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A generalised Ruelle Perron~Frobenius theorem

and some applications

by Peter i\ialters.

‘e show how some problems on uniqueness of equilibrium
states and existence of invariant measures can be deduced

from a theorem about Perron-Frobenius operators.

Let (X,d) be a compact metric space. Let T:X =+ X be
a continuous surjection. We shall assume T satisfies the

following conditions &), b) and c).

a) T 4is positively expansive. ie. J 8>0 such that
a(Tx,T™y) € 6 Vn»o implies x = y. An equivalent
definition is to require the existence of an open cover

%0 -n
fAys00esA } of X for which n T A is either empty
A A A T

or a one point set for all choices «of the secuence
i -
fi,} #< i < k. Clearly for each xeX the set T 'x

contains at most Kk points.

b) T is & local homeomorphism (ie. Vxe X § an open
neighbourhood U of x so that TU is open and

T:0 -+ T(U) is a homeomorphism.)



i
v

¢) For sufficiently small & , d4(x,y) =&

a(Tx,Ty) > o .

Let g, be chosen so that 1) e, is an expansive constant
for T, ii) ¥xeX the ball Bs(x) of radius e, and

O

centre x is so that TB_ (x) 1is open and T:B(x) --r'TBe (x) is
o o )

a homeomorphism and iii) condition e¢) holds whenever

8 < gy o
Examples of transformations satisfying a), b), c).

1. Subshifts of finite-type.

1

Here one can take the metric d({xn§2 ’ {ynrg) = X711

if k is the least for which x £ Vi

2., Expanding mapé. (Shub E‘iﬂ
Here X 1s a compact manifold equipped with a
Riemannian metric amd T 1is differentiable and satisfies
the property :- 3 M1  for which

il pTvll 2 A || vl ¥veUT X .
xeX

Let C(X) be the Banach space of all real valued continuous
functions on X , with the supremum norm. '/e can define for

each @=C(X) a Perron-Frobenius operator 4;:C(X) - C(X) by



,f@f(x) = X eq’(y)f(y) . ch) 158 linear and positive. The
yeT'1x

members of a subclass of these are particularly useful.

Let G(T) = fgeC(X) | g>0 and 2 gy ) =1 vxe X} .

yeT-1x
If ¢ =1og g then o § (x) = 2 ggy) £(y) and
yeT 'x
P -4 \.,,-‘(..Lﬂl u ‘Fz'(‘dh—r‘
wve have o'eloggUT"ld’ I

Let M(X) denote the collection of all Borel probability
measures on X and let M(T) consist of the T-invariant
ones, In the weak*-topology the convex set M(X) is compact
and M(T) is a compact convex subset of M(X) .® will denote
the o-algebra of Borel subsets of X . An interesting subset
of M(T) 1is obtained from the following

LEMMA 1. (LEDRAPPIER [5])

et ge&(T) and we write 5( instead of J{

log g ° It

m € M(X) the following are equivalent:-

1) f*m =m .

7/

ii) me ¥(T) and Em/\\'f/ > > (x) = 3 g{z) £(z) a.e.m
™' -1
z€T Tx [}
fel (m) .
ii1) m e M(T) and b (T) + m(log g) » hp.(T) + p(log g)
V pued(T)

(ie. m is an equilibrium state for log g )



A measure satisfying these properties is called a g-measure.
If m 1is a g-measure we have
0 = hm('l‘)+ m(log g) . (This says that the pressure

of log g 1is 0).

Suppose from now on that T also satisfies the following
mixing condition:

d) Ve>o I N>o such that VzeX T ¥x is e-dense in X .

