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1 - INTRODUCTION.

Let ! be a convex open set in the (x,y)-plane with boundary T
Denote by n and ny the components of the outward unit vector normal
to T .
Let Q Dbe the unit disk in the (ﬂ,v)-plane. We consider the

following problem : Find a function u = u(x,y,u,v) such that

p) )
(1.1) u %§-+ v§§-+ ou = f in QxQqQ ,
(1.2) - u(x,y,u,v) =0 if (x,y) €T, (unany)(x,y) <0 ,

Equation (1.1) is the neutron transport equation.: the function
u(x,y,u,v) represents the flux of neutrons at the point (x,y) in th
angular direction (4,v) , O 1s the nuclear cross section and f
stands for the scattering, the fission and the inhomogeneais source terms.
The boundary condition (1.2) simply means that né neutrons are entering
the system from outside.
In this paper, we shall be only concerned with the spatial discretization
of problem (1.1), (1.2). Thus, we shailla83ume that the angular direction
(M,v) is fixed and we shall consider the reduced problem : Given a function

f defined over @ , find a function u defined over Q such that

9 ' .
U —% + %§-+ cu=fin  ,
(1.3)
u=0 on I'_ ,
where

(1.4) T__ = {(x)y) I (x,y)ET, (Unx+ \)ny) (x,y) <0} .



This paper will be devoted to the numerical approximation
of problem (1.3) by a finite element method using triangular or
quadrilateral elements which hasbeen recently introduced by Reed
and Hilll[l?] and which appears to be very effective in practice.
Other finite element methods for solving the neutron transport
eguation have been introduced by several authors (cf. for instance
[IO] » [14] 5 [15] ,[16]). We refer to ‘[12] for a mathematical
discussion of some of them.

An outline of the paper is as follows. In § 2 , we study a
discontinuous Galerkin method for ordinary differential equations
using polynomials od degree k . This Galerkin method is shown to
be strongly A-stable and of order 2k + 1 . In § 3 , we introduce
the finite element method as a generalization of the discontinuous
Galerkin method of § 2 . We prove the existence and uniqueness of
the approximate solution and we give an algorithm for computing
this approximate solution. In § 4 , we derive general error bounds
in Lz—norm. Finally, we give in § 5 a super convergence result.

Note that problem (1.3) is a2 simple but important example of
a first.order hyperbolic problem. In fact, the finite element
method studied in this paéer provides an effective way for numerically
solving such problems. For other finite element methods for solving
first order systems of partial differential equations, we refer to
(i, D3l .

For the sake of simplicity, we have confined ourselves to-
polygonal domains § . It is probably an easy matter to handle
general curved domains by using curved isoparametric elements and

the analysis given in[5],[6].



2 - A DISCONTINUOUS GALERKIN METHOD FOR ORDINARY DIFFERENTIAL EQUATIONS

We begin by studying the numerical solution of the ordinary

differential equation

u'(x) = £(x,u(x)) , x> x  ,
(2.1)

u(xo) =u

on a finite interval | X, X ta ] by a discontinuous Galerkin method.

For continuous Galerkin methods and related collocation methods, we
refer for instance to Axelsson[ 1], de Boor and Swartz[ 2], Hulme{ 9].

Let X, = X +nh , 0<n N (Nh=a) be auniform mesh for the

sake of simplicity. Then, we may approximate u on each subinterval

{ X X 4 1 by a kth degree polynomial u - We require that u

satisfies on each subinterval [xn » Xy ], < n< N-i

h

(uh(xn+)-uh(xn_))V(xn) +
(2.2) *n+1
+ . {ut'\(x) - f(x,uh(x))} v(x) dx = 0 for all ve€ P
n

with the initial condition
(2.3) uh(xo_) =u,

where Pk denotes the space of all polynomials of degree < k . Notice

that the function vy is discontinuous in general at the mesh points L

To obtain a computational form of (2.2)-(2.3), we replace the

integral in (2.2) by an interpolatory quadrature formula



xn+l k+1

(2.4) e(x) dx=h I b,e(x .)+owmPy
x ;=1 L n,i
n

(2.5) xn,i = xn + gih s 1 <is kf] ’ gl =0,

where bi and Ei are the weights and abscissae for (0,1 ].

Notice that k+! € p < 2k+1 . Then (2.2) becomes :

(uh(xh+) - uh(xn_))V(xn) +
(2.6) k+1
PR Dbyt ) T ROy g O DY v ) =0

1= ?

for all v E'Pk

Let us now show that the discrete Galerkin method (2.3), (2.6) is
equivalent to some implicit Runge-Kutta method. We define
u_ = uh(xn_) s
2.7 Un,1 T up (R =)
L “n,i= u () s 2< 1< kel

We introduce the Lagrange interpolation cocefficients

k+1 x=-£.

