following:

$$f_{mp_j}(t) \gg 1$$
 $t \in [a_j + \delta_m, a_{j+1} - \delta_m]$,

for some constants d_0 , d_k , d'_k (k = 1,2, ..., m)

$$f_{mp_{j}}(t) = d_{0} + \sum_{k=1}^{m^{\ell}} d_{k} e^{i(k, t)} + \sum_{k=1}^{m^{\ell}} d_{k}' e^{-i(k, t)},$$

$$\sum_{j=1}^{m} f_{mp_{j}}(t) \leq 1 + m^{-2} \qquad t \in [0, 2\pi).$$

The proof is direct from Katznelson [4].

We can generalize easily Lemmas 9 and 10 on a finite-dimensional torus We assume that $\overline{X}_A/X(H)$ is r-dimensional. $\overline{X}_A/X(H)$ is algebraically isomorphic to $T^r = [0, 2\pi)^r$ whose character group is the discrete group

$$H_{r} = \{ e^{i(m, \cdot)} : m \in Z^{r} \}^{1} \}$$

which is algebraically isomorphic to H. \widetilde{H}_r denotes a multiplicative group $\{e^{i(q, \cdot)}: q \in Q^r\}^2$ which is a minimal divisible extension of H_r . Now let Y^r denote the dual group of \overline{H}_r , and we denote by $(e^{i(q, \cdot)})(y)$, $y \in Y^r$ each character $e^{i(q, \cdot)}$ of Y^r . We note that for $m \in Z^r$

$$(e^{i(m, \cdot)})(Py) = e^{i(m, Py)}$$

where P is the projection from Y onto Tr.

From the definitions of G_n and H, we have $\overline{G}_n = \overline{H}$. Thus as H_r and H are algebraically isomorphic, we have the diagram

¹⁾ Zr is the set of all r-dimensional integer vectors.

²⁾ Qr is the set of all r-dimensional rational vectors.

Let 7 and 3 be automorphisms of $Y^{\mathbf{r}}$ isomorphic to $\overline{\mathbf{r}}$ and η of $\overline{X}_{A}/\overline{X}_{n}$ respectively. Then 73 induces the endomorphism of T^{r} (wrtten by the same symbol $\tau \xi$) because $\eta \bar{r}$ induces the endomorphism of $\bar{X}_A/X(H)$ and of is given by an rxr matrix with intger entries.

 U_p denotes the linear operator from $\mathcal{C}(T^r)$ into $\mathcal{C}(Y^r)$ by $(U_{pg})(y) = g(Py)$ for $g \in \mathcal{C}(T^r)$. The adjoint operator τ § on Z^{r} of the endomorphism is on T^{r} is defined by

$$e^{i(m, \tau_{\xi}^{2}Py)} = e^{i(\tau_{\xi}^{2}m, Py)}, m \in Z^{r}.$$

$$(4) \qquad U_{\tau}^{-1}(U_{P} \tilde{e}^{i(N_{K},\cdot)})(y) = (U_{P} \tilde{e}^{i(\tau N_{K},\cdot)})(y), y \in Y^{r}.$$

Now the eigenvalue of f is n_o with multiplicity r . Let the eigenvalues of τ be λ_1 , ..., λ_k (k \leqslant r), then the eigenvalues of η are $n_0 \lambda_1, \ldots, n_0 \lambda_k$.

We may consider the matrix 7 as operating on Rr and so we decompose

$$R^{\mathbf{r}} = V_{-\mathbf{k}} \oplus \dots \oplus V_{\mathbf{q}} \oplus \dots \oplus V_{\mathbf{q}}$$

such that each V_j is the 7-invariant subspace of R^r corresponding to the eigenvalues of τ of modulus f_j where f_{-k} < ... < 1 = f_o < ... $\langle \zeta_q^{\prime} \rangle$. Let $\zeta_j^{\prime} = n_0 \zeta_j^{\prime}$ and let $V_0 = V_{-k} \oplus \ldots \oplus V_{-k}$. (k'>0) be the direct sum of V_{j} 's corresponding to f_{j} such that $f_{j} \leqslant 1$. Then as V_j is 7f-invariant and 7f is ergodic on T^r , we have

$$\tilde{\mathbf{v}}_{o} \cap \mathbf{z}^{\mathbf{r}} = \{0\}.$$

Let M be an arbitrarily fixed positive integer. Now let p be a partition of T^r (= $[0, 2\pi)^r$) such that $p = \bigotimes_{k=1}^r p^{(k)}$, each $p^{(k)}$ being a partition of [0, 2%) into subintervals of the same lengths 27/1

