PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

FRANÇOIS BERRONDO

Caractérisation topologique des corps valués henséliens

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule 2

« Séminaires d'algèbre et de logique », , exp. nº 3, p. 1-18

http://www.numdam.org/item?id=PSMIR_1975___2_A3_0

© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CARACTERISATION TOPOLOGIQUE

DES CORPS VALUES HENSELIENS

par

François BERRONDO

Nous caractériserons les topologies d'un corps qui peuvent être définies par une valuation hensélienne.

INTRODUCTION

Définition 0 :

Topologie valuative d'un corps : c'est une topologie qui peut être définie par une valuation.

Ce sont les topologies compatibles avec la structure de corps, séparées, localement rétrobornées $\{[2], ch. III. \}$ 6, ex. 22) et telles que le corps contienne un sous - groupe non nul borné.

Définition 1 :

Corps valuatif : c'est un corps muni d'une topologie valuative.

Définition 2 :

Corps $\mathbb R$ - valuatif : c'est un corps valuatif (K, $\mathcal C$) possédant les propriétés équivalentes suivantes :

- 1) E peut être définie par une valuation à valeurs dans R
 (i. e. de hauteur 1)
- 2) Il existe des éléments de K non nuls topologiquement nilpotents.

Si $\{K, C\}$ désigne un corps valuatif, C la clôture algébrique de K et G le groupe de Galois de C sur K, on montre que C est la topologie d'une valuation honsélienne si et sculoment si les conditions équivalentes suivantes sont vérifiées :

- I Il existe une seule topologie valuative de C prolongeant $\mathcal C$ (th. 1)
- II Il existe une topologie valuative de C prolongeant & telle que tous les éléments de G soient continus. (th. 2).
- III (Quand (K,C) n'est pas [R valuatif]

 Quel que soit le voisinage V du D dans K, il existe un voisinage V' tel que, si $f = X^n + c_1 X^{n-1} + \dots + c_n \in t$ un polynôme irréductible de K [X] , $c_n \in V' \longrightarrow c_i \in V$ $\forall i \in [1, \dots, n]$ (th. 3)

EXTENSIONS MONOTOPOLOGISABLES DES CORPS VALUATIFS

Définition 3

Soit (K,\mathcal{C}) un corps valuatif et L une extension algébrique de K. Nous dirons que L est une extension monotopologisable s'il existe une seule topologie valuative de L qui prolonge C.

Exemple:

Si K est complet, toute extension finie est monotopologisable [1], § 5 , n° 2, prop. 4).

Théorème O

Soit (K,\mathcal{C}) un corps valuatif, L une extension algébrique de K et \mathcal{C}' une topologie valuative de L prolongeant \mathcal{C} . Si v est une valuation de K définissant \mathcal{C} , il existe une valuation v' de L prolongeant v qui définit \mathcal{C}' .

Soit v_1 une valuation de L définissant $\mathcal C$ ' et soit $\overline v_1$ sa restriction à K. $\overline v_1$ et v sont dépendantes $([1], \{7, n^{\circ}2, \text{proposition }3\})$. Si A_1 et A désignent leurs anneaux, A_1 et A ont un idéal premier commun P et $(A_1)_p = A_p$ $([1], \{4, n^{\circ}1, \text{prop. }1\})$. Si v_p est la valuation de K dont l'anneau est A_p , les prolongements de v_p à L sont de la forme v_p , uù v_p est un prolongement de v et p' un idéal premier de v' au dessus de p' ([4], F, prop. 4). Il existe donc un v' et un p' tels que v_p' , * $(v_1)_p$. Les valuations v_1 et v' sont dépendantes donc v' définit G'.

Théorème 1

Soit $\{K,G\}$ un corps valuatif, L une extension algébrique de K. Pour que cette extension soit monotopologisable, il faut et il suffit que G puisse être définie par une valuation ayant un seul prolongement à L.

