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ERGODIC AUTOMORPHISMS OF COMPACT METRIC GROUPS

ARE ISOMORPHIC 'TO BERNOULLI SHIFTS

NOBUO AQKT

I wish to discuss its title. Let X be a compact metric group
and « be its normalized Haar measure. Then (X, ) is a Lebesgue
space, Let ¢ be an automorphism of X, then ¢+ is an invertible
measure preserving transformation of X onto itself. Our problem
is concerned with measure theoretic properties of ¢ .

Throughout this given a transformation of any group, a restriction
on a subgroup and an induced transformation on & factor space will
be denoted by the same symbol as that of the original transformation,
if there is no danger of confusion.

Today we will outline a proof of the following

Theorem 1. An ergodic automorphism of a compact metric
abelian group is a Bernoulli shift.

The result has recieved the most attension in the literature.

In a two-dimensional torus, Adler and Weiss [1] proved the result
using Ornstein’s Theorems. In recently, Katznelson [4] showed the
result in an n-dimensional torus. Lind [5] gave a proof for the

case of an infinite-dimensional torus. The proof which Totoki and the
author (2] proved was done independently of Lind s work. The techniques
I uge are due to Katznelson [4] and Totoki and the author [2].

In order to outline Theorem 1, we prepare tlhe following

Proposition 1. Let X be a compact metric abelian group
and ¢ be an ergodic automorphism of X, Then there exist subgroups
ip, X, and Xg such that X, 1is a ¢ -invariant totally discomnected

subgroup, XA and Xy are [ -invariant connected subgroups of X and
dynamical systems (%5, ), (X, 7)), (X5, 7) are ergodic, and

further (X, #) 1s an algebraic factor of (X, ® X, ® X3, £ ®FO/ ).
The proof uses the results of Entropy Theory together with the
results of Group Theory.



Proposition 2. The dynamical systems (X, #) and (¥, #)

have the Bernoulli properties.
We can prove that Xﬁ is locally connected and so by [2] we

have (XB,ﬂ“) has the Bernoulli properties, The Bernoulli properties

afﬂ(xg,a&) ig an indirectapplication of the results of Yuzvinskii [12].
To show the dynamical system (X,, #) has the Bernoulli properties,

let GA be the character group of X, and VU be the dual automorphism

of G, induced by (Ug)(x) = g(# ™ 'x) for ge Gy, Each g € G,
satisfies the following condition
(&) There exist integers k > 0, n_, n,, ... , n, such that
{n,, Bys oo s nk) ¢ (0, C, v.. ,0) and

Bon 21 kx Pk

g Ug wee Ug = 1.

#e denote by EA the minimal divisible extension of GA and by U

the automorphism of G, extended by U, If X, is the dual group
of GA, then KA is a compact connected metric abelian group. If
# is the dual automorphism of X, induced by 71, then as (Xy, )
has the ergodic properties, it is not hard to see that (X,, ) has
the ergodic properties. Since 6, C G, , 1let us define X; =
ann(G,, X,), then the dynamical system (ﬁA/XQ, F) and (X, ¢) are
isomorphic. And so 1if (ﬁg} #) has the Bernoulli properties, then
Ornstein’s theorems imply that (XA,CP} has the Bernoulli properties.
Therefore, using Propositions 1 and 2 1t follows that (X, &) has
the Bernoulli properties.

We resolve this difficult with some lemmas,

Let G, = {f,, £, ... J. We denote by G the subgroup of

e

GA generated by {ﬁjfk e iCw, k = 1,2, see 4 n} for n > 1.
Then we have rank(Gh)-< oo for n % 1. Let X = annCGn, XA) for
- " oo
ny 1, then we have &X = X, n3y 1 and X DX :)"':D(jnzth
= {e}. Since each f, satisfies the condition (4), we have for
cach k ) 1 , m_ (k)
” fﬂk fmi(k} ﬁpkf By
k k £ k
for some p > O, £, > O and some (m(k), .e. , m (k)) #
P
(O, es s oy 0)0
From now on, we fix Eﬁ s ves 5 &4, and put

<

o
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(1) n = £, ... % k = max .
o 1 n’ o leke¢n Py N
H denotes the subgroup of @ generated by {fk, ese , U ofk :
¢§€n}. Them H 1is finitely generated, torsionfree,‘ H = En
and ﬂjz_wUJH = G . Let X(H) = ann(H, fA), then the

charactet group of fA/X(H) is H and so X,/X(H) is a finite-dime-
nsional torus.