(2.8) L0 = T g-% , 2< i< k+l
1=2 i 7]
j#i

Lerma 1 The discrete Galerkin method (2.3),(2.6) is equivalent to

the following implicit Runge-Kutta method

_ k+1
u .=u +h T a,.f(x .,u .),1<i<k+ |,
n,1 n - 3=1 1] n,J 0,3 -

(2.9) 4 k+1
Uy = u + h ji] bj f(xn,j . un,j) .

where



r ailgbl ,» 1 i <k+1 ,

(2.10) &
aij = lj(x) dx - bllj(gl) , 1 <1i<k+]l , 2<j €k+!
L 0
Proof Let us introduce the basics {v,} of the space
1 & i< k¢l
Pk defined by
vi(xn,j) = Gij. , 1 €1, < k+1

By replacing successively in (2.6) v by Vi s we find that an

equivalent form of (2.6) is given by v

- ’ ' - k-4
Up () = up (kg ) b Qo G ) = £ s u Gk )) = 0

(2.1
L - = i
uh(xn,i) f(xn,i , uh(xn,i)) 0 , 2 1< k+l
. [} .
In the subinterval [ x »x ., 1, we have up € P, _, so that
k+1
XX
' = '
u; (x) Z_ lj (Grranr uh(xn.j)
j=2
and by (2.11)
k+1
X=X ;
1] = z
(2.12) uh(x) iz f«j( ) (xn’j , uh(xn’j))

Taking x = X =X in (2.12) , substituting this expression in

n,l

the 1st equation (2.11) and using (2.7) , we obtain

k+1

=u_ + hb, {f(xn pu ) T zj(al) E(x . ou )

2.13
( ) un,l » ’ J=2 ’J n’J



On the other hand, we may write for 2 < i < k+]

up (e 50 = ug(

and by (2.7), (2.12), (2.13)

(2.14) u

Similarly, we have

Up{Xppa) = vy

and then

u =y <+ h {b1 f(xn ;2 Y

n+l n ,

By noticing that

n,l

(Tt h {bl f(x

n,l

n

) +

) +

s

n,l

1 k+1
2.(x) dx = z
J i=1
0
we get
k+1
(2.15) LI

i=1

The equations (2.13) - (2.15)

X .
n,1i
'(x) dx
X . “n
n,l
k+1 Ei
’ un,l) + .22 ( zj(x),dx - blzj(g]))
]= 0
f(x_ ., u .
n’J n’J
xn+l
u'(x) dx
X
n
k+1 1
L. - .
) + L] H00 @t E)

0

fx

bilj(Ei) = bllj(El) + bj )

=y +h Z b, (x
n J

n,j

n,j

are identical to the equations

n,j

(2.9),(2.10). We then have proved that the discrete Galerkin method

leads to the one-step method (2.9), (2.10). Conversely, the Runge-

b

u

Kutta method (2.9), (2.10) can be clearly viewed as a discrete Galerkin

method.

J.)}



Theorem 1 The discrete Galerkin method (2.3), (2.6) is a one-step

method of order p .

Proof Following Butcher [ 3], Crouzeix [7] , we know that

the conditions

kel g _ 1
+1
k+1 2 E% ‘
(2.17) jzl aij Ej = T+l , 02 <kl , 1<1cx< k+l
k+1
Lo_ _ L R+l _ .
(2.18) iil biass &5 < H bj(l £ ) s kM <l , 1€ < kL,

are sufficient for the Runge-Kutta method (2.9) to be of order p
Let us show that these conditions hold in the present case.

First, conditions (2.16) simply mean that the interpolatory
quadrature formula (2.4) is exact for all polynomials of degree < p-1.

Next, consider conditions (2.17). Using (2.8) , we may write

k+1
xg = 7 2. (x) g% , 0< 9 <€ k-1 ,
2y 3 j
]
so that
k+1
g = = pEDEY ., 0<L<k-l
oy ] ]
]
0 +1 k+1 £s
L. I (a0 gr , 0<g<k-l , 1<i<k+]
27l j=2 3 ] '



Using (2.10) , we have

k+1 k+1 k+1 (Ei
2 % % g
I e Ereb (v - I LED)EY + I (‘J %.(x) dx) EX

and by the previous relations

k+1 L+1

s
I a,, E/s=
jep 13 E;J +1

o< <k-l , 1 € i < k+l

Finally, let us show that conditions (2.18) hold . We begin by
noticing that

k+1 k+1

b
2 - L g _
(2.19) 151 b,a; £/ = b izl b B =gy 2 0<&<p-l.

On the other hand, following Crouzeix [7 ], we may write for all

continuous function ¢

(1 X 1
1

(2.20) J xﬁ( ¢(y) dy) dx = el (l-x2+l) p(x) dx .
0 0 0

Taking ¢ € P, _, , we obtain for k+& < p-l

1 X k+1 Ei
H(| e an) ax= T bl | ey ay =
0 0 1=l 0
k+1 g ket &
= I b.&; N ¢ 2.(y) dy) ¢(E.)
. . Ve i
i=1 i=2 J,
and by (2.10)
1 X ktl
)
2.21) (| e dy) dx= T b, a,, E-g(E) ,v el . , kel <p-l
i,i=1 1 1] 1 ] k-1
]

0 0
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Similarly, we get

1 k+1
(2.22) (-0 ax = 2 b 6 e, v e B L k2 < pol
' j=1 J J J

v 0
Hence, combining (2.19) - (2.22) , we have for all ¢ G'PP-I and for
k+f < p-1

k+1 k+1

)

I (I b F £ - 1+1 b (1- E ))w(é:j) =

j=1 i=1
This implies

k+1

2 . . e
iE bi aij gy = 2+] b (1- E ), kt < p-1, 2<j <k+i =2

For investigating the stabillity properties of the one-step method

(2.9) , we consider the differential equation
(2.23) u' = Ju

where )\ 1is a complex constant with Re(\) < O .