La condition est suffisante d'après le théorème O. Montrons qu'elle est nécessaire. On suppose d'abord que L est une extension de dimension finie sur K. Soit v une valuation de K définissant sa topologie et A son anneau. Soient B_1 , B_2 , ... B_s les anneaux de valuation de L au dessus de A. Si L : K est monotopologisable, les anneaux B_1 , B_2 , ..., B_s sont dépendants, donc ils ont un idéal premier commun π tel que $(B_1)_{\pi} = (B_2)_{\pi} = \dots = (B_s)_{\pi}$.

Posons $P=\pi \cap A$. Les seuls anneaux de valuation de L au dessus de A_p sont les $(B_i)_\pi$ ($\boxed{4}$, F - prop. 4). Il n'y en a qu'un seul. La valuation dont l'anneau est A_p définit la topologie de K et n'a qu'un seul prolongement à L.

- Cas général

Soit v une valuation de K définissant G. A son anneau et X son spectre. On munit X de l'ordre opposé de l'inclusion $(x \le x' \longleftrightarrow x' \subset x)$; $\forall x \in X$ on note v_{v} la valuation dont l'anneau est A_{v} .

Supposons que \forall x \in X, v admet plusieurs prolongements à L et montrons qu'alors l'extension L : K n'est pas monotopologisable.

Lemme 1

Il existe une partie X' cofinale dans X et une application croissante Λ de X' dans l'ensemble des corps compris entre K et L $(x \longrightarrow \Lambda \ x)$ telles que :

- a) \forall x \in X' \lor_{X} a plusieurs prolongements à \bigwedge $_{\mathsf{X}}$ et
- b) $\forall x, y \in X'$, $x < y \longrightarrow v_y$ a un seul prolongement à Λ_x .

Soit f l'ensemble des couples (X', Λ) où X' est une partie de X et Λ une application croissante de X' dans l'ensemble des corps compris entre K et L vérifiant les conditions a) et b) du lemme l et la condition c) suivante

c) si X' a un plus grand élément x , \exists z \in X tel que v , a un seul prolongement à Λ .

 $-F \neq \emptyset$. En effet, v a plusieurs prolongements à L donc il existe un corps Λ_{M} de dimension finie sur K tel que v a plusieurs prolongements à Λ_{M} . Si Λ_{M} : K est polytopologisable, à fortiori, L : K aussi et le théorème est établi. On peut donc supposer Λ_{M} : K monotopologisable et comme $[\Lambda_{M}: K]$ est fini, $\exists z \in X$ tel que v_{z} a un prolongement à Λ_{M} . Si M désigne l'idéal maximal de v, le couple (M,Λ_{M}) vérifie bien les conditions de F.

- On pose $(X',\Lambda') \leq (X'',\Lambda'')$ si $X' \in X''$ et si la restriction de Λ " à X' coîncide avec Λ '. \mathcal{F} est inductif pour cet ordre : soient $(X'_1,\Lambda_1)_{1\in I}$ une famille totalement ordonnée d'éléments de \mathcal{F} . Posons X' = U X'_1 et définissons Λ sur X' par $\Lambda_{X'} = \Lambda_1$. \forall $x,y \in X'$ it \exists i : $x,y \in X'_1$ donc \forall_X a plusieurs prolongements à Λ_X et \forall_Y a un seul prolongement à Λ_X si $X \leq Y$. Enfin, si X' a un plus grand élément X_0 , c'est aussi le plus grand élément d'un X'_1 donc \exists z \in X : \forall_Z a un seul prolongement à Λ_X . Par suite \mathcal{F} contient un élément maximal (X',Λ) .
- Montrons que X' n'a pas de plus grand élément. En effet, si \times_0 est le plus grand élément, \exists z \in X : \vee_z a un seul prolongement à Λ \times_0 . On a nécessairement $z > \times_0$. \vee_z a plusieurs prolongements à L donc il existe un corps L'fini sur K tel que \vee_z a plusieurs prolongements à L'. Soit Λ_z le corps engendré par Λ_z et L'. \vee_z a plusieurs prolongements à Λ_z . Λ_z est de dimension finie sur Λ_z et on peut supposer l'extension $\Lambda_z : \Lambda_z$ monotopologisable (sans quoi L : K° serait polytopologisable et le théorème démontré). Donc \exists z' \in X : \vee_z , a un seul prolongement à Λ_z . Posons $X' = X' \cup \{z\}$ et prolongeons Λ à X' en posant Λ $\{z\} = \Lambda_z$. $\{X',\Lambda\} \in F$ ce qui contredit la maximalité de $\{X',\Lambda\}$.
- Montrons que X' est cofinal dans X. S'il n'en était pas ainsi, soit m un majorant de X'. Posons $\widehat{\Lambda}=U$ Λ_{χ} . \forall X \in X', \exists y \in X' \times X \in Y \times X', \forall y \in X' \times X' \times Y \times
- Pour tout corps Λ (K C Λ C L) at tout prolongement w de v à Λ , on note w_ la valuation de Λ moins fine que w qui prolonge v_.
- Soit A l'ensemble des couples (Λ, w) où Λ est un corps $(K \subset \Lambda \subset L)$ et w un prolongement de v à Λ ; on ordonne A en posant $(\Lambda_1, w_1) \preceq (\Lambda_2, w_2)$ si $\Lambda_1 \subset \Lambda_2$ et $w_2/\Lambda_1 = w_1$.

