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INTRODUCTION 

The present paper has been suggested by the recent development of the so 
called "dual analysis" and in particular of the method of Lagrangian mul­
tipliers in elasticity problems; we shall refer for now only to a few pa­
pers, and in particular' to[/i 0,1%53, I * * J j ft 3 ] , ando to the refe­
rences contained in such papers; many other references, however, will be 
given in the following. Although the equilibrium, hybrid and mixed methods 
contained in the mentioned works are often quite satisfactory from a nume­
rical point of view, a complete study of the convergence of these methods 
and of the behaviour of the error has not been done until last years, and 
however, only in some particular case (see e.g.[lcQand especially [j ,Ti 3] fo 
the "mixed methods" and [ 5 3 for the "assumed stresses hybrid method"; other 
references on this subject can be founded in[3^"3)» T ^ e interest of these 
methods, and in particular of hybrid methods has been increased by papers 
£l 5 3 , 1 1 ^ 7 3 / i n which the theory of "non conforming" (or "delinquent") 
elements (see e. g .t3c3,l2ll , etc.) is presented as a "particular case" (in 
some sense) of hybrid methods. On the other hand, a careful analysis, for 
instance, of the work on the Stoke's equations shows that the greatest 
difficulties in proving convergence and error bounds are connected with 
the use of the method of Lagrangian multipliers itself, rather than with 
the physical meaning of the problem. In this sense, the "general strategy" 
employed i n [ - H 3 a n c * in £ 5 3 , in order to have convergence and error bounds 
for discretizations of different problems is, in fact, quite similar. 

These considerations have suggested the author to develop the present 
"abstract theory" about saddle-point problems. More generally the problem 
treated here is the following. ( Find (u,i|i) in VxW such that: 

a(u,v)+b(v,y/)=<f ,v> V v e V 

b (u,ip=<g,^> V^eW, 

where V,W are real Hilbert spaces, a(u,v) and b ( v ^ ) are continuous bili­
near forms on VXV and VxW respectivelly and f,g are given functionals in 
V 1 and W resp. 

In paragraph 1 we give necessary and sufficient conditions on a(u,v) 
and b(v,v̂ >) in order to have existence and uniqueness of the solution of 
problem (P) for all given (f,g) in V'XW . In paragraph 2 we introduce the 
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"approximate problem"! 

f find ( u
h/^ h) i n vft* wh s u c h that: 

(P h) J a(u h,v h) +b(v h,* h)=<f,v h> V v h e V h y 

^b(u h,f h)=<g, f h> VvftlcWhy 

(where and W h are closed subspaces of V and W resp.j, and we give, under 
suitable assumptions, an upper bound for the "error": 

•Eh= | | u-u h | | + | |*-* h| | 

The third paragraph is dedicated to further considerations concerning "nu­
merical integration" and "non conforming" approximation of W (that is W^dw); 
this latest topic has been suggested by the p a p e r s f ^ X Z " ^ ? 3 a r i d c a n t > e applied 
for instance to the "strongly diffusive" elements (equilibrium models) by 
F. de Veubeke. 

Of course, the theoretical results given here, do not answer any que­
stion related to the mentioned methods and in general to the problems in 
which the method of Lagrangian multipliers is employed. In seme particu 
lar cases the greatest difficulty will often be the verification of the ab­
stract hypotheses proposed here. It is reasonable, however, to think that the 
knowledge of a "winning strategy" will be, in any case, useful. 

Some of the results of this paper were also reported in a previous note 
(see [ ̂1 ); I wish to thank Prof.J-L. Lions for presenting it to the C.R. " 
Acad.' Sc.. Thanks are also due to Prof. P.A. Raviart for their help in use­
ful personel conversations. 
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0.- PRELIMINARIES 

Let X be a real Hilbert space; we denote by X 1 its dual space; if x 1 £ X 1 

and xeX the value of x 1 at the point x will be indicated by <x',x>. The 
scalar product and the norm in X will be indicated by ( , ) and|| j j (resp.) 
or by ( , ) x and || || x whenever confusion may rise. We denote also by 

Riesz's "representation operator" from X 1 on to X, defined by 

(J xx* ,x)=<x f ,x> V x ^ X , x'e-X 1. 

It is well known that is a norm preserving isomorphism from X 1 on^to X. 
Let now Y be another real Hilbert space and let T be a continuous linear 
operator from D(T) into Y. The domain D(T') of the dual operator is defi­
ned by: 

D (T1 ) -{y 1 | y 1 € Y f ,x-*<y 1 ,Tx> is continuous on X}. 

Then the dual operator T 1 from D(T') into X 1 is defined by: 

<T'y 1 ,x>=<y'Tx> V x e X , y ! e D ( T ! ) . 

We want now to prove a theorem that will be useful in the following. 

Theorem O.1.- Let X,Y be real Hilbert spaces? let % (x,y) be a continuous 
bilinear form on XxY and let T be the continuous linear operator from X 
into Y' associated to defined by ; 

<Tx,y>= ^(x,y) Vx e X,y e Y. 
For all k>0 the three following statements are equivalent; 

i) sup fefi^k||y|| Y y e Y , 
x € X r { 0 } 1 | X | 1 

ii) | |T'y| |y| | V y e Y , 

iii) 3 S£o6(Y',X) ( 1 5 such that TS=I (identity) on Y' and | j S| |<k - 1. 

