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SOME OPEN PROBLEMS IN ERGODIC THEORY 
by * 

Donald S. Ornstein 

This monograph is meant to be a sequel to my book ERGODIC THEORY, 

RANDOMNESS AND MECHANICAL SYSTEMS, and I will mainly consider open 

problems and general directions in which I think further research would 

be fruitful. 

I will be fairly non-technical and the only background I will 

assume will be the introduction to my book or a survey article like 

[4] or [5]. 

In order to put the open problems in the right perspective I will 

start with a brief summary of the main results in my book. 

*This research was supported in part by the NSF Grant GP 33581 X 
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Summary of Old Results 

(1) Two Bernoulli shifts of the same entropy are isomorphic (Let Y 

be a space with k points having measures p^ ••• p^ » > 0 , Ep^ • 1 . 
CO 

Let Y^ be copies of Y • Let X » H be the product space with 

product measure. T shifts each sequence in X and is called 
p l * # # p k 

a Bernoulli shift. T is isomorphic to T ^ if and 
p l — p k q l " # V 

only if £p log p » Eq log q .) 

(la) A more general result is: Two transformations of the same entropy 

with "finitely determined" generators are isomorphic. 

(lb) Two Bernoulli shifts of infinite entropy are isomorphic. 

(2) If T is Bernoulli and P any partition, then (a) P,T is 

"finitely determined" (b) P tT is "Very weak Bernoulli" (c) P,T 

is the d limit of multi-step mixing Markov processes (see[l] for the 

above definitions). Furthermore, if P,T satisfies (a), (b), or (c) . 
CO 

i 
then T acting on v T P is Bernoulli. 

—CO 

The above come from an analysis of the proof of (1)• Two immediate 

applications are that factors and roots of Bernoulli shifts are Bernoulli. 
(3) The existence and uniqueness of Bernoulli flows 

(We call S Bernoulli if S is a Bernoulli shift for some 
0 

t^ . There is a flow, S , which is simple to describe, and is 

Bernoulli for all t • Furthermore, any Bernoulli flow is isomorphic 

to S for some c . [we get 6 from S by flowing at velocity 
C t Ci* w 

c instead of velocity ! ] • There also erdsts a unique Bernoulli flow 
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of infinite entropy). The criteria of (2) play a crucial role in (3)• 

(4) The following specific transformations or flows are Bernoulli 

(a) ergodic automorphisms of the n-torus 

(b) geodesic flow on a surface of negative curvature 

(c) multi-step mixing Markov shifts 

The above are proved by an analysis of the specific systems which give 

criteria (2.b.). The results are due to Katznelson, Weiss, Friedman and 

myself. 

There is also a group of negative results about K-automorphisms 

that involve a different circle of ideas. The central result is 

(5) There is a K-automorphism that is not Bernoulli. 

I will now try to outline some of the areas where I think further 

research would be fruitful. 

K-aut omorphisms 

I will start by listing some results that are not in my book. 

(1) There is a transformation T that is not the direct product of 

a Iv-automorphism and a transformation of 0 entropy (T can even be 

taken to be mixing) [6], [7]. 

(2) Shields and I constructed an uncountable family of non-isomorphic 

K-automorphisms of the sane entropy [8]. 

(3) The transformations in (2) are not isomorphic to their inverses [8]. 

(4) There is a K-automorphism with no square root (Jack Clark 

constructed a K-automorphism with no roots at all) [9]. 
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(5) Smorodinsky constructed a K-flow that is not Bernoulli [10]. 

(6) Dan Rudolf constructed two non-isomorphic K-automorphisms with 

isomorphic squares (he can even get all powers > 1 to be isomorphic). 

We should note that all but (1) are examples of properties that hold 

for Bernoulli shifts but not for K-automorphisms. There is a large class 

of questions of this sort. The following are still open. 

(1) Is every K-automorphism a direct product? Could one of the factors 

be taken to be Bernoulli? Is the above also true for 

transformation of positive entropy? 

(2) If two K-flows are isomorphic at all times, are they isomorphic? 

(the answer is not known even dropping the K restriction) 

Dan Rudolf constructed 2 K-flows that are isomorphic at all rational times 

but not at all times. 

(3) Are weakly isomorphic K-automorphisms isomorphic ? (weak 

isomorphism means that each transformation is a factor of the other) 

Steve Polit showed that there are two non-isomorphic, mixing transformations 

that are weakly isomorphic. 

