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THE FINITE ELEMENT HET{OD--LINEAR ARD NONLIREAR APPLICATIONS

Gilbert Strang, M.I.T.

Numerical analysis is a crazy mixture of pure and applied mathe-
ratics., It asks us to 7o two things et once, and on the surface taey
do appcar complenentary: (i) to propose a good algorithm; and (i1)
to analyze it. 1In principle, the analysis should reveal what makes
the algorithm gocd, and suggest how to make it better. Por some prob-
lems--computing the eigenvalues of a large matrix, for exampie, which
used to be a hopeless mess--this combination of invention and analysis
has actually succeeded, But for partial differential equaiiéns, which
come to us in such terrible variety, there seems to ha a Idng way to go.

Y¥e want to spealk about an algorithm which, at léast in its rapicly
developing extensions to nonlinear problems, is still new and flexible
cnough to be improved by analysis. It is known as the finite element
method, anﬁ was created %o solve the eguations ol elasticity and pla~-
ticity. 1In this instance, the "numericzl analysts" were all engineers.
They needed a better technique than finite difference:, especially for
complicated systems on irregular domains; and they found one., Thelr
method falls into the framcw&rk of the Ritz-Gaierkin technique,; which
opcrates with prctlems in "variational form"--startinq éither from an
extremun principle, or from the weal ferm of the differeontial equaticn,

. which 1s the engineer's equation of virtual work, The key idea which

has macde this classical épgroach a success 1is gg.usé pilecewise poly-~

nomjals as trial functions in the variational problem,1

‘*The most impcrtant applications are still to structural prodlems, but
no lonrer to the design of airplancs; that has now been superseded by
the safcty of nuclear reactors.
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We plan to begin by describing the method as it applies to linear
problems. Because the baéic.idea is mathematically sound, convergence
can be proved and the error can be estimated. This theory has been
developed by a great many numerical analysts, and we can summarize only
a few of the most essential points;-the conditions which guarantee con-
vergence, and which govern its speed. bThis lincar analysis has left
everyone happler, and some divergent elements have been thrown out, but

the method itcelf has not been enormously changed. For nonlinear prob-

lems the situation is entirely different. It seems to me that numerical

analysts, especlally those in optimization and ncnlincar systems, zan
st11l make a major contribution. The time 1s actually a2 little short,
because the large scale programs for plasticity, bdbuckling, and nonlinear
wlasticity.are aiready being written. But everyone is agreed that they
«. - tremendously expensive, and that new ideas are nceded,
anlinear problems present a new challenge also to the analyst who

concerned with error estimates. The main aim of this paper 1s to de-
se¢ribe some very fragmentary-results (Scction III) and several open
questions (Section IV). VWe are primarily interested in those non-

lincarities which arise, in an otherwise linear problem, when the solu-

tion is required to satisfy an 1neghality constraint. This is typical
of the problems in plasticity. The solution is still dctermined by a
variational principle, but the class of admissible functions becomes a
convex set instead of a subspace. In other words, the equation of

virtual work becomes a variaticnal inecaualityv,

At the end we look in still a different éirection, at linear nro-

pranming constrained by diffecrential equations. Here we need not only

reced algorithms and a proper numerical analysis, but also answere to



the more fundamental questions or'existencc, uniqueness, and regnlérity.

II. Linear Equations. 'The finite element method applies above all to

elliptic boundary value problems, which we-write in the followinsiform:
Find u in the space of admissible runctions v sudh that
(1) a(u,v) = ¢(v) for all v in‘ V.

Standard example: ff(uxvx+uyvy)dxdy = f/ fv.dxdy for all v in ﬂa(ﬂ).

This is the weak form of Poisson's equation -Au = f, Because the ex-~
pression a(u,v) is in this case symmetric and positive definite, the
problem is equivalent to: Minimize J(v) = a(v,v) - 22(v) over the
admissible space V., The "strain enerzy" a(v,v) 'is the natural norm
in vhich to estinate the error.

The error comes from changing to a’finiteédihenéionﬁl'ﬁfoblem:
Fird u

in- S such that

h h
(2) ah(“h'vh) e lh(vb) for all vy, in S§,.