C1 ) If K and H 2 are Hilbert spaces , ̂ ( H x ,H 2 ) will be the space of all li­
near continuous operators from Hj into H 0,with the norm: 

| | s | | - | | s l ! . =suP Ul|l. . 
^(Hj,H 2) x6H r-{0}- l X | 
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Proof, 

i)<=>ii) follows obviously from : 

sup ^ f M ) = s u p f W - I M I . V y e Y . 
xex-{0} I ' x l I xeX-{0} I l x l 1 

iii)=^ii) follows obviously from the relations (y/̂ 0) : 

f ^(x,y) ^ ( S J ' ^ y ) ||y|| 2 

SUP £ : , 
y x<X-{0}| |x| | I I S J - ^ H ||SJ-y|| 

( | |sT- l yrk<k- l | [ .Ji 1 y| | '-ic" l l . |y| | . 

ii)=£>iii). Let N=ker(T) the kernel of T; setting 

N A = { x | x € X , (x , O=0 if T5=0}^ 

T =restriction of T to N 1 

J> > 

from ii) and the closed range theorem (cfr. e.g. Yosida |s] pag 205), we have 
that is an isomorphism from N X onto Y'. From i) we easily get that, for 
all y in Y, 

x«N*-{0}I l x i I 

Then (see part i)<=^ii) of this proof) | | (TJ ) ~l | j^k""1 ; hence | J T~ 1 I I < 3c~1 ̂  
and setting S=T^ 1 the proof is completed. 

Corollary 0.1. - Under the hypotheses of theorem 0.1 for all k and k positi­
ve numbers the three following statements are equivalent: 

I) Sup ^ f l ^ k l l y l l V y c Y ^ i Sup >le| | x | | Vx c X ; 

II) | |Tx| | » k | | x | | V x e X and | | T 1 y | | *k | | y | | V y e Y , 

III) T is an isomorphism from X onto V with | [ T*"1 | | ̂ k""1 and | | (T1 ) | | ^ k " . 

Proof.- It is sufficient to apply theorem 0.1 to the form ^ ( x f y ) and to 
the form ( y % { x , y ) (defined on Y x X ) . 

Remark O.1.- The results contained in theorem 0.1 and in corollary 0.1 are 
of classical type and might not be new. For instance part I)=^III) of co­
rollary 0.1 was used by Babuska [ 5 ] • 
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1 E X I S T E N C E AND UNIQUENESS 

Let now V and W be real Hilbert spaces, and let a(u,v) and b(v,0) be 
continuous bilinear forms on VxV and VxW respectively. For any given pair 
(f,g) in V'xW 1 we consider the problem: 

ifind (u,^) in V*W such that: 
a(u,v)+b(v,\/>)=<f ,v> V v ^ V , 
b (u,^))r<g,^>. V^£W. 

We remark that, if, for instance, a(u,v) is symmetric and V-elliptic, in the 
sense that there exists a positive constant 8 such that 

a(v,v)> £| |v| | 2 V v€V y 

then problem 1*1 is equivalent to the r e s e a r c h of the saddle point on V x w of 
the functional 

£(v , v p ) = J a(v,v) +b (v,^) -<f ,v>-<g,^>> . 

We look now for (necessary and) sufficient conditions in order that for each 
(f,g) in V x W problem (1.1) has a unique solution. In" at/her words, if 
A € c S ( V , V ) and Be<i£(V,Wf) are the operators associated to a(.u,v) and b(v,^) 
resp.,we search for (necessary and) sufficient conditions in order that the 
operator A:VxW+V'xW 1, defined by 

(1.2) A(v,^)=(Av+B'^,Bv), 

results an isomorphism. 

For this, first of all we introduce the space: 

(1.3) Z=Ker (B) = { v | v£V, b(v,v£)=0 Vi^eW}, 

which is a closed subspace of~V. Let Z 1 be the dual space of Z; Z 1 .can be 
identified with a closed subspace of V 1 , consisting of all f e V such that 

(1.4) <f,v>=0 if (v,w)=0 V w € Z . 

Let us denote by irrV'+Z the orthogonal projection from V 1 onto Z 1 . The clo­
sed subspace of V 1 consisting of all f€V' such that irf=0 (polar set of Z) 
will be indicated by Z°. 
We can now prove the following theorem. 



- 6 -

THEOREM 1 • 1 • - The operator A defined in (1 • 2) is an isomorphism from V X W onto 
V'xW iff the two following conditions are satisfied: 

(1.5) 7TA is ,aa isomorphism from Z onto Z 1 , 
( 1 ) 

(1.6) 3k>0 such that | | Bfv^| | >k| |^| | VvfeW. 
Proof.- Suppose that A is an isomorphism. Let us define, for all g in W ' , 

gsESS^SEf Sg as the first element of the pair A (0,g), that is: 

(1.7) w=*Sg<t=>3x e W, A (w, x) = (0,g) . 
We have from (1.2) and (1.7) that B S - I ; since A is an isomorphism, S t ^ ( W ' , V ) 

and therefore, by theorem 0.1, (1.6) holds. We define now, for all icZ% , 

Qf as the first element of the pair A"" 1 (f ,0) , that is: 

(1.8) w = Q f ^ 3 x e W, A ( w , x ) = (f ,0). 