We still do not know any "physical" or "natural" examples of non-Bernoul: 

K-automorphisms• 

Factors 

By a factor we mean the action of T on an invariant sub-sigma 

algebra. 

Twenty years ago it was not even clear that every Bernoulli shift had 

a proper factor. The entropy theory, of course, shows that any 

transformation of positive entropy has lots of factors. In [ 6 ] 

there is an example of a mixing transformation with no factors. 
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What transformations can arise as factors of a given transformation? 

(the K-automorphisms are exactly those transformations having no factors 

of 0 entropy and transformations with continuous spectrum are those 

having no factors isomorphic to a rotation of the circle) 

In the case where T is Bernoulli we have a complete answer - every 

factor is Bernoulli. 

In the case of a K-automorphism one can try to determine the lattice 

structure of the Bernoulli factors. 

Is there a unique maximal Bernoulli factor? or equivalently is the 

span of two Bernoulli factors Bernoulli? 

We know the following: if T is a~ non-Bernoulli K-automorphism 
k 

then for some k , T has 2 Bernoulli factors whose span is not 

Bernoulli (since the proof gives a simple illustration of how one 

applies the isomorphism theory we repeat it here ). 
k i 

Let P generate under T . Since T is K , (T ) P is e independent 
for some k . The isomorphism theory implies that there is a P close 

k i~ 
to P such that (T ) P is independent. Thus, P generates a B-factor 

k
 k"1 r 

under T . If the span of B were B , v T P would generate a B 
0 

k k 

factor under T . This T factor is now invariant under T and since 

roots of B are B we get that it is B under T . Hence, P,T if F.D. 

Thus P,T is the d closure of F.D. processes and hence is F.D. (this 

is a contradiction since T is not Bernoulli)[2]. 

A related question is: is every K-automorphism spanned by its 

Bernoulli factors? 

The next kind of question *nd the one that we will be mainly concerned 

with here is: how is a factor imbedded in a transformation* We will say 



6 

that two factors of T are imbedded in the same way if there is an 

automorphism of T taking one factor onto the other. We will be 

especially interested in the case when T is Bernoulli. 

There are several qualitative ways in which a factor can be 

imbedded. 

(1) %ri can split off (that is, T is the direct product of &2 and 

an orthogonal factor .si ) . If T is Bernoulli *rf is automatically 

Bernoulli. Otherwise we can study the case where .si is Bernoulli. 

(2) Any factor properly containing has strictly larger entropy 

(we will say in this case that is maximal given Its entropy or 

simply maximal). 

(3) erf has the same entropy as T . 

We will now discuss these cases in more detail. 

(1) splits off with a Bernoulli complement. A very interesting 

and deep recent development is Thouvenot's relativised Isomorphism 

theory, which deals with this case [ H ] f [12] [13] # If P and H are partitio 

Thouvenot introduces the idea of P being "finitely determined relative 

to " or "F.D. rel H" . (P is F.D. rel H if given € there 

Is a 6 and an n such that if T,P,H satisfies 

(1) T,H^ T,H, (2) | H(P v H,T) - H(P v H,T)| < 6 
n , n j 

(3) jdist v (T pv H) - dist v r~(P V H)| < 6 
0 0 

then d _ ( P v H , T , * P v H,T) < e where d _ means that when 
K ,H H ,H 

superimposing the T (P v H) on th : T (P v H) the T H must fit exactly.) 
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If the factor generated by P is Bernoulli and orthogonal to the 

factor generated by H then P is F.D. rel H . 

The relativised isomorphism theorem says that that if P is F.D. 

rel H , P is F.D. rel H , H(PvR,T) « H(P v H,T) , and H,T ̂  H,T , 

then there is an isomorphism between T acting on v T X(P v H) and 
— C O 

00 

and T acting on v T^P v H) taking H onto R . 
—00 

Thus, if P v 11 generate and P is F.D. rel H , then v T P 
—CO 

splits off with a Bernoulli complement. 

Relativising the characterizations of partitions of Bernoulli shifts, 
CO 

Thouvenot gets that If v T H splits off with a Bernoulli complement 

then any P is F.D. rel H . 

The idea of V.W.B. can also be relativised (Thouvenot-Rahe). 