For ¢eC(X) , e>0 and nezt 1let

var, (g,€) = sup{ | o(x) - a(y) | a(r’z,1ly) < e} .
o<ign~1

We then have the following result.
THEOREM 2. (KEANE [3] WALTERS 11] )

-2
Suppose geG(T) and 3 var_(log g, €,) < -0 for some e,<e_ .
n=4 n 1 1770

Then in f opu(r) veeC(X) . (> denotes convergence in

log g

the supremum norm). p is the unique g-measure for T .
THEOREM 3. (BO’EN [2], RATNER[7], WALTERS [11])

Let g be as in theorem 2. The measure-nreserving transformation

(Typ) has a Bernoulli natural extension.

One can relate ,fg to some ‘flog g

by Ruelle for the full 2-shift.

by a theorem first proved



THEOREM 4. (RUELLE [8], BOWEN [2] for tle case of subshifts

of finite type, WALTERS [11] )

ob
Suppose ¢eC(X) and 3 varn(@,a1) <w for some &,<e_ .
=1

Then 9 2>0 , yeM(X) , heC(X) such that h>o , y(h)=1 ,

i¢h=hh ’ J;*vzlv and Be = how(f) vrec(X) .

}&n

s
Also h satisfies h x;s exp ( & wvar (¢,s1))
E%; k+1 n

whenever d(Tix,Tiy) < 8y o<igk~1

Remarks.
1. a0 and veM(X) are uniguely determined by the condition

2. One can define the pressure of T to be a function

Pp 2 C(X) » R . One has the variational principle

= h (T )
Pa(e) = sup [m(D) + (o) ]

(WALTERS [10]). We say m is an equilibrium state for ¢

if h (T) + m(e) = Pp(e) .

COROLLARY 5.
Let ¢ be as in theorem 4., The measure Bo » defined by
p¢(f) = y(h.f) , is the unigue equilibrium state for ¢ .

T is the unique g-measure for g = gfg « The natural
? *.hoT



p@ is positive

in M(X) .

extension of (T,uq) is 8 Bernoulli shift.

on non-empty open sets and voT ° = B

1 n
Po(@) = log A = 1lim = log 1 .
T Ik ol n afq,

o
If ¥ e C(X) also has 2 varn(v,eﬁ) < 00 then
. n=1

o=ty <=> @~¥ = foT -~ f + ¢ for some fFfeC(X) and ceR .

APPLICATIONS.

1. Axiom A diffeomorphisms.
These results are described fully in Bowen [2] . We just
state here two results which can be deduced using corollary 5

and the Boven-Sinai theory of Markov partitions.

THEOREM 6.

Let QB be a basic set for an Axiom A diffeomorphism T and
let Qec(ns) be Holder continuocus (ie. |o(x)-@(y)| < a d(x,y).e
for some a,8>0). There is & unique equilibrium state e for ¢

1f T|, 1is topologically mixing then My 1s Bernoulli.
5

THEOREM 7.
If o,V @ ﬂs ~+ R are both Holder continuous then
um;p* <=> ¢@=-y= uoT-u+c for some Holder u:nsﬁR and some

constant c¢ .

2. Invariant measures for expanding maps.

Here X 1is a compact manifold with a Riemannian metric and



T:X » X 1is differentiable and satisfies || DTvll » Allv ||
for all tangent vectors v . Here A is & constant larger
then 1. The metric 4 on X will be the one obtained from

| [l. T satisfies a). b). e¢). d). (shub [9]) .
7

; D,T : T,X » Tp X 1is lineer and we can take its determinant

using the Riemannian metric and so define T'(x) = det(DxT) .

T

normatise st
Let m be the /Riemannian measure on X defined by ||l } .

Wle are seeking an invariant measure equivalent to m .

Define ¢ € C(X) by o(x) = log 1
Tt (x)]

2

k-1 if T is Ck. We will assume T is C€¢° .

¢ 1is C

1EMMA 8. Let hel'(m) and m(h)=1. Then

(By h.m we mean the measure u defined by u{(f)= m(h.f) ).