Since,by the closed range theorem and (1.6), 7TB'^=0 V^eW, we get from (1.8) 
and (.1.2) that TT AQf=Tr<f=f. So TTAQ=I and then TTA is surjective. Suppose now 
that z eZ and TTAZ=0; then Az 6 Z° and by (1.6) and by the closed range theo­
rem there exists a x ^ n W such that B ' x-^Az. So A (x / Z ) = (0,0) and then z=0. 
Therefore 7;A is also injective and, obviously, continuous; hence (1.5) holds. 
Suppose now, conversely, that (1.5) and (1.6) hold. From (1.6) and theorem 
0.1 the problem 

(1.9) A(u,*)«(f,g) 

is equivalent the problem 

(1.10) A(w,*)«(f-Au,0) 

with u=w+u and Bu=g. Hence A is an isomorphism from VXW onto V'xW 1 if A , 

restriction of A to ZxW, is an isomorphism from ZXW onto V ! X { 0 } . Let now be 
feV-1 , and let wcz be the unique solution of rAw=7Tf, which existence follows 
from (1.5). Since 7r(f-Aw)=0 we have f-Aw ̂  Z° and then from (1.6) there exists 
a unique ^ in W such that B>=-Aw+f; we have proved in this way that for each 
feV 1 there exists a unique (w,f) e ZXW such that A Q (w,ip) = (f ,0) . Then A Q is 
a continuous one to one mapping and therefore an isomorphism. 
The following proposition expresses the.norm of A *and ( A 1 ) 1 as function of 
the constants related to A and B in theorem 1.1. 

(*) For sufficient conditions in order that A be an isomorphism, in a much 
more general case,see f 2 ] 
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Proposition 1 .1.- Suppose that A and B are such that (1.5) and (1.6) are 
satisfied. Let us define 

<-. I r A u l , „ I IT A 1 u I I 
Y = Sup -^Trrr ' Y S u P l u l I ' ueZ-{0} | u< ueZ-{0} ' U | 1 

(1.11) a = | | A | H | A ' | | / e=||B||=||B'|| • 

Then, setting 

(1 .12) M(cx ,Y,k)=max{ ( y ' ^ k - 1 d+oy" 1)) , ( k ^ + a k - 2 ) d+oy" 1)} , 

we have ; 

(1.13) | IA"*1 I | ^ M ( a , Y / k ) } 

(1.14) | | ( A ' ) _ 1 | |«M(a, Y\k) , 

Proof.- Let (f,g) £ V ' x W and let (u,i>) = A - 1 (f,g) , that is: 

(1.15) JAu+B't-f 
(. Bu=g 

From (1.6) and theorem 0.1 there exists a w in V such that Bw=g and 

(1.16) I !w] j<ck_1 | |g| | . 

Setting now v=u-w we get, from (1.15), 

(1.17) TT A v = T r f—IT Aw 

and from (1.11) , 

(1.18) | v| | « Y - 1 (I I f I I +o I |w| | ) ; 

so we have: 

(1.19) I |u| j«| |v| | + | |w| | < Y _ 1 l |f | l+k"1 ( Y _ l a + 1 ) | |g| I . 

Since from (1.15) we get 

(1.20) | |B'*| U | |f | | + | |Au| | < | | f | |+a| |u| |, 

from (1.6) we obtain 

(1.21) lltll^llfll+.^allull, 
and from (1.19) and (1.21) we hav<5 (1.13); the proof of (1.14) can be per­
formed in a similar manner. 
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Remark 1.1.- It can be easily verified that A is the operator associated 
to the form 

(1.22) / C ( ( u ^ ) , ( v ^ ) ) = a ( u / v ) + b ( u / v ( ) ) + b ( v , ^ ) . 

So by corollary 0.1 with X=Y=V*W, A is an isomorphism iff there exists 
T , T > 0 such that Vyf^fr 
(1.23) Sup ^Ja>,x||y||^nd Sup | [ ^ I ^ | | x | | V x ^ X < 

x<=X-{0} I l x l I y€Y-{0} I l y l I 

On the other hand it can be shown that condition (1.23) holds iff (1.5) and 
(1.6) hold. Then, this can be another way, which extends and generalizes the 
idea of Babuska [4], in order to prove theorem 1.1. 

The following corollary will be useful in the applications. 

Corollary 1.1.- If a(u,v) is Z-elliptic and (1.6) holds, then A is an iso­
morphism. 
The proof is immediate. 
Remark 1.2.- In many applications (see e.g. Raviart-Thomas |^] and Thomas [323) 

we are led to the problem (1.1) by the following procedure. Let V Q and V be 
real Hilbert spaces, with V Q closed subspace of V, and let a(u,v) be a con­
tinuous bilinear form on VxV which is V Q-elliptic; we want to solve the pro­
blem: 

(1 24) I find u in V Q such that 
I a(u , v)=<f , v > V v £ V o 

where f is a given element in V 1 . For this we consider the space W=V° (polar 
space of V Q ) which is a closed subspace of V 1 ; problem (1.24) is now equiva­
lent to ; 

f find ( u , * ) in V W such that : 

(1.25) < a(u , v)+<i )» / v>=<f ,v> V v e V , 

L <f,u>=0 V^fiW^ 

and setting 

(1.26) b(v , ^ ) = < \ ^ , v > , v e V , v ^ e W c v ,
/ 

problem (1.25) is of the form (1.1). We note also that from (1.26) we have, 
in this case, B'=I (identity), so (1.6) is automatically satisfied; moreover 
we have obviously 
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(1 . 2 7 ) Z=ker ( B ) = V Q R 

and then, since a(u,v) is V -elliptic, corollary 1.1 is immediatelly appli­
cable . 