Here are some applications 

(a) (Thouvenot)[12]Any factor of the direct product of a transformation 
of 0 entropy and a Bernoulli shift also has this form. (Is the same true for 
0 entropy x K automorphism?) 

(b) (Thouvenot and Shields)[13] The processes arising from transformation 

of the above form are d closed. 

In the case where T is a Bernoulli shift we have 

i 0 0 i 
(c) (Thouvenot) If T (P v Q) are independent, then v T P splits off. 

—00 

Rahe showed that if we lump together some states of a Markov process 

with no transitions of 0 probability then the resulting factor splits off. 
2 

(d) (Rahe) If splits off under T , then it splits off under T . 

(e) The special examples of K-automorphism that are not Bernoulli, 

constructed by Shields and myself all have a Bernoulli factor that splits 

off. 
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Here are some open questions that the relativised theory has a 

good chance of solving 

(a) What is the lattice structure of the factors of a Bernoulli shift 

that split off? Are they closed under intersections and spans? 

(b) Does every transformation of positive entropy (or K-automorphism) 

have a Bernoulli factor that splits off? 

(c) If every K-factor of T is Bernoulli is T the direct product 

of a Bernoulli shift and a transformation of 0 entropy? (the converse 
follows from Thouvenot*s theorem (a)) 

The above gives one the feeling that If * d splits off with a 

Bernoulli complement, then the way in which is imbedded, is in some 

sense "Bernoulli", or that in some sense the "transformation relative to 

is Bernoulli. 

(2) tdt is maximal given its entropy. We will now only consider the 

case where T is Bernoulli. It is not hard to see that if splits 

off, then is maximal given its entropy, and it is natural to ask 

whether the converse is true. In [15] we show 

(a)There is a factor of a Bernoulli shift that is maximal given its 

entropy but does not split off. 

The case where ^/ is maximal corresponds>in some sense, to the 

theory of K-automorphisms. The reasons for believing this are the 

following: Since *si is not contained in a proper factor of the same 

entropy, the action of T relative to <*Z Is somehow analogous to the 

action of a transformation with no factors of 0 entropy. Furthermore, 

the factor In (a) is obtained by taking a skew product with a K-automorphism 

that is not Bernoulli. Thus, (a) can in some sense be regarded as a 

"relativised" version of the existence of a K-automorphism that Is not 
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Bernoulli. ((a) intertwines the positive theory of Bernoulli shifts 

and the negative theory of K-automorphisms and in fact we use the 

positive theory to prove the skew product to be Bernoulli.) 

(The example of a transformation whose 0-entropy factor does not 

split off can also be thought of as a "relativised11 version of a 

K-automorphism that is not Bernoulli.) 

The above analogies lead to the following conjectures (in the case 

when T is Bernoulli )* 

(b)There are uncountably many different ways that a maximal factor of 

given entropy can be imbedded. 
2 

(c) There are maximal factors that are imbedded the same way under T 

but not T . 

(d) There is a maximal factor that is imbedded differently under T 

and T" 1 . 

(e) There is a maximal factor that is not invariant under any square 

root of T . 

(3) «// has the same entropy as T. In this case the action of T "relative 

to ^r/ " is analogous to a 0-entropy transformation. We have no results 

about this case but one would expect notions of mixing, weak mixing, etc. 

to relativise in a reasonable way, and we could ask how much of the 

0-entropy theory relativises. The simplest question along these lines 

is the following: 

(a)If two factors of a Bernoulli shift, both have 2 point fibers, are 

they imbedded in the same way? 

Two related questions are 

(b) If T is the ske* product of a Bernoulli shift and a transformation 

acting on two points, is it true that either the skew product is a direct produc 

or T is Bernoulli? 
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(c) Rudolph has shown that one can start with a fixed K-automorphism 

that is not Bernoulli and form uncountably many non-isomorphic 

K-automorphisms by taking skew products with transformations on 2 points. 

We could study the ways of imbedding partitions as well as factors. 

(we say that two partitions, P and F are Imbedded in the same way if 

there is an automorphism of T taking P onto P). The question then 

arises as-to whether this is the same problem as classiflying factors, 

that is: If P and P are imbedded differently are the factors they 

generate imbedded differently? Equivalently: Does every automorphism 

of a factor extend to an automorphism of T ? The same example as 

(a) above gives us: 

There is a maximal factor **t of a Bernoulli shift and an 

automorphism of that does not extend to T . 

