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Zeta functions and statistical mechanics 

D. RUELLE 
(I.H.E.S. 91440 Bures-sur-Yvette. France) 

1.. ZETA FUNCTIONS 

Zeta functions are objects of deep significance in mathematics, and 

problems related to them are very difficult and fascinâting. 

In this talk, I shall enumerate a certain nutriber of zeta functions 

mention possible connections with statistical mechanics, and then indicate some 

précise results. 

1.1. Riemann's zeta function [fj 

It is defined by 

ç ( a ) - Z — « T T _J_^ 
n . l n

s P P r i m e l - p " S 

for Re s > 1 , and bas the following properties. 

a) ç extends to a meromorphic function in the entire complex plane 

with only one pôle, which is simple and located at s « 1 

b) ç satisfies the functional équation 

ç(s) * 2 S Î T 8 " " 1 r ( l - s ) sin ~ ç ( l - s ) 

c) ç has "trivial" zéros at z - - 2 m (for integer m > 0) . Accor-

ding to the Riemann hypothesis, the other zéros ("nontrivial zéros") 

are on the line Re s * | . 

1.2. Weil's zeta function [2 ] 

It counts points in projective algebraic manifolds over finite fields. 



More precisely let F be a finite field with q éléments , F its algebraic 

closure, the n-dimensional projective space on F , and M be a non singu-
F 

lar algebraic manifold in pfî , eonsisting of the cornmon zéros of a finite fami-
r 

ly of homogèneous polynomials in n+1 variables with coefficients in F • A map 

: P^ •->- P^ (Frobenius map) is defined by 

4><x0,...,xn) » (xj,...,xj) 

and it leaves M invariant. Let Fix( M) be the set of fixed points of vpm 

restricted to M , and * card Fix( ̂  M ) . Then Weil's zeta function is defi

ned by the formai power séries 

N . 
(z) ~ ex °° - m 3 m 1 T 1 

ç(z) - exp i m " Y.p eriodic orbit t length of y 
Note that for comparison with Riemann*s zeta function one has to put z « q . 

a) ç extends to a rational function of s • More precisely 

2diin M f .k-H 

ç u ) - r r [ p k ( 2 ) ] ( H ) 

k*0 

where the polynomials P^ have a cohomologieal intrepretation. 

b) There is a functional équation. 

c) The polynoxnial has integer coefficients. Its zéros are on the 

. ' | | -k / 2 circle Iz| « q 

Thèse properties (Weil conjectures) have been proved by Dwork, 

Grothendieck and Deligne [3 ] • 

1 . 3 . The Artin-Mazur zeta function for diffeoinorphisms [4] 

Let M be a différentiable compact manifold. Ârtin and Mazur have 

shown that for a dense set of diffeomorphisms f of M (with respect to the 

C topology), 



K m sup log card Fix j n < f 0 0 

For such diffeomorphisms they defined 

ç(z) « exp £ — card Fix j 
n»l n 

a) If f satisfies Smale's Axiom A , then ç is rational. 

This was proved by Guckenheimer and Manning. 

1.4. Zeta funetions for flows 

Smale [s] bas suggested to consider the following zeta function for 

differentiable flows on compact differentiablc manifolds 

* { 3 } Y:periodic orbit gQ

U 6 ' 

where l(y) is the period of Y • In the case ùf the géodésie flow on a surface 

of constant négative curvature, this reduces to Selberg's zeta function [ô] . 

Selberg's zeta function is meromorphic, satisfies a functional équation, and 

its non trivial zéros are on the line Re s * | . 

Smale asked whether Z(s) would be meromorphic in the case of Axiom 

A flows« 

It should be noted that Z(s), .as defined above, does not transform 

simply under time scaling (multiplication of ail i(y) by some constant). 

In Selberg's case a fixed choice of the constant négative curvaturfe 

is made, corresponding to a fixed choice of the time scale. It is thus more 

natural to consider in gênerai 

Ç ( . ) - -rrrr. <i-e"8 A ( Y ) ) " 1 

Yperiodic 

We bave then 

, N Z(s+1) 
ç(s) * v J 

Z(s) 

In Selberg's case this will again be meromorphic, satisfy a functional 

équation» and have pôles on the line Re s s + | and corresponding zéros on the 

line Re s » ~ j . 



