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INTEGRATION WITH RESPECT TO PROCESSES
OF LINEAR FUNCTIONALS

by M. METIVIER

SUMMARY

The notion of "integrale stochastique radonifiante" as introduced
by B. GAVEAU in C.R.A.S. Paris t. 276 — 1973 for the cylindrical brownian
motion is studied in the general context of generalized quasi-martingales.
This gives use to a theory in which the notions and formulas of the Kunita-
Watanabe theory for real square integrable martingales have a natural ex-

tension.

INTRODUCTION

For the purpose of studying stochastic partial differential
equations it is worth considering perturbations which are '"white noise in
time and in space". The mathematical expression of such an object is a
cylindrical measure, or a linear random functional as studied for example
in []] or [8] . Considering the special case of "cylindrical brownian motion",
several authors defined a stochastic integral with respect to such a sto-
chastic process (cf. for example [7] and [ll]). In [7] the operator valued
processes, which are integrated with respect to the cylindrical brownian
motion, are such that the integral process is a (Hilbert valued) Martingale
in an ordinary sense ; and in [ll ], a Girsanov-theorem is obtained in such

a situation.

The purpoée of this study is to show that in a very general
context it is possible to developp a theory of stochastic integration with
respect to '"cylindrical martingales", which extends in a natural way the
classical L2—stochastic integral with respect to square integrable martin—

gales (real or Hilbert valued) as studied in [ 10 ], [ 14 ], [ 18 ] for
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example.

After the necessary definitions we give in §3, a decomposition

theorem of Doob-Meyer type for generalized quasi-martingales.

In §4 the stochastic integral is defined, and an isometry for-
mula as in [ 16 ] is given. The class of operator-valued processes which
are integrated is wide. The values of the process (as in [16]) are not
necessairly continuous operators. But if, on the contrary, the processes are
Hilbert-Schmidt valued the integral process is an ordinary-sense vector

valued martingale.

In §5 an Ito's formula is given for those generalized quasi-
martingale. But in this first draft of the work, the formula is stated

only in the case of continuous quasi-martingales.



I~ 40

I ~ LINEAR STOCHASTIC FUNCTIONALS — NOTATIONS

I-t In all this paper we will assume that T is a closed or
open intervall in R , a basic probability space (Q,g ,» P) and an increasing

family (g. ) of sub-O-algebras of (g with the usual following

t € Tx R
completion assumption :@ is P-complete and all the P-null sets in Gf.

are in (ft for every t.

@) will mean the set of "predictable rectangles" : ]s t] x Fg TXQ
where s ¢ t, s,t € T and F eé?

(zwill be the algebra of subsets of T X {l generated by fﬁ .
@ is the O-algebra generated by &3’ , i.e. : the O-algebra of
predictable subsets of T X £ .

I-2 B, ¢ , K, will denote real Hilbert spaces, all of them
assumed to be separable (in our context thié is no restriction). The scalar
product in thosé spaces will be denoted by < ,. >HI s < ey >G ... or gimply
< .,. >, if there is no possible confusion. The norm will be written :

||HIH R “HG , etc... If B is a Banach space, then 8' will denote the

topological dual of B (set of continuous linear form) endowed, if not
otherwise specified,with the dual Banach norm. We recall that the algebraic
tensor product H ® € can be endowed with several norms, giving rise to

several completions of H® ¢ :

- H‘él € is the completion for a norm such that every continuous
bilinear mapping b : (B x €) —» K can be factorized in a unique way as
b = u 0 I where Jf is the canon1ca1 inbedding (x,y) = x ® y and u, is
a continuous linear mapping from H®l into K, with same norm as b. The

norm lrllga1 ¢ is often called the trace-norm and denoted Il”Tr . Recall

that if €6 =®# and b(x,y) = <x,y>n the corresponding linear form w, on
A
Hl@l 8 is called the trace-form and denoted Tr.

A . . .
- B®2 € is a Hilbert space with scalar product an extension

of <x®y , x'®@y'>= <x’x'>ﬂl . <y,y'>G .

- B ®€ € 1is a Banach space, the norm of which will be more

easily described later.
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The three topologies induced by the three considered topological

tensor product on HI) 6 are comparable and we have the canonical continuous

injection. ~ ~ ~
“®x [ c_,5®2 € c.,ﬂ@e ¢ .

Moreover an important theorem of Schatten (see for example [19]

chap. 48) says that the function (x®@ vy, x' ®@y'") r»<x,x'>H . <y,y'>c can

be extended as a continuous bilinear form on (H @E € % H@l €) and that for

this duality lﬂlél € identifies itself with the Banach dual of H®€ € .

I-3 There is a unique injective linear mapping of HI® € into
the vector space of linear operators with finite range from M into €,
associating to x ®y the operator h ~<x,h>ﬂ y . This linear mapping has

extensions which are :

Pl
1°) isometry from HD] € onto £l(ﬂ ; €), the Banach space of
nuclear operators from M into € with the trace norm ;

2°) isometry from H&z € onto etz(ﬂ ; €), the Hilbert space of
Hilbert-Schmidt operators from H into € with the Hilbert-

Schmidt scalar product ;

3°) isometry from Hée € onto ugc(jﬂ ;3 6), the Banach space of

compact operators with the usual norm of bounded operators.
In as much x ® y can be identified with a bilinear continuous
form on (H X €) or a continuous linear form on 8 ® &, through the formula

<x®y, X' ®y'> = <x,x'>l_l . <y,y'>c

there is also a continuous linear extension of the preceding linear mapping,
into an isometry from (H é)] €)' onto 58«&1 ; €), the Banach space of linear
bounded operators from H into € with the usual norm. (This isometry is in
fact the one which associates to a bounded bilinear b on (B x €) the boun-

ded linear operator % in b @ ; € such that < %(x), y > = b(x,y).) .