Does every maximal factor that does not split off have a non-extendable 

automorphism? 

Another kind of question about factors is the extent to which they 

determine the transformation. Thouvenot [14] - extending a result of Shields -

showed that if T is Bernoulli and T any transformation on the same 

space having the same factors then T is T or T" 1 • This result 

is not completely general since there are non-isomorphic (0-entropy-

mixing) transformations with no factors. What happens for K-automorphisms? 

The study of factors is closely related to the study of automorphisms» 

What automorphism can commute with a Bernoulli shift, T ? (the answer is 

easier for infinite entropy because we can represent T as a shift on 

the product of intervals.) Is T equal to its double commutator? 
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Smooth partitions 

There are many examples of diffeomorphisms of compact manifolds 

with a smooth invariant measure that are known to be Bernoulli (we already 

mentioned the ergodic automorphisms of the n-torus and geodesic flow 

on surfaces of negative curvature). In these cases, the differential 

structure singles out a special class of partitions - the smooth 

partitions. (we say that a partition is smooth if the boundary of 

each set in the partition is a compact piecewise smooth differentiable 

submanif old). 

For the moment let us restrict our attention to an ergodic 

automorphism of the 2 torus. 

Bowen [16] proved the following: 

(1) Any smooth partition is "weak Bernoulli" - a stronger property than 

"very weak Bernoulli". 

The following is an example of the kind of pathology that "weak 

Bernoulli" rule out: It is shown in [48] that a Bernoulli shift, T , 
I 

has a partition, P , such that v T P is the whole o-algebra 
i>|n| 

for all n . Such a P,T cannot be "Weak Bernoulli" and thus smooth 

partitionscannot exhibit the above pathology. 

(2) There is no smooth independent generating partition. 

((2) is striking in the light of Berg, Adler and Weiss1 explicit 

construction of a smooth ~ actually piecewise linear-generating Markov 

partition.)[17], [18] 

It Is not known whether or not there are smooth independent partitions 

(that do not generate). 

The Thouvenot theory can be applied to this case to show: 
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(3) If the factor otf has a smooth generator and is maximal given its 

entropy then it splits off. (We thus have maximal factors with no 

smooth generators.) 

It may be possible, in the light of (3) to classify the factors 

with a smooth generator. 

The above is not restricted to automorphisms of the 2-torus. 

Bowen proved that (1) holds for any Anosov diffeomorphisms and (2) 

holds for any Anosov diffeomorphisms of the n-torus, the question being 

left open for general Anosov diffeomorphisms. 

The next system to study would be the geodesic flow on surfaces 

of negative curvature. 
It would also be interesting to study partitions into sets whose 

boundaries have measure 0 . (In the case of mechanical systems such a partition 
would represent a measurement that, with probability one, would not change under 
small perturbations.) Can we find such a partition that is independent,or an 
independent generator? 

The action of more general groups 
The study of a single transformation and its iterates can be thought 

of as the study of the action of the integers Z , while the study of 

flows is the study of the action of the reals R . In the case of 

mechanical systems the action of Z and R usually represents the 

passage of time. Mechanical systems can, however, have other automorphisms, 

and this provides some motivation for the study of the action of general 

groups. 

Weiss pointed out that for any countable group G and probabilities 

p- ... p. (Ep, * 1) we have a Bernoulli G action. (This is I k 1 p^ • • • p̂ . 

defined as follows: Let Y have k points having measure ••• • 

Let X « It Y where Y. is a copy of Y , and the measure is product 
i«G 



13 

measure. Thus, each x € x is a sequence {A-.}. n >
 a . ^ Y , and if 

n i i^ G x 
g G G then g{a.} «{b },b. » £k # . This is the usual definition 

X X X X * g 

when G * Z .) 

If G is an uncountable group of measure preserving transformation, 

we call G Bernoulli if every countable subgroup is Bernoulli. In this 

case, as in the case of R, existence requires proof. 

Katznelson-Weiss and Thouvenot [19], [20], and [24a] showed that 

for the n-dimensional integers Z n , the isomorphism theory of Bernoulli 

shifts still holds: 
(1) Z n is isomorphic to Z n if and only if 

*r p k q e 

£p ±log P ± - £q±log q ± • 

The definitions of Finitely Determined and Very Weak Benoulli carry 

over and we get 

(la) Two Z n actions are isomorphic if they have F.D. generators 

of the same entropy 

(2) Any partition under a 2 n Bernoulli action is F.D. and V.W.B. . 

