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A COM!/iON GENERALIZATION OF TOPOLOGICAL AND
MEASURE-THECRETIC ENTROPY
Glinther PALM
Nowadays. ergodic theory is split into two branches: measure-
theoretic and topological, according to the methods used.
In both branches there are similar results, nroved using similar
i8eas . Therefore it is natural to look for a common generali-
zation.
For theorems connecting spectral and mixing properties of dyna-
mical systems Nagel [?],[3],[4] has found an appropriate gene-

ralization in terms of Banach lattiees: an abstract dynamical

gystem is a triple (Eyu,T), where E is a Banach lattice with
gquasi-interior point ue:E+ and T:Be»E is a lattice homomorphis
satisfying Tu=u (this definition is slightly different from
that given in [2]).
For theorems concerning entropy and related questions, other
mathematical structures are used: If one looks into the entropy
sections of Walters’ book [8], for example, the measure-theore-
tical and topological proofs of many analogous theorems look
very similar and these proofs are based on lattice methods.
Therefore I have defined entropy for a dynamical lattice (see
definition 1.1.).
This definition has ftwo advantages:
1) Given an abstract dynamiral system (Z,u,T), the lattice of
all closed ideals in E yields a dynamical lattice (see 1.3.),
whose entropy reduces to the usual entropy in both the measur

theoretic and the topological case (see l.4.).



2) In this definition of entropy it is necessary to define the
entropy for not necesgarily disjoint covers, even in the measure-
theoretic case., But this fact allows an easy proof ofaﬂﬁodwyn'e
theoren [1] by means of a generalized version of the Kolmogoroff-
'8inai theorem (see 3.4.).

In the following I want to give the basic definitions and theorems

for the entropy of dynamical lattices and to sketch the proof of

Goodwyn 's theorem.

1, dynamicel lattices

l.1.Definition: A dynemical lattice is a triple (V,m,f), where
V is a distributive lattice with O and 1,
m:V—yR, satisfies m(0) =0 and:
m(a) =0 =p m(avb) =m(b) for every a,be ¥V,
£:V-->V satisfies £(0) =0, £{(1) =1 and:
m(a) =0 =D ziz(f(a)) =0 for every ae€ V.

1.2,Definition: Two dynamical laticces (V,m,f) and (V',m',f') are
called isomorphic, if there is a lattice isomorphism
$:V >V satisfying foi’ai’:Q and m$=m,

1l,3.Definition: Let (E,u,T) be an abstract dynamical systea.
Let V be the lattice of all oloused (1att1ce-)meala in E (seel6])
{ - I{ : VeV
Ih-)sup{uxd:xe inf0,aJ} * £ ii—-)(T(I)),
where (A) denotes the closed 1deal generated by A.

Then (V,m,f) is called the dinamical latticg of closed 1dea1
associated to (E,u,T).

By the entropy of (E,u,T) w2 mean the entropy of the associated
dynamical lattice of closeil ideals,



2.

l.4.: In the toplogical case we have a topological dvnamical

gystem (X,9), i.e. a compact Hausdorff space X and a continu
mapping @:X~>X, Here we set E:=C(X), u=1 and T(f):=Tfe .
For this abstract dynamical system we get (using 1.3.)

0 if a=0 -1
V= {open sets in X}, m(a):ml(a):r-l ;f Z#O and £=9 .

In the measure-theoretic case we have a dynamical system

(XyZ,us9)y i.e. a probability space (X,Z,p) and a measurable
measure-preserving mapping ¢:Xw-»X. Here we set E:=L1(X,2,p)
and again u=1, T(f):=fo p. For this abstract dynamical syst
we get V-isomorphic to the measure-algebra L/ (u” denoting t
u-nullsets), m=pu and f:cp"l

entropy

2.1.Definition: Let (V,m,f) be a dynamical lattice.

1) A finite subset « of V is called a cover, if supa=1.
2)The set V of all covers is ordered by:

ot p (B is a refinement of «) if and only if for every be

there is an a€ a such that b £ a.
3) avB:={aab: a€ca,be p} and o : =1—-0f Ha).
4) Let a be a cover and k::aéam(a), then we set
n"* (a)'—~ 21&5)- log%&g—l .
5) h(a)'—- sup{n™(g): pa, N(B)& N(a)}, N(a) denoting the
number of elements ae a such that m(a) £ 0.
6) h(a):= inf{izlﬁ(ﬁi) 1pi)a, ne N }.
7) h(f,a):= 1lim n(e™)/n , H(f,a):= Tim h(a™)/n.
8) h(Vv,m,f):= sup{h(f,a): aeV}, H(V,m,f):= sup{H(f,a) 1 eV
»(V,m,f) is called the gntropy of (V,m,f).



