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COTORSION PROPERTIES 

par 

Otto GERSTNER 

(1) From the functor ΗοπΚ,,Ζ) 

Given any (abelian) group G ? we dénote the group 

Hom(G,2) by G + ; 

and, for any homomorphism α : G — > H of (abelian) groups, the notation 

a + : H + ~ > G + 

will be used for the homomorphism induced by a. 

There is the canonical homomorphism 
++ 

: G — > G 

where, for g £ G, Lg(g) sends ^ G + into 4>(g). 

The équation 
α ο L- = L„ ο α 

VJ ri 
is proved straightforward. 

Let Κ be a subgroup of G« Then 

Κ = ker <f 

<f(K)«0 
is a group between Κ and G. 

— + + For a différend description of Κ let A *= im (G — > Κ ). 

Then _ 1 

Κ - Ι^(Α +) (1) 

For a proof of (1), we just observe that - for g e G - L_(g) e A + means, 

that the évaluation *f « > ^(g) ( t £- G +) is zéro whenever f € H + 

i.e. whenever *f G G + and *f(K) « C, Yet T(K) * 0 and f(K) » 0 are équi­

valent. 

The notation of the following exact séquences will be refered to several 

times 

0 — > Κ — > G — > H — > 0 (2) 

0 — > H + — > G*—> A — > 0 (3) 
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++5 Λ +
 Λ++ α •„++' Ο > Α > G — > Η 

Α Λ 

Ο > Κ > G — - — > Η > Ο 

(in (4), 7C is the restriction of Lg)· 

Lemma 1 ; If (3) splits and is surjective, then 

(A+ / L G(K)) + = 0. 

Proof : Let *f : A + — > 2. such that y(Lg(K)) * 0 be given. There exists an 

extension G + + ~ > 7L of . Now ^(^(K)) » 0 ; but, by équation (1), 

L G(K) = A +. 

Proposition (R.J. Nunke) : Let, in the séquence (2), G = zF. 

Then 

H 7L where J is countable, 

(ker l^)* - 0, and H - ker 1^ φ H + + . 

Proof : Refering to séquence (3) and diagramm (4), G + is countable free by a 

theorem of E.C. ZeeTnan (see Fuchs II, Cor. 94.6), so A is free, and (3) 

splits. Thus G/K - G + + / K - Α + / Κ Φ Η + + , Also, A +/K - ker 1^, and (A +/K) + * 0 

by lerama 1. 

Actually, this is the elementaury proof of Nunke1 s theorem, which 

- in addition - tells that ker is cotorsion [R.J. Nunke : Slender groups 

Acta Sci. Math. Szeged 23, 67-75 (1962) ; see Griffith, Thm. 153] · 

(2) Algebraically compact groups 

Définition : The (abelian) group G is called. 

Ç2£2E£*22 ^ > whenever G c Ε is a subgroup such that E/G is torsionfree 

then G splits off, 

and 
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(ii) PHEÊ..i2lÊ££iYË * f » whenever § c Ε is a pure subgroup then G splits off · 

We freely use the commonly known properties of cotorsion and pure in­

jective. groups as they may be found in the books of Fuchs or Gr if fi th. 

Here are some of them. 

a) Since E/G being torsion-free inplies G to be a pure subgroup of E, 

any pure injective group is cotorsion. 

b) If G is a torsion-free cotorsion group then G is pure injective 

(see Fuchs I, Cor. 54.5). 

c) Ext(Q,G) * 0 suffices for G to be cotorsion. 

d) Any Ext(A,B) is cotorsion. À possible ρroof by homological algebra 

uses Ext(Q,Ext(A,Β) ^ Ext(Tor(Ç,A),B). 

e) G cotorsion implies G + « 0. For this, as direct summands of cotorsion 

groups are cotorsion, we observe that 7L is not cotorsion. There are homomor­

phic images H of 2?", where |l| = A" f which have H + » 0, but are not cotorsion 

(see proposition 2 below). 

(3) On cotorsion properties of homomorphic images of 2?" 

Examples : If H is as homomorphic image of 2?, and if |l[ ^ J / then, by 

Nunkefs theorem cited above, ker is cotorsion as well as is surjective. 

Neither property is preserved as soon as I is uncountable, as shown by the 

following examples. 

(i) By proposition 2, H = zP/2L^ is not cotorsion, although, by Zeemanfs 

theorem, H + β 0 (thus ker = H ) . 

(ii) Choose a free (abelian) group F and a subgroup Κ c F such that Κ/Κ ^ Ζ 

(here the indicates annihilation within F)« Next, choose G • 2* D F 

such that G + — > F + is surjective and ker ^QJ^ ~ 0· Then, annihilation of Κ 

within G yields Κ again, and ker L g ^ K % Z. is not surjective in this 

example. 
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(itî>£et* fceeping the notation of diagrarim (4), H » 2? and G free. 

Then coker % Ext (2?*, 2). is injective in this example. 

Problëm : The following problem seems to be open. If H is a homomorphic 

image of 2 1 (I uncountable), is then (ker L f i )
+ « 0 provided is surjective ? 

Actually, this problem is easily answered to the affirmative, once one 

assumes that white head groups are free. So, the real point is to state it 

within ZF (+GCH)· 

Proposition 1 : If H - Λ.Κ, and if (N c l such that C » Ζ ^ / Κ Π Zt 1^ is 

cotorsion then ker Lg is cotorsion. 

Proof : H is a homomorphic image of zF © C. So, the following lemma will be 

sufficient. 

Lemma 2 : In the notation of diagramm (4), let G * 2?* φ C, where C is 

cotorsion. Then ker is cotorsion. 

Proof: From diagramm (4) we the well-known ker - coker - séquence 

C * ker Lg •*̂ -> ker -^—> coker % > coker L G « 0 

(see Mac Lâne, Homology. Chap. II, lemma 5.2), and from it 

0 — > ker μ -> ker -L̂  —^> coker Ko—> 0. 

Now firstly, ker y = sîn λ is cotorsion as homomorphic image of C. 

Secondly, in ouder to prove that coker >6 is cotorsion, it will be ôufficient 

to prove coker 0, as A is countable ftée, and by Nunkefs theorem. 

Yet coker Χ β 0 follows from lemma 1, as LN is surjective. 
y? 

Proposition 2 : Z ^ / Z ^ fails to be algebraically Compact. 

For à ptoof see manuscripta math. 11, 103-109 (1974). 
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Problem : Let B(I) = {f e 2? / f bounded}. Then 2?/B(I) 1s algebraically 

compact, in fact divisible as pointed out by P. Hill. So, one might ask for 

groupe Κ between and B(I) as small as possible such that Z*/K is alge­

braically compact. 

The question for subgroups Κ of Z 1, whether C Κ or not, such that 

is cotorsion would be a most gênerai one, as any cotorsion group is a 

homomorphic image of some group Z 1. 