Furthermore, if a partition is F.D. or V.W.B. under Z n, then Z n acting 

on its span is Bernoulli (this implies that factors of Bernoulli actions 

are Bernoulli). 

The above results were applied by Gallavotti, deLiberto and Russo 

to Ising spin systems [20], [21], [22], and [24b]. A 3-dimensional 

Ising spin system is a 3-dimensional lattice of particles, each of which 

has two possible spins. We can describe a configuration of the system 

by assigning a +1 or -1 to each integer point in 3-space. The Ising 

model consists of a probability distribution on these configurations. 

It is usually assumed that this measure is invariant under spacial 
3 

shifts. We thus have Z acting on our probability space. In most 

cases this action can be shown to be Bernoulli (by establishing the V.W.B. 
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property). 

The difficult part in extending the isomorphism theory to 

Z n lies in the analogue of the Rochlin-Kakutani theorem. Lind [23][24] 

proved an analogue of this theorem for R n • He then showed that 

R n Bernoulli actions exist and the isomorphism theory extends to 

them. 

Krieger [24c] and Kiefer [24d] extended the isomorphism theorem for 

Bernoulli shifts to a class of countable groups containing all infinite abelian 
grouj 

The kinds of questions that are open are the following 

(1) For which groups does the isomorphism theory work? Are any two 

Bernoulli actions with the same entropy, of any countable groups 

isomorphic? 

(2) How much of what we know about Z actions works for R actions or 

Z n or R n actions? For example, does the Thouvenot theory work for 

R ? How does one characterize the continuous time processes arising 

from Bernoulli flow, or the Z n processes arising from Bernoulli actions 

(other than F.D. or V.W* B.) 

(3) Which counterexamples extend to Z n or R or R n actions that are 

K but not Bernoulli? 

(4) We can study certain types of behavior that can not arise in the 

case of Z or R . For example, we could study Z n actions that are 

not Bernoulli but where each transformation is Bernoulli. Are there 

K-actions of Z n where no transformation is Bernoulli? 
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Classical examples 

Certain specific classical systems are known to be Bernoulli (we already 

mentioned the ergodic automorphism of the n-torus and geodesic flow on 

surfaces of negative curvature). I think that one of the most interesting 

and important features of the theory is that it can be applied to specific 

classical examples, and that there is an interplay between pure ergodic 

theory and other parts of mathematics. Because of the richness of this area 

I will be forced to be very sketchy, but I think that there is a lot to be 

done along these lines and that the future of the subject depends to a large 

degree in its application to other parts of mathematics. 

(1) Ergodic automorphisms of compact groups 

Rokhlin and Yuzvinskii showed that all such automorphisms are K [25] 

and [26]. Bernoulliness was proved for certain special groups (n-torus by 

Katznelson [27], solenoid by Katznelson and Weiss [49], by Lind [28] 

and independently by Totoki [29] and a very wide class of groups by Lind). 

Thomas and Miles have recently shown that the ergodic automorphisms of any 

compact group are Bernoulli. Their method makes heavy use of number theory -

to check the VWB property. Lind was able to make substantial simplifications 

using the Thouvenot theory. 

The torus generalizes to locally compact Lie Groups modulo descrete 

subgroups. This case is still open. 

(2) Anosov systems and Axiom A . 

Sinai and Anosov showed that any Anosov flow with a smooth invariant measure 

is K (except in the case of the suspension of an Anosov diffeomorphism under a 

constant function). [30],[31] Bunimovich and Ratner [32], [33] extended the 

Sinai-Anosov result to prove Bernoulliness (under the same conditions). These 

results were then extended to systems satisfying Smale's Axiom A and to Axiom A 

attractors by Bowen and Ruelle [34], [35], and [36]. The latter result sheds 

some light on turbulence. 
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(3) Billiards and the hard sphere gas 

Sinai showed that the flows arising from the motion of a billiard ball 

on a square table with a convex obstance or the motion of a hard sphere 

gas in a box are K • Sinai's analysis can be used to get the V.W.B. 

criterion [37], [38] and [39] and thus the above flows are Bernoulli. 

(4) Nothing is known about a gas in a box where the particles can attract 

and repel each other. Not even ergodicity is proved. 