Lemme 2

Soit $\overline{\vee}$ un prolongement quelconque de \vee à L. Il existe une partie \overline{X} cofinale dans X et une application croissante de \overline{X} dans A, $(\times \to (\Lambda_{\times}, \, w^{(\times)}))$, notée (Λ, w) , telle que $\forall \times \in \overline{X}, \, w_X^{(\times)} \neq \overline{\vee}_X \, \Lambda_{\times}$.

Considérons un couple (X', Λ) vérifient les conditions du lemme 1. Soit $\widetilde{\Lambda}$ l'ensemble des couples (\widetilde{X} , ($\widetilde{\Lambda}$, ω)) où \widetilde{X} est une partia de X' et (Λ , ω) une application croissante de \widetilde{X} dans Λ dont la première composante coıncide avec Λ et qui vérifie les conditions du lemme 2.

A. F n'est pas viue: si m désigne l'idéal maximal de v. v a plusieurs prolongements i Λ_m donc en paut choisir un w_m distinct de \overline{V}_m On a $(m,(\Lambda,w_m))\in F$. On ordonne F en posent $(\overline{X}_1,(\Lambda,w)_1)\leq (\overline{X}_2,(\Lambda,w)_2)$ si $\overline{X}_1\subset \overline{X}_2$ et si $(\Lambda,w)_2$ prolonge $(\Lambda,w)_1$. F est évidemment inductive. Soit donc $(\overline{X}_1,(\Lambda,w))$ un élément maximal de F. Si \overline{X}_1 n'était pas cofinale dens X', il existerait un majorant strict m de \overline{X}_1 . Posons $\overline{\Lambda}_1=U$ f_1 et soit f_2 la valuation de f_1 qui prolonge les f_2 f_2 f_3 f_4 et ce prolongement à f_4 et ce prolongement est f_4 f_4 f_5 f_5 f_6 donc f_7 a un seul prolongement à f_8 et ce prolongement est f_8 f_8

Démonstration du théorème :

Considérons un prolongement qualconque \tilde{v} de v à L et un couple $\{\widetilde{X}, (A, w)\}$ vérifiant les conditions du lemme Z. Posons $\widetilde{A} = \bigcup_{X \in X} \Lambda_X$ et coit \widetilde{w} la valuation de \widetilde{A} qui prolonge les $w^{\{X\}}$. Si l'extension L: K était monotopologisable, à fortiori \widetilde{A} : K mussi, donc $\widetilde{v}/\widetilde{A}$ et \widetilde{w} seraient dépendantes. On aurait \widetilde{v}_{X} \widetilde{w}_{X} pour un x de X, domme \widetilde{X} est cofinale. By $\in \widetilde{X}$, $y \geq x$. On a $w_{Y}^{\{y\}}$ $(\widetilde{v}_{Y}/\Lambda)$. Comme $x \leq y$, $w_{X}^{\{y\}}$ $(\widetilde{v}_{X}/\Lambda)$ et comme $\Lambda_{Y} \subset \widetilde{\Lambda}$, $\widetilde{w}_{X} \neq \widetilde{v}_{X}/\Lambda$, d'où la contradiction.