1.5. The Lee~Yang cirele theorem [?] 

Let A be a fini te set. If x,yeÀ, let a =» a be real in 
xy yx 

[ ~ l f + l ] • Write 

P ( Z ) « £ z c a r d X TT TT a 

X c A X6X y£X x y 

The Lee-Yang circle theorem, very useful in statistical mechanics, states that 

the zéros of P(z) are ail on the circle jz| ~ 3 . 

Mackey (unpùblished) has suggested that there may be a relation 

between this resuit and <c) of 1.2. above. 

In statistical mechanics of continuons spin Systems it is important 

(in view of applications to constxucti\Te field theory) to know if the Fourier 

Laplace transforma of certain functions have only real zéros. The Riemann hypo-

thesis can also be expressed in this form (see JJB] and références quoted there). 

The relation between the Lee-Yang circle theorem and zeta functions 

is at this point only wishful thinking. In what follows we shall indicate more 

substantial relation between statistical mechanics and zeta functions. 

II. ZETA FUNCTIONS OF DIFFEOMORPHISMS AND FLOWS 

As we have indicated, the rationality of the zeta function for an. Axiom 

A diffeomorphism has been proved by Guckenheimer . [ 9 ] , and Manning [ld] . Their 

methods are quite différent, one using the Lefshetz trace formula, and the other 

Markov partitions. 

1 !.1• The Lefshetz trace formula 

Let x be a fixed point of a diffeomorphism f : M -+ M . We say that 

x is hyperbolic if D f : T M T M bas no eigenvalue of modulus 1 . The 

X x • X 

Lef shetz numbér of x is then L(x) ± 1 , being the sign of det(î-D^f). 

If the diffeomorphism f has only hyperbolic fixed points 
dim M k 

TZ L(x) » I Z (-1)* trace (f . :K (M,R) + H, (M.ïO) 
xeFix f k«0 * K K K 



where £ fc is the action induced by f on the k~th homology group of M 

with real coefficients- This is the Lefschetz trace formula. 

If f satisfies Smalefs Axiom A and x € Fix f n , then x is 

hyperbolic for fix f n . Therefore 

dim M -
H n L(x,f n) « 21 (-Dk tr (f ) n 

x c P i x f k«0 

and 

exp f ~ XL ^ L(x,f n) 
n«l x eFix f 

n dim M , 

- **P ? ~ H (-')k tr (f^) n 

n*l k«0 
dim M , 

» exp YZ <-»> [~ t r 1 6 « ' o - s ^ J ] 
k«0 

dim M / - vk+1 

« r r petd^f 

k«0 

This shows that if L(x,f n) « 1 for ail n , x £Fix f n , the zeta 

function is rational. For the gênerai case of Axiom A diffeomorphism we refer 

to [9j . Notice that in the holomorphic case (as opposed to the differentiable 

case) L(x) is always + 1 . In particular the left-hand side of the Lefshetz trace 

formula is just what is needed for the Weil zeta function. The problem there is 

to define cohomology groups and prove a Lefshetz formula. 

Notice also that considérable extensions of the Lefshetz formula have 

been made, in particular by Atiyah-Bott [î l] . 

II.2. Markov partitions 

Bowen | J 2 ] following Sinai | j 3 ] has proved the existence of Markov 

partitions for basic sets of diffeomorphisnis satisfying the Axiom A of Smale. 

I won ft go here into ail the définitions. Let me just say that for an Axiom A 

diffeomorphism f , the closure of the set of periodic points is a finite union 

of "basic sets" invariant under f . The existence of Markov partitions implies 

that for each basic set A , there is a symbolia dynamies. This means that there 



is a finite set F , a matrix (t..),. -\ - P v

 with entries 0 or 1 and a 

surjecti\re map ̂  x (]f> a where 

« = « W h c l * t ^ + ] - J for ail „ } 

such that T T O T - f o IT where x is the shift (to the left) of the séquence (C^) 

of symbols. 

Let us consider the case where ir is bijective. This happens for 

certain basic sets. We have then 

card Fix f n « card Fix T N 

The zeta function for f is thus the same as the zeta function for 

the shift T . This has been computed by Bowen and Lanford [ l 4 J . We have first 

card Fix x 1 1 « tr (t n) 

where t =* (t..)- Therefore 
*J 

n n 

? Z J T*1 * /»n » z fc , n. 
exp Z — card Fix f » exp Z — tr(t ) 

n« î n n=! 

co • n n 
* exp tr E 

n~l 

« exp tr (-log(l-zt)) 

î î 
3C «...H.i.1 • ni.i.i — m mmu « g • Pi •«•«mil •.•.iiMi.li» »• 

exp tr log(l~zt) det (î-zt) 

which is indeed rational in z . 