I should remark here that it might be possible to get some information 

about the ergodic properties of a mechanical system even in cases where 

ergodicity cannot be proved or more accurately where the manifolds in the 

phase space on which it is ergodic cannot be Identified. One could still 

hope to prove that on each such manifold the transformation is K or 

Bernoulli. We would thus know what kinds of measurements can arise from 

such systems. 

(5) Connections with the K.A.M, theory 

It would be Interesting to try to apply the Bernoulli theory to systems 

to which the Kolmogorov-Arnold-Moser theory applies. The K.A.M. theory 

allows one to prove stability or non-rendomness, the opposite in some sense 

of the very random Bernoulli behavior. Thus, one might be able to find systems 

for which the K.A. M. theory gives stability at low energies but is Bernoulli 

at high energies (or where Bernoulli components arise in the phase space after 

small perturbations). I. Kubo and Murata recently got some results in this 

direction [39a and [39b]. 

(6) A statistical version of "structural stability11. One example of 

statistical stability is the following: Consider geodesic flow on a surface 

of negative curvature and perturb the surface slightly. The perturbed flow 

is still a geodesic flow on a surface of negative curvature, hence, it is 

still a Bernoulli flow. We'thus have that the perturbed flow is ^somqrphic 
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to the original flow after a rescaling of the time perimeter. 

Results of Bowen and Ruelie [34], [36] show that small perturbations 

in the surface produce small changes in entropy then the above rescaling 

will be small. This implies that except for a set in the phase space 

of small measure the isomorphism moves points a small distance. 

Which systems are statistically stable? 

Theorems that say a certain class of processes are closed in the d 

sense also give a kind of stability result. For example, the processes 

P,T , T Bernoulli are d closed, and hence if Q,T is not Bernoulli It 

will remain not Bernoulli under small d perturbations (thus the 

K-automorphism that is not Bernoulli cannot become Bernoulli in the 

presence of a small amount of noise). 

Are the processes that generate transformations satisfying the Pinsker 

conjecture d closed? 

(7) Infinite particle systems 

We already mentioned the Ising model (this is a static model and 

there is no time evolution defined for it). Liebowitz, Goldstein, Aizeman, 

Lanford, Presutti and Caldiera have studied infinite particle systems for 

which there is a time evolution [40], [41], [42], [42a], [42b], [42c]. 

Free particle systems are Bernoulli under space translations or time 

(this is easy to see) but not under space-time with respect to which they 

have 0-entropy. Liebox*itz-Goldst;ein and Aizeman showed that the time 

evolution of freely moving hard rods (with velocities bounded away from 0) 

is Bernoulli, but not with respect to space-time. The implications of this 

is that the randomness of infinite particle systems should be reflected 

by their space-time ergodic theory bt t not by their space or time ergodic 
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theory separately. So far we have no reasonable examples of infinite 

particle systems that can be proved to be space-time Bernoulli. 

(8) Number theoretic transformations 

Several number theoretic transformation have been studied by 

Smorodinsky, Wilkinson, Rudolfer, Ito, Murata, Totoki, Adler and Weiss. 

The simplest examples are x ~> $x mod 1 for & > 1 and the continued 

fraction transformation [43], [44], [45], [46], [46a], [46b], [46c]. 

These transformations are not 1 - 1 , but there is a natural extension to 

a 1 - 1 transformation and these have been shown to be Bernoulli. 

(Another way of saying this is the following: Take, for example, continued 

fractions. The continued fraction expansion of a number gives us a 

sequence of integers. We thus get a measure on sequences of integers. 

This measure could also be obtained from a process P,T where T is 

Bernoulli and we only look at the process from time 0 on. Thus, 

a.e. number has a continued fraction expansion, in which the frequencies 

of finite strings is that given by a process P>T, T Bernoulli.) 

(9) Transformations described by simple formulas 

There is a simple skew product which is easily seen to be K , but 

is probably not Bernoulli, although this has not been proven. Let T^ 

and T 9 be 2-shifts (Bernoulli shifts on independent sequences of 0 and 

l fs). T(x,y) « (^x , T^ X^y) where f(x) is -1 or 1 depending on the 

q^1 coordinate of x . 