Remarque: la démonstration procédente deut être considérablement simplifiée dans le cas où la topologie est métrisable. (cf. appendice)

CAS DES EXTENSIONS NORMALES

Théorème 2

Soit (K,\mathcal{C}) un corps valuatif. N une extension normale de K et \mathcal{C}' une topologie valuative de N prolongeant \mathcal{C} . Soit \mathcal{C} le groupe de Galois de l'extension N:K.

Les propriétés suivantes sont équivalentes :

- 1) 6' est la seule topologie valuative de N prolongeant C.
- 2) ∀ σ ∈ G, σ est continu .
- 3) G est une famille équi-continue d'automorphismes de N.
- 1) \longrightarrow 3) D'après le théorème 1, la topologie de K est définie par une valuation v ayant un seul prolongement \overline{v} à N. Donc, \forall $\sigma \in G$, $\overline{v} \circ \sigma = \overline{v}$ G est une famille équi-continue pour la topologie de \overline{v} .
- 3) --- 2) évident
- 2) \longrightarrow 1) soit \overline{v} une valuation définissant la topologie de \overline{N} et \overline{v} sa restriction à \overline{K} . \overline{V} σ \in G, σ est un homéomorphisme car σ et σ^{-1} sont continues. Par suite, \overline{v} et \overline{v} o σ définissant la même topologie. Tous les prolongements de \overline{v} à \overline{L} sont du type \overline{v} o σ ([1], § 8, n° 6, prop. 7) et les topologies valuatives de \overline{L} sont définies par ces prolongements (th. 0) ; 11 n'y en a donc qu'une seule.

Théorème 3

Soit (K,C) un corps valuatif non \mathbb{R} - valuatif et \mathbb{N} une extension algébrique normale de \mathbb{K} . Quel que soit \mathbb{Y} dans \mathbb{N} , on note $\mathbb{X}^{n(y)} + \mathbb{C}_1(\mathbb{Y}) \ \mathbb{X}^{n(y)-1} + \ldots + \mathbb{C}_{n(y)}(\mathbb{Y}) \text{ son polynôme minimal unitaire.}$

L'extension N : K est monotopologisable si et seulement si \forall V \exists V' : $C_{n(y)}$ (y) \notin V' \rightarrow $c_{\underline{i}}$ (y) \in V \forall $i \in [1, n(y)]$. (V et V' désignant des voisinages de O dans K).

Si N: K est monotopologisable, \exists v définissant \mathcal{C} et ayant un seul prolongement à N. Comme \mathcal{C} n'est pas \mathbb{R} - valuative, V contient un idéal premier P de v. P est l'idéal maximal de la valuation v_p et, d'après ([3], ch. III, ([3], [3]), ([3

Réciproquement, soit v une valuation définissant C et supposons que $\exists \ V : \ V' \ \exists \ y \in \ N : \ c_{n(y)} \ (y) \in \ V'$, $c_i \ (y) \in \ V$. Soit P un idéal premier de v inclus dans V, en prenant $V^0 = P$, on déduit que v_p a plusieurs prolongements à N. $V P \in Spec \ (v)$, v_p a plusieurs prolongements donc C ne peut être définie par une valuation à prolongement unique.

CAS DE LA CLOTURE ALGEBRIQUE

Définition 4

Soit (K,C) un corps valuatif et C sa clôture algébrique. (K,C) sera dit henséliennement valuatif si C est une extension monotopologisable de (K,C).

Exemple

Tout corps R - valuatif complet est henséliennement valuatif.

Montrons qu'il existe un corps valuatif complet non henséliennement valuatif.

Lemme O

Soit (K,v) un corps valué et v_p la valuation de K associés à l'idéal premier p de l'anneau de v ($\begin{bmatrix} 4 \end{bmatrix}$, C, th. 1). La topologie de K peut être définie par une valuation hensélienne si et seulement s'il existe p tel que v_p soit une valuation hensélienne.