Exemples.- We shall report here only a few exemples, related to the appli­
cations of the hybrid methods by Pian and Tong to plate bending problem (Di-

2 
richlet problem for the biharmonic operator A ).. The field of application 
of the theory is>fcfuite large; for further examples of applications and for 
all the details we shall refer to others papers (i.e. Pian-Tong J25J , 3rez-
z i C 5 J ' [fcJ ' F * d e Veubeke \5[ t Raviart-Thomas [ 2 ? ] , Thomas t Brezzi-Ka-
rini 9 etc.) which have suggested the abstract theory which is presen­
ted here. 
Example 1.1.- Let us consider the problem; 

(1.28) [ a 2 w = P i n 

2 
where ft is a convex polygon, p(x,y) an element of L (ft) and n is the out­
ward normal direction to 3ft. We apply to Lhis problem the first hybrid me­
thod ("assumed stresses hybrid method") by Pian and Tong j§£j . For this let 
us consider, for any given decomposition of ft into polygonal subdomains ft 
(i=1,...,N), the spaces 
(1.29) F={ V£(L 2(ft)) 3; v_ +2v o +v *L2(ft.) (i=1 , ...,N)}, 

(1.30) V={veF; v ^ ^ ^ ^ in fll (i-1 N) }, 

(1.31) W«{^tH*(n); A2vf=0 in aL (i=1 ,. . . ,N) }, 

and let f be an element of F such that : 

( 1 - 3 2 ) f i , x x + 2 f 2 , x y + f 3 , y y - P i n °i N ) • 

Finally we consider the bilinear form b(v,v̂ )) defined on VXW ky : 

(1.33) b ( v ^ ) - i j | ( v ^ / X X + 2 v 2 ^ x y + v 3 ^ y y ) d x d y - j (vj / X X + 2 v 2 / X y + V 3 / y y ) f d x d y 

[fli fii 
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Setting now,for every u,v in F^ 

(1.34) Lu/V] = u
x

 V l + 2 U 2 V 2 + U 3 V 3 ) dxdy/ 

we define {a (u, v ) = [u,vj , u,veV, 

L(v)=-[f,v] , v « V , 

T(^>)=-b(f , ^ £ W , 

and we introduce the norms: 

(1.36) I M | 2 = r v ' v l ' v e V , 
V J 

(I-") | | f f X X | t ^ ( n ) + 2 l l^xyl (,) + ! If,yyl i L 2 (.)< f e W " 

Then by corollary 1.1 the problem 

!

find (u,f) in VXW such that". 

a(u,v) +b (v,t)«L(v) V v e V , 

b(u,^)=T(^) V^>eW, 

has a unique solution. It can be shown (see Brezzi-Marini \%~\) that the 
solution (u,^) of (1.38) is related to the solution w of (1.28) by; 

(1.39) ( w ' x x ' w ' x y ' w ' y y ) = u + f i n a 

N 
(1.40) (w,w, x,w, y) = (4,,^,x,,|,,y) on Z = U 3n ±. 

Example 1.2.- We want to apply now to problem (1.28) the second hybrid me­
thod T'assumed displacements hybrid method") by Pian and Tong 1B5J ; for this 
we consider, for any given decomposition of f< into polygonal subdomains 
fl^ (i=1,...,N), the spaces: 

(1.41) V = { v | v ] T H 2 (n ±) , v=|^=0 on 9 n } , 

(1.42) W = { M | M € ( L 8 ( ^ \\ +M -Oi^. (i=1,...,N)}, 
' V* 3,yy 



- 11 -

We define the bilinear form b(v,M ) on V;*W by 

( 1 . 4 4 ) b(V,M ) = Z J ( v , x x M / )
 + 2 v , x y M ^ + v ' y y M 3 ) clxdy 

1 8 = 1 "i 
and then we define : 

(1-45) W={M lM.€W o, b(v,M )=0 V v e H^(Q)}. 

Using Southwell stress functions U,V, def/Acd Wy 

( 1 . 4 6 ) M 1 - v , y , M v - i, (v, x +u, y), M 3 = u , x , 

(cfr. F. de Veubeke-Zienjk iewicz |j6j), W can be characterized as the set of 
M in W 0 such that u

n ~ U v
x

+ V v y a n d u
t
= ' " V v x " f U v y ( v ^ c o s n ^ , ' v y=cosn iy) are 

''continuous*across the interelement boundaries 

In fact setting ( s e e e.g.Fide Veubeke J 5 ] ) . 

b(v,M ) can be written formally as: 

b(v,M ( M ^ ^ H - Q ^ d a -

( 1 , 4 8 ) N f 9 3u a 

-£.] (Mn3lT as~ a¥ , d ai / 

and formula (1.48) caabe justified from a mathematical point of view a s a 
pairing between spaces of the type H^£(3fl.) ^ ^ (for f~ and ~ ) , and their 

x 6 n q s 
duals. 
Let finally f e(L 2(fl)) 3 be such that 

< 1- 4 9> f l , x x + 2 f
2 , x y + f 3 , y y = P i n " < K ^ , 

(*) For the definitions and the properties of Sobolew spaces HS(ft) and 

H S ( r ) we refer to Lions-Magenes . 
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and let, for all v in V, 