Adler and Shields [66] showed that if T^ is an irrational rotation of 

a circle, then the above skew product is Bernoulli. 
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(10) Differential structure 

Ergodic theory came into being by abstracting the statistical 

structure of mechanical systems and ignoring the differential or 

topological structure. I think that it Is important to study the 

interplay between these structures. We already discussed smooth 

partitions. A general question is the following: Which abstract 

transformations can arise from diffeomorphisms on a compact manifold 

with a smooth invariant measure? Because of the example of geodesic 

flow we know that Bernoulli shifts can have a differential structure. 

On the other hand, Kushnirenko showed [47] that only transformations 

of finite entropy can have a differential structure. 

Does every transformation of finite entropy have a differential 

structure? Are there non-Bernoulli K-automorphisms with a differential 

structure? What manifolds can support a Bernoulli flow? (are there any 

topological obstructions to randomness?) 

(11) Topological structure 

In case and T^ act on spaces X^ and X^ which have a 

topological structure and are homeomorphisms we can ask if it is possible to 

throw out invariant sets of measure 0 from % 1 and X^ (obtaining 

X^ and ),and then find a 1 - 1 measure preserving homeomorphism 

(p between X^ and X^ that commute with T and T 2 . In other 

words, after ignoring sets of probability 0 , T^ and have the 

same statistical and topological structure. (In case T^ and 1^ a r e 

shifts with the product topology, the problem is just that of the 

existence of finitary codes - discussed on page 23 . From this point of 
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view, it is easy to see that a Bernoulli shift can have more than one 

topological structure.) 

(12) Orbit structure 

There is an old problem, which I believe is due to Kakutani. I will 

try to explain it in our present context. Global analysis focusses on the 

orbits of individual points in phase space while ergodic theory focusses on the 

evolution of sets of points. One can ask how mxich of the statistical 

or ergodic properties of a system are determined by the individual orbits. 

One formulation of the problem is the following: We say that flows 

and S' are equivalent under a variable time change if we can change 

the speed along orbits so as to make them isomorphic. The speed change 

may vary from point to point and will not in general be a simple rescaling 

of the time parameter. Properties such as mixing are no longer invariants. 

The properties of having finite, infinite or 0 entropy will however 

be preserved. Are these the only ones? Is every K-flow equivalent 

to the Bernoulli flow? (If we represent the flow as a flow built under a 

function, a speed change amounts to a change in the function.) 

Information theory 

Ideas from information theory have had a great impact on ergodic theory 

and it is reasonable to hope that recent developments in ergodic theory 

will have some impact on information theory. 

The connection between ergodic theory and coding is the following: 

Start with two finite alphabets. We define a (sliding block) code of 

length 2k 4- 1 from sequences in the first alphabet to sequences in the 

second by assigning, to each sequence of length 2k + 1 of letters in the 

first alphabet, one letter in the second alphabet. This gives us a 
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th 

map on sequences in which the i cordinate of the image sequence is 

determined by the coordinates between i - k and i + k of our original 

sequence. 

We say that a sequence of codes of length k , converge (as k » ) 

on a process P,T , if for a.e. P, T sequence and all j , the j 

coordinate of the image sequence is the same for all sufficiently long 

codes. 

We define an infinite code as the limit of finite codes. 

Now, suppose P generates under T and Q is any partition. Q 
k i 

can be approximated arbitrarily well by sets in v T P . This means 
-k 

that there is an infinite code, c , which applied to P,T gives Q,T . 

If 0 also generates there will also be an infinite code c from 

Q,T to P,T and for a.e. P,T sequence,if we first apply c and 

then c we get back the sequence we started with. 

Because of the above,certain coding problems translate into 

problems of constructing partitions. This is a very different viewpoint 

and certain things which can be seen from this viewpoint (like the 

Rokhlin-Kakutani theorem) become extremely complicated from the coding 

viewpoint. 

We will now give three applications of the isomorphism theorem 

to coding. These are about infinite codes and are very theoretical. Their 

main point is that they give clean mathematical theorems, and the messier 

e ~6 results about finite codes can be read off from them and viewed 

as approximations to an ideal reality. 

The following results will be restricted to B processes, (processes 

P,T such that T is Bernoulli) but since these include all mixing 

processes of finite memory and theic d limits, the restriction 
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does not seem serious. 

