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INTRODUCTION

The present paper has been suggested by the recent development of the so
called "dual analysis"” and in particular of the method of Lagrangian mul-
tipliérs in elasticity problems; we shall refer for now only to a few pa-
pers, and in particular tol4 2]-[1).{],[2 4‘],[253,129]7 {2 3], ando to the refe-
rences contained in such papers; many other references, however, will be
given in the following. Although the equilibrium, hybrid and mixed methods
contained in the mentioned works are often gquite satisfactory from a nume-
rical point of vigw, a complete study of the convergence of these metnhcds
and of the behavb&r of the error has not been done until last years, and
however, only in some particular case (see e.g.ﬁﬂ]amd especially [1?2],]49] fo
the "mixed methods" and[E{Sfor the "assumed stresses hybrid method"; cther
references on this subject can be founded in£34]). The interest of these
methods, and in particular of hybrid methods has been increased by papers
[453,[291,[>2), in which the theory of "non conforming" (or "delinguent")
elements (see e.guI3°3ﬁ21], etc.) 1is presented as a "particular case" (in
some sense) of hybrid methods. On the other hand, a careful analysis, for
instance, of the work[ﬂﬂ]on the Stoke's equations shows that the greatest
difficulties in proving convergence and error bounds are connected with
the use of the method of Lagrangian multipliers itself, rather than with
the physical meaning of the problem. In this sense, the "general strategy"
employed in[ﬁi}and iJ:LSl ; in order to have convergence and error bounds
for discretizations of different problems is, in fact, quite similar.

These considerations have suggested the author to develop the present
"abstract theory"” about saddle-point problems. More .generally the problem
treated here is the following.

Find (u,vy) in VxW such that:
(P) a(u,v)+b(v,~{z)=<f,v> VVG.V/
b (u,p)=<g,p>Yyew,
where V,W are real Hilbert spaces, a(u,v) and b(v,f) are continuous bili-
near forms on VXV and VxW respectivélly and f,g are given functionals in
V' and W' resp.
In paragraph 1 we give necessary and sufficient conditicns on a(u,v)

and b(v,p) in order to have existence and unigueness of the sclution of

problem (P) for all given (f,g) in V'XW'. In paragraph 2 we introduce the



"approximate problem" .

( £ind (u_,y,) in V,XW_ such that:
) a(uh,vh)+b(vh,wh)=<f,vh> \7vhevh/

b(uy /) =<g:0> VipreW

(@here Vh and Wh are closed subspacés of Vand W resp), anéd we give, uncer

suitable assumptions, an upper bound for the "error":

- - ! -
'Eh"Hu dhll"'llw ‘PhH
The third paragraph is dedicated to further considerations concerning
merical integration" and "non conforming" approximation of W (that is

this latest topic has been suggested by the papers[?flfzzland can be applied
{(equilibrium models) by

"nu-

W AWy .
v*.hgé_u) ;

for instance to the "strongly diffusive" elements
F. de Veubeke.

Of course, the theoretical results given here, do not answer any cque-
stion related to the mentioned methods and in general to the problems in
which the method of Lagrangian multipliers is employed. In scme pafticg
lar cases the greatest difficulty will often be the verification of the ab-

stract hypotheses proposed here. It is reasonable, however, to thirk that the

knowledge ¢of a "winning strategy" will be, in any case, useful.
Some of the results of this paper were also reported in a previous note
(see [4]): I wish to thank Prof.J.L. Lions for présenting it to the C.R.’

Acad. Sc.. Thanks are also due to Prof. P.A. Raviart for their help in use-

ful personel conversations.



O.- PRELIMINARIES

Let X be a real Hilbert space; we denote by X' its dual space; if x'ég X!

and xe X the value of x' at the point x will be indicated by <x',x>. The

scalar product and the norm in X will be indicated by ( , ) and|]| || (resp.)
or by ( , )y and || l]X whenever confusion may rise. We denote also by J,
Riesz's "representation operator" from X' on to X, defined by

S

(T x',x)=<x',x> VxeX, x'eX'.
X

It is well known that JX is a norm preserving isomorphism from X' on_to X.
Let now Y be ancther real Hilbert space and let T be a continuous linear
operator from D(T) into Y. The domain D(T') of the dual operator is defi-
ned by!:

D(T')={y'|y'e Y',x»<y',Tx> 1s continuous on X}.
Then the dual operétor T' from D(T') into X' is defined by.:
<T'y' ,Xx>=<y"'Tx> Vxex, y'e D(T'). |
We want now to prove a theorem that will be useful in the following.

Theorem O.1.- Let X,Y be real Hilbert spaces; let 73(x,y) be a continuous

bilinear form on XxY¥ and let T be the continuous linear operator from X

into Y' associated to “00(x,y), defined by :

<TX,y>= /.G(x,y) VxeX,er.
For all k>0 the three following statements are eguivalent:

Q&x )
i) Sup ——ﬁ— il k| |y Yyey,

i) r'y] sk|ly]| Vyey,

-

iii) 3 S€£(Y',X) (1) such that TS=I (identity) on Y' and |1s!igk *.