(1.50) * < v > - £ j ( v , x x f 1 + 2 v , x y f 2 + v , y y f 3 ) d , d y 

°i 
we define 

N (• 
(1.51) a(u,v) = 2 ; j ( u , x x v , x x + 2 H x y v , x y + u , y y v , y v ) d x d y u,veV, 

1 _ °i 

If V and W are equipped with the norms 

, , , 2 N 2 ^ ) 2 N % 

d.«) M»llv-^IMI,. 0 l , "I" H ^ 1 " 1 ' ^ 
it is easily proved that the conditions of corollary 1.1 are satisfied. 
Then the problem 

ifind (u,M )e VxW such that; 

a(u,v)+b(v,M ) = F(v) V v e V y 

b(u,M )=0 V M 6 W, 

has a unique solution. It can also be verified-that,if w is the solution of 
(1.28) and (u,M ) is the solution of (1.53), then: 

(1.50 w=u, 

(1.55) (w ,w ,w )=-M +f. 1 v xx' xy' yy' 

3 
( ) Such notations are classical; see e.g. Ciarlet-Raviart [g] , jjo] , 

Strang-Fix J3tJ . 
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2.- APPROXIMATION 

Let now and be closed subspaces of V and W respectively. We substi^ 
tute to problem (1.1) the "approximated problem": 

!

£ind (kft,*h^ i£ V h X W h s u c h that: 

a ( u h / v h ) + b ( v h # ^ h ) = < f ,vh> V v h £ V , 

b ( u h ^ h ) = < g ^ h > Vif h f t W h . 

We want now, at first bo find sufficient conditions on V u and W, in order that 
' n n 

(2.1) has a unique solution, and, after that>evaluate the distance between 
the "approximate solution" (u^/^) °^ (2.1) and the"exact solution" (u,^) of 
(1.1). 

First of all we suppose that the following hypothesis is satisfied. 

H1.- There exists a positive constant k^ such that• 

b(v h,f h) 
(2-2) g U P/nW. i | > khl \%\I V ? h € V 

W { 0 ) ; t l v h l l 
We define now ; 
<2-3> V < v h l v h € V b ( W = ° V W , 
and we remark that, in general, Z ^ ^ Z . Therefore we need also the following 
hypothesis. 
H2.- There exist, two positive constants and such that ; 

( 2 , 4 ) !7 ^ . " T T T T ^ I lvhl I V v h e V W { 0 } H uhll 
a(u h,v h) 

( 2 - 5 ) ! 7 rm II II > Y h l ' U h l 1 V U h 6 Z h * v hez h-{0} ||v h|| 

Let p h be the projection operator from VxW onto Vj^W^' identifying V^xW^ with 
a closed subspace of V ' X W we can define the projection operator from 
V'XW onto V£xW£. Let now A h: vi-X wh-* Vh x Wh b e d e f i n e d b ¥ : 

<2'6> V vh'fh>^h A< vh'fh> ^ v h e V W 
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It is clear that the solution (u^/^) of (2.1) (if it exists) is such 
that 

(2.7) A h ( u h ' * h ) = p h ( f ' g ) 

Therefore the following proposition gives an answer to our first question 
about existence and uniqueness of the solution of (2.1). 

Proposition 2.1.- Under the hypotheses H1 and H2 the operator A^p^A is an 
isomorphism between V^cW^ and V^XW^; moreover we have; 

(2.8) | |A~X I |«M(a,y h,k h) y 

(2.9) | | (A^)" 1 | k M(a,Y£,k h>, 

where M(a,y^ ,k^) is always expressed by (1.12). 
The proof is immediate by theorem 1.1 and proposition 1.1. 
We can now prove the following theorem. 

Theorem 2.1 Under the hypotheses H1 and H2, for every pair (f ,g) in V ' X W 
let 
(2.10) ( u ^ ) ^ " 1 (f ,g) , 

(2.11) ( u
h ^ h ) = A h l p h ( f ' g ) • 

Then we have: 

( 2 . 1 2 ) | | u - u h | | + l l * - * h | k a h ( l n f | | u - v h | | + I n f , | | * - f h \ \ ) , 
V V h f h e w h 

where 

( 2 . 1 3 ) a h = M ( a , Y n ^ h ) ( a + 0 ) + 1 . 

Proof.- First of all, we remark that ; f rom ( 2 . 6 ) , ( 2 . 1 0 ) , ( 2 . 1 1 ) , we have for 
every .(w h , x h > in V h X W h ' . 

( 2 . 1 4 ) < A h ( u h , * h , ' / ( w h ' X h ) > = < f ' w h > + < g ' x h > = < A ( u ' * ) ' ( wh'Xh } > ' 

So if ( v
h/^) is any other pair in V h X W h w e h a v e • 

( 2 . 1 5 ) <A h<V' vh'*h~¥h ) ' ( w
h ' X h ) > = < A ( u " v h ' * " ^ h ) ' ( w h ' * h ) : > 

Then by ( 2 . 9 ) and corollary 0;1 (part 111)=?!)) we have 
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(2-16) | | u h - v h | | + | | * h - P h | \<c\ |A| | <| [ u - v j | + | | * - f h | | ) 

with c=|| (A^) 1 | |^M(ot ,Y^,k h) . On the other hand it is immediate to verify 
that 
(2.17) | |A| |«a+B; 

hence from (2.16),(2.17) we get 

(2.18) | |u-u h| |+| |t-* h| |<[c(a+B)+l] (| I u~ v
hI I+I I«"fhI I> 

for every (v^/f^) i n V H * W h ' a n d t h e r e s u l t follows immediatelly. 