I-4 Random variables with values in H will be strongly g:’—
measurable mapping from ) into H. If such a random variable X has the
property E(| IXI IZ ) <=, then w~ X(w) ® X(w) is a strongly measurable
random variable with values in H®#H, and as ||[x®y]| ITr %] |HI [y |lHl ,
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X ® X is an integrable mapping from 1 into Hl@l #l . As a consequence

EX®X) & H él 8 and is called the covariance of the variable X.

o~
If to X is moreover associated the continuous mapping X :

h ~»> <X,h> from{ into LIHI(Q’ , P), this mapping appears to be Hilbert-
Schmidt. And it can be shown that conversely to a mapping X linear from M into
LHl(Q, r; , P) there can be associated a random variable X ‘with values in M,

[
such that <X,h> = ‘;((h) a.s, if and only if X is Hilbert—Schmidt. The Hilbert

- 2
5, of X 1is equal then to E(||X||H).

I-5 To abbreviate the writting we will writte
&He -
®e

t

1] ¢
~ ”F‘v
~~ ~~
o o
B R
la-]
=
o
1\
Q

I-6 The norm in cc] (M8 ; € will be written ||HTr » the norm
in C{Z((Hl; ¢) : ||||HS , the norm in L@ ; €) : ||||b

II ~ PROCESSES OF LINEAR FUNCTIONALS

II-1 Définition !

Let us writte xp = LP(Q, 3’
be a Banach space.Then a family X = (X

t’P) wherep o. Let B
dierem > vhere X ELB ; wp)

for every t, will be called a p—process of stochastic linear functionals on
B. (we will abbreviate : a process of S.L.F. on B ).

If for every h € B, the real process (X (h))té’_l'
gale, the process X will be called a p—cylindrical martingale.

18 a martin-

From what has been said in the fwst paragraph, if X (3 af (& ; t?)

for all t, then, for every t and h, X (h) = h > where X = (Xt)té’.l’

18 an ordinary square integrable stochastic process with values in M, as
considered for example in [10] and [14] .
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Definition 2

)
A p-process X of S.L.F on B will be said p-continuous (resp.
p-right continuous) if, for every h €/B, t ~p X (h) is continuous as a

mapping from [0 T] into IF (S, (j P). It is sazd continuous (resp. right
continuous) if, for every h € W, there 1s a version of the process

-4 - - 3 .
(Xt (h))t £ [0, T] with continuous (resp. right—continuous) paths.

II-2 Doleans' measure of a process of linear functionals

We extend here the concept of Doleans' measure as first
defined in [5] for real sub-martingale and extended since then to vector

valued quasi-martingales (see for ex. [15] ).

To every process i of S.L.F. on the Banach space B, we associate
the additive functions EX with values in B' defined on the set @ of
predictable rectangles by

(11-2-1) &’X( Is,t] x B =& [1 .(3’(t —3,(5)'1 € B

Such a function on 3) has clearly an additive extension to the
algebra (z generated by 3 . We call it ?;'X again.

Definition 3

If the additive functwn aX on ét‘ has a bounded variation
(for the nomm of B'), the process X of stochastic linear functionals,

will be called a generalized quasi-martingale.

This clearly generalizes the classical definition (see [151 ).
We have then the

Proposition 1

For X to be a generalized quasi martingale, it is neces-—
sary and sufficient that the family of real additive measures
( ahX) assoetated with the real processes (X(h)) |4 |<z be of

bounded variation, and that the set of those variations |ahx|
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has a supremum in the ordered set of bounded positive measures.
Proof

~
This comes from the fact that the total variation of oy can be

approximated by sums of the type

LE (g X () - x Gpl) by €8, [|n]]
1 1 1 1

while the supremum of the variations can be approximated by sums of the

type
by
o Jsppt] xF L= TR (g [x, ) - x, (]
i i i i

It is easily seen that both supremum coincide.

1I-3 Square integrable cylindrical martingales

Let M be a 2-cylindrical martlngale on the Banach space

[B. We associate to M the i-process of S.L.F on 8 @)B defined by

Roeg =i m . ¥

It is clear that if M is the process of S.L.F associated with
an ordlnary martingale M with values in B X is the process of S.L.F. on

]
B' ®IB associated with the ordinary sense process (Mt ®Mt)te[0,T]

taking its values in B ® B.

It is known (cf. for example [151 ) that, if M is right conti-
nuous, M@ M is an ordinary sense quasi-martingale, with associated o-addi-
tive Doleans' measure (with values in B §>B)

&2

as Hog 15l % 1| gggrye € HEIE 0 =% | a0

~
X is then a generalized quasi-martingale.