(1) 1f Hl ang Hz are Hilbert spaces,:g(Hl,Hz) will be the space of all li-
near continuous operators from H, into H,,with the norm:
| [ sxl

isli=]s{l =Sup .
l (1, ,Hy) xeH -{0} |I¥



Proof.

i)&»ii) follows obviously from .

Sup —ﬂ—ﬁ(x’ = Sup Tx’m =[Im'y]|, Vyev.
xeX-{0} xeX-{0}

iii)=ii) follows obviously from the relations (y#0):
- 2
Gix,y) Bisayly.yy |yl
Sup ) 1 = 1 !
xex=(0} | [x|| ~[]sap y[] 1895 vl

-1 -1 -1 -1
st vl ek " [y vl =k
ii)=»iii). Let N=ker(T) the kernel of T; setting

N=(x|x eX, (x,£)=0 if T{=0},

2
T, =restriction of T to N

4
from ii) and the closed range theorem (cfr. e.g. Yosida B3] pag 205), we have
that T1is an isomorphism from N'L onto ¥', From i) we easily get that, for

qax )
Sup TT—+¥—;R Yil.
xeN={0} | [ %] vl

Then (see part i)&rii) of this proof) ||(T')-1][<k
and setting S= T "1 the proof is completed

all v in Y,

-1 -1 -1
l!\<k ,

; hence HT1 |

Corollary O.1.- Under the hypotheses of theorem 0.1 for all k ané k positi-

ve numbers the three following statements are equivalent:

T ix ~@
I k n T"—[‘F"‘ P2
) S}U{Lp{o}]—rx—]ﬁ{)-) “}'“ V}’cYa ijleJE{O} Y EI lxl i VX €X

11) | |Tx||3k||x|| Vxex and ||T'y]||2k||yY|| VyevY,

-1

III) T is an isomorphism from X onto Y"with IIT_lllsk and ||('I")"1[|\<}—<-1

Proof.- It is sufficient to apply theorem 0.1 to the form Ckx,y) and to
the form “G' (y,x)=6(x,y) (defined on YxX).

RemarX O.1.~- The results contained in theorem 0.1 and in corollary 0.1 are
of classical type and might not be new. For instance part I)="III) of co-
rollary 0.1 was used by Babuska [%].



1.=- EXISTENCE AND UNIQUENESS

Let now V. and W be real Hilbert spaces, and let a(u,v) and b(v,p) be
continuous bilinear forms on VxV and VxW respectively. For any giver pair
(f,g9) in V'XW' we consider the problem:

£ind (u,y) in VxW such that:
(1.1) a(u,v)+b(v,y)=<£f,v> YveV,
b(u,ke)=<g,‘€>. V?ew.

We remark that, if, for instance, a(u,v) is symmetric and V-elliptic, in the

sense that there exists a positive constant § such that
2
a(v,v)y §||v]| Vvey,

then problem 1.1 is equivalent to the researchof thé saddle point on VX W of
the functional

1:(V19)=%3(V,V)+b(v,?)-<f,v>-<g,v>.

We look now for (necessary and) sufficient conditions in order that for each
(f,9) in V'xW' problem (1.1) has a unique solution. In other words, if

Ac€ £(V,V') and Be o‘@(v ,W') are the operators associated to a(u,v) and b(v,\Q)
resp.,we search for (necessary and) sufficient conditionsin order that the
operator A:VXW-V'xW', defined by

(1.2) A(V,?)=(AV+B'?,BV),

results an isomorphism.

For this, first of all we introduce the space':
(1.3) 2=Ker (B)={v|veV, b(v,)=0 Vpen},

which is a closed subspace o0f V. Let Z' be the dual space of Z; Z' can be
identified with a closed subspace of V', conSisting of all feV' such that

(1.4) <f,v>=0 .if (v,w)=0 VY we 2.

Let us denote by #:V'+2Z the orthogonal projection from V' onto 2'. The clo-
sed subspace of V' consisting of all feV' such that =f=0 (polar set of Z)
will be indicated by 2°.

We can now prove the following theorem.
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THECREM 1.1.~ The operator A defined in (1.2) is an isomorphism from VXW onto

V'XW' iff the two following conditions are satisfied:

“(1.5) TA is an isomarphism from Z onto Z2',
(1.6) 4 k>0 such that IIB‘uesz[ |91 | Yen.

Proof.- Suppose that A is an isomorphism. Let us define, for all g in W',
-1
Soet=XF Sg as the first element of the pair A (0,g), that is:

(1.7) w=SgexJx eW, A(w,x)=(0,9).

We have from (1.2) and (1.7) that BS=I; since A is an isomorphism, SE.X%W',V)
and therefore, by theorem 0.1, (1.6) holds. We define now, for all £¢z',
Qf as the first element of the pair A-l(f,O), that is:

(1-8) w=Qf<=?3X€wr A(W,X)=(f,0).