Corollary 2.1.- Suppose that HI holds and that there exists a constant 6 H > 0 

such that 

(2.19) ^ h ' V ^ h l lvhl I' V W 

then A. is an isomorphism f rom \ f x V ontoV'xW,'. Moreover Icf every p a i r (f , g ) i n V\-V." 
n ^ ^ h h • h h - - " 1 * 

if (u,i^)=A~ (f,g) an^ (u h,^ h) ̂ " ^ ^ ( f ,g) ;theji: 

(2.20) | |u-uj | + | |*-« h| |«o h(Inf | |u-v. | |+Inf | l*-Yv,l I >̂  

with 7 h=M(a /<$ h/ k
h) (a+B) +1 * 

The proof is immediate. 

Remark 2.1.- Suppose for instance that a(u#v) is Z-elliptic and that,for sim 
plicity, g=0. 
Then the first element u of the solution of (1.1) can be ckaracterized as 
the solution of : 

(2-.21) fa(u,v)s<f,v> VveZ, 

Suppose now that and are closed subspaces of V and W ;such that K1 is 
verified ;and let again be the space 

zh- { vhlVV b ( v h ' V ° vfh*V-
If a(u,v) is elliptic then the first element of the solution of (2.1) 
can be presented as the solution of: 

(2.22) f a ( u h ' v h ) = < f ̂ h* ^ V 2 h ' 
n K 



- 16 -

Since Z, (2.22) can be regarded as an approximation of (2.21) by "non-con 
forming elements" (see e. g. DWl̂ DM] CSil) ; therefore given ZcV, a(u,v) and 
f ^ V , and given a closed subspace Z^cV, the existence of W, W^, b(v,y?) such 
that the hypotheses of corollary 1.1 are satisfied,constitutes some kind of 
"abstract patch-test" for the elements of (see also, in the case of the 

elasticity and plate bending problems ,f.de Veubeke [l|[; also important in 
this contest are the papers by Raviart-Thomas J2<£j and Thomas \*&\) . 

Example 2.1 We return to the situation of the example 1.1, and we suppo­
se, for sake of simplicity, that is the square "10 , l f"x 1 0 , i\and thatfl. 

mm A/a A — ^ 

are also squares of lenght h=£N . Let K be the unit square]Jo,1 [xj0,1 [ 
and let ^ b e a finite dimensional space of smooth vectors functions 
( v i ; v 2 / v 3 ) defined on K and self-equilibrating, in the sense that 

A A A A v v +2v v +v =0 on K; i,xx 2/xy z ,yy 
A A A 

let P w be a finite dimensional space of smooth functions \̂  defined on K 
and such that Aa2=0 i n K. For each ft. let F. be the'affine 1 inversible tran 

A 1 1 A /s 
sformation that maps K on ft. and let P.. . , P T T . the images of P.7 and P T 1 

1 V,l W, 1 V w 
(resp.) through F^. We consider now the spaces 

V { v h l v h e v ' vh|n±
fiPv,i ( i = 1 N ) } 

V « f h l V w ' Yh|0i
6Pw,i ( i = 1 N ) } 

It'can be verified (cfr. Brezzi [5"J , Brezzi-Marini [8*1) that if P and 
A • ' * V 
P w verify the following hypothesis: 

Sup(fv^ x x+2v 2$; +v 5 dxdy) | |v| I" 1

 A 

a J v * p v 4 (L Z(K)f 2,K 
H1 K v * 

I A A A 

/ for all in P , with x>0^ 

then and W^ satisfy hypothesis H1 with constant k ^ > A > 0 , A independent of h. 
Since, obviously, i n this case 

.-Ti-1 
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for every decomposition, then the constant which appears in ( 2 . 1 2 ) , is 
in fact independent of h. We remark that in practice, since the value of\£ 
in K is depending only on the values of $ and ̂  on *K, P T T will be chosen 

» on £ ̂  w 
as a space of biharmonic functions such that \̂  and are polynomials of 
assigned degree on 3K. Of course we ignore the value of \g at the interior 
of £, but this is not a difficulty since we can use sistematically, for the 
computations. Green's formula 

A A 

where 
/ A A 2 ^ A A 2 
I Mn = vi v x + 2 v2 v x V v3 v y ' 
I ^ , 2 2 , A A J M =v v *v + (v ~v )v -v v v / J nt l x vy v v y x' 2 3 x Y 
\ A A A A Q = (v ) v + (v +v ) v # w n v i,x 2,y' vx v 2,x 3,y' y' 

v v = cosnx , v =cosny, \ x y 
A A A A A 

valid whenevever v is sufficiently smooth and v v+2v v +v ..=0 on K. 
1,xx 2/Xy 3 ,yy 

For further details we refer to Brezzi [5] and Brezzi-Marini • 

Example 2.2.- We return now to the situation of the example 1.2, and we sup­
pose again that ft and all the ft. are squares, as in example 2.1. Let K be 

A 1 

the unit square and let P be a finite dimensional linear space of smooth 
A 

functions and P w a finite dimensional linear space of smooth self equili-
" A «N A 

brating vectors of the type M ! S S( vp/ x x/^/ Xy^^yy)•• W e define , for each i 
(i=1,...,N) P v i and P 7̂ ̂  as the images of P v and P^ through the "affine'1 

inversible transformation which maps K on ft^. We consider the spaces: 

V h={v| v^V, V| € P v ^ ± (i=1 , . .. ,N) }, 

W ^ M |M€W, M | 0 * P w # i (i-1,..-.,N)}. 