But the following example shows that for a 2-cylindrical martin-

P
gale it is not always true that M @M is a generalized quasi-martingale.

space, (en
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Let (tn) be a decreasing sequence to zero. Let Hl be an Hilbert

) an orthonormal basis of # and let us define the cylindrical

martingale :

&~ -
Mt(h) = I 1[
n n+]

o[ (Bl o ——— (B 4 -6 )

t -t n nt]
n

~
where (Bt) is a usual real standard Brownian motion. For every n, (M (e ))t

t n

is a process with independant increments, zero on ]0 t *l] , path-wise

constant on [t N co[ . For every h € ll , the above series converge in
12 (q, th, P) with

~ 2 2
E M | < [[n]]g

defining a process with zero-mean independant increments. But considering

the partition ( ]t

seen that,

o+l ? t#] x 9 )n>0 of ]O,tl] x Q » it is immediately

o~
X beeing the process of S.L.F. above defined :

t

LE [1g&, -k Ol > I E
n n ntl  LEOH) n

We will then give the following

A 2~cylindrical martingale ﬁ, on a Banach space B will be

called a square integrable cylindrical martingale (S.I.C Martingale) if
the I-process of S.L.F. (improperly) denoted by i ® I‘Z, defined on B ®B by

v o~ ~ ~
MO®MAh®&g) = M(h) . M(g)

18 a quasi-martingale.

quadratic

The additive measure % @ i ét will be called the

measure of M and tts variation the control measure of .

Example 2

matrix on

The Brownian process, associated with the unit covariance

a Hilbert space Hl is a S.I.C. Martingale : let us recall that

+
€R
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~
this is a process W of S.L.F on H), such that, for every finite set of vectors
(‘nl yeees hn) in H, the process (‘;t(h]),..., at(hn)) is an n-dimensional

gaussian process with independant increments, and the bilinear form

~
(h,g) ~ E(Wt(h).?d,t(g)) is the scalar product (h,g) ~> <h, gy -

~ .
In this case, the quadratic-measure 0. of W associates to every

previsible rectangle ]s,t] x F the linear form on Héﬂ defined by
et ~ ~ ~
a (Is,c] xD e g = {1y [H.m.¥ @ - T m.0 )}

~
In view of the above properties of W :

a (ls,t]xP)(h @g) = E {1y (W (h)-W_(h). (W (g)-W, ()}

P(F) . (t-s)(hig)

P(F) . (t-s) Tr(h ® 8)

The control measure & is then a one dimensional measure with values in
&t @ H)' , proportional to the product measure £ @ P where £ is the Lebesgue

+
measure on R .

Proposition 2 let us assume that B 18 reflexive.

If Mis a right continuous S.I.C. Martingale on the
Banach space B, the quadratiec measure o of ¥ has a o-additive
extension (in B') to the o-algebra of predictable subsets of
+
R x .

Proof

It is enough to show that the variation of g has a g-additive
extension. But from proposition | and its proof, and the set of g-additive
measures beeing a Riesz-band (cf. [ 2 ]) in the ordered set of finitely
additive measures with bounded variation , the variation of ¢ will be
o-additive as soon as for every h ¢ B the measure OLh is O-additive. In

our case, from the known property of square integrable real martingales
(cf. [6], [15] ), the measures ah@g are g-additive, and the same is clearly
true for all " , with u in H@H.
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III - DECOMPOSITION THEOREM FOR A GENERALIZED QUASI-MARTINGALE

For the purpose of transformation formulas in stochastic
integration, Doob—Meyer's decomposition theorem play an essential role.
We intend to give an extension of such decomposition theorems in our general

setting.

All this rests on the following :
III-1 Theorem |

Let E' be the Banach dual of a separable Banach space E. Let
@ be a U-additive measure on the predictable sets, with values in E', with
bounded variation, such that for every evanescent set A, a(A) = 0.

Let 1 (E',E) denote the Mackey topology on E' (i.e. the
finest locally convex topology onm E' for which E is the dual of E').
Then :

1°) There exists a stochastic process V, with values in E', null in 0,
with right continuous paths for T(E',E), unique up to indistin-
gability such that

(Z) Ve v, is weakly integrable in E' for the duality o(E',E).
(i2)  For every w € @ , the intervall-function

1s,t] ~» Volw) =V (w can be extended into a measure
on the Borels sets of [O,T] , with values in €', with bounded
variation (for the norm of E') and o-additive for T(E',E).

(221} If E'(.ZF 1 Qlu)_ denotes a left continuous (then predic—
table) version of the real martingale (E(lF 1 gu))u e[O,T] B
Vest VFe th

(II1-1-1) E (1, (Vv )| = J E(1

]s, tlxﬂ

. |Giu) () aldu,dw

2°) The process V just defined is predictable as a process in
E's o(E'E)), and ”th |E’ is predictable and P—integrable.
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3°) If for every A € @ we define (integrating on each path of V) :

*
n(a) = JZA(s,.)st(.) € A, o, &, pn

m is a stochastic measure (cf. [ 15] or [ 18]) with bounded varia-

tion |m| = |al.

Proof

Let us first remark that, to the difference with the situation
in [llo] and [18], E' is not assumed to be separable. The proof, nevertheless
goes along the same line. We sketch it, insisting only upon the needed mo-

dification.