Lemma 1. If n, = 1, then (XA/X ) has the Bernoulli
properties.

The proof is a direct application of the result of Katznelson (4],

Lemma 2. If n, > 1, then 71(x) = xn°, XA, is an

automorphism of iA such that %7 X(H) C X(H), and the induced
factor 77 on "iA/Xn is ergodic.

The details of the proof are found in Chapter 1 of [13].

This lemma is essentially utilized in the proof of Lemma 13.

To obtain (X /X &) has the Bernoulli properties whenever
n,> 1, we construct a sequence { (P } of weak Bernoulli partitions
for the dynamical system (X,/X , 7)) such that f < P, for

n 1 and \/n P, 1is the partition of XA/Xn into single points.

Let M be a positive integer and let f be a partition of the
interval [0, 2M) into subintervals of the same lengths 27/M. The
elements of P will denote successively from the left by p:} =
[aj, aj-ﬂ)’ J = 1 ...Ké M, Let K be an arbitrarily fixed positive
integer and set Ny = *K n, 1s the integer satiefying the (1))
For k > 0 K (t) will denote the Fe,jer kernel defined on [0, 27).

Lemma 3. Let M be a fixed positive integer. Then there
exists a positive integer £ = A(M) such that for each m » 2 there
is a positive number § = J(m,M) satisfying the following :

(1 )1 - 8 ) » 1,
i (mz-l)ﬁ‘: g

5“’"1 Maém < 1/ .

The proof is elementary.
Lemma 4, Let M and 5m be as in Lemma 3, Then



27 +2M(Nk - 1),)‘m < 2mNg (2 ¢ m € K).

The proof is clear from Lemma 3.

From Lemma 4 we can manipulate as follows., For an arbitrary m
such that 2 ¢ m < K, set pj(m) = [bj, c.), mod 2MNy, where
by = j-(N-1)a',c = a4 +Fp -5, (< § ¢« M, Ve
translate each pj(m) by rg(m) (r1 (m) = 0) to the right so that

oy » T “(m) = LI rjﬂ(m and denote the translated pj(m) by

pj(m) Then p (m), ... , Dy(m) are disjoint and each P _”(m) borders
on p,;(m) from the right and hence we may set pj(m) = E s(m),
j”(m)) for J = 1,2, «e. 5, M.

In the case M = 3 we have for instance following figure.

a; a, a; a E pa( Y p:s(m)—“-. 7~~~ Py(m)
o 127 ) {< T TRNETER
m a, (m as;(m

Noting N > 2, we have clearly
@) 23, < rjm <2y - DM - 1§+ 23/M
(2 ¢« m <K, 2<3 < M.

Lemma 5. Let M and §  be as in Lemma 3. Then there exists
a positive integer K = KO(M) such that for K > K

21 + 2M(Ng - 15 + 3 Mrp(m) < 21N (2 < m < K) .

The proof is elementary.
We set for m such that 2 {¢ m ¢ K for K > Ko

r,(m) = rim = o
(3) r‘j(m) = J(m) + 3y 1 (m) 2 ¢ 3 ¢ M
Py (m) = P (m),
py(m) = [a (m) + 3ry_;(m), ai ,(m) « Br:j(m)) (2¢j¢M)

Then py(m), ... , pylm) are disjoint and each pjﬂ(m) borders on
ps(m) from the right.

In the case M = 3 we have for instance the following figure.
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We have for m with 2 < m < K for K > Ko
3(rp(m) + oo w ry(m)) < 3 Mrim).
Hence by Lemma 5 we have for K » Ko
Ugmpim) € [0, 2m) @ <m ¢ B .

Lemma 6. Let M and Jm be as in Lemma 3. Then there
exists a positive integer K, = K, M) > K, such that for K > K,
Op + Ty(m)/Ny < 2m 2 <mg¢K 1 <3 <M,
The proof uses (2), (3) and Lemma 3.
Lemma 7. Let §  be as in Lemma 3. Then for satisfying
m > MX(Z Vi; ) and pj = [ad, aj+‘) e P 9 j = 1’ 2’ e e ] M,

[aj + d' ’ aj-r] Jm) # ¢ .

The proof is elementary.
Lemma 8. We consider the characteristic function X p’(m) of

pi:(m) as a ZTLNK-cyclic function on R'. Then for K » max(a K1
%) and Ngt € [aj *dps 84,1 =y ) for t e [0, 27),

Xprm (it + £gla) = @) = 1 (eax(z, VIR <m <K, 1¢3€M)

if O <=8 <NK5m or mK-NKEm-arj(m)<s<2’TmK.