Suppose that P v and P w verify hypothesis 

There exists a constant *h>0 such that 

Hi J ^ . { 0 }

! W ll!j^'xxixx + 2°'xyf xy+^yy^yy ) d x dy^l^2,;, 
^for_all ( i x x , i x y , i y y ) in V 
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Then we can prove that H1 is satisfied with constant 1<.^>A>0, A independent 
of h. The chiefest*difficulty is now, in the particular cases, to prove 
that a(u,v) defined by (1.51), is Z^-elliptic (where is always defined 
by (2.3)) with constant independent of h. If this is the case, then we 
get that the constant (r^ w h i c h appears in (2.20) is in fact independent of 
h. The verification of fn can, also in this case, be easily performed using 

^( 1.44); (1 .47), (1 . 4 8 ) , if we know the value of 0 and V on 7>K. F. de Veube-
ke has shown (cfr. [15"]) that in this case Z, is in fact a space of non con-
forming approximations of HQ(.0.) and that we can find in this way all the 
classical non conforming elements for the biharmonic problem (see f 3 0 3 , f 3 l ] , 
[21]); for further details we refer to F. de Veubeke ["15]; in a forthcoming 
paper we shall treat this case from a mathematical point of view. 
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3.- FURTHER CONSIDERATIONS 

In many applications, the exact computation of a ( u h ' v h ^ ' ^^ Vh / V^h^' 
<f / V ^ > /<g,^fj1> which appear in the approximated problem (2.1) is rather 
difficult or, in some case, impossible. Therefore some kind of numerical 
integration (see e.g. Strang-Fix J | f J , Ciarlet-Raviart fioj) ^ s needed in or­
der to solve numerically problem (2.1). We shall shown that the classical 
results about the use of numerical integration for variational problems 
and for variational inequalities can be easily extended-'to our case. 
For this, let a ^ ( u h ' v h ^ a n < ^ ^h^h'^h^ ke (continuous) bilinear forms on 
V h x V h a n c ^ o n V h * W h r e s P e c t : ' - v e l y ' suppose moreover that f^ and g^ are (con­
tinuous) linear functionals on and W^ resp.,and consider the problem: 

i'^find in V h * W h such that : 

We suppose that the following hypotheses are satisfied: 

H1 ) There exists a positive constant k^ such that: 
s ^ f o J i v h i i " l b h ( v h ' V > k h i ^ h H v f h f t W h -vv ( 0 } 

H2*) There exist two positive constants y * and ~ £ such that: 

S u ? I I ^ N " \ < v V ^ h N v h M v V z h ' 
W { 0 } 

*u* r o MVfVvV^hlKM v v z*- , 
r c h 

where, of course, 2^ is defined by; 

< 3- 2> z h = ^ h l v h e V h ' V v h ' V - o V V V -
Then, always from theorem 1.1 we get 

Proposition 3.1.- Under the hypotheses H1 and H2 , for all (f h*9 h) i n 

V h * W h , P r o b l e m (3.1) has a unique solution. 
We want now to evaluate the distance between ( u ^ / ^ ) / solution of (3.1), and 
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(u , i | , ) , solution of ( 1 . 1 ) . For this we define at first the operator 
A h s W VA*WA b * : 

( 3 . 3 ) < 

I for all (v h,f h) and (w h,x h) i n v
n * W h • 

Let now (u h , i ^ ) be the solution of (2 .1 ) and let 

( 3 . 4 ) a * - S u p , J I « h i r l||v h||" la h < V V h ) . 

From proposition 1.1 we get that there exists a (^'f^^h^^h s u c ^ t h a t : 

( 3 < 5 ) i i «h-^u + i i*h-*hi i< 

^M(a* , 7 j*kJ)<A* h(u h-uJ, t h-*;) , (v h,^)> (|| v h| | + | |fh| | r 1 . 

Moreover we have 

^ W - V ^ h * ' ( vh'fh > > - < ( A h - A h } (uh'*h>' <vh'fhJ> + 

( 3 . 6 ) 

+ < f - f h , v h > + < g - g h , f h > , 

and also : 

< A"VK'*h )' ( vh'Vh>H^K < ^'V" a {- uh 'V | + 

( 3 . 7 ) 

+ | b h ( v h ^ h ^ b { v h ' * h ) | + | b h ( U h ^ h ) - b ( u h ' ^ h ) ' 

Setting now ; 

^ = S U S' r m M v h i r l | < f ' f h ' V | ' 
v h e V { 0 } 

C\ = sup i ifj f M^-vfhH' 
f h € V { 0 } ' 

v & V SufF ^J^hH" 1 | a ( uh'V" ah ( uh'V|' 
VS5 / J 'ftl r l | b ( v f h > - V v f t > | ' 
fh6Wh-{0} 1 
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^ n ) = v S * V _ { 0 }
 1 | vhi T1 | b ( v h , * h ) - b h ( v h ^ h ) | , 

h h 

we have from (3 . 5) , (3 . 6) , (3 . 7), that: 

(3.8) I | u h-u* | l+l I V * h l l«M(«* Y * ^ £ ) ^ + ^ ^ h ) + ^ ( u h ) + ^ r ^ h ) } -

Therefore we can conclude with the following theorem. 