As in [14] , for every t, the mapping a, on @t defined through

o, (F) = J EQp 1 F )7 @ a(du,dw)
Jo,t]x@

is a g-additive measure with values in E', with

Ha ) |lg. < Bl 1 B)7@ |af (du,d0)
Jo,t]x

The real measure on the right side of this inequality is positive,
and then o is with bounded variation, and such that F e‘gt , P(F) = 0
implies at(F) = 0. Then there exists (cf. [13]) a density Ut from Q
into E' measurable for the topology O(E',E). Because of the separability

of E, HUtI lE is “!f‘t-measurable.

We have too : VI € L;(Q,gt ,P),s¢t

(I11-1-2) E <f, U -U> = J E (f l'g'u)'(w) a(du,dw) .
]s,t]xﬂ

and

(11r-1-3) VF e ‘§s E(lF.”Ut-USHE. ) € la|( ]s,t] xE).

(%) Aé, (2, @1 ,P) is the Pettis space of weakly integrable mappings in

E£', with norm ||f]] sup E [<y,£>] .
1

1 =
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Using the separability of E, it is proved, exactly as in [18 ]
that, for each t, Ut can be modified on a P-null set into a process Vt such

that for every y € E, the real process (<y,V ] has right continuous

e [o,T
paths with bounded variation. This implies the O-additivity for every w ,
of the intervall-function ]s,t] ~ < y,Vt(m) - Vs(w) > , and then (cf. [ 13 ]
chap. III) the extendability of this function into a measure on the Borel
sets of [0,1‘]‘, with values in a ball of €' (because of the compacity of
such a ball for O(E', E)), and 0~additive for all the topologies on E'
which are compatible with the duality (E, E'), in particular for the topo-
logy T(E', E). As a consequence t NVt(u)) is right continuous for this
topology. This proves the part 1) of the theorem, except for bounded varia-
tion of the paths. '

Part 2) is a mere consequence of the fact mentionned in [ 14 ]

ssan 3 . s < >
that (iii) implies the naturality of each real process ( y,Vt )te [O,T]

and then its predictability. The predictability of HVH follows from the
separability of E.

As to part 3) the only thing to prove is the equality |m| = lal.
From (III-1-3) it is clear that |m| & |a|. But the converse inequality is

a consequence of : Vs <t, and F € @s

] m (]s,t]xF)HAé = ||;TT<I E {1 [<yv, >-<yv 5]}

> su <y,a ]s,t]xp> = Hu(A)HE,
Hyll<

As now, for every subdivision 0 = ty < t < t2 < tn =T

- vtil'z')" |m] (JO,T}xQ) < = , the

1+]
bounded variation of the paths is immediate and the proof of the theorem

of the intervall [0,T], E( I Hv,
i

is complete.

IIT-2 Corollary (Decomposition theorem)

Let X be a generalized quasi-martingale on the geparable
Banach space B. Then there exists a uniquely defined (up to indistinguabi-
lity) process V, with values in B', with the following properties ::
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(2) V has paths with bounded variation (for the norm of B') and
right continuous for <T(B', BJ.
(it) For every y € B, < y,V > 18 a real predictable process.

(i21) Denoting by V the 1-process of S.L.F. on B assoctated with V,
the process X-7 isa cylindrical martingale.

Proof

It is an immediate consequence of theorem 1, because saying that
the difference X - V of two processes of S.L.F. is a martingale is equiva-
lent to saying that X and V have same Doleans' measure. And V is uniquely
determined by theorem 1 as the process with properties (i), (ii) and (iii)

of theorem 1, corresponding to the measure ai .

Definition 5

Let @ be a O-additive measure as in theorem 1 (resp. X be
a generalized quasi-martingale as in corollary). The process V of the
theorem (resp. corollary) will be called the natural process of the measure

o (resp. of the generalized quasi-martingale 5.

Proposition 3

Let V be the natural process of the measure a , as in
theorem 1, and m the measure as in part 3) of the theorem.

1°) For every h € Lm(Q, T s P) and every predictable bounded
process ® with values tn & (B' ; E) where E is a Banach-

space,

E(H . J o dn) = J E(h | :Fn)“(w) O(u,w) aldu,dw

2°) For every predictable process ¥, with values in ob (B' ; F')
where F' is the dual of a Banach space F, with the property

[ atel < =

the natural process W of the measure B defined by
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B(A) = J ¥ do
A

is such that for P-almost all w :

W (w) = J Y(s,w) dV(s,w) (integration with respect
¢ to 8).
Jost]

Proof
The first part of the proposition is immediately true for

¢=]]s,t]xF,S<t,Fe s °
Then it is true, by linearity and density, for any bounded
predictable process.

To prove 2°) we have to show that Vh eL”(@Q, ?t » P)

E(h . ¥ dv) = E(h|‘3‘:)-‘1’da
Jo,t]xQ Jo,t)xa

But this is 1° with E =F' .
Definition 6

Let M bbe a right continuous 8.1.C. martingale. We will writte

-
< M > the natural process of the quadratic measure o of M.