(1) Noiseless channels 

Suppose we have a channel that send k letters. If P,T is a 

B process (i.e. T is Bernoulli) and H(P,T) £ log k , then P,T 

can be coded (by an infinite code) Into an independent process on k 

letters, sent over the channel and recovered (by another infinite code 

applied to the independent process). 

Since infinite codes are the limits of finite codes we get results 

about finite codes. (These codes have the advantage over the usual 

block codes that they are stationary and can be improved without much of a 

change.) 

(2) Noisy channels 

For simplicity let us assume that our channel sends only 0 fs and l fs 

and that we make an error with probability p independently of the past 

errors and what is being sent. The capacity, C , of this channel is then 

{log |- ~ (p log p + (l~p) log (l-p)| , Gray and I showed the following: 

given £ , there Is a process Q,T , on 2 symbols , T Bernoulli and 

H(Q,T) > C - £ such that Q,T can be sent across our channel and 

recovered exactly, with probability one (it is impossible to get 

H(Q,T)~ C). (call such a Q fT invulnerable). 

The point of the above is that, in some theoretical way it reduces the 

noisy channel problem to the noiseless one. We can take any B process 

P,T , H(P,T) * H(Q,T) f code it into Q,T , send Q, T , recover Q,T 

and then recover P,T . 

The invulnerable processes Q,T shed some light on the question of 

how badly behaved B processes can be. It was shown in [48] that there 
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CO 

is a B process, Q VT such that n v T XQ is the whole a-algebra. 

n«l i>|nj 

This means that if we make a finite number of changes in Q,T , then the 

original sequence can be recovered with probability one. The invulnerable 

processes give a more striking example of this kind of behavior. Furthermore, 

the coding from an independent process to an invulnerable process must 

be very delicate because if we change one symbol of our independent 

process, then with probability one the encloded sequences will be changed 

in a "very large" number of places. 

(3) Cryptography 

Suppose that you know that you are receiving a process P,T or a certain 

automorphism of P,T , but you do not know which. Then there is no way 

of deciding without further information (since the statistics of p fT or its 

automorphism are the same). Since B~processes seem to include all processes 

one might reasonably want to send, the automorphisms of B-processes seem to 

be relevant to cryptography. If P,T is a B-process, then by definition 

T is Bernoulli and because of the isomorphism theorem we can find an 

independent generator Q with two sets of equal measure and thus an 

automorphism. (A minor variant would be to code P,T in a non-secrete 

way onto Q,T , then either send Q,T as is or exchange the two equally 

probable letters in a secrete way. Then send Q,T or its automorphism 

and recover P,T.) 

The above applications are of course highly theoretical and highly 

impractical. However, we hope.and there is some reason to belive*that 

the partition viewpoint will actually be useful in producing real codes* 

[50] , [51], [52], and [53]. 
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(4) One sided and finitary codes 

One can study the existence of infinite codes with certain special 

properties. An infinite code is said to be one sided if it depends only 

on the past of the process. Sinai's original weak isomorphism theorem was 

one sided, thus any ergodic process can be coded one-sidedly onto any 

independent process of the same or smaller entropy, see [5]], [53]. It is 

not known if the above result remains true if we replace the independent 

process by a B-process. It is easy to see, however, that for two different 

independent processes of the same entropy we cannot find an invertible code 

such that both the code and its inverse depend only on the past. (We cannot 

even find invertible codes, <P , between certain independent processes such 

that <P and <P ~* only look a finite number of steps into the future.) 

The avove type of question is discussed very thoroughly In [56], [57], [58], [6 

and [61]. One of the first one sided codings is due to Rosenblatt [63]• [64], 

We say that a code is finitary if each coordinate, I , of the encloded 

sequence depends on only a finite number k(w,i) of coordinates of our input 

sequence, w . Almost nothing Is known about finitary codes. The codes produce* 

by Adler and Weiss [18], Mesalkin [62] and Bowen [16] are finitary and one can 

construct B-processes that are not finitary codings of any Independent process. 

Finitary codes and partitions with boundary of measure 0 are closely related. 

For example, a process can be represented as a partition of the 2-torus with 

measure-0 boundary If and only if it can be coded finitarily from the Adler~Weie 

partition (or any partitions P such that the diameter of the atoms in 

n i 
v T P goes to 0). Because the Adler-Weiss codes (between automorphisms 

-n 

of 2-tori of the same entropy) are finitary, they are also-after ignoring sets 

of measure O-horaeomorphisms. 
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