S'il existe p tel que v_p soit hensélienne, c'est évident puisque v et v_p définissent la même tupologie.

S'il-existe v' hensélienne définissant la même topologie que v, alors il existe v" moins fine que v et que v' $([1], 57, n^{\circ} 2, prop. 3)$. Comme v" est moins fine que v', v" est hensélienne ([4], F, prop. 9) et comme v" est moins fine que v , il existe p tel que v" = V_p ([4], C, th. 1).

Construction du contre - exemple

Choix du groupe ordonné

Z_ désigne l'ensemble des entiers ≤ 0 . Soit G le groupe des applications à support fini de Z_ dans Z ordonné lexicographiquement. Les sous - groupes isolés de G forment une suite croissante. Précisément, ce sont les sous - groupes $G_n = \{g \in G : g(x) = 0 \mid \forall x \leq -n\}$. Notons g_n l'élément de G défini par g_n (-n) = 1 , g_n (-n') = 0 si $n \neq n'$. G_n est engendré par g_0 , g_1 , ..., g_{n-1} et g_n est la borne supérieure de G_n .

Lemme 1

Il existe un isomorphisme de groupes ordonnés \forall_n de G dans G/_{G_n} .

Soit $H_n = \{g \in G : g(x) = 0 \ \forall \ x > -n \}$. Il est clair que H_n est un sous - groupe et que $G = G_n \oplus H_n$. Soit ϕ'_n l'application de G dans H_n définie par ϕ'_n $\{g\} = g'$ avec $g'(x) = \{g(x+n) \ si \ x \le -n \ si - n \le x \le 0 \}$ ϕ'_n est un isomorphisme et comme H_n est isomorphe à G/G, on en déduit un isomorphisme ϕ_n de G dans G/G tel que $\phi_n(g_k) = g_{k+n}(G)$ (classe de g_{k+n} dans G/G).

Choix du corps valué

Soit k un corps, $K = k (X_1)_{1 \in \mathbb{N}}$ et v la valuation de K à valeurs dans G qui induit sur k la valuation triviale et telle que $v (X_n) = g_n$. Soit v_n la valuation subordonnée dont le groupe des valeurs est G/G ([4], C, th. 1). On a $v = v_0$. Pour tout corps k et tout entier n, nous noterons $(K, v_n)_k$ le corps valué ainsi défini.

Lemme 2

Les corps valués $(K,v)_{k(T_0,...,T_{n-1})}$ et $(K,v_n)_k$ sont isomorphes.

Soit ψ_n l'isomorphisme de k (T_0, \dots, T_{n-1}) $(X_i)_{i \in \mathbb{N}}$ dans k $(X_i)_{i \in \mathbb{N}}$ défini par ψ_n $(T_i) = X_i$, $0 \le i \le n-1$ et ψ_n $(X_k) = X_{k+n}$. Il suffit de vérifier la commutativité du diagramme

$$k (T_0, \dots, T_{n-1}) (X_i) \xrightarrow{V} G$$

$$\downarrow^{\Psi_n} \qquad \downarrow^{\varphi_n} G/G_n$$

Lemme 3

Quel que soit $z \in (K,v)_k$, on a $v (z^2 + X_p - 1) < g_1$

Montrons d'abord que le polynôme $f = T^2 + X_0 - 1$ n'a pas de racine dans K. En effet, toute racine est entière sur $k [X_0]$ et $k [X_0]$ est intégralement fermé dans K , donc, s'il existe une racine dans K, c'est un polynôme P de $k [X_0]$. Or, si le degré de P est supérieur à 1, d° $(P^2 + X_0 - 1) = 2$ d° (P) > 0 , et, si d° (P) = 0, d° $(P^2 + X_0 - 1) = 1 > 0$. f n'a pas de racine dans K.

Soit t une racine de f dans une extension quadratique L de K . v admet deux prolongements à L. En effet L = K [t-1] et le polynôme minimal de t-1 est $T^2 + 2T + X_o$. La trace de t-1 a pour valuation 0 et la norme a pour valuation $g_o > 0$. On conclut par ([3], ch. III, [5] 16, th. 16-2). Soit v' un des prolongements de v à L. son groupe des valeurs est encore G. Notons que [X] [X] étant algébrique sur [X] la restriction de v' à [X] est à valeurs dans [X].