It is this problem which the computer actually solves, once it is given
a basis él,...,¢n for the space S. Very briefly, it has to form
the sfiffness'matrix KIJ'- ah(¢1,¢J) and the load vector 'FJJ- Lh(¢J),
solve the lincar system KQ = F, and print out the approxinate.solution
u =1I QJ¢J. Tnat sounds straightforuward, but it is nearly impossible
unless t@e basis functions .°J are extrcmely simple, and nearly use-
less unless they can provide a good approximation to the true solution

u, The finite element method manapges to combine both propcr‘;ies’.z

3We shall have to refer to the book 1] and to its bibliography, both
for the construction of pieceuise polynomials and for the proof of their
‘appreximation properties. Perhaps the favorites, when derivatives of
orger m appear in the energy a(v,v), arc the polynomials of -degree
m+l,
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Our plan in this section is to summarize four of the main points

in the thcory of convergence. Fach of them is concerned with the change

1y solution when there is a change in the problem--when the admissible

space V 1is replaced by Sh’ or the piven a and & are approximatgd

by a2, and £h. . To give some kind of order to the discussion, wve for-

mulate all four as applications of the "fundamen:tal theorem-of numerical

analysis":

CONSISTEHCY + STABILITY{D COHVERGENCE.

1. The classical Ritz-Galerkin case: The energy af(v,v) 1is symmetric.

positive definite; Sh is a subépace of V; a, = a and zh = £,
Since every v, is an admissible v, we may compare (1) and (2):
a(u,vh) = a(uh,vh). This means that in the "energy inner product,"
h Is the projoction of u onto the subspace Sh. In other wofds, the
rositive definiteness of a(v,v) implies two properties at once
L1, p. 40]: the projection u, 1s no larger than u itself,
(3) alu,,u,) < a(u,u),

&nd at the same time uy is as close as possible to u:

D) g(u—uh,u-uh) < a(u-vh,ufﬁh) for all v, in S,.

Urorerty (3) rcpresents stability; the approximations are uniformly
tounded. Given that u tan be approximated by the subspace S, --in

this Ritz-Galerkin context, consistency is the same as approximability--

convergence follows immediately from (4),

2. The indefinite case: u 1s only a stationary point of the functional
J{v). This corrcsponds tc the usc of Lagrange multipliers in optimiza-

tion; the form a(v,v) can take cither sign, and v may include two
different types of unknowns--both displacements and stresses, in the

"mixed method" and "hybrid method."

Consistency reduces as before to approximation by polynonials.
But stability is no longer automatic; even the simplest indefinite
form J(v) = vlvz--which.has a unique stationary point at the origin,
if° V is the plane R2--will collapse on the one~uimensional subspace
given by v, = 0. Therefore? for eaéh finite element space Sh and

each functional J(v), it has to be proved that a degeneracy of this

kind does not ocecur.



The proper stability condition is due to Babuska and Brezzi:

(5) sup latv,w)] > c||w]].
Hvii=2

rezzl. has succceded in Verifying this condition for several important
hybrid elements. For other applications the verification is still in-
complete, and the convergence of statlonary points--which is critical
to the whole theory of optimization--remains much harder to prove than

the convergence of minima.

3. The modified Galerkin method: a and & are changed to a, and

2 (numerical 1htegration of the stiffness matrix and load vector),
and v, may lie outside V (non-conforming elements).

The effect on u can be estimated by combining (1) and (2):
(6) ah(u-uh,u-uh) = (ahfa)(u,u-uh)-(zh-z)(u-uh).
Stability, in this situation, means a lower bound for the left side:

(7) ap (u-upu-up) > ¢ alu-u,,u-u,).

ponéistency i's translated into an upper bound for the right side, and

it is checked by applying the patch test: whenever the solution is in

a "state of constant strain"--the highést derivatives in a(u,u) are
ail constant--then u, must coincide with wu,? |
The patch test applies especially to nonconforming elements, for
which a(vh,vh) = o; the derivatives of Vi _introducé delta;functions,
which are simply ignored in thg approximate energy ay. This is ex-
tremely 1llegal, but still the test is sometimes passed and the approxi-
maﬁion is consistent. Convergence was established by the author fcr
one such element, and Raviart Ciarlet,. Crouzeix, and Lesaint have re-

cently made the list much more complete.