III-3 Local cylindrical quasi-martingale

Let ; be a o-process of S.L.F. For a stopping time T, for
~ - . -
any hg B and té [O,T], h r,l]o,T](t,.) Xt(g) is a continuous mapping

from B into LO(Q,‘gt , P). The thus defined o-process of S.L.F will be

denoted by 1]0 T]i , we will then have the natural extension of the clas-
s

sical definition.
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Definition 7

A o-process of S.L.F X will be called a local cylindrical
quasi-martingale (resp. a local S.I.C. martingale) if there exists an in-

creasing sequence (T(n)) of stopping times, and a corresponding se-

nel
quence ;n of cylindrical quasi-martingales (resp. S.1I.C martingales)

such that lim t1(n) =T a.s8 and
n

Vn Ho,xm] ¥ 5 Yo,xmi] *n

It i easily seen that the previous results can be extended to local cylin-

drical quasi-martingales or S.I.C martingales as in the real case.

IV - STOCHASTIC INTEGRAL WITH RESPECT TO A GENERALIZED QUASI-MARTINGALE

As a local generalized quasi-martingale is the sum of a process

V, the paths of which define vector measures on T,and of a local generalized

martingale , the problem of defining the stochastic integral with respect
. *
to a local quasi-martingale, reduces, as in the classical case, to defining

the stochastic integral with respect to a local generalized martingale.

Passing over from the iutegrél with respect to a square inte-
grable martingale to a generalized martingale, which can be localized into
square-integrable martingales through a guitable increasing sequences (Tn)
of stopping times goes exactly as in the real classical case. So we will
omit-it and restrict ourselves to integrating with respect to square inte—

grable cylindrical martingales, extending the isometry formula proved in
[16 ].
IV-1 Theorem 2

. :
Let M be a square integrable cylindrical martingale, on
a Hilbert space H, with quadratic measure o and control measure X\ = |a| .

Then there exists a process Q with values in the writ ball of (H 51 ' with

the following propertiies.
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a) Q is weakly predictable and weakly integrable for the
duality o((H 31”" s A&, B), with values in the cOne of
symetric pogitive elements of A S H)'.

Vae® a(A)=I Qdr
A

Q 8 unique up to a (weak) A-equivalence.

Proof

This is a mere application of a weak Radon-Nikodym theorem
for vector-measures (see [13] th. 7). In fact it is immediate to check

that a(s) € A(A).B, , when B, is the unit ball of (B él "' .

IV-2 Remark

1f for every t, ﬁt € °€2(ﬂ ;kt)’ in which case, ¥ is
asgociated with an ordinary H#-valued martingale, a takes its values in
(IiéE 2)'=-16én » which identifies itself as such, as a subspace of
(ﬂs #H)' . In this case (cf. [16] ), Q takes its values in Béﬂ and is

even strongly predictable.

IV-3 Definition of spaces A,?A(B ; €) and A;Qx(ﬂ ;s 6)

Let Q be a process in (H®H)' , weakly predictable and
integrable (for the duality Oo((H o8 , HO &), with palues in the cone
of positive elements of (B ®H)'. We recall (cf. §1-3 above) that 5{1&,(0)
denotes the bounded linear operator associated with

Qt,w) 2 <Q(t,w by, hyog = Qt,w(h, ® hy) for every hxh, EHx8
From the separability of H, it is clear that weak predictability of Q is

equivalent to the strong predictability of 5( .s+Jh " as a process with
values tn H, for every h € &.

Let & be an Hilbert space. We will define the space l\gx(a ; 6
of stochagtic processes as the space of those processes X, such that :

(A1) Vit,w€fo,7] x @ X(t,w) ig a linear operator with domain
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ink: Dxt,w)) > Range ( Zz’*) and range in €, such that the linear Proof
*

operator X(t,w) 0 P%(t,w) is extendable into a bounded linear operator

from B into € .

The fact that the abové mappings are semi-norm (the second one

beeing a prehilbertian one) is immediate.

(A2) Vg € & (t,w ~» Té-i-(t,w) o X*(t,m) g 1is strongly predictable 1°) Let us consider now a Cauchy sequence (Xn) in Ag(HI ; 6).
and sup I i b} o X*(g) ! l:j dA <o Because of the separability of €, it is possible to extract

Hgl l‘l a subsequence (X_) and a linear operator

where X° denotes the adjoint mapping of X.
v g Ei(t,w) 0 X‘(t,w) g = Y(t,w) g A a.c
We define also the space A;QA(H ; &) of stochastic processes "

wh » 2
as the spaece of these processes X such that s:P J He* (t,w) o Xnét,m) 3”1-] Addt,dw) € K < e

(A*1)  Vet,we[0,T]x  X(t,w) is a linear operator with domain

2% From the Banach-Steinhaus theorem Y(t,w) is bounded.
inty: & x(t,w)) D Range( %) and range in €, such that the linear

operator X(t,w) o 5 (t,w) <& extendable into a Hilbert Schmidt operator
from H into G.

The existence of X(t,w) (possibly non continuous) defined on Range '6 (t,w)

~
by X(t,w) 0 Q°(t,w) = Y'(t,w) is evident. And moreover, from the inequa-—

lity
(K%2) Vhed, (t,w ~»X(t,0) o i(t,0) h <o strongly predictable N
.oi‘ * -i E' 2 - . . 2 *
. 8y 1@ oX - Q%o X) 8H“d)‘ = su lim inf | {|(Q oxX -
I I1el< lella1 ®
and [HXOQH A < =
.5 1
-8 o x") gllgar .
IV-4 Properties of spaces A<T2>‘(H ; €) and A;QA(H ; €) and the Cauchy property of the sequence (Xn)’ it is clear that (Xn) converges

to X in A,(rv‘(ﬂ ; €).