The lemma follows from (2), (3) and Lemma 7.

Lemma 9. Let £ and , be as in Lemma 3 and let K1 be as
in Lemma 6. Then if K > max(?_, Kl,\/ﬁ/n) - for each n (max(a W) <
m< K) and each Py € there exists a non-negative function f (t)

on [0, 21) satisfying the following :
? (t) } 1 't G [aJ <+ Sm’ aj+1 bl 6 ),

mPJ m
for some constants ¢4, ©y, c{{ (k = 1,2, eoe , me)
'
¥ m ~1(k/No, t) o~-i(k/N t)
fmpd(t) = ¢+ Zk=1°k ® K? Zk* K?
where gi(k/NK,vt) = eik(t/NK) and e i(k/NK’ t) = e-ik(t/NK) for‘k’
PN MT () ¢ 14?2 t e [o, 2m).
J=1 mp 4



The proof uses the results of Lemmas 3~ 8 ,

We dencte by etlmt) o5 exponential function e™%1 for m .,
Lemma 10. Let £ and Jm be as in Lemma 3. For each Py € s
and K > max(2,NMA ) we define for t € [0, 27) :

240
i‘mpj(t) = (1 +m )fmp_}(t) (max(2,Wn) < mn < K)
where on )
A
fmpj(t) = 1/ fo ’ij(t - s)Km!L(s) ds .

Then fop (t) ie a non-negative function on [0, 270 and we have
the following :
£ (t)

N4
b

telayedy, as -0y

mpj e
for some constants d_, d, dé (k = 1,2, veee , m )
2 4
- m i(k, t) m* .. -i(k, t)
£ (&) = d e F D d e Y Zk__.‘dk e h M B

mpj
ij fmpj(t) £ 1 +m

The proof is direct from Katznelson L[4].
We can generalize easily Lemmas 9 and 10 on a finite-dimensional torus
We assume that ik/X(H) is r-dimensional. ZA/X(H) is algebraically

-2 t e [o, 2n) .

isomorphic to ™ = Lo, 27)T whose character group is the discrete
group
_ i(m, ) . r1)
Hr = { e ? t: m € 27}
which is algebraically isomorphic to H. ﬁi denotes a multiplicative

| , i '
group { el(q’ ) q € Q?}a) which is & minimal divisible extension
of Hr . Now let Y' denote the dual group of ﬁr’ and we denote by
.)

(ei(q’ '))(y) , y e Y each character EACH of YF, We note

that for me 2%
(ei(m, '))(Py) - ei(m, Py)

r r
where P is the projection from Y onto T°. _ B
From the definitions of G and H, we have G = H, Thus

as Hr and H are algebraically isomorphic, we have the diagram

1) z¥ 1is the set of all r-dimensional integer vectors.
2) QF is the set of all r-dimensional rational vectors.
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= 3) -
A/ n = s
\ /
Tr

Let 7 and § be automorphisms of Yr isomorphic to ¢ and 7 of
}‘{A/fn respectively. Then 7§ induces the endomorphism of T° (wrtten
by the same symbol 5 ) Dbecause N7 induces the endomorphism of 'X'A/X(H)
and 1§ is given by an r x r matrix with intger entries.

Uy denotes the linear operator from e(TT) into €(YF) defined
by (UPg)(y‘) = g(Py) for g e ¢(TF) . The adjoint operator T3
on Z¥ of the endomorphism 1§ on T 41s defined by

ei(m? BFy) . Gi(Ym, Py) ) m e 2¥ .
We have for A € 2%
() 7 e My = 0 SRy, y e YT

Now the eigenvalue of § is n, with multiplicity r . Let
the eigenvalues of T be A,, ... , A, (k ¢ r), then the eigenvalues
of 1§ are no?‘P eas no?\k . .

We may consider the matrix T as operating on RY and so we
decompose

R = V,0 ... 9V, @0 ... 9V,

such that each V, 1is the 7T -invariant subspace of RY corresponding

to the eigenvalues of T of modulus 3’3 where g’_’_k Ceve V=604
TR 2 Let S’j = nofj and let Vo = V, ® ... & V.. (k"> 0)

be the direct sum of Vj's corresponding to ?s such that fj £ 1.

is 7§ -invariant and 71§ 1is ergodic on Tr, we have
Vo N v = {0}.