Soit z un élément de K, posons z = $\frac{P}{Q}$ où P et Q sont des éléments de k $[X_0, \dots, X_s]$. Si v $(P) \neq v$ (Q) , alors v $(z^2 + X_0 - 1) \leq 0$. On suppose que v (P) = v $(Q) = n_0 g_0 + \dots + n_s g_s$ $(n_1 \in \mathbb{N})$.

En regroupant tous les monômes de P de la forme $X_0^n, X_1^n, \dots, X_s^n$ (avec $m \in \mathbb{N}$), on obtient $P = X_1^{n_1} \dots X_s^{n_s} P'(X_0) + U \text{ où } P' \in \mathbb{K} \left[X_0 \right] \text{ et } U \text{ un polynôme tel que}$ $v (U) \geq (n_1 + 1) g_1 + n_2 g_2 + \dots + n_s g_s.$

De même, $Q = X_1^{n_1} \dots X_s^{n_s} Q'(X_0) + V$ avec $Q' \in k [X_0]$ et $V(V) \geq (n_1 + 1) g_1 + n_2 g_2 + \dots + n_s g_s$. Par suite, $P - tQ = X_1 \dots X_s^{n_s} (P' - tQ') + U - tV$; $P' - tQ' \in k (X_0, t)$, donc $V'(P' - tQ') < g_1$; $V'[X_1^{n_1} \dots X_s^{n_s} (P' - tQ')] < V'(U - tV)$ et $V'(P - tQ) = V'[X_1^{n_1} \dots X_s^{n_s} (P' - tQ')] < (n_1 + 1)g_1 + n_2 g_2 + \dots + n_s g_s$. $V'(\frac{P}{Q} - t) = V'(P - tQ) - V(Q) < g_1$. Si σ désigne le K - automorphisme de L, on a de même $V'(\sigma, \sigma) = V'(\sigma, \sigma) =$

Corollaire 1

Le complété $(\hat{K}, v)_k$ de $(K, v)_k$ n'est pas hensélien.

Si (\hat{K}, v) était hensélien, le polynôme $T^2 + 2T + X_0$ aurait une racine dans \hat{K} puisqu'il a des racines simples dans le corps <u>résiduel</u>. Il en serait de même de $f = T^2 + X_0 - 1$. On aurait $0 \in f(\hat{K})$ **C** f(K) fermeture de f(K) dans \hat{K} . Ceci est impossible puisque, d'après le lemme 3, $v[f(K)] < g_1$.

Corollaire 2

Quel que soit l'entier n , le complété $(\hat{K},v_n)_k$ de $(K,v_n)_k$ n'est pas hensélien.

D'après le lemme 2, $(\hat{K}, v_n)_k = (\hat{K}, v)_{k(T_0, \dots, T_{n-1})}$ qui n'est pas hensélien d'après le corollaire 1.

Conclusion

La topologie de (\hat{K},v) ne peut être définie par une valuation hensélienne d'après le lemme 0 et le corollaire 2 du lemme 3.

HENSELISE TOPOLOGIQUE D'UN CORPS VALUATIF

Définition 5

Soit K un corps valuatif. Un hensélisé topologique de K est un corps valuatif K^* topologiquement hensélien tel que :

- 1) K * contient un sous corps homéomorphe à K
- 2) Si L est un corps valuatif topologiquement hensélien contenant un sous corps homéomorphe à K , L contient un sous corps homéomorphe à K * .

Remarque

Dans (2), on peut supposer que L est algébrique sur K, car si L est topologiquement hensélien, il en est de même de la fermeture algébrique de K dans L.

- Un corps valué admet toujours un hensélisé relativement à sa valuation mais un corps valuatif n'a pas toujours de hensélisé topologique comme le montre le

Théorème 4

Soient (K,G) un corps valuatif et K son complété. Les propriétés suivantes sont équivalentes :

- 1) K admet un hensélisé topologique
- 2) K est topologiquement hensélien
- 3) il existe une valuation \vee de K définissant C , dont les prolongements à la clôture algébrique de K sont deux à deux

indépendants. Le hensélisé topologique de $\,K\,$ est alors la fermeture algébrique séparable de $\,K\,$ dans $\,\overset{\textstyle \wedge}{K}\,$.