To-take into account the fact that in gênerai TT is not bijective, 

Manning [îûj introduces several shifts T and shows that 

card Fix f° » E (-1 ) a card Fix x 1 1 

a ot 

with integer even or odd» From this results immediately that ç is rational. 
One shows that the radius of convergence of the séries 

Z card Fix f 
, n 

n~l 

is exp[-P(0)] , where P(0) is the topological entropy of f restricted to A. 

T - _ ~P(0) . , , 
In fact e is a simple pôle of ç • 

http://�.�.iiMi.li�


II.3. Generalized zeta-fmictions 

Symbolic dynamics described above is reminiscent of the statistical 

mechanics of one-diraensional lattice spin Systems. The symbols are the possible 

values of the spin at one point, and tr(t n) is "the partition function for 

a System of length n with periodic boundary conditions, and no interaction". 

The analogy between symbolic dynamics and statistical mechanics has first been 

exploited by Sinai [l5J . Here it suggests to replace tr(t n) by a "partition 

function with interaction". 

If f : A -* A is any map and ^ a eomplex-valued function we are 

led to writing formaily 

n*1 k«0 

Similarly, if (f*") is a flow on X , and A a eomplex-valued function, we write 

ç<A) « TT[î~exp } AC^Xy) dt]""1 

where the product extends over the periodic orbits y of the flow, fc(y) is 

the prime period of y , and x^ a point of y • 

Interesting results are obtained for Axiom A diffeomorphisms and 

flows. We state the main facts [l6] . 

Let f be the restriction to a basic set of an Axiom A diffeomorphism 

and assume that it is topologically mixing. Let A be real Holder continuous. 
A t i Then z -± ç(z e ) , at first defined for small jz] , extends to a meromorphic 

function in a disk |z|< R(A). This function has no zéro in the disk, and only 

one pôle, simple and located at exp[-P(A>2 • Here P(A) is the "topological 

pressure" of A (see [l7])and e P ^ < R(A) . 

Let (f t) be the restriction to a basic set of an Axiom A flow. 

Let A be real Holder continuous. Then ç(A-s) converges for sufficiently large 

Re s. It extends to a meromorphic function in a région 

{s : Re s > P(A)} U (s : |s-P(A)| < r(A)} 

where it has no zéro and only one pôle, located at P(A). Here P(A) is the to-



pological pressure of À for the flow (£*".). and r (A) > 0 . 

The resuit about diffeômorphisms is proved along the lines of II.2. 

using a Markov partition, Manning1s ideas, and replacing the matrix t by the 

transfer matrix s£ of statistical mechanics. For flows one uses the same 

techniques and Bowen's symbolic dynamics for flows [l8j . 

A 

There are now examples showing that z-+ ç (ze ) (diffeomorphisms) 

and s ç (A-s) (flows) cannot always be extended meromorphically to the 

entire complex plane. Thèse examples, due to Gallavottx (uapubliahe4) in par-

ticular seem to give a négative answer to Smale's question of section 1.4. 

II.4. The real analytic case 

In spite of the above counterexamples one can insure the meromorphy 

A 

of the functions z ç (ze ) and s ç (A-s) by imposing suitable real ana~ 

lyticity conditions to f and A . The idea is to obtain that the transfer 

matrix be a trace class operator on a space of analytic functions, so that 

one can use Grothendieckfs Fredholm theory (see [ J 9 ] ) , and express Ç in terms 

of Fredholm déterminants. The following two results are proved in [20] . 

1) Let M be a connected compact real-analytic manifold, and 

f : M + M a real analytic map which is expanding (i.e. such that j|Tfu||>e | j u|| 

with o > ] for sorne Riemann metric on M). Furthermore let vp be a complex-

valued real analytic function on M .Then 

n ^ n~î 
z h> exp f ~ 1^ TT f(f x) 

n«l x eFix f k*0 

extends to a meromorphic function in the entire complex plane. 

2) Let i(y) be the length of the closed geodesics on a compact 

manifold of constant négative curvature. (The &(y) are also the periods of 

periodic orbits for the géodésie flow on this manifold, this flow is know to 



satisfy Axiom A). Then the function 

y 
extends to a meromorphic function in the entire complex plane. 

This generalized a resuit of Selberg mentioned in section 1.4. 
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