Since,by the closed range theorem and (1.6), nB'f=O \V@ew, we get frcem (1.8)
and (1.2) that nAQf=nf=f. So 17AQ=I and then A is surjective. SupposSe now
that z e 2 and 1Az=0; then Az € z° and by (1.6) and by the closed range theo-
rem there exists a y in W such that B'y=-Az. So A(x,2)=(0,0) and then z=0.
Therefore A is also injective and, obviously, continuous; hence (1.5) aolds.
Suppose now, conversely, that (1.5) and (1.6)‘hold. From (1.6) and theoren

0.1 the problem

(1.9) A(u,yi=(f,9)

is equivalent the problem
(1.10) A (w,y)=(£~Au,0)

with u=w+u and BG=g; Hence A is an isomorphism from VXW onto V'XW' if Ao’
restriction of A to ZxW, is an isomorphism from ZXW onto V'X{0O};. Let now be
feV!, and let weZ be the unique sclution of rAw=xf, which existence follows
from (1.5). Since n (f-aw)=0 we have f-aw ¢ 2° and then from (1.6) there exists
a unique Yy in W such that B'y=-Aw+f; we have proved in this way that for each
fev' there exists a unique (w,y) € ZXW such that Ao(w,w)=(f,0). Then Ao is

a continuous one to one mapping and therefore an isomorphism.

The following proposition expresses the.norm of A_Iand (A - as function of
the constants related to A and B in theorem 1.1.

1 . s .
(") For sufficient conditions in order that A be an isomorphism, ina much
more general case,see[2]
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Proposition 1.1.- Suppose that A and B are such that (1.5) and (1.6) are

satisfied. Let us define
- A RE2N
Y= Sup l+%;%+i , Y'= Sup -
uez—-{0} ueZ~{0} '

(1.11) a=|[a[|=[|a*]],  s=|[B]|=]]|B"]

Then, setting

1

(1.12)  M{a,y, k) =max{ (y" 4k~ (1+ay 1)), (k" +ak™2) (1+ay " 1)},

we have !
(1.13) |iA"1l[<M(a,v,k),
(1.14) )™ M,y k),

Proof.~ Let (f,g) e V'xW' and let (u,w)=A-1(f,g), that is:
'bv=
(1.15) Au+RB'y=£f
Bu=g

From (1.6) and theorem O.1 there exists a w in V such that Bw=g and

(1.16) wlfsk™ | 5],

Setting now v=u-w we get,from (1.15),

(1.17) TAv=T £-1AwW,
and from (1.11),
(1.18) Ll <y el 4ol Twl ) s

sO we have:

(1,195 [lul <l vl T+ vl ey T E] 46T o et | ] g

Since from (1.15) we get
(1.20) LB wilsl [£]]+]Aaa] ||| £]{+a]]u]],

from (1.6) we obtain

-1 -1
(1.21)  Hyllsx “J£]]+k “al|u]],

and from (1.19) and (1.21) we havé (1.13); the proof of (1.14) can be per-

formed in a similar manner.
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Remark 1.1.~ It can be easﬁy verified that A is the operator associated
to the form

(1.22)  7B((u,p), (v,9))=a(u,v)+b (u,9) +b (v, ¥) .

So by corollary 0.1 with X=Y=VxXW, A is an isomorphism iff there exists

T,;>O such that vy
yeY

G (x Tx,y) -
(1.23)  Sup TT—ﬁl;xlm | (and  sup T-—-IJL— sT| x| |¥xeX,
xeX~-{0} ! 1% yE&Y~{0} AN ] 1¥ce

On the other hand it can be shown that condition (1.23) holds iff (1.5) and
{(1.6) hold. Then, this can be another way, which extends aﬁd generalizes the
idea of Babuska [4], in order to prove theorem 1.1.

The following corollary will be useful in the applications.

Corollary 1.1.- If a(u,v) is Z-elliptic and (1.6) holds, then A is an iso-
morphisn.

The proof is immediate.

Remark 1.2.- 1In many applications (see e.g. Raviart-Thomas §3] and Thomas[}Q])
we are led to the problem (1.1) by the_following procedure. Let Vo and V be
real Hilbert spaces, with VO closed subspace of V,_and let a(u,v) be a con-
tinuous bilinear form on VXV which is Vo-elliptic; we want to solve the pro-
blem:

(1.24) £ind u in Vo such that
a(u,v)=<f,v> VV'QVB

where f is a given element in V', For this we consider the space w=vg (polar
space of vo) which is a closed subspace of V'; problem (1.24) is now eguiva-
lent to:

find (u,y) in V W such that:
(1.25) a(u,v)+<y,v>=<f,v> Yvev,

<g,u>=0 VYypew,

and setting
(1.26) b(v,\e)=<\f,v> ;, VeV ,\eeW_C_:_V'I
problem (1.25) is of the form (1.1). We note also that from (1.26) we have,

in this case, B'=I (identity), so {1.6) is automatically satisfied; moreover
we have obviously



(1.27) z=ker (B)=V_ ,

and then, since a(u,v) is Vo-elliptic, corollary 1.1 is immediatelly appli-
cable.