Theorem 3.1." If . hypotheses H1* , H2* are satisfied and if (u£,\(;*) and 
(u y4;)are the solutions of (3.1) and (1.1) respectively, we have: 

I |u-u£| |+| |«| |u-u h| | + | | * - * h l | + 

+M(a*,y*,k h) ( ^ ( A ^ ^ K I |u h| | + | | ^ | |-)) , 

where (u h,« h) is the solution of (2 .1 ) and where v/l 3 / are defined by '. 

= sup A ( w ) | |w h| I"1 

w h € V h - { 0 } 

ft- Sup 53(w )||w i f 1 

w h € V h-{0} 

tf« sup 7iTfh)iifhir l. 
f h6W h-{0} ' n l h 

The proof follows immediatelly from (3 .8 ) and the triangular inequality. 

Remark 3 . 1 . - As in corollary%A, hypothesis H2*«ftbe substituted, in the applications, 
by the Z h-ellipticity, i.e. there exists a positive constant $*a such that 

V v h ' V « h l l v * J I 2 V v h £ V h • 

Remark 3.2.- In the applications the fact that Z ^ Z is sometimes a difficulty. 
Then, it can Happens that a choice of a "greater" W^ is needed, in order to 
have Zh<£Z. This cannot, in general, be obtained unless W ^ W ; therefore it is 
of some interest to consider the case of an*external approximation'of W. 
We shall give, in the following, some idea of the general case, but we refer 
for more precise results,in a large class of examples^to the papers by Raviart-
-Thomas § ^ and Thomas which contain the best treatement of the question 
from a mathematical point of view. On the other hand, from anumencat point 
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of view, it is recommended to refer to the works by F.deVeubeke and his associated* (cf r. e.c. 
fr&l;D3l,[4*G ttZl ) w h o h a v e developed the theory of "strongly diffu­
sive*' elements, which is the most important case of application of the ab­
stract situation described above. 

We suppose then that another real Hilbert space, H, is given, such that 

(3.9) W C H 

with continuous injection. We suppose that W is dense in H and so we can iden 
tify H 1 with a dense subspace of W 1 . Let now be a closed subspace of V 
and W h a closed subspace of H, such that 

(3.10) B ( V ^ £ K ^ 

and that, for all v h in V h , if 

H , < B v h ' V H
= o V l f h e W h , 

then ; 

K 1 H 
We consider now the following approximation of problem (1.1). 

(Find (u h , l j r h ) in VjXW h such that: 

^ a ^ h ' v h ) + < B v h , V r = < f ' v h > V v h 6 V h / 
,<Bu h/ f h>=<g,^ h> V ^ h £ W h , 

where, of course, g is supposed to belong to H 1 . We always suppose that hy­
pothesis H2 is satisfied and w;e substitute H1 with the following condition. 

ST) There exists a positive constant k^ such that: 

v hGV h-{0} H 

Then by H1, H2 and theorem 1.1 we get immediatelly that problem (3.11) has 
a unique solution. In order to evaluate the distance between (u,y) and 
(u^,^) we define at first the space \T in tthe following way: 

\f ={v|veV, Bve H' }, 

and we reamrk that V^lT"from (3.10) ;and also u€*lT;since g is supposed in H' 
and (u,*) is the solution of (1.1). We define then *Ah: \J*W+ V^xW^ by: 

N !:TH,S *~ WI" ~ VHK-I . ^ . 0 } t t . w e , t n , r k i h t n U n u . t 
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(3 1*,) j ' V ^ f ^ V X h ^ ^ 

(_for all (v,v̂ ) in iTxW and ( w
h>X h) i n V h x W h ' 

Let now (v h#^ h) be a pair in Vj><W^; from 111,112 and the proposition 1.1 we 
get that there exists a ( W^ ,X^) i n V h X l W h s u c ^ t h a t : 

, < v V v h ' V ¥ k , ' ( w h ' X h , > » 
^M(a, Y',k h).(||w h|| +|| X h|| ) . ( I I ^ ^ I I + I I ^ - ^ H > , 

n n 
On the other hand we have; 

a-io <A" h(V vh'V^ )' ( wh'^h ) > = < Ih ( u- vh'^h )' ( wh v^^< ( w^ £ l{ xV 
Observing now that 

l<A h(v^) , (w h,x h)>|^a| |v||-||wh| | + ^ 

K i H M I +3| | v | | . | | x h | I 

where 

C^.*l?) 0> Sup | | v | I"1 I r < B v , V » . 
v«U-{0} 1 • H 

^ € W U W h - { 0 } 

we get from (3.15)/VI^Cl-J*).that: 

I |u-Uu| | + | | * - ? h | | <( (o+$)M(o,Yh,k h)+1) (Inf ||u-.vh|| + h h 
+ Inf | | * - y h | | ) . 

V W h H 

We can conclude with the following theorem. 

Theorem 3.2.- Under the hypotheses of corollary 1.1, if (3.9) , (3.10) and 
H1 are satisfied, for every (f,g) in V'XW 1 we have that,if (u,^) and (^h/*h) 
are the solutions of (1.1) and (3.11) respectivelly, then: 

I l u - Shl l + l l*"*hl U < ( ( a + 6 ) M ( a , Y w k h ) + D ( Inf ||u-vj|+ Inf I I *-Y\J I H> • 
v h 6 V h fh W h 

where B is given by (3.18). 
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