Im
The patch test 4s also an ideal way to check that a finite element
program 1s actually working. '
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L, Superconvergence: Extra accuracy of the finite element approxi-

maiion at certain points-of the domain. It was recognized very early
that in scﬁé special cases--u".= f with linear elements, or u"" = f
with cubicsf;;he conputed up is exactiy correct at the nodes. (The
Gregn's function lies in Sh.) And even earlier there arosc the dif-

culty of»interpreting thé finite element output in a more general
problem; u, and its derivatives qan be e§aluated at any point in the
domain, but which points do we choosa? This question 1= as important
as. ever t£to the engineers.,

iIn many problems the error u-u, oscillates within each element,

and there must be points of exceptional accuracy. Thomee discovcered
supcerconvergence at the nodes of a regular hesh,.for ﬁt = Uyys .
and his analysis has been extended by Douglas, Dupont, Bramble, and
Vendroff. It is. not usually carried out in our céntext of consistency

and stability, but perhaps it could be: conéistency is checked by a
patch test at the superconvernence points, to see which polynomial

solutions and which derivatives are.correctly reproduced, and stability

needs to be established in the pointwise sense}'

III. Variational Ineguallities. What happens when a constraint like

v i y 1s enforced on the admissible functions v, so that the func-

tional J(v) 4s minimized only over a convex subset X of ‘the original
space .V? This occurs'haturally in plasticity theory;.when vV I~ep-~
resents the stress; wherever the yield Iiﬁit. ¥ 1s reached, the dif-
ferential equation (Hooké's law) is replaced b& plastic flow. For

the minimizing u, the "free bouhdafy" which marks out this plastic
region u = ¢ 1is not known in advance.® Since such a solution u

lies on thc.edge of the convex set K, J(u) < J(ute(v-u)). 1is guaran-

teed only for € > 0. This translates into the variational inecuality

which determines u:

. and Scott
. “Convergence in ‘L“ will be discussed by Bramblejat this Congress; 1t
is one of the outstanding problems in the lincar theory.

*This boundary cannct be found by colving the original linear problem
and then replacing u by nin(u,y)!
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(8) a(u,v-u) > 2(v-u) for all v in K,

In the finite element method, we minimize an approximate functional
In(v) = a (v,v) - 22, (v) over a finite-dimensioral convex set L
For example, the piecewise polynomials may be constrained by VL < U]
at the nodes of the triangulation. Again the minimizing u, 1s de-
termined by a variaticnal inequality,

(9) ap(uy,vp-u ) > ¢ (vy-u) for all v, ian K

hi
now a polygonal free boundary is to be

The Eractical probolemn 1s to carry out this minimization, and coms-
pute u,; we are in exactly the situation described in the introduction,
with many proposed algorithms and a difficult task of compariscn and
analysis. The theorctical problem, which assumes that u, has somchow
been found, 1is to estimzate 1ts distance from the true solutlieon u, Ve
vant to report on this-latter problem, and it i: natural to-ask the sane
four questions about convergence which were answered in the linear case,

The easiest way is to take the quéstious in reverse order:

4, Superconvergence is almost certainly destroyed by the error in

determining the free boundary. Even in one dimension with u" = 1,
u differs from u, by 0(h?),
3. The approximation of a and & by a and ¢,  lead to noc

h h
difficulties; the identity (6) simply beccmes an ineguality, if we

combine (8) and (9), and the patch test 15 still decisive, The saae 1s

true for nonconformning elements, and the extra term A 1in the error
estimates [1, p. 178] is exactly copied from the linear casec.
2. It is an open problem, both for K and for the discrete Kh;
to show how stability can compensate for the indefiriteaness cf a(v,v).
l. This 1s the basic question in the nonlincar Ritz-Galerkin
method: if the trial functions in Kh can approximate u to a certain

accuracy, how close is°the particular cholce ?2 It 4is no longer ex-

u .
h
actly optimal, becausc it is nc longer the projection of u. But we
hope to prove, in the natural norm ||v||? = a(v,v), that
Hu=u [ < ¢ min]|u-v [].

Pirst, we ask how large this minimum is, choosing Vi to be the

piecewise polynomial ur in S which interpolates u at the finite

h
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clement nodes. The answer depends on the degree of the polynomial and

on the :egularity of u. For our obstacle problenm, Qlth -0u = £ in
the clastie part and u = ¢y 1in the plqstic part, it is now known that
u lies in wz»”. (Brezis and Kinderlehrer hay announce this iong—
sought result in Vancouver,) At the free boundary there is a jump in
the second derivative cf u--which absolutely l’mits the accuracy of
the interpolation., Courant's linear approximation, on triangles of
size h, is stlll of order [[u-ulll = 0(h), But for polynomials of
higﬁer degree, and a smooth free boundary, this 1s improved only to

0(h3/2)--and no clements can do better., There are 0{1/L) triangles

in which the gradient is in error by 0(h). .Therefore there is no
Justification for using cubic polynomials, and the question is whether
quadratics are worthwhile; we believe so.