Exemples.- We shall report here only a few exemples, related to the appli-
cations of the hybrid methods by Pian and Tong to plate bending problem (Di-
richlet problem for the biharmonic operator Az). The field of application

of the theory%ﬁ%ﬁ%ﬁite large; for further examples of applications and for
all the details we shall refer to others papers (i.é. Pian-Tong éé], Brez-
zi [57, [¢1, F. de Veubeke [5], Raviart-Thomas [24], Thomas S5, Brezzi-Ma-
rini [87, etc.) which have suggested the abstract theory which is presen-
ted here. '

Example 1.1.- Let us consider the problem:

2 _ .
(1.28) A w=sp 1in Q

/

=33=o on TI'=3q
on /

where 0 1s a convex polygon, p(x,y) an element of LZ(Q) and n is the out-
ward normal direction to 3. We apply to this problem the first hybrid me-
thod ("assumed stresses hybrid method") by Pian and Tong QQ. For this let
us consider, for any given decomposition of ¢ into polygonal subdomains &4
(i=1,...,N), the spaces

(1.29) P=(ve(L(R))3; v. __+2 2

T | = AT
1, XX Vz,xy+v3,yye“ (Qi) (i=1,...,N)},
(1.?0) vV={vel; v1,xx+2V2,xy+V3,yy=o in @4 (1=1,...,N)}}
. 2 2 . .
(1.31) W=xyeHo(Q); A\€=O in a (i=1,...,N)},

and let f be an element of F such that:

(1.32) £ +2f

L, XX 2,xy+f3,yy=p in Q. (i=1,...,N) .

1

Finally we consider the bilinear form b(v,?) defined on VxW by:
N

\ = 2 - ” o
(1.33) b(V,Q) éé% J (vlglxx+ vzley+v3@1yy)dxdy J (vl'Xx+2v2,xy+v3lyy)?cxdy

0
Qi &y
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Setting now, for every u,v in F
’

(1.34) [u,v]=fu1vl+2u2v2+u3v3)dxdy,
Q
we define

a(u,v)=[u,v] , u,vev,
4.35) Lv)==[£,v] , vev,
T(“E)’:-b(fl‘e) 1] \(E—WI

and we introduce the norms:

(1.36) |1v]|2=[v,vj , VeV,
A%

(1.37) 101900 o= 11, sl 122 () #2119 g 122 () ¥ 10,y 12 ()¢ ©EW-

Then by corollary 1.1 the problem
find (u,y) in wa such that:
(1.38) < a(u,v)+b(v,p)=L(v) Yvev,
blup)=T(p) Vyew,

has a unigue solution. It can be shown (see Brezzi-Marini [3]) that the
solution (u,y) of (1.38) is related to the solution w of (1.28) by

(1.39) W, y)=u+f in @

(w'xx'w’xy y

N
(1.40) (w,w,x.w,y)=(\p,w,x,w,y) on 2 ='L=J1' R

Example 1.2.~ We want to apply now to problem (1.28) the second hybrid me-
thod ("assumed displacements hybrid method") by Pian and Tong @ﬂ; for this
we consider, for any given decomposition of @ into polygonal subdomains

ni {(i=1,...,N), the spaces:

N
(1.41) v={vlv TTH* (a,), v=2¥=0 on aq},

(1.42) WﬂMlMg(L’(ﬂﬂ”}Mﬂ M eM 0iey (151,
| by By
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4.43)  Wy={M|MeW M=9,, 'Mz"ﬁy yHa= Py, cach O, pe V]

We define the bilinear form b(v,M ) on Vx% by
N

(1.44) b(v,M )=£1J(V’xx M4 +2V,XYM2 .+v,yyM3) dx dy
=17
L
and then we define:
(1.45) WM IM.€W_, biv,M )=o'VveHé(n)}.

Using Southwell stress functions U,V,deﬂﬁed by

- - L | -
(1.46) Mo=v,, , M= v, w00, My=u,
(cfr.Ff de Veubeke~Zienk iewicz B@]), W can be characterized as the set of
M in W, such that Un=va+Vvy and Ut=-va+va (vx=cosn

X,y = .
) ! ' vy cosnly) are
continuous across the interelement boundaries ani.

1

In fact setting (see e.g.fde Veubeke HS]).

aUt aUn dw 1
(1.47) M= 55 r Miemrem 55 0 Q5 35 ¢ uS E(V’X—U’y)'

b(v,M ) can be written formally as:

N
_ 3V IV _ =
b(v,M )—;§1J (Mnaa +Mnt§§ an)doi
]
i

Q
(1.48) ﬁ% - aUn
-1=1£Q Myim ~ 75 39 4,
i

and formula (1.48) canbe justified from a mathematical point of view as a

q 1 - A
pairing between spaces of the type H&(ani) (*) (for %% and %%),and their
duals.

Let finally f e (L2 (2))° be such that

(1.49) fl,Xx+2f2,xy+f3,yy=p in eadxgi ,

(1) For the definitions and the properties of Sobolew spacés HS(Q) and
HS(P) we refer to Lions-Magenes @i}.
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and let, for all v in Vv,

N
F(v)=;§%J (V’xxf1+zv’xyf2+v'yyf3)dxdy

(1.50)
94
we define
N
(1.51) a(u,V)=iZ%J (u,xxv,xx+2%xyv,xy+u,yyv,yy)dxdy u,vev,
Q

i

If V and W are equipped with the norms

3
, N , ) 2 E%
1.52 - L
(1.52) ally=Z HvIl, o, 11 i=1”MH(L‘(nJ)3

it is easily proved that the conditions of corollary 1.1 are satisfied.