2.2.Remarks: a) It can be proved, that in many cases h(f,a) = H(f,a)

holds for every cover « [5].

b) Step 5 of the definition should be explained:
In the measure-~theoretic case we want to get the measure
entropy, therefore it should be sufficient to consider
disjoint covers. Now if V is a Boolean algebra and « any
cover, there is a disjoint refinement B of « with N(B)£ N(a),
but if a is already disjoint, then a is the only such
refinement. Therefore in step 6 we have
h(a) ninf{izlﬁ(ﬁi) : i'zflﬁiia, By disjoint, neXN} and
R(B) =1n¥(g) for aisjoint B.

¢) In this general context the entropy still has many of the

well-known properties of ithe usual entroples:

2.3, Theorem [5]: 2) If (V,m,f) and (v',m’,f’) are isomorphic, they

have the same entropy.

b) Let (V,m,f) be a dynamical lattice, where f is a lattice
isomorphism such that mef=m, then h(V,m,f)=H(V,m,f)
and h(V,m,£X) =jklh(V,m,f) for ke &

¢) In the topological case (see 1.4.) h(V,m,f) is equal to
the topological entropy.

d) In the measure-thecretic case h(V,m,f) is equal to the

measure entropy.

3. pgenerators

Let me define pseudometrics on V and V: o
3.1.Definition: a) Given a,beV le: 6(a,b):= inf{m(d) : dva.adv.b}.-
b) Given «,p eV with |a|$/8! (say ' let d(a,B) =.d(ﬁ,oc):=='
= inf{a'zva&(a,n(a)) "'bq.';(a)m(h) : Rta=p B injectivel.




3e2.Definition: Given two covers a,B I shall write « é g, if
there is a cover «’satisfying d(a,a’) < e and a'4p.

3s3.Definition: A cover @ is called a generator, if for every
cover a and every € >0 there is sie N such that a & BB,

A subset W of V i8 called genérating, if for eveyy cover «

and every € »0 there is a cover B €W such that & é Be

With these notions we can prove a generalized version of the
well-known Kolmogoroff-Sinai theorem (along the lines of [7], see
especially Lemma 5.8) [5].

3.4.Theorem: Let (V,m,f) be a dynamical lattice, V a Boolean
algebra, m monotone (aéb => m(a) €m(b)) and subadditive
(m(avb) £ m(a)+m(b)) and mef =m, then
a) h(£,8) =n(v,m,f) for every generator B.
b) n(Vv,m,£) = sup{h(f,p): peV, pew} for every generating W€V,

4. Goodwyns theorem

4,1,: Finally I will sketch a new proof of Goodwyn's theorenm [ l]:
Given a topological dynamical system (X,9) and a g-invariant
regular Borel-measure y on X, the topological entropy ht of ¢

is 2 “the measure entropy h, of ¢ with respect to u.

M

According to 2.3. the topological entropy h, is h(V,ml,f),
where V= {open sets 'n X} and f= q;"l, and the measure entropy
is h(Z,u,f) where I ¢enotes the o‘-algebra of Borel-sets.,
Since p is regular, V is a generating subset of L. Therefore
‘we héﬁré (3.4.D):

(%) h(Z,u,f) = sup{h(f,a):r;é. %, a€V}=sup{h(f,a):ax open cover of X}



If a is an open cover of X, clearly h®(a) computed for (V,ml,f]
ie log N{a), which is 2 h¥(«) computed for (Z,u,f).

Therefore h(f,a) computed for (V,ml,f) is 2 h(f,«) computed
for (L,u,f) (according to definition 2.1.).

So we can continue (#):

n(Z,u,2) = sup{h(f,a):ae ™, a €V} €sup{h(f,a):a eV} =h(V,n,,£).

With the same ideas the following generalization of Goodwyn's’

theorem can be proved [5]:

4.2,Theorem: Let X be a compact Hausdorff space and (®E,u,T) an

ebgtract dynamical system satisfying:
"a) C(X) is a dense T~invariant sublattice of E.

b)The norm of E is order-continuous.

c) u is the function le c(x).

d) T is an isometry.

Then T'C(X) corresponds to a homeomorphismL p:X~>X by means

of Tf=7fep, and the topological entropy of ¢ is 2 the entropy
of (B,u,T), |
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