Th 3 . . .
~fpeorem 3 2°) If (Xn) is a Cauchy sequence in A;QX(HI; €), this means that
=3 . . 2
Let X be a bounded positive measure on ( [0,T] xQ L) &, 00 ) is a Cauchy sequence in the space LE([O’T]xQ’(P’)‘)
1°) The mapping X_\)q sup J ”'éi o X*(g)llg d)\) is wherezE is the Hilbert space ogz(ﬂ ; €). Then it has a limit
Ig] |£1 [O,T]XQ in IE([O,T]XQ,@,X). Moreover the limit can be written
. oA . . Xo ai from the first part of the proof, (X ) beeing a
a complete semi-norm on AT (# ; €), for which this space A n
is complete. Cauchy sequence in Ag (B ; €) too . This proves the theorem.
o , 2% 12 LA
2°) The mapping Xr?( J l|x 0o @ ||H.Sd>\)‘: 18 an Remark
[0,1]x -
hilbertian semi-norm on A;Q(li s €), assoctiated with the In [16] proposition 3, the part 2° of the theorem was proved

posttive bilinear form (X, Y) ~>I Tr(X o 5 0 ™) ar -. when a is Hilbert—Schmidt.
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In what follows we will call z,r(ﬁl ; €) the set of processes
of the following form :

n

X(t,w) = . L

1 (t,w).u,
ioy Trpsglaey (900

where n 1is any integer r, £5; & T, Fie gvr for all i and ui€ of 0;6).

1
®Q,A
T

supposed to be endowed with the above semi-norms, and, as usually done, we

The vector spaces Ag’}‘ and A are, moreover, always

will consider without changing the name, the associated separated Banach

spaces of equivalence classes of processes. So, when speaking of a process
X in Ag’)\ (resp. A:Q’)‘ ) we will mean a process in Ag’x defined up to

an equivalence.

Theorem 4

The closure of GPT(H s € in ‘Ag’)‘(ﬂ; €), (resp. A;Q’A(H,- ¢))

contains all the processes X with values in of (H; €) strongly predicta-

ble for the uniform norm of ob (# ; 6), and such that llbio ¥ |127 d\ < »

10,7]xq

(resp. all the processes X € A;Q")‘(HI; €) with values in 'zé H; 6)).

Proof:

We first remark that if X is strongly predictable as a process
with values in <£ (B ; €) (with its operator norm), and such that ||X] lb £ K
considering a sequence (Xn) in & such that Han Ib € K for all n with

X = 1lim X A.a.e
n
n

lim

3 1
su j 2o ™ - Xm)||2 ar < limJ HeZo o - X512 &
n ||8|T‘1 n ¢ n n||

. 2 -~ 2
¢ tim [ -2 12 1812 o= o

(In view of H‘Q'”b 1)
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Newt, if X satisfies the hypothesis of the theorem, it is easily
. . A
seen to be approximated in & (B ; €) by the sequence 1 X .
M [l1xfl, & =]

The last same approximation works for a process in IL:Q’)‘(H; €)
with values in (£ (Hl ; €), strongly predictable for the uniform norm
<£ (8 ; €) : for any sequence (Xn) in A,;Q’A(H; €), which A.a.e converges
to X for the norm ofo& (Al ; €) and such that len o 6 HH.S is dominated

by a square integrable fonction

lim Ill(x-xn)o‘(z%ll2 a =0 .

n H.S

Suppose now that X is any process in AT.Q’X(B ; €) with
| x| [b £ K and (en) is an orthogonal basis of A,

Xn-Xo]tn

where ILn is the orthogonal projection in H on the subspace
generated by {el,...,en} . The process Xn is clearly strongly predictable
as a process with values in (ﬁ (A ; €) (with its uniform norm), and for
all (t,w) and ‘h e B

Y Py
X(t,w) Q%(t,w) h = lim X_(t,0) A (t,w) h
n

. 4 2 1 2
with Hx (t,0) e,y g = Ll QP(r0) ellg

2
< EIREIZ <o

Then lim X =X in A'Q’A(ﬂ ; 6).
n o T
Remark

-~
When Q is nuclear the part of this theorem concerming
A;Q’A(H ; €) has been proved in [16] prop. 1.

Definition 7

~
If @ <8 the process assoctated with a square integrable-
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~
cylindrical martingale %, as in theovem 2, and X is the control measure
of 174', we will denote AT{H,' €) (resp. A*T(H; €¢) instead of Ag’}‘(ﬂ,' f)

resp. A;Q’x(lﬂ; 6.

IV-5 Stochastic integral with respect to a square-integrable

cylindrical martingale

Theorem 5

Let # be a square-integrable cylindrical martingale, on the
separable hilbert space H and let & be another separable hilbert space.