For arbitrarily fixed K > 0 and N > 0 we set

$$\mathcal{O}(K) = \bigvee_{m=1}^{K^2} \tau^{-m} P^{-1}(P), \quad \mathcal{B}(K,N) = \bigvee_{m=K^2+K}^{K^2+K+N} \tau^{-m} P^{-1}(P).$$

Lemma 11. For a sufficiently large l = l(p) there exists

³⁾ \overline{X}_n is the annihilator of \overline{G}_n in \overline{X}_A .

a measurable set E_m with measure $< 1/m^2$ for each $m > \max(2, \sqrt{M/\pi})$ such that for each $p \in p$ there are non-negative functions \widetilde{f}_{mp} , f_{mp} on T^r satisfying:

(a) there is a positive integer $K_1 = K_1(\beta)$ such that if $K > K_1$ and K > m, then

$$\begin{split} \widetilde{f}_{mp}(t) &= C_0 + \underbrace{\sum_{\substack{1 \leq k_j \leq m^2 \\ k : 1 \leq j \leq r}} \left[C_k \ \tilde{e}^{i(k/N_K, t)} + C_k' \ \tilde{e}^{-i(k/N_K, t)} \right], \ t \in T^r, \end{split}$$

where $k = (k_1, \ldots, k_r)$ are vectors of positive integers, C_0 , C_k , C_l are some constants and $\tilde{e}^{\pm i(k/N_K, t)} = e^{\pm ik(t/N_K)}$, $\sum_{p \in p} \tilde{f}_{mp}(t) \leq 1 + m^{-2} \qquad t \in T^r$,

(b)
$$f_{mp}(t) \ge 1 \text{ on } p - E_{m},$$

$$f_{mp}(t) = D_{0} + \frac{1 \le k_{j} \le m^{0}}{1 \le k_{j} \le m^{0}} [D_{k} e^{i(k, t)} + D_{k}' e^{-i(k, t)}], t \in T^{r},$$

$$k : 1 \le j \le r$$

where k are as in (a) and D_0 , D_k , D_k' are constants, $\sum_{p \in p} f_{mp}(t) \leq 1 + m^{-2} \qquad t \in T^r.$

This lemma is a generalization of Lemmas 9 and 10. Define the following functions ϕ_A and ϕ_B on Y^r for $A \in \mathcal{R}(K)$ and $B \in \mathcal{B}(K, N)$ where $K > K_1$,

$$\phi_{A} = \prod_{m=1}^{K^{2}} U_{7}^{-m} U_{p} \widetilde{f}_{Kp_{m}(A)}, \quad \phi_{B} = \prod_{m=K^{2}+K} U_{7}^{-m} U_{p} f_{mp_{m}(B)}.$$

We denote by μ the normalized Haar measure on Y^r . Then we have the following

Lemma 12. Let $\ell > 0$. Then there exists a positive integer $K_2 = K_2(p, \ell) > \max(2, K_1, \sqrt{M/n})$ and a measurable set E in Y^r such that $\mu(E) < \ell^2$ and for every $K > K_2$ and arbitrary N > 0 $\phi_A > 1$ on A - E, $\sum_{A \in \mathcal{R}(K)} \left\{ \phi_A \, d\mu \leq 1 + \ell^2 \right\}$

and

$$\Phi_{B} \gg 1$$
 on $B-E$, $\sum_{B \in \mathcal{B}(K,N)} \left\{ \Phi_{B} \, d\mu \leqslant 1 + \epsilon^{2} \right\}$.

The lemma follows from Lemma 11.

Let ℓ be as in Lemma 11. For arbitrary fixed $K > K_3$ and N > 0 we denote by \tilde{Z}^r and \tilde{Q}^r sets of all r-dimensional vectors consisting of $\{1,2,\ldots,(K^2+K+N)^\ell\}$ and $\{1/N_K,2/N_K,\ldots,K^\ell/N_K\}$ respectively. Now we define an automorphism κ of Y^r by

$$K y = n_0^{K^2 + K + N} N_K y$$
, $y \in Y^r$.