Lemma 2. Applied to the d{fferential equation (2.23) , the one-step

method (2.9) , (2.10) gives

(2.24) = R()‘h)un

u
n+l

where R(z) = SE ; is_the-quotient of two polynomials  P(s) and Q(2)

of degree <'ki--and k+1 respectively.
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Proof Applied to (2.23), the one-step method (2.9) becomes (2.25)

k+1
(2.25) u .=u +Ah I a,,u ., , 1<i<k+tl ,
n,i n ja1 13 m]
k#1
(2.26) u =y +Ah . b, u . .
n+l n j'l n,)

Using obvious netations, we may write equations (2.25) in the form

(I-\h [aij 1 [un i ] = u (1]

H]
where the identity matrix I and [aij Jare (k+1) X (k+1)-matrices.

Since a;; = b1 , 1 1< k+l , we get from Cramer's rule

P, (Ah)
—— , 1 €1i<k+l

un,i = Q(Ah) n

where PI(E) is a polynomial of degree k whose leading coefficient
is b;l det(aij) , Pi(i) » 2 € 1< k+] , are polynomials of degree < k-1
and where Q(z) 1is a polynomial of degree k+]1 whose leading

coefficient is det(aij)

Using (2.26) , we obtain
o = ROR)
n+1 Q(Ah) "n

where K

P(e) = Q(e) -« Pj(z>

"~ o+

j=1
. . . k+1 . .
Clearly, in P(2), the coefficient of &g vanishes . The lemma is

then proved. o

Let us now recall the following definition. A one-step method

is strongly A-stable if
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FR(z) < 1 for Re(s) <0
(2.27)
JR(g)I = O© as Re(g) =+ - o

Theomem 2 The Galerkin method (2.2) , (2.3) is a strongly

A-stable one-step method of order 2k+1 .

Proof Consider first the discrete Galerkin method (2.3) , (2.6)
associated with the Gauss-Radau abcissae "gi , 1 <1< k+l

(El = 0). Then, we have p = 2k+1 in (2.4). By Theorem 1 , this
discrete Galerkin method is a one-step method of order 2k+1 so

that

2k+2

R(g) = exp(g) + O(= ) .

Moreover, by lemma 2 , R(2) is the quotient of two polynomials P(g)
and Q(s) of degree € k and < k+! respectively. Then, necessarily ,
R(e) 1is the subdiagonal (k+1,k) Padé rational approximation of
exp(e). Using a result of Axelsson [ 1 ], we know that such a Padé
approximation satisfies conditions (2.27). Hence, the discrete Galerkin
method (2.3) , (2.6) associated with the Gauss—-Radau abscissae is a
strongly A-stable one-step method of order 2k+! .

Now, it is a simple but lengthy matter to prove that the Galerkin
method (2.2) , (2.3) and the Gauss-Radau discrete Galerkin method (2.3)
(2.6) are one-step methods of the same order 2k+l .'Moreover, these
two methods coincide when applied to the differential equation (2.23).

This completes the proof of the theorem. O


http://degr.ee
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3 - A FINITE ELEMENT METHOD FOR THE NEUTRON TRANSPORT EQUATION

Consider now our neutron transport problem (1.3). First, we
' . 2
need some notations. Let us denote by L“(Q) the space of real-
valued functions v which are square integrable over Q .

We provide LZ(Q) with the usual norm

(3.1) Ivilgq= (\J Iv(x)l2 dx)”2 .
v ? 19
Given any integer m > 0 , let
(3.2) H'®) = {v]ve il , % e 1@ , |a] <m}

be the usual Sobolev space provided with the norm

1/2

a 2
(3.3) Hvﬂm z Uavﬂo

)
la| < m 2l

0

In (3.2), (3.3) , a=(a ,0q) €N isamitiindex, |a| = aq,

o o
@« _ 9.\ 1.3 2
and 3 (axl) (ax

We shall also use the following semi-norm

(3.4) vi_o = C £ 12 /2
TR g
Let us introduce the operator
R 2
(3.5) A=y = +V 3y + 0
and the space
(3.6) pa) = {v] ve i@ , v ¥+ v & e @)

dx 3y

+ O
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Then, as a consequence of (8 ], we have the following result.

Theorem 3  Assume that - o € LQ(Q) and f € LZ(Q) . Then,
problem (1.3) has a unique strong solution wu e D(A).

Using the change of unknown function

u=expAC+ Hw,
equation (1.3) becomes

aw . 9w - X,y
Moax b ooyt (o+d)u = exp(=AGT +-3)E -

Thus, by eventually changing o(x,y) into o(x,y) + A, we can confine
ourselves to the case where ¢ 1is positive. More precisely, we shall

assume in all the sequel that
(3.7 M2 o(x,y) 2a>0 a.e. in .

Lét us now generalize the one-dimensional discontinuous Galerkin
method of § 2 to our two-dimensional neutron transport problem. For

the sake of simplicity, we shall assume in the following that § is

a polygon. In order to approximate problem (1.3) , we first construct
a triangulation ’ﬁh of 0 with triangles and convex quadrilaterals

K with diameters < h . With any K€ *&_, we associate a finite-

h
dimensional space PK of real-valued functions defined over K such
that
(3.8) P, CH (K) .