Since ¢ € C'(X) , and since for small €,

d(x,y)<e<e1 => 4(Tx,Ty) » X a(x,y) , we get

P
pA varn(cp..,e) <. Hence we can apply theorem I and corollary 5.
n=1

% ‘
Note that ,,f?mzm sc that by remark 1 v=m and A=1. So
theorem L4 asserts the existence of heG(X) with = (hi=l
or -‘r“-'-Mr\d 3

n>o £ h=h eand f:f => h.m(f) VfeC(X) . By corollary 5.we

know p = h.m eM(T) . So u is an invariant measure eguivalent



to m . We list other properties of p .

-n

1. o  =-»u in M(X) (Corollary 5) .

2. (T,u) has a Bernoulli natural extension. (Corollary 5).

3. h(T) = f log |T'(x)] du(x)
I
= lim £n(Q) L]
n—ed . 4

This is because PT(Q) = 1log A = 0 80
0 hu( ) + u(9) 80 tha hu(T) nio)

p (log IT]) &

Le me M(T) <=> 3 1. VvzxX.

1 =
verlx [T (3)]
5. Suppose meM(T) . Then m is the measure with maximal

entropy <=> |T'(x)]| e zt v xeX.
Most of these results have been obtained by Krzyzenski f[L] .

3. Mappings of [0,1] .

Let T:[0,1] » f0,1] be a mep satisfying i) there is a

- 2
partition o=ao<a1<...<ap_1 such that Tl(a is C

1,%141)
and can be extended to a C° function on [ai,ai+1] for
each 1 .
i1) T mmps each fai,ai+1] 1 -4 onto [o0,1] .

1
111) T a>1 such that | T'(x)|» A ¥V x U (ai,ai 1) .
) i=o +



Examples are

Each example defines a continuous map of 81 which is not smooth
at a finite number of points. In our first example we could
work as for expanding maps but in the second example conditions

a), b) end ¢) are not satisfied. Sc we proceed/the usual way

to use a shift system.

Let Z denote the partition into the sets

[0,81), ra,‘,ﬁ?),..- [ ] g:apm_',il -
1" " "
Ay Ao A
IEMMA 9,

Y is a generator in the sense that each set of the form

R - . .
n T gAi contains at most one point.
n=0 n

+
Let 0 = {1,2,..,0}° . Define j:70,1]1 +a by

n
j(X) = (10,11 ,12,..- . } it T z Q:.:Axn *

J is 1-1. J T=¢cj where G is the shift on 0 .



- 10 -

%0 — -
Let ¥ =T0,41\ U Tn{ao.a1,---,ap} . T lyey,

n=0 -1
o (y)=3(Y) .

LEMMA 10,

j 1is a homeomorphism of Y with J(Y) .

3"1 extends to a continous map =x:1 =+ [0,1] = 0 = Tx .
Let m denote Lebesgue measure on [0,1]. Define
v:iY 2R by ¥(y) = 1log 1 . Lift ¥ to ¢ = Vox

FT (¥)l |
on J{Y) and this can be extended to ¢ & C(f1) with

fs;cvzarn(cp) €0, m 1is concentrated on Y so mn':j"1 defines
n=1

a measure on J(Y ) which defines a measure ¥V on 1 .

By definition of ¢ f;; v=v, By theorem 4 we get

h>o he ¢(n) with w(h)=1 and £$T=>hv(f) ¥reo(n) .
Also h.v € M(o) .
u.=(h.v)cm"1 € ¥(T)
(h.v)ox"" =hoj.m on Y so p=f .m <M(T)
where ¥ 1is continuous on Y and %>0. Hence T has an

invariant measure equivalent to m .

Of course (T,u) 1is measure~theoretically isomorphie to

(o,hv) and so has a Bernoulli natural extension.



- 1f -

The properties listed for expanding maps alsq hold in
this case. See Adler [1] for one of the sources of such
results. Theorem I4 can be extended so that one can handle

the case when & 1is a countable partition into intervals.
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