Since for $\lambda \in Z^{\mathbf{r}}$ (4) holds, we have that

$$\{(\mathbf{U}_{\mathbf{P}} \stackrel{\mathbf{i}}{\in}^{\mathbf{1}} (\sum_{m=1}^{K^{2}} \tau^{m} \lambda_{m}, \cdot) | (\kappa \mathbf{y}) : \lambda_{m} \in \tilde{\mathbb{Q}}^{\mathbf{r}} \cup [-\tilde{\mathbb{Q}}^{\mathbf{r}}] \}$$

$$\cup \{(\mathbf{U}_{\mathbf{P}} \stackrel{\mathbf{i}}{\in}^{\mathbf{1}} (\sum_{m=K^{2}+K}^{K^{2}+K+N} \tau^{m} \lambda_{m}, \cdot) | (\kappa \mathbf{y}) : \lambda_{m} \in \tilde{\mathbb{Z}}^{\mathbf{r}} \cup [-\tilde{\mathbb{Z}}^{\mathbf{r}}] \}$$

is a set of characters of Y^r. Further we can prove that the frequency which is common to φ_A and φ_B is zero for sufficiently large K. From those facts we have

Lemma 13. There exists a positive integer $K_3 > K_1$ such that for $K > K_3$ and N > 0

Using results of Katznelson [4] and Lemmas 12 and 13, we have $\underline{\text{Lemma 14.}}$ For $\mathcal{E} > 0$ there exists $\widetilde{K} > \max(K_3, K_2)$ such that $\mathfrak{K}(K)$ and $\mathfrak{J}(K,N)$ are 11 \mathcal{E} -independent for $K > \widetilde{K}$ and N > 0. Consequently $P^{-1}(p)$ is an weak Bernoulli partition on Y^r for 7. Let p' be the partition of $\overline{X}_A/X(H)$ corresponding to the partition p of T^r and p' be the projection of \overline{X}_A onto $\overline{X}_A/X(H)$, then $p'^{-1}(p')$ is an weak Bernoulli partition on \overline{X}_A for \overline{P} . Because we have $\bigcap_{j \in Z} \overline{P}^{j}X(H) = X_n$, $\bigvee_{p} \bigvee_{j \in Z} \overline{P}^{j}P^{-1}(p')$ is the partition of \overline{X}_A into cosets of X_n . By Ornstein 's theorem $(\overline{X}_A/X_n, \overline{P})$ has the Bernoulli partitions.

Therefore, for n > 1 we have showed that $(\overline{X}_A/X_n, \overline{r})$ has the Bernoulli properties. Since we have

$$X_1 \supset X_2 \supset ... \supset \bigcap_{n=1}^{\infty} X_n = \{e\},$$

Ornstein's theorem implies that σ on \overline{X}_A is Bernoullian. (X_A, σ) has the Bernoulli properties.

We can conclude that (X, σ) has the Bernoulli properties.

Using Theorem 1, I can prove the result for the case of non-abelian. Today I do not discusse it here, but the proof of it is found in [13].

References

- 1. R.L. Adler and B. Weiss, Similarity of automorphisms of the torus, Mem. Amer. Math. Soc. 98 (1970).
- 2. N. Aoki and H. Totoki, Ergodic automorphisms of T are Bernoulli transformations, Pub. RIMS, Kyoto Univ. 10 (1975), 535 544.
- 3. N.A. Friedman and D.S. Ornstein, On isomorphism of weak Bernoulli transformations, Advances in Math. 5 (1971), 365 394.
- 4. Y. Katznelson, Ergodic automorphisms of Tⁿ are Bernoulli shifts, Israel J. Math. 10 (1971), 186 195.
- 5. <u>D.A. Lind</u>, Ergodic automorphisms of the infinite torus are Bernoulli, Israel J. Math. 2 (1974), 162 168.
- 6. <u>D.S. Ornstein</u>, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337 352.
- 7. ——— , Two Bernoulli shifts with infinite entropy are isomorphic, ibid. 5 (1971), 339 348.
- 8. ———, Factors of Bernoulli shifts are Bernoulli shifts, ibid. 5 (1971), 349 364.
- 9. <u>L. Pontrjagin</u>, Topological Groups, Princeton Univ. Press, Princeton, 1946.
- 10. <u>V.A. Rohlin</u>, Metric Properties of endomorphisms of compact commutative groups, Amer. Math. Soc. Transl. 64 (1967), 244 272.
- 11. Ya. G. Sinai, Markov partitions and C-diffeomorphisms, Func. Anal. and its Appl. 2 (1968), 61 82.
- 12. <u>S.A. Yuzvinskii</u>, Metric properties of endomorphisms of compact groups, Amer. Math. Transl. 66 (1968), 63 98.
- 13. N. Aoki, Ergodic automorphisms of compact metric groups are Bernoulli shifts, to appears.