We then consider the finite-dimensional space

- 2
(3.9) A {vlv € L°@Q) , lee P, for all Ke® Y.
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It is worthwhile to notice that in general a function v € Vh does

not satisfy any continuity requirement at the interelement

boundaries.

Let K €°Gh and let OK be the boundary of K . We set :

B_K {(X,Y) I(X,}’) € 9K , (un_+ vn )(x,y) < o} ’
(3.10) X y

3,k = {(x,y) |(x,y) € & , (unx+ vny)(x,y) >0} ,

where n rand ny are the components of the outward unit vector
normal to the boundary JK .
Then, the finite element approximation of problem (1.3) that

we shall consider here can be stated as follows. Find a function

u €V such that for all K.E'@h

h h
i - - - €
(3.11) a..K(]Jnxﬂ-\)rxy)(uh Eh)v ds + J (Auh f)v dxdy = 0 Vv PK
- K
where
0 on 3 KNT_
(3.12) £, =

outward trace of uw on 3K - (3_ KN T)

Clearly, this method appears to be the direct generalization of
the discontinuous Galerkin method (2.2) , (2.3).
Before proving existence and uniqueness of the solution w € Vh

we shall show that there exists an ordering of the elements of °Gh

well suited for numerically solving equations (3.11) , (3.12).

Lemma 3 There exists an ordering X, » X, »..., K of the

elements of &, such that, for all & =1 ,..., I, each side of

9_k, is either a subset of I  or a substet of Q+Kj for some j <i.




Proof Let us introduce first some notations. We shall say

that K 1is a boundary element if at least one side of 3K 1is

a subset of T and that K 1is a semi-boundary element if one

and only one vertex of K belongs to I . Let us consider [ _

and let us number clockwise the corresponding

-—ngﬁziaﬁa

Fig. 1
1 2 [ .
boundary elements XK ,K” ,..., K* . Two consecutive boundary elements
i i+1 .
K and K can have a common side or not. In the latter case

(cf. Fig. 1) , there exists at least one semi boundary element located

between K  and Kl+] . Then, we shall say that a side of

. " . ’ ' , . L
Kl(resp.K1 ]) is semi-common with K' l(resp.Kl) i1f it is a subset

. , i i+1
of the union of the semi-boundary elements located betwen K and K .
Next, we show that there exists at least one boundary element K

such that 9_K CT_ . To prove this, let us assume on the contrary

that a_Kl ¢ [ forall i=1, ..., s and let us show that this

assumption leads to a contradiction.
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: : 1 .
Consider the first boundary element K  and use the notations

of Fig. 2.

(u,v)

e 4
characteristic
direction

triangular case quadrilateral case

Fig. 2

In the triangular case (resp. in the quadrilateral case), the side

[a] » 24 ] (resp. [a1 > 3, ]) of K1 is a subset of 8+Kl .

Otherwise, K1 would not be the first boundary element of [_ . Then,
the side [a2 > a4 ] of Kl which is common or semi-common with

K2 belongs to a;x’ . Otherwise, we should get &_Kl = [a |, a, ] €T

1
which is excluded. Therefore, the side of K2 which is common or
semi~common with K1 belongs to 8+K2 . More generally, we get for
every i =1 ,..., s=1 the following property : the side of K* which

. . . i+l . i
" 1is common or semi common with K 1s a subset of B_K and therefore

1

. i+ . . . . i,
the side of K which is common or semi-common with - K 1is a subset

i+

of 8+K . Now consider the last boundary element k° and use

the notations of Fig. 3
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(,Vv)
———
characteristic

durection

T

triangular case quadrilateral case
Fig. 3

In the triangular case (resp. in the quadrilateral case) , the side

' s . s
[ a) » a, 1 (resp. [a] > 3, 1) of K’ 1is a subset of 8+K .

S

Moreover, the side [a2 » a4 ] is a subset of B+K . Otherwise,

KS would not be the last boundary element of P_ . Thus, we get

3 x°

[a1 . a2 ] CT_ which has been excluded. The existence of a
boundary element K such that 9 K CT_ 1is then proved.

Now, choose for K, a boundary element of T_ such that

C T_ and define Ql =Q-QaQn K > Pl_ = B_Ql . Note that

each side of Pl- is either a subset of [_ or a subset of RS

3K,

By the previous argument, there exist a boundary element K2 of

Tl_ such that 8_K2 C Fl_ » etc ... . Repeating this process, we

take into account all the elements of CGh and we obtain an ordering
K, , K2 ceny KI of the elements of °Ch' such that the desired property
holds. ©

This proof suggests an ordering algorithm for the elements of
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Dgh which is effectively used in practise.

(F,V)
characteristic
direction

Consider the sequence Kl, K2 ..+, K° of boundary elements of r'_ .,

For K, we choose the first element K of this sequence which
satisfies 3_KC TI_ . Let K’ be this element (p=3 in Fig.4).

From Kl = kP , we then number counterclockwise Kl s K2 ye s ey Kr

the boundary and semi boundary elements located between kP and Kl

which satiéfy the following condition : for all i =1 ,..., r , each
side of  §_ Ki is either a subset of T_ or a subset of 3+K.j
for some j < i (r=3 in Fig.4). Next, we replace the set by

axan (
i

W Cn

Ki) and we repeat the process ...
1

We are now able to prove

Theoren 4 Assume that f G,LZ(Q) and that condition (3.7) holds.