To- prove that the actuzl error u-u is of the same order as

‘h

u-u., we ¢epend on an a priori estimate of Falk [2]. It resembles (4),

I,
but the change in (8) and (9) from equations. to inequalities produc.s
a8 new term:

- {10) [lu-u |12 < [lu-v []? + 2[(r+su)(u-v -v),

n*Yn
Ve may chqose any vy in Kh and any v in K--and for sinplicivy
we have specialized to & =t = [ tv and a =a = [|Wv|?. The new
term is autcimatically zero in the elastic part, where -Au = £, but
¢lsewhere f 4+ Au > 0,

To estimate (10), we take v = ¢ and Vi ® ux-—which lies in Kh
bezause it cannot exceed P at the nodes, where it agrees Qith u,

i, the case of quadratic palynomials, some members of Kh will go

§bove the yield 1imit ¢ within the triangles, but we have-%o be

4. enough to permit that; it docsn't hurt the crror cstimate, and
.~y it 1s only constraints on v, at nodal "checlkpcints" which can
be cnforced in practice.) Yith this choice of v and Vi the tornms
in {10) are
(1) With Courant's linear finite clements:

Hu-ugf|? hz;. S(r+pu)(u-ug) ~ h?; J(r+au)(ay-y) < O.

(11) With suadratic finite clements:

||u-uI|l2 ~ h', !(f+Au)(u—uI) ~ hd, f(f+Au)\uh-W) ~ nt.
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(The next-to-last -integral 1is split intc a part completely within

the plastic region, vhere u-uy ~ h®, and a part formed from those
triangles which cross the free boundary. This transition region has

area 0(h), and the integrand u-u; 1s 0(h?).) Substituting back

into (10), the rates of convergence are h and h3/2 in the two cases--

these rates are confirned by experiment,

IV, Open Problems, True plasticity thecory is a deeper mathematical

ﬁfoblcm than the model ve have used above. The rcason is that the
history of the loading f has t be taken into account; a part of the
vdomain.canigo from elastic to plastic and back again, as the external
loads are increased., Therefore incremental theory'intrdduces a time pa-
rameter, and a rate of loading f 4in the functional J--and it compuies
the stress rate ¢, In other words, as Maler and Capurso have shown, we

have a time-deperdent variational incquality;

(11) min J(V) = J(1), with K = {55H6,550 where u(t)=y}.
veK(t) '

Notice .that at each iInstant the convex set depends on the current state

u, In a practical problem fhe state is actually a vector of stresses

and plastic multipliers, but we hope that this quasi-static obstacle

problem will serve as a reasonable model., We also hope that the new.
results on regularity can be extended to u(t). But even on this as-
sunption, there remain three new problems in humerical analysis:

(1) KXeeping time continuous, to prove convergence of the finite
clement approximations; The difficulty is that the convex set K, and
therefore the mininizing ﬁ,'depend discontinuously on the current

L
state u; therefore it 1s not true that ﬁh is close to u whenever

uy is close to u.

(1) To admit finite difference approximations in time, and to de-
termine the statility limits on the interval At.
(141) To find a quick way of solving, with adequate accuracy, the
obstacle problem which arises gt each tﬁne step.
We believe that these are among the most important questions in

nonlinear finite element analysis, and that answers can te found.
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A second class of problems, of an entirely different tyuc, arlices
¢ asc¢ interested oaly in the multiple A of the load [ which il

inducc plastic collapse, This is known as linit analysis, ard no longer

requires us to follow the loading history. In place of minimizirg a
guadratic functional, the problem falls into the framewcrk of infiritc-

dimensicnal linear programming, Here is a typical example, with un-

‘known strcsses 'qu(x’y) and multiplier A: Maximize X, subject to

90
Equilibrium: I e lrJ inQ, L cxi‘1 ng = ng on 22, and
9X
i

Piccewlse Linear a a
Yield Conditions: I b1J 9y £ ¢ in@, 1l<cac<h

Suppdse we make this problem finite-dimensional, by assuming that
the stresses (and also the "displacements, which are the unknowns in the
dual program) belong to pilecewise polynomial spaces bsh. The continu-
ous linear prbsramming problem is then approximated, in a completely
natural way, by a discrete one [3]. But we know nothing about the rate

of convergence.
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