For every process X = l]s t]XF
Ed

.u where ]s, t]xF is a predictable rec-
. T
tangle and u 603(3_: €) we define J X dfd’ as the L.S.F on € :

0

~ ~ ) »
g~ 1p (Mt - Ms ou (g)
T
Then the mapping X ~» J X dIT!’ has a unique extension as a linear isometry

- 0
from the closure Ag’M(H; € of (,'T(H; €) in Ag{(lHl; €), into

& (6 1P(e, @; , P

Proof

It is clear first that there is a unique linear extension to
o)
gT(H ;5 6) of the mapping X ~» JT X dM given by
0

t.
1 1 1

Vgec,(IT

~ o ~ *
0 l]s.,t.]XF ~u;).di )(g) = L g (M - M )ou(g)
1 1

The only thing to check i%s that the mapping is an isometry. But

T
the norm of J X dﬁ in °€b(C; LZ(Q, r;,r > P)) is given by
0

. ~ o~ » 2 f
sup E | % lF .(Mt - Ms Jo ui(g)] , and because of the martin-
[egl]< i i i i

L4
gale property of (Mt(h))tL [0 Tl for every h, this is equal to
>
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t

~ v » 2
su ORI - M4 - M )ou(@] ] =

Heller &~ Fi % %
1

Qt,w) 0 u} (g) | u, (s)) Adr, dw)]

“ita [ ]Jt e,

A LN
where Q 1is the process with values B @M associated with M and X the

~
control measure of M. The last expression can be written

st »* 2 ¥
[ sy J [1Q%(t,w)o X (8)] IH dA which proves the isometry.
[EIERRR

Theorem 6

With the hypothesesof the preceding theorem, the restriction

T ~
of XAPJ X dM to the closure A2M H; €) of f (\A‘M

0
~
A;M(H,' €) is an isometry from Kﬁ,’M(H; €) into °€2(G; LZ(Q, 3:;, , P)

H; 6 1in

Proof
For X = I 1 cu;  we have indeed
i ]si,ti]XFi
T »* 2 *
] xaflige = 2 Ellz oy of -u0ul @Il
i i i i i

where (en) is an orthonormal basis of €.

Using again the martingale property of M we get

T
2 * ] * 2
||j a2 = |l -n) o]l
0 H.S i Fofy s 1o A
pe
=2 I L ][0 ule )||Z ar
i n i )
]sl’ti]xFi
|ﬂ%
= QOXHHS dA
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xo 88° @ .

]o,1]x0

This proves the theorem.

Remark

~ =
When Q is nuclear this theorem gives the same result as

theorem 2 in ‘[16] .

Theorem 7

Let A? be a right continuous square integrable cylindrical
martingale on the separable Hilbert space H, and let € be another separable
Higllg'ert space. Let X be a process in 7\2”7(3 ;s €) (see th. 5) (resp.
it 6.

t
1°).Then ( J X. M) s a right eontinuous square

0 te[0,1]
integrable cylindrical martingale (resp. is the process
of S.L.F on € associated with a uniquely defined right

continuous martingale with values in €).

2°) If o (resp. A) is the quadratic measure (resp. the

control measure) of 17, and if oy 18 the quadratic measure

t
of the cylindrical martingale ¥ = ( J X dﬁ)t efo, 1] »
0 >
then

il

(rv-5-1)  VaeRPNgee, oaiigeg) L day o (X" ® X")(g 0g)

J @ © e tigeg A
A

and the natural process < ; > of oy is related to the
natural process < M> of M by

-~ t ~
(Iv-5-2) <¥> = Ld<u>5°(}(:®x:)'

Proof

(1Iv-5-3)

3°)
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This last integral is defined pathwise as the integral with
. J A 1 - .
values in E3= J(Gel G ; L (R gt’ P) of a mapping
s ~»X(werw €L 6;06 8 - B, vith
8 8 1 1 1
respect to a vector valued measure d < M(w) > with
values in ob @& @ ; 1'(a, F,p) = B, , and relatively

to the btlinear mapping f : 81 x 8, —91!9'3 defined by

flu,m) =mo u .

- ~
If M <8 continuous, them Y 1is continuous.

t
» o
Saying that Y = ( L X dM)t.e [0,'1‘] is a right continuous
square integrable cylindrical martingale comes to saying

L
that, for every g€ €, (Yt(g))te [0,'1‘] is a right conti=
nuous real martingale.

We will prove it for a process X = 1| u where

Jo,1]xe
00T and u 6°@(B; €), and Ge@c , and, because

of the linearity and continuity of the mapping

t ~
X ~ J X.dM , it will appear immediately to be true for
° .

any X € 7\;’,’“(}); €).

Let us prove first that VO ¢ s € t § T Fé.@s,

E [G@ -7 6 1,]=0
For a particular X of the above form :
- - ~
E [(Yt(G) - Ys(g))'llfjl = E [lFaG : [itvc - Hsvc] 0 ""(5)]

. ’ ~
The martingale property of M gives (IV-5-3) and then
~
the martingale property of Y. As, for the same X,

~
Y@ = tpqc [ Mg 0F@) - M e @) ]
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~
the continuity of the mapping t ~» Yt(g) is clear.

By linearity and density we gets immediately (1Iv-5-3)
and then the martingale property for a general X €& 7\3’“(“;6).

~
Let us assume that a sequence Y® is such that, for
every t &n) converges to § in og(G' L2(Q g P))
> t'ne N t ’ > T e
It is clear, using the classical procedures that, for any
g, we can deduce the right continuity in L2 of the real

~
martingale (Yt(g))te [0 T] from the right continuity of
?