Then, there exists a unique function w €V, which satisfies

equations (3.11) and (3.12) for all XK€ G .
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Proof Clearly, the finite element method (3.11),(3.12) 1is
equivalent to a N x N linear system of equations with N = dim Vh.
Then, it is sufficient to prove the uniqueness of the solution W
Thus, let us assume that f = 0 and let us show that necessarily

u =0 ., Let K, , K2 sos+y K. be an ordering of the elemeunts

h 1 1
Ke ’Gh such that the condition of Lemma 3 holds. If v, = 0 in
K1 6] K2 u...uKi_l , then Eh =0 on aKi ‘and equation (3.11)
becomes in K = Ki
- (unx+vny)uhv ds + (Auh)v dxdy = O Yv € PK.
3 K K t

Taking v = u,_ and using Green's formula

h

-
Buh Suh
1 2
J (u - +V 3y )uh dxdy = 5 (unx+\)ny)uh ds ,
Ki K.,
i
we get
(Mn + vn ) 2 ds - (un_+ vn )u2 ds + 0u2 dxdy = 0
X y “h x y' h h
J9 K, o K. K.
+ 1 -1 i
Using (3.7) and (3.10) , we obtain u = 0 in Ki . Therefore, using

an inductive argument, we get w = 0 in @ . O

In practice, the computation of the approximate solution W € Vh

goes along the following lines :

(i) Find an ordering K, , K, »+.., K, of the elements K€ °Ch

1 I

which satisfies the condition of Lemma 3 , for instance by using the

previous algorithm ;
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(ii) Compute successively u in Ki » Ky yoeey Ky oo The
computation of Uy in each Ki has a local character and
involves the numerical solution of a di X di linear system

where d. = dim P .
1 Ki

In other words, by using an ordering of °€h such that the
condition of Lemma 3 holds, the N X N matrix of the approximate
problem becomes block triangular and the ith diagonal block is
‘a- di x di matrix ‘associated with the ith element Ki .

Note that, in many practical problems, the geometry of
and the triangulation ﬂgh are so‘simpleAthat step'(i)'becomes

obvious.
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4 - GENERAL ERROR BOUNDS

Let us now derive some estimates for the error u - u when

the solution u of problem (1.3) is smooth enough. We begin with

Lemma 4 For any Ke véh »any vePr, and any function

ne Lz(a_K) » we have the estimate :

%*J . (Unx+ Vny)(uh' v)zds + %TJ. (Unx+ vny)(ih'n)z ds -
3,K 3_K

-%-J (u'nx+ vny)((uh- v) = (& - n))zds +J o(u, - V)zdxdy *

9_K )4

(4.1)

= J (unx+ Vny)(u-v)(uh- v) ds + J (Unx+ Vny)(u-n)(uh~ v) ds
9. K

d_K
+ -

+ J.(u-v)Af(uh- v) dxdy
K

*
where A is the formal adjoint of the operator A , i.e.

* S _ ., 9
(4.2) A =-1 ax ~ VY 3y + 0.
Proof Given p € PK and n e L2(8_K) , we set
4.3) wve=u -V € PK s L= Eh -n.

Consider the expression

(4.4) X =" J (unx+ vny)(w—c)w ds + [ {Aw)w dxdy
0_K vk
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First, using Green's formula, we obtain

Ll 246 -
Xh 5 (unx+ Vny)w ds J. (unx+ Vny)(wvc)w ds +
9K 0_K

+ |ow? dxdy .

Since
(w=-g)w = %(wz-t;2+(w-c)2) ’
we get
{ - (un + vn )wzds + L (un + vn )Czds -
xh 2 x y 2 b y
' 3 K J:K
4.5) ¢ *

1 2 2
'5.{ (unx+ Vny)(w~c) ds + J gw dxdy
o_K K

On the other hand, using (3.11) , we obtain

Xh =![ (unx+ Vny)(v-n)w ds + J (f-Av)w dxdy
3_K K

and therefore

Xh = J. (unx+ Vny)(v-n)w ds + J-.A(u-v)w dxdy
3_K K

Since u € D(A) , we may write

[ A(u-v)w dxdy = j (u~v)K*w dxdy +‘[ (unx+ vﬁy)(u-v)w ds
K K 9K

[N

so that

xh = J» (unx+ vny)(u-v)w ds + [ (unx+ vny)(u—n)w ds +
3+K a_K

(4.6) %

+ J (u-v)A*w dxdy .

K
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By combining (4.3) , (4.5) and (4.B) , we get the desired

estimate., O

In order to get explicit error bounds, we need to define

more precisely the finite-dimensional spaces PK . Let K be an

element of GGh . If K 1is a triangle, there exists an affine

A~

invertible mapping F, which maps a reference triangle X onto

K
A . v - .

K (K 1is usually chosen as a unit isosceles .rectangular triangle).

If K is a non~degenerate convex quadrilateral, there exists a

biaffine invertible mapping F_ which maps the reference element

K
'3 = [ ?l, + 1 f onto - K . Note that this mapping FK becomes affine
when K 1is a parallelogram.