Let M be an arbitrarily fixed Eositive integer. (kl)iow let P b?ka
partition of T¥ (= [0, 2M)¥) such that P = ®k=f P, each P
being a partition of (0, 21) 4into subintervals of the same lengths 2T/)

For arbitrarily fixed K> O and N > O we set

Then as Vj

- K emp-1 K2 eKaN _ ampel, g

K) = P , K,N = PT(P).
oK) Voo T (P), PBEN Vo2 T P
Lemma 11. For a sifficiently large £ = R({) there exists

3) Xn is the annihilato:;: of Gn in XA
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a measurable set E = with measure < 1/ for each m > max(Z,_,\/ﬁ_ﬁ—I)

such that for each pe p there are non-negative functions ’f’mp’ fmp
on T¥ satisfying :
(a) there is a positive integer K, = KI(JO) such that if K > K,

and K » m, then
fmp(t) > ' on p-E ,

~ ' ~..‘
fap(t) = Cy Z;.;( RIS TS e TR R
k @ jen
1€¢jgr |
where k = (k1, cer kr) are vectors of positive integers, C,, C., ¢

are some constants and Sti(k/NK' t)

fmp(t) € 1l aem

SE1k(t/Ny)
t e 77,

-
]

-2

14

q"""’
Lf—pep
(b) fmp(t) > 1 on p-E ,

_ ilk, t) o =i(k, t) r
fmp(t) = D, + §1£kjsm£[1>ke ’ +D e r Y, t e T,

kiqessr
where k are as in (a) and D, D, D; are constants,
; , -2
> <
P ep fmp(t) £ 1T +m

This lemma is a generalization of Lemmas 9 and 10.
Define the following functions ¢A and ¢B on Y& for A € ((K)
and B € B(K,N) where K > K,

t € TF .

T K em. T T KoK
= U— U = ? + U mU 3
q,A m=1 ¢ Pprm(A) ’ ¢B ! ln;:l(&-.-K t mepm(B)

We denote by M the normalized Haar measure on Y'. Then we have
the following

Lemma 12. Let £ > O. Then there exists a positive integer
K, = K(p,e) > max(2, K1,\/—M7ﬁ) and a measurable set E in YT

such that M(E) < ¢° and for every K > K, and arbitrary N > 0
$p » 1 on A-E, 21, cpp (‘t’adf* ¢ 1 €

and



¢y » 1 on B-E, ZB&&(K,N)K‘»Bd}* < 1462,

The lemma follows from Lemma 11,

Let £ ©bve as in Lemma 11. For arbitrary fixed K > K; and N> 0
we denote by Z¥ and er' sets of all r-dimensional vectors consisting
of {1,2, «..., (K2+K+N) } and {1/NK,.2/NK, cee s K/NK} respectively.

Now we define an automorphism K of Y¥ by

KE o KN

Since for AeZ¥ (4) holds, we have that

10 L e *) . ~
“”T Aw Wey) @ Ay, €@ U [-Q7T]
Z Kaq-K-n-N m
i( A ] ‘) -~ o~
U {(pe eBek ™ ey rg € 28U L2

(%

is a set of characters of YY . Further we can prove that the frequency

which is common to ¢, and ¢y is zero for sufficiently large K .
From those facts we have

Lemma 13. There exists a positive integer K3 > K1 such that
for K > KB and N> O
§¢’A¢B du = S¢A dp (4’3 dp
Using results of Katznelson (4] and Lemmas 12 and 13, we have
Lemma 14. For € > O there exists K > max(KB, Kz) such

that (k) and {3(K,N) are 11¢ -independent for K > K and N> O,
Consequently P~'( ) 4is an weak Bernoulli partition on YT for
T. Let J° be the partition of '}'('A/X(H) corresponding to the partition
Pof T and P’ be the projection of X, onto X/X(H), then . pr-! )
is an weak Bsrnoulli partition on X, for . Because we have
Nyeg®IX@ = X, VoV ey FIP7N(E) is the partition of X,
into cosets of X . By Ornstein s theorem (XA/xn, ) has the
Bernoulli partitions.
Therefore, for n > 1 we have showed that ()'EA/Xn, #) has the
Bernoulli properties. Since we have
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o0
X 2 X% D .0 DN % = {e},

Ornstein ‘s theorem implies that ¢ on , 1s Bernoullian. (XA, r)
has the Bernoulli properties,
We can conclude that ( X, #) has the Bernoulli properties.
Using Theorem 1, I can prove the result for the case of non-
abelian. Today I do not discusse it here, but the proof of it is
found in [13]. |
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