~
the (Y:(g)) In the particular case when
~>

te [0,T] *
XE A,%’M(H ; €), it follows from theorem 6 that

v 2
Y € ccz(c; 2@, ¥

ciated martingale (Yt)t e[O,T:[ , in the ordinary sense,

e’ P)), and then there exists an asso-

with values in €. As for every g, the real martingale

(< Yt,g >) ] is right continuous in quadratic mean,

te[0,T

it is easily deduced that (Yt) has a version (unique up to

.indistingability) right continuous in 6.

Considering the same X = l](J T]XG .U we get
’

l

ay( Js,t]xP) (g ® ) = E %'mc Jd - R o J‘(g)]‘”s

ag ( Jsvo,t]x(Fr6)) (u”*(2) @ u™(g))

dog oX @ X (g ®8)
]s,t]XF

- o 0XN(g@g) dh -
1s,t]xF

This gives the formula (IV-5-1) for a process which is a

step process on predictable rectangles, and for A = ]s,t:IXF

The mapping X "o

om sl
tinuous from A‘TJ’M(IHI; G)’ into eﬁ (€ 6@; LI(Q, gT,P))

Xo Qﬁ o X* d) beeing con-

in view of
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su E || I <X o 'Q'Mo x‘(g), g7y A Il & suT I “x°6MOX'(g)|| dx
TRt [Eit

dt * 2
=  su J||Quox(g)|] dA
el 1e1
M

we get formula (IV-5-1) for all X&€ 7\2’ (H; €) and A = ]s,t]XF .

The formula for all predictable A's follows from the O-additi-

vity in A of both members of (IV-5-1).

* LI
The Pettis integrability of X ® X with respect to %y » proves
that X' @X* is Pettis integrable on P-almost all paths w with respect to

~ * t -~ - »* . .
< M > . The cylindrical process <I>t = d <M>s 0 (Xs ® Xs) is weak predic-
o

table and satisfies

ag( Js,thE) (@) = E {1, @ -3 (g @)}

which proves formula (IV-5-2).

3°) It is sufficient to prove that, for all g € €, Y(g) is
~ . .
continuous since Y(g) is a martingale. If ¥ is continuous

~ e .
the real process Y(g) = ( X.dM)(g) 1is continuous when

X = u.lA where A(.(SD and u Gc&(ﬂ ;s €). Then, the same

is true in the general case by linearity and continuity.

Remark
~ B
If M is a local cylindrical square integrable magtingale

)
and if X € A;‘(HI; €) (resp. X € A},:,(H ; €)), the process ( J x'dM)teT
i ‘ ; o

is a local cylindrical martingale (resp. there is a local square integrable
~

G-valued martingale Y associated to the local cylindrical martingale Y

~

~
where Yt = I X.dM ).

Jo.t]
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V - FORMULAS QF CHANGE OF VARIABLE. ITQ'S FORMULA

In [7] an Ito's formula has been given for the stochastic inte-
gral with respect to a cylindrical Brownian motion. We want only to note
that this formula is immediate consequence of known general "Ito's formu-

las"

as stated for example in [9] We will restrict ourselves to the conti-
nuous case. We recall a general "Ito's formula" as stated in [9] and [14].
Let V be a process with values in a reflexive Banach space F, with continuous
paths of bounded variation. Let Y be a square integrable martingale with
values in €, with continuous path. If ¢ is a mapping of F x €, into a
Hilbert space K once continuously differentiable in the first variable, with
derivative denoted by D o(x,y) & & (F ; ®K) bounded on any bounded set in

F x B, and twice continuously differentiable in the second variable, with

derivatives denoted by Dy ®(x,y) €& o8 (6 ; K) and D22 o(x,y) € L (€xE s K)

equally bounded on any bounded set in F x €, then we have the following
formula, expressing equality up to indistingability between two processes :
t ’ t
= ®(V
<I>(vt s Yt) A( 0 Yo) + Jo D, <I>(vs , YS) av, + Io Dy <I>(vs , YS) dy,

1 [t 2
- <Y>
+2JD2¢(VS,Ys)d >
oy
(The first and third integrals beeing taken pathwise, while the second is

a stochastic integral).

»* -
If now M is a continuous S.I.C Martingale on H and X€ A%’M(H;G),

and Y is the continuous martingale version of the S.I.C Martingale

* % . . .
J X .dM , then, using the formulas of theorem 6 we get immediately the

following :

t t
= *
2T = BT ¢ [ D eY) a v, Jo D, #(V,1) oX o

o

t
1 L »* ] 2 *
. [o aa¥ o o ex o ”, *_,¥)

If instead of the bilinear from D22 Q.(x,y) we consider the
—

. - - 3 y
associated continuous linear mapping DZZ Q*(x,y) ELH(E ;.8 (6 ; K) the
y
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last . integral can be written

t —~
* *x ‘2
3 L d <M >soxsoDy2¢ (V,Y) o X

. ., . - . .
In the particular case when M is a cylindrical brownian motion

* X .
B as in [7] » the process of S.L.F <M >s reduces to a non stochastic

linear mapping s.'é (the covariance) of of (8 ; H). The above formula redu-

ces, when moreover V = 0, to the formula of [7] :

—

t » 1 t 2 *
(Y ) = ¢(Y ) + D ¢(Y)oXodB + - j X oD, &(V,Y)oX_ o Cds
t o o Y 2 0o ° y2 s
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