In both cases, let P € lll(ﬁ) be a finite-dimensional space of
real-valued functions defined over the reference element 2 . We

shall always assume in the following that

A -1 A ~
(6.7) Pe={p|p =pPoF, ,peP}
We shall make a constant use of the one-~to-one correspondence

v =9 0 1“-l v = oF
V — V=YV K , V — V v K

between the functions Vv defined over ﬁ and the functions v
defined over K .

For any integer m = 0 , let Pm denote the space of all
polynomials of degree < m in the two variables x,y and let Qm
denote the space of all polynomials of the form

m

5 ’ i j
plx,y) = E cijx y ’ cij ER .

i,j=0
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We shall need

Hypothesis H.1l. There exists an integer k »# O such that :

(4.8) Pk C

gy >

N .
if K is the reference triangle ,

N

K

if z

is the reference quadrilateral [-1, +1]
Let us now introduce the following geometrical parameters :

h(K) = diameter of X
(4.10) ¢ P(K) = sup { diameter of the circles contained in K } ,

Bi(K) ,» 1 €1 < 4 = angles of K if K 1is a quadrilateral.

Hypothesis H.2, There exists a constant O > 1 _independent of h

such that
(4.11) h(K) < op(K) for all Ke'\%h

Moreover, there exists a constant § independent of h with 0 < ¥ <1

such that

(4.12) max lcos 6. (K)| < ¥ for all quadrilateral K€ oG _ .
. 1 h
1 €1<4

A A
Given a reference element X , we define II to be the ortho~-

. . . 2.5 o s
gonal projection operator in L“(K) upon P . For any K€ °y

we define HKG ol (L2(K) ; PK) by
. Fald
@13 Ty =17  foran verim.

Then, for any v & L2(Q) , we define Hhv to be the function in Vh

such that

(4.14) nhv[K =M for all K€ 2§ .
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Let us now state some standard results which can be easily

proved by using the techniques of Ciarlet & Raviart [4 ] , [5]

Lemha 5 Assume that hypothesis H.2 holds. Ther, there exists

a constant C > 0 independent of K € qih such that for all

P G'PK
(&4.15) Ipll,K < c(h(®) ! lip llo’K
(4.16) Ip Il o< e LR

X

-~

where K' is any side of K and lip Il .\ = ( J ipl2 as)'/? .
1 Kl

Lemma 6 . Assume that hypotheses H.1 , H.2 and (4.13) hold.
Then, there exists a constant C > 0 independent of K€ %G, .Such
that for all v € H 1 (K)
k+1-m
(4.17) [v —nxy[m’x < C(h(K)) v "k+1,x , m=0,1,
_ k+1/2
(4.18) v HKV HO,K.< C(h(K)) Itv "k+1,K

where K' 1is any side of K.

Let K] , K2 N KI be a fixed ordering of the elements of

aﬁh which satisfies the condition of Lemma 3 . For all i =1

T
geeey L

we set

i
(4.19) Qi = U K

and we define 8+Qi and B_Qi in the usual way . Note that 3_Qi c T_.
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Theorem 5 Assume that Hypotheses H.1 and H.2 hold. Assume

in addition that the solution u of problem (1.3) belongs to

Hk+l(Q) . Then, there exists a constant C > 0 independent of h

such that for all i =1,..., I

- k
(4.20) "uh u "o,Q.< Ch llu "k+l,Q.
i i
) _oN2.41/2
4.21) ( Ja o (unx+ \)ny)(uh u) “ds) < Chhlu "k+1,Q.
+°1 1
i 2, ..1/2 k !
i _ - !
(4.22) ( .51 (unx+ \)ny)(uh Eh) ds) < Ch llu Lk+l,ﬂ.
17Va x *
Proof For any K € %Lh , we define
0 omn oKkKNT_ ,
(4.23) N, =
outward trace of Hhu on 93 K- (3_KNT)

We start from equation (4.1) with v = Hhu. n= nh and we estimate

the corresponding right hand side member. First, we have

- b 4 ‘
IJ (u—Hhu)A (uh- Hhu) dxdy| < <, Hu-Hhu “o,K Huh—Hhu Hl’K (m
K

and by (4.15) , (4.17)

‘ * k
(4.24) I{ (u-Hhu)A (uh Hhu) dxdyl < c2h lu "k+1 ||uh Hhu "o
K
Next, using (4.16) and (4.18) , we obtain

'K »K

k
(4.25) ]Ja K(unx+ Vny)(u-Hhu)(uh-Hhu) ds | < cyh” llu “k+l,K lhu, -T, u uo,K
+

(1

In all of the sequel, we shall denote by ¢, various constants

independent of h .
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Similarly, -we. get

' k
(4.26) IJa K(unx+ \)ny) (u-nh) (uh- Hhu) ds| < c4h ftu "k+l,c§DK hu, - Hhu by %

where :DK is the union of the elements of °‘€,h which have a side

contained in 3_K .
Thus, combining (4.1) with v = Hhu, n=n , (4.24), (4.25),

(4.26) and using (3.7) , we obtain

~ l" _ 2
2 aK(unx+ \)'ny)(uh Hhu) ds -
J%
-1 ﬂ (un_"va_ ) ((u, = M u) = (g =n ))2dS+-ailu - Tult?
< T2 x 0y’ WWhT My h h h “h"” "o,k
] J3 x
lf‘
4-5- (un+vn)(€‘n)ds+ch llul\kHKU@llu-Hull 0,X
43 K