2

Then the problem
Find (u,ﬁ')e VxW such that:

(1.53) a(u,v)+b(v,M )=F(v) Vvev

b(u,M)=0 VM ew,
has a unigue solution. It can also be verified that,if w is the solution of

(1.28) and (u,M ) is the solution of (1.53), then:

(1.54) w=u

(1.55) (wxx’wxv'wvv)=-M +£.

(}) Such notations are classical; see e.g. Ciarlet-Raviart [3], Qo],

Strang-Fix [A1].
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2.~ APPROXIMATION

Let now Vh and Wh be closed subspaces of V and W respéctively. We substi
tute to problem (1.1) the "approximated problem":

find (U, ,¥y) in V,XW_ such that:

(2.1) a(uy ,vp) +b (v g ) =<f, vy > Vvhe_vH
b(uy Ap) =<9 > Yy ew,

We want now,atfhxt, to £find sufficient conditions on Vi and Wh in order that
(2.1) has a unigue solution, and, after that trevaluate the distance between
the "approximate solution" (u,,yy) of (2.1) and the'exact solution" (u,y) of
(1.1).

First of all we suppose that the following hypothesis is satisfied.

H1.~- There exists ‘a positive constant kh such that:

(2.2) . Sup

)

> ky [, V*()hewh.
We define now.

(2.3) 2, ={vy | VeV, blvy, %) =0 Vo ew }

and we remark that, in general, Zhgiz. Therefore we need also the fcllowing

hypothesis.
H2.- There exist two positive constants Yn and yﬁ such that ;
a(u,,v.)
(2.4) Sup ———5——2—;y'|[v | ] Yv.ez, ,
wez {0} [Ju || ™ B h™"h
h™ “h h
s a(uh,vh)
(2.5) Sup ————————;thluhll‘Vuhezh.

vhezh-{o} Ilvh[|

Let Py be the projection operator from VXW onto Vﬁ<wh; identifylng VAxWﬁ with
a closed subspace of V'XW' we can define the projection operator pﬂ from

' ' [ ' . [ 4 o F S .
V'XW' onto thwh. Let now Ah.vixWHavhxwh be defined by:

(2.6) My Vo Pr) = fA (v Pp) VvV, Wy
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It is clear that the solution (uh,wh) of (2.1) (if 1t exists) is such
that

(2.7) Ay (U r9p) =0y, (£,9)

Therefore the following proposition gives an answer to our first guestion

about existence and unigqueness of the solution of (2.1).

Proposition 2.1.- Under the hypotheses H1 and H2 the operator Ah;pﬂh is an
isomorphism between VH&Wh and Vgxw‘; moreovar we have:

(2.8) |1agh ] Moy, ky),
(2.9) !I(Aﬁ)'1[l<M(a,vﬁ,khL

where M(u,yh,kh) is always expressed by (1.12).

The proof is immediate by theorem 1.1 and proposition 1.1.
We can now prove the following theorem.

Theorem 2.1.- Under the hypotheses H1 and H2, for evéry pair (f,9) in V'XW'
let

(2.10) (w,p)=2"t(£,9),

-1
(2°11) (Uhr\Uh):Ah pﬁ(flg)'

Then we have:

(2.12)  [lu=u [ |+] [v=yp | |gop (Inf  [fu=v, | [+Inf | [y=G |1,
VHEVY Pre Wy

where |

(2.13) oh=M(a,Yﬁ:kh)(a+B)+1—

Proof.- First of al;,we remark thatlfrom (2.6), (2.10), (2.11X,we have for
‘every (wh'xh) in V,XW 1

(2.14) <Ah(uh,wh),(wh,xh)>=<f,wh>+<g,xh>=<A(u,w),(wh,xh)>.

So if (vh,?h) is any other pair in VX W, we have !

(2.15) <Ah<uh-vhlwh-‘€h) ' (Whlxh) >=<A (u-vhlw-(Ph) v (Whl)(h) >

Then by (2.9) and corollary 0:1 (part III)=I)) we have
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(2.16) [ lu v [+ [op=fpul lsel A1 fumvy [+ Te=@ 1 D)

with'c=||(AA)-1]|<M(a,yﬁ,kh). On the other hand it is immediate to verify
that

(2.17) | |A]|<ca+B:

hence from (2.16),(2.17) we get
(2.18) | Jumuy | [+[ fyv=wy | < [etats) +1] (] Ju=vy [ [+] [s-, | D

for every (vh,Vh) in vwa , and the result follows immediatelly.

Corollarv 2.1.- Suppose that H? holds and that there exists a constant 5h>O
such that

2
(2.19) a(vy v s, vl Vvpezys

then Ay is an isomorphism from‘ixkagﬂg%k%;,Momowg&revery pair (£,g) in V%eW!'