Les propriétés ci dessus sont évidemment vérifiées si K est R - valuatif ; on supposera donc qu'il ne l'est pas.

Soit \widetilde{K} la fermeture algébrique séparable de K dans \widehat{K} .

La condition (2) est équivalente à (2') : \widetilde{K} est topologiquement hensélien d'après ([1], 5 8, ex. 14). Montrons que (2') \longrightarrow (3) :

Soit \widetilde{V} une valuation hensélienne de \widetilde{K} et V sa restriction à K. Soit C la clôture algébrique séparable de K et C une topologie valuative de C qui induit \widetilde{C} sur K. La fermeture topologique de K dans (C,C') est homéomorphe à \widetilde{K} , car dans un complété \widehat{C} de (C,C'), $\widetilde{K}=\widehat{K}\cap C$. Soit W l'unique prolongement de \widetilde{V} à C . W est le seul prolongement de V définissant V. En effet, si W est un autre tel prolongement, il existe un K – automorphisme V de V de V est l'identité.

w et w' ont même restriction \tilde{V} à \tilde{K} et comme (\tilde{K},\tilde{V}) est hensélien, w = w'.

Par suite, deux prolongements distincts de v à C définissent deux topologies différentes et il en est de même des prolongements à la clôture algébrique de K.

$3) \longrightarrow 1$

Soit v une valuation de K dont les prolongements à C sont deux à deux indépendants et soit K * le hensélisé de K relativement à v. Soit L une extension algébrique de K et C' une topologie valuative de L qui induit C sur K et telle que (L,C') soit topologiquement hensélien.

Il existe un prolongement \widetilde{V} de V à L qui définit \widetilde{C} ' (théorème O) et les prolongements de \widetilde{V} à C sont dépendants. Comme ce sont aussi des prolongements de V, il n'y en a qu'un donc (L,\widetilde{V}) est hensélien ; il contient donc K qui est un hensélisé topologique de K.

1) ----> 2')

Soit (K^*, \mathcal{C}') un hensélisé topologique de K. Tous les K^* - automorphismes de C sont continus pour la topologie \mathcal{C} de C qui induit \mathcal{C}' (théorème 2). Par suite, leur restriction à la fermeture \widetilde{K} de K dans (C, \mathcal{C}'') est l'identité, donc \widetilde{K} \subset K^* .

Soit v une valuation de K définissant C et w un prolongement de v à C. Pour tout idéal premier P de v, on note v_p et w_p les valuations déduites de v et w par les localisations correspondantes. Soit C le groupe de Galois de C sur K et $C_p^Z = \{ \sigma \in G : w_p \circ \sigma = w_p \}$.

L'application $P\longrightarrow G_p^Z$ est une application décroissante du spectre de v dans l'ensemble des sous - groupes de G. Soit K_p le corps des invariants de G_p^Z . C'est un hensélisé de v_p $\{A_p^Z\}$, théorème 2). Comme K_p est topologiquement hensélien, $K_p\supset K^*$. Donc $K^*\subset p$ K_p . Un hensélisé est une extension immédiate (A_p^Z), A_p^Z), théorème 3), donc, si A_p^Z 0 désigne l'anneau de V0, A_p^Z 0 celui de la restriction de V1 à V2 celui de la restriction de V3 b V4 celui de la restriction de V5 b V5 l'idéal premier de V5 au dessus de V6 p, on a :

$$B_{p*} = A_p + p + B_{p*} = A_p + p + ([4], C, proposition 1)$$

Donc B \subset \bigcap_{p^*} $\{K+P^*\}$. Comme $\{K,C\}$ est supposé non \mathbb{R} - valuatif, les p^* forment un système fondamental de voisinages de 0 dans K^* et \bigcap_{p^*} $\{K+P^*\}$ est la fermeture de K dans K^* . Par suite, K est dense dans K^* donc $K^*\subset\widehat{K}$ et finalement $K^*=\widehat{K}$.