Summing over all the elements Kj , 'S 31, and using (3.12) ,

(4.23) we get

1 2
F —J (unx+ \)ny) (uh Hhu) ds —
3 Q
+
4.2 - L ; m + va ) ((u - Tu)=(E. ~ n.))2as +a llu~Tull? | <
' ﬁ . X y h h h h h h 0,8,
237l o x 1
=73
[« -
L c h la H 1,9, lluh Hhu “o,Q,
b 1
From (4.17) and (4.27), we deduce :
Iluh- u “o,Q, < Huh- Hhu ”o,Q. + |ITIhu-u "o,Q.. <
1 1 11
Cc
6
< = b¥Ju T ia

+ hk+
a k+1,0. = 7 k+1,Q.
1 1
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so that (4.20) holds.

Next, we have by (4.27)

2,0 1)2 K

(\{ (unx+ vny)(uh Hhu) ds) < CSh fu "k+1,Qi

3+Qi
and by (4.18)
( (un + va ) (X u--u)zds)”2 <c hk+l/2 fu ll
X y' " h 9 k+1,ﬂi

9.9,
+ 1

This proves inequality (4.21).
Similarly, we have by (4.27)

1 2. 172 K

(- (unx+ vn )((uh- HhU)'(Eh- nh)) ds) < Cloh flu "k+l Q

=1 J5 x y i
=]

and by (4.18) :
1 2 1/2 k+1/2
(- 2 (un_+ vny)(nhu u)7ds) " < c b la ”k+1’ﬂi‘ ’

=1 J3 k.
-3

_n2,.,1/2 k+1/2
(Unx+ vny)(nh u) “ds) < ¢, b ffu "k+l,Qi

~~
1
(LI oo I 22

+3 K.
=1

This implies inequality (4.22). 0
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5 - A SUPERCONVERGENCE RESULT

Let us notice that the error estimates of theorem 5 are not
optimal in the exponent of the parameter h . In fact, numerical
calculations have shown that these error bounds could not be
improved in general. However, the one-dimensional results of § 2
clearly indicate that better estimates must hold in some special
cases. Indeed, we shall prove in this § that the rate of conver-

k+1

gence of our finite element method is O(h™ °) when all the

elements KEEqZh are rectangles and when P = Qk . In all the
sequel, we shall confine ourselves to this particular case.

On the interval [=1,+1] , let =1 < ei < 62 < By, =)
denote the (k+1) Gauss—-Radau quadrature abcissae. In the reference

n 2 . . ~ . y
square K =[-1, +1 17 , we consider the points aij with coor-

dinates (ei . ej) , 1€ 1,) S k+l

t

%T +1 A
| W e A
‘ 71N
T i erY | //A |
N ¢ D f
K { by t
)t i i
& D ‘
"

Fig. 5.
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Just for convenience, we shall assume that the sides of the
rectangles K e*ﬁ% are parallel to the (x,y) axes and that
the coefficients u,v are > O . Given a rectangle K with
vertices A,B,C,D as in Fig. 5 , we denote by Fe the affine
invertible mapping such that A = FK(K) yeeoy D = FK(s). Given
a function v g C°(K) , we define IV as the unique polynomial
of Qk which interpolates v at the points aij = FK(gij) ,

1 €1i,j €< k+1 . Then, for any v € C°(Q) , we define r,v to
be the function in Vh such that

(5.1) r,v] =rv foral Ke G

K
We provide Lm(Q) with the following norm

= I' M Y
v “o’w’Q sup {lvix)! ; xe@Q}
Given any integer m 2 0 , let
Wor@ = { vive L@, 3%ve 1@ ,|a] <m}
Be the Sobolev space provided with the norm

vl og =max {13% I o5 fal <m}.

Using [4] for instance, one can easily prove

Lemma 7 Assume that Hypothesis H.2 holds. Then, there exists

a constant ¢ > 0 independent of K € w%h such that

< ch@N! v for all veE ),

(5.2) Hv—rKyuo’K K1 ,K
k+3/2
Il v~ < f
€5.3) 'y TV HO’K, c(h(K)) Iy "k+1,@ X or all
vewth Tgy where x' is any side of ,K
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We are now able to prove

Theorem 6 Assume that all the elements K e ﬂéh are rectangles,
P .
that P = Qk and that Hypothesis H.2 holds. Assume in addition,

that the solution u of problem (1.3) belongs to Hk+2(Q). Then,

there exists a constant ¢ > 0 independent of h such that for all

k+1
(5.4) lu - u ”o,Q. < Ch lu ”k+2,9. ,
1 1
. _ 82 1/2 k+1 ,
(5.5) {[ (an+ Vny)(uh u) “ds) <Ch (llu ”k+2’Qi + llu hk*l,m,Qi)
3,9;
Proof For any K € ‘ﬁ% , we now define

0 on 9KNT_ ,
(5.6) n_=

outward trace of r,u on da_ K= (3_ KNT).