Lf (u,)=A"'(£,9) and (u ,v,)=r;'p) (£,9) then:

(2.20) {[u—uh[|+[]w-wh||55£(1nf | Ju=v, [[+InE ||v=-%,]1]),
vhth hewh
with ?h=n(a,eh,kh)(a+a>+1.

The proof is immediate.

Remark 2.1.- Suppose for instance that a(u,v) is Z-elliptic and that,for sim
plicity, g=0.

Then the first element u of the solution of (1.1) can be ckaracterized as
the sclution of:

p
(2 21) a(u,v)=<f,v> VveZ,

weZz., '
Suppose now that Vh and Wh are closed subspaces of V and W,such that H1 is

verified and let again Z_ be the space

h
zh={vh|vhc—.vh, b(vh,\(h)=0 V\ehéwh}.

If a(u,v) is zh elliptic then the first element Uy of the solution of (2.1)
can be presented as the solution of:

‘(2.22) a(uh,vh)=<f,vh> Vvhezh,
w, eZ .
n - h
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Since ZgZZ: (2.22) can be req;arded as an approximation of (2.21) by "non-con
forming elements" (see e. g.qulyw] @o] [3ﬂ)- therefore given 2gV, a(u,v) and

feV', and given a closed subspace Z cV, the existence of W, W b(v,p) such
h ‘ 4

Lll
that the hypotheses of corollary 1.1 are satlsfledvconstltutes some kind of
"abstract patch-test" for the elements of Zh (see also, in the case of the
elasticity and plate bending problems,f de Veubeke [ﬁﬂ; also important in

this cortest are the papers by Raviart-Thomas [¥] and Thomas [33])

Example 2.1.~ We return to the situation of the example 1.1, and we suppo-
se, for sake of simplicity, that 0 is the square ]O 1[}<]O zLFnd thatfl
" Let X be the unit square]0,1{x]0,1[

and let ﬁbbe a finite dimensional space of smooth vectors function

are also squares of lenght h=iN

(G ,G-,G ) defined on K and self-equilibrating, in the sense that
1772773

+29 +v 0 K
v \Y% v = on M
1,XX T 2,XY 3,YY !

let Pw be a finite dlmensional space of smooth functlonS\Q defined on K
and such that A%P—O in K. For each Qi let F be the "affine’ 1nversxole tran

sformation that maps K on a4 and let PV,i Pw_’:L the images of PV and Pw

(resp.) through Fi' We consider now the spaces

Vh={Vhth€V, (i=1,...,N)}

h[ni Py,4

W=l [ PheW, Wy 2,5 Pw,1 (i=1,...,N)}

. A
It ‘can be verified (cfr. Brezzi [§1, Brezzi-Marini [§1) that if P, and
N )

Pw verify the following hypothesis:

Sp([,\f\ _ ZAA A A y)llAH..l >,‘1Al
,\u v /] v f v 7 d}‘d v /A N
veD 10xx 2fxy 3(yy (Lz(ﬁ)?‘ { 2,K

A A A
for all Y in Pt with A>0

then Vh and Wh satisfy hypothesis H1 with constant k

Since, obviously, in this case

h>k>0,k independent of h.

u=yﬂ=1
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for every decomposition, then the constant N which appears in (2.12), iz
in fact independent of h. We remark that in practice, since the value of@

in K is deperiding only on the values of @ and %% on %%, ﬁw will be chosen
as a space of biharmonic functions such that Q and %% are polynomials of

assigned degree on 3K. Of course we ignore the value of g? at the interior
of ﬁ, but this is not a difficulty since we can use sistematically, for the
computations, Green's formula

A A A A A e ‘~ 3'\ A 3\3 A A
J(vlgxx+2v2gxy+v3!yy)dxdy= ,(Mn Fry +Mnt Ty -QﬁQ)dc,
K K
where
ﬁ =G vz+23 v,V +v vz,
n 1 X 2°Xy 3y
A ~ 2 2.N A
Mnt=v1v>¥vy+(Vy-\’x)vz_vavxvy’
A A ~ A
=V x Vo, g vtV x5yl vy
v~ cOsnx , vy=cosny,
valid whenevever 3 is sufficiently smooth and v +29 +v =0 on g.
1,XX 2,XYy 3,YY

For further details we refer to Brezzi {5] and Brezzi-Marini [g@.

Example 2.2.- We return now to the situation of the example 1.2, and we sup-
pose again that 9 and all the Qi are squares, as in example 2.1. Let ﬁ be

the unit sgquare and let § be a finite dimensional linear space of smooth

~ \"
functions and P a finite dimensional linear space of smooth self equili-
N ”~ ~ ~ A . .
brating vectors of the type M =(@'xx’?’xy’p'yy)‘ We define , for each i
(;f1,...,N) PV,i v

and ﬁw through the "affine"
inversible transformation Fi which maps R on Qi. We consider the spaces:

and P . as the images of P
‘h,l

v, ={v|vev, vlﬂfpvvi (1=1,...,N)},
wh={M [Mew, M ]nfpw,i (i=1,...,N)}.