APPENDICE :

THEOREME 1 DANS LE CAS OÙ LA TOPOLOGIE EST METRISABLE

Théorème :

Soit (K,8) un corps valuatif métrisable et C sa clôture algébrique. Si C est une extension monotopologisable de (K,8), il existe une valuation hensélienne de K définissant 8.

Démonstration :

Soit G le groupe de Galois topologique de l'extension C : K ([1 bis] appendice n° 2). Soit v une valuation de K définissant C et $\widetilde{\mathbf{v}}$ un prolongement à C . Comme $\widetilde{\mathbf{c}}$ est métrisable, le spectre non nul de v possède, pour la relation d'inclusion, une partie coınitiale dénombrable ([4] , D , ex. 1). Soit P_n une telle suite décroissante d'idéaux premiers de v. On note \mathbf{v}_n (resp. $\widetilde{\mathbf{v}}_n$) la valuation dont l'anneau est le localisé de l'anneau de v par P_n (resp. le localisé de l'anneau de $\widetilde{\mathbf{v}}$ par son idéal premier au dessus de P_n ([4] , F , proposition 1, cor. 4)).

Soit \mathbf{G}_n le groupe de décomposition de $\widetilde{\mathbf{v}_n}$.

 $G_n = \{ \sigma \in G : \widetilde{\mathbf{v}}_n \circ \sigma = \widetilde{\mathbf{v}}_n \}$. Les G_n^z constituent une suite croissante de sous - groupes fermés de G. ([3], ch. III, 15-5).

Montrons que $G = \bigcup_n G_n^2$. Soit $\sigma \in G$. Comme $C : (K, \mathfrak{C})$ est une extension monotopologisable, $\widetilde{\mathbf{v}}$ et $\widetilde{\mathbf{v}}$ o σ sont dépendantes et donc elles possèdent un idéal premier commun $P([1], \S, 7, \text{prop. 3 et } \S, 4, \text{prop. 1})$ Comme la suite P_n est coinitiale, $\exists n : P_n \subset P$ et P_n est aussi un idéal commun. Par suite, $\widetilde{\mathbf{v}}_n$ o $\sigma = \widetilde{\mathbf{v}}_n$ et $\sigma \in G_n^Z$.

Montrons que si $G_n \neq G$, G_n^z est d'intérieur vide. Soit L une extension de K de dimension finie et H le sous - groupe ouvert de G correspondant : $H = \{ \sigma \in G : \sigma/_L = \operatorname{Id}_L \}$. Si l'on avait $H \subset G_n^z$, la restriction de $\widehat{\mathbf{v}}_n$ à L serait hensélienne ; il en serait de même de \mathbf{v}_n d'après ([1] , § 8 , ex. 17). Donc on aurait $G_n = G$. Par suite, si $G_n \neq G$, tout ouvert non vide rencontre le complémentaire de G_n^z , $G_n^z = \emptyset$.

Montrons qu'il existe n tel que $G = G_n^z$. Sinon, on aurait , V n, $G_n^z = \emptyset$. Comme G est compact ([1 bis] appendice n° 2 - proposition 3), il est de Baire ([2] , ch. 9 , § 5, n° 3, th. 1) donc $\bigcup_{n=0}^{\infty} G_n^z = \emptyset$ et, par suite, $G \neq \bigcup_{n=0}^{\infty} G_n^z$, d'où la contradiction. Enfin, si $G = G_n^z$, la valuation V_n est hensélienne et répond à la question.

[1] BOURBAKI

Algèbre commutative - Ch. 6 (valuations)

[1 bis] BOURBAKI

Algèbre - Ch. 4

[2] BOURBAKI

Topologie (livre III)

[3] ENDLER

Valuation theory (Springer Verlag - 1972)

[4] RIBENBOIM

Théorie des valuations (Université de Montréal - 1964)

F. BERRONDO
Mathématiques
U.E.R. Scientifiques
6, avenue Le Gorgeu
29283 ~ BREST-CEDEX