We start from equation (4.1) with v=ru, n= n, - The corresponding

right hand side may be written in the form
(5.7) XK(u,uh- rhu) = ZK(u,uh- rhu) + { O(u-rhu)(uh- rhu) dxdy
K

where

ZK(u,w) = (unx+ Vny)(u-rhu)w ds + | - (unx+ vny)(u-nh) wds -

Ja,x 3 K
£5.8) .

ow ow
(u rhu)(u x + v ay) dxdy .
JK

We now use the following essential lemma which will be proved later.



Lemma 8 With the same assumptions as in Theorem 6 , there

exists a constant c¢ > 0 independent of K e Gy, such that

for all we Qk

k+1

(5.9) |2p(u,w)| < g(h(x)) lu il hw it

k+2,K ,K

Using (5.2),(5.7) and (5.9), we obtain for all K € ?Gh

ke lu - ¢

(5.10) PHECHUEE RUILINS k+2,K " Yh

u
o

h »K

Thus, combining (4.1) with v = rhu,n - nh » (5.10) and using (3.7),

we get

,

~

2 _ 2
(unx+ vny)(uﬁ-rhu) ds + a Huh T u "o K <

u3+K

[t v ) (E- n)2%s + e v u N =r. u I
MR P VR ST My 48 ¢y U lpe2, k "R Mo
J3 x

. -

<. 1
' 2

»K

Summing over all the elements Kj » 1 € j <1, we obtain

1 - 2 - 2
> J (unx+ vny)(uh rhu) ds + a Iluh ru no’Qi <
9 Q.
(5.11) 1

k+1
< c.h ffu "k+

) 2,8, o= rpull) o

1
Thus, the estimate (5.4) and (5.5) are simple consequences of ine-

quality (5.11) and Lemma 7.

Proof of Lemma 8 Consider a rectangle K € d%h with vertices

A,B,C,D (cf.Fig.5). Let us denote by Ax (resp. Ay) the length

of the side AB (resp.BC). We may write


http://resp.BC)-
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(5.12) -ZK(u,w) - uZK,x(u,w) +V K’y(u,w)
with F A B
: . .. oW
ZK’x(u,w) = (u-rhu)w dy - (u—nh)w dy - (u-rhu) = dxdy ,
vD v C K
f A ' D

- - - - - w
Z-K’y(u,w) = (u rhu)w dx (u nh)w dx (u rhu) 3y dxdy.
JB “C VK

N N
By using the one—to—-one correspondence Vv =+ V = Vv 0O FK , We get :

Ay & A
(5.13) zK’x(u,w) = %Zﬁ(u,m

with +]

2 (@9 =J (1L, - T, oF -
-1

+1 ’ +1 , +]
~ A ~ ~ A~ 8“ A’ ~
- @(1L3) - ENLA,) o - (G-10) ?;':' dxdy ,

=1 =1 -1
where %4 is the polynomial of Qk which interpolates U at the
points sij , 1€ 1,7< k+1 , and where ?1 is the polynomial of degree
< k which interpolates the function § - G(-—l,'}‘v) at the points
8, ,. 1< i< k+l .

1

Clearly

A ~ A A A
%x(u,w) = 0 for all u,w € Qk

A ak+]
Now, when u = x s we have

G(l’;) - ?\?(19;) =1, G(":;) 'ﬁ(;'\) = (-l)k+l .

Moreover, TG does not depend on § ,_and then, for all ?vé Qk , the

~
function X -+ (G-? @(;) %% (X,9) is a polynomial of degree< 2k
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which vanishes at the (k+1) Gauss-Radau points ei . Therefore,
+1
(G-20)@ dX = 0 for all W e Q -
J=1

+
Thus, when 1 = §k ! » we get

’Z\Q(G,Q) =0 forall We Q -

On the other hand, when 1 = yk..'l , T0 1is independent of X

so that we obtain by integration by parts

+1 p +1 +1
u-nﬁ dxdy = @Q,N-TE01,5)e,y) dy -
-] -l \"]

+]
- @OLH-AERQ,T 45 .
-1

This give again

A
Zg(ﬁ,w) 0 for all We Q .

Therefore, we have proved that

-~ A A~ A~ A
Zx(u,w) =0 for all u € Pk+l and all we€ Qk .

Then, for fixed v e Qk , the linear functional u -+ 'Z\i(ﬁ,w is

”~ .
lwl 2 and vanishes over
1 0,K

P . By the Bramble-Hilbert lemma in the form given in[4 ,Lemma 6],

k+1
we get for all »G € Hk+2(i) and all Wwe Qk

continuous over H (K) with norm € ¢

ORI L R0

Going back to the element K by using the correspondence
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k+2

v > v=vo F; and (5.13) , we obtain for all u € H (K) and
all we Qk
(5.14) |z, _(u,w)] < ey (@) i e i
* K,x 3 k+2,K 0,K
Likewise, we get
(5.15) 2. (u,w)] <c, @& T e |
K,y o? 4 k+2,K 0,K

Then, combining (5.12), (5.14) and (5.15) , we obtain the desired

inequality (5.9). ©

Note that the error estimates of Theorem 6 are now optimal
in the exponent of the parameter h . However, as the one-dimensional
results of § 1 suggest, we conjecture that, for any rectangle
K e JCh , there exist some points of 8+K where even more precise
error bounds hold. Unfortunately, we have not been able to prove the

existence of such points.
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