Suppose that PV and Pw verify hypothesis

LY
( There exists a constant A>O such that

A - A -1 ~ A A ~ A A AA
1 < gigp_{o}lIV[lz:ﬁj(v'xx?'xx+2v'xy?'xy+v’yy?'yy)dxaya*h?l2,£
v 4

A

for all (@,
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Then we can prove thath1 is satisfied with constant?«h>A>O,l independent

of h. The chiefest difficulty is now, in the particular cases, to prove

that a{u,v) defined by (1.51), is Zh-elliptic (where Zh is always defired

by (2.3)) with constantéh independent of h. If this is the case, then we
get that the constant.a'h which appears in (2.20) is in fact independent of
h. The verification of £1 can, also in this case, be easily performed using
{1.44); (1.47)y, (1.48), if we know the value of O and G on 'aﬁ. F. de Veuke-
ke has shown (cfr. [15]) that in this case Zh is in fact a space of non con-
forming approximations of Hé(n) and that we can find in this way all the
classical non conforming elements for the biharmonic problem (see [30],[31],
[21]); for further details we refer to F. de Veubeke [15]; in a forthcoming
paper we shall treat this case from a mathematical point of view.
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3.- FURTHER CONSIDERATIONS

In many applications, the exact computation of a(uh,vh), b(vh,%h),
<f,vh>,<g,$h> which appear in the approximated problem (2.1) is rather
difficult or, in some case, impossible. Therefore some kind of numerical
integration (see e.g. Strang-Fix [3J], Ciarlet-Raviart[ig]) is needed in or-
der to solve numerically problem (2.1). We shall shown that the classical
results about the use of numerical integration for - variational problems
and for ~variational inequalities can be easily extended: to our case.
For this, let ah(uh,vh) and bh(vh,%h) be (continuous) bilinear forms on
VHKVh and on VKKWh respectively; suppose moreover that fh ard 9y, are (con-

tinuous) linear functionals on Vh and Wh resp., and consider the problem:

[ o, * .
find (upsvy) in VX W, such _that:
* %\
(3.1) aéuh'vh)+bh(vh’wh)—<fh’vh> Vvhe Vh)
* =
by (Wh 0 =<9, P>V \PpeWy.

We suppose that the following hypotheses are satisfied:

* .
H1*) There exists a positive constant kh such that:

-1 ¥*
sup | |vy |7 by vy p) 2k, [ 19,1 ] Vo, en, .
vhevh-{O}
az*) There exist two positive constants yg and ?;'such that:
-1 - »
sup o F T ap (o v ) 270 vy | ] Vv sy
uhezh-{O}
=1 w*
Sup v I Ta (u v ) syb |l un |l Yo ez
Vbezh-{O} h h*"h'" " h'?”'h 1 h RS

¥ e
where, of course, Zh is defined by:

* -
(3.2)  2i={vy|vpeVvy, by (v, ,p,)=0 Vg ew }.
Then, always from theorem 1.1 we get

* .
Proposition 3.1.~ Under the hypotheses H1" and H2  , for all (£,,9y) 1in

Vﬁxwg,groblem {3.1) has a unigue solution.

We want nowto evaluate the distance between (u;,w;), solution of (3.1), and
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(u,v), solution of (1.1). For this we define at first the operator

¥* - \al t .
Ny i VX W > VIXW! by:

* =
Np Vi Pp) ¢ (i ox) > =y (v o) #Dy (g X ) +0p (V¢

(3.3)
for all (vh,fh) and (wh,xh) in thwh,

Let now (uh,wh) be the solution of (2.1) and let

R -1
(3.4) a =dsu$ v - | Ja | ][vhll a, (0 V)
h'’"'h™ 'h
From proposition 1.1 we get that there exists a (v ,fh)eV><wh such that:
| Tup=up ] |+ v pvil |«
(3.5) h "hi h YhliN

- x ¥ ® =1
<M (a® ,y;,k;)d\h(uh-uh,wh-wh) v ) v+ R DY

Moreover we have
* * * * _
</_\h(uh-uh'\ph-wh) ’ (Vh r‘fh)>=<- (Ah Ah) (uh""h) ’ (Vh l‘f‘h)> +

(306)
+<f-fh,vh>+<g-gh,?h>,

and also :

ah(uh,V ) a(uh.vh)l

l< (A Ah) (u I\ph) 14 (v I'fh)>
(3.7)

oy, (g ) =B (v |+ o ) =B (a6 |

Setting now .

% sup w17 oy v
h "( 0}
-1
= Sup Lot " 1<9-9y /P>
Cé W, - (0} Y h'th
\R(uh)g Sup I lvhl l‘l a(uhlvh)—ah(uhrvh)l ‘

hr:V ~-{ 0}

b (1, 9=y, () |

’?&uh>=%§up Lol

h "
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mh>- sup _{O}H"h! |'1]b(vh,wh>-bh<vh,wh)l,
Vhe h

we have from (3.5),(3.6),(3.7),that:

(3.8) [ L =up |1+ Loy =vp | €M T k) (3+G+tia, ) +Ta, >+"b(vh>

Therefore we can conclude with the following theorem.

Theorem 3.1.- If . hypotheses H1*,H2* are satisfied and if (u;,w;) and
(u,y) are the solutions of (3.1) and (1.1) respectively,we have:

| Tumap T+ To=ef e Tumug [1+] Tomv, |+
- \§
a1 (e, 5 k) (55 BB [y ]+ Hwp 1),
where (u,,v,) is the solution of (2.1) and where AR, :{?;r are defined by

R - Sup OQ.(wh)llw
{0}

whe Vh-

B sup B w1

nll”

w, € Vh-{O}
T T -
™= sup g g7
f,EW, - {0}

The proof follows immediatelly from (3.8) and the triangular inequality.

Remark 3.1.- As in com’[\apy?..'l, hyPoThesis MY @arbe substituted, in the applications,
by the Zh-ellipticity, i.e. there exists a positive constant 5"11 such that

2
ay, (v v 28y | vyl | Y vpevy

Remark 3.2.- In the applications the fact that zﬁiz is sometimes a difficulty.
Then,it can happens that a choice of a "great_er" Wh is needed, in order to
have 2z, ez. This cannot, in general, be obtained unless Whgl.w; therefore it is
of some interest to consider the case of an'external approximation' of W.

We shall give, in the following, some idea of the general case, but we refer
for more precise results,in a large class of examplesjto the papers by Raviart-
-Thomas R and Thomas [3] which contain the best treatement of the question
from a mathematical point of view. On the other hand, from anumerical point
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th
I'h '1

of view, it is recommended to refer tc the works by Fde Veubeke and his associateds (¢ ..
f4f]D3]L4q1 [23] [Qg] ) who have developed the theory of 'strongly &iffu-
sive! ele"nen ts, whlch is the most important case of application of the ab-

stract situation described above.

H\

We suppose then that another real Hilbert space, H, is given, such that

(3.9) WCH

with continuous injection. We suppose that W is dense in H and so we can iden

tify H' with a dense subspace of W'. Let now Vh be a closed subspace of V
and Wh a closed subspace of H, such that

(3.10) B(Vh\EH')

and that, for all '\ih in Vh' if

H‘<th"€h =0 V(P W,

then !

< th ,\P> H:O Vke EW

Hl

We consider now the following approximation of problem (1.1).

Find (uh,wh) in Vh><wh such that:

(3.4 —_ —
) a (T, /vy) +<th,~¢h>r=<f,vh>,\1vhevh ,
<Bip pp>=<g > VoW,

where, of course, g is supposed to belong to H'. We always suppose that hy-
. 4 )
pothesis H2 is satisfied and we substitute H1 with the following condition.

H1) There exists a positive constant —Eh such that:

(3.42) Sup o }| v i 17 <Buy P09k, | 19,1 V\p ew,
VhEVh”

Then by _I-ﬁ, H2 and theorem 1.1 we get immediatelly that problem (3.1%) has
a unigue solution. In order to evaluate the distance between (u,y) and
(Gh,’ﬁh) we define at first the space \J in the following way:

(3.42) U ={vivev, BveH'},

and we reamrk that V c'U'from (3. 10) and also ueU since g is supposed in H'

and (u,y) 1s the solution of (1.1). We define then Ah UK W V}'lxw by:

(I this case | of course  we will use Z {,\‘U e\/ Bu' o} £Z

of alu,v) i 7,- e”c[:tnc then H2

we remark therefore that
)

AN ,uvomaucal\y satisfxed,
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-

<ho (Vo) , (W rXw)>=a(v,w )+b(w M) H<BY x>
(3.41) n (VP W exp)>= h hf h

for all (v,?) in U'xW and (wh’xh) in VHKWh'

Let now (vh,{h) be a pair in Vﬁ<wh; from H1,H2 and the proposition 1.1 weo
get that there exists a (wh,xh) in VHKWh such that!

<_A—h (Gh-vh 'Eh- \Ph) ’ (whlxh) >>/
(3.45) b - _
2M o,y ek - fwp |+ [ xg IH) v R - G |H) .

On the other hand we have.

(3- "(9> <}\—h (:h-vh’;';h-\eh) v (wh’Xh) >=<7\-h(u—vhl\b-$h) v (wh'xh) > v (Vﬁ’\ea)‘(wﬁ. fos) (3 \éxwk'

Observing now that

'3.44) IJh(v,\?),(wh:thISalIV“'HWhH:/
SIS

where
(3.48) 8= su vl 0] | "<By, o
veUQ{O} l ? .H '? ’
?ewah-{O}

we get from (2.15) (3.16) (3.9%4), that:

=B [T+ =0 | s UarB)tlanyy k) +1) (Inf | fumvy | |+
VALY
h "h
+ Inf |]y=¢,. || ).
p h
PeWy, H

We can conclude with the following theorem.

Theorem 3.2.- Under the hypotheses of corollary 1.1, if (3.9),(3.10) and
H1 are satisfied, for every (f,g) in V'xW' we have that,if (u,y) and (a
are the solutions of (1.1) and (3.11) respectivelly, then:

hl—w-h)

||u-ah[|+][w-a‘h]]H<((a+‘é)M(a,y‘h,'£h)+1)( Inf ||u-vy |+ Inf [[y=P, |{) -
b¢ Vh bus Wy,
where B 1is given by (3.18).
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