PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

- P. BOLLEY
- J. CAMUS
- B. HELFFER

Opérateurs pseudo-différentiels à valeurs vectorielles. Application à l'étude de l'hypoellipticité de certains opérateurs

Publications des séminaires de mathématiques et informatique de Rennes, 1974, fascicule 1

« Séminaires d'analyse fonctionnelle », , exp. nº 3, p. 1-9

http://www.numdam.org/item?id=PSMIR_1974___1_A3_0

© Département de mathématiques et informatique, université de Rennes, 1974, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPERATEURS PSEUDO-DIFFERENTIELS A VALEURS VECTORIELLES.

APPLICATION A L'ETUDE DE L'HYPOELLIPTICITE DE CERTAINS OPERATEURS.

par

P. BOLLEY, J. CAMUS et B. HELFFER

INTRODUCTION.

On se propose de dégager sur deux exemples une méthode de démonstration de l'hypoellipticité partielle d'opérateurs du type de Fuchs. Une étude plus générale est faite dans [4].

Soient les opérateurs L_1 et L_2 définis sur \mathbb{R}^2 = $\mathbb{R}_t \times \mathbb{R}_x$ = {(t,x), t $\in \mathbb{R}$, x $\in \mathbb{R}$ } par :

$$L_{1} = D_{t}^{2} + t^{2} D_{x}^{2} + \lambda D_{x}$$

$$L_{2} = (D_{t}^{2} + D_{x}^{2}) t + \lambda D_{x} + \mu D_{t}$$

où
$$\lambda, \mu \in \mathbb{C}$$
, $D_t = \frac{1}{i} \frac{\partial}{\partial t}$ et $D_x = \frac{1}{i} \frac{\partial}{\partial x}$

On se propose d'étudier l'hypoellipticité partielle de ces opérateurs c'est-à-dire, la propriété suivante : si u \in C $^{\infty}(\mathbb{R}_{t}; \mathcal{Y}'(\mathbb{R}_{x}))$ et si Lu \in C $^{\infty}(\mathbb{R}_{t} \times \mathbb{R}_{x})$, alors u \in C $^{\infty}(\mathbb{R}_{t} \times \mathbb{R}_{x})$ (avec $\mathbf{L} \neq \mathbf{L}_{1}$ ou \mathbf{L}_{2}). La régularité en \mathbf{L}_{1} est obtenue par la construction d'une parametrix partielle en \mathbf{L}_{1} .

Pour L_1 , la variété t=0 n'est pas caractéristique, donc l'hypoellipticité partielle implique l'hypoellipticité (l'étude de l'hypoellipticité de L_1 a déjà été faite dans [7]). Par contre, pour L_2 , la variété t=0 est caractéristique et l'opérateur L_2 n'est pas hypoelliptique [9].

II. OPERATEURS PSEUDO-DIFFERENTIELS A VALEURS VECTORIELLES.

Cette notion d'opérateurs pseudo-différentiels à valeurs vectorielles a été utilisée dans [8], [10], [11].

Soient deux espaces de Hilbert complexes F_1 et F_2 et \mathcal{L} (F_1 , F_2) l'espace des opérateurs linéaires continus de F_1 dans F_2 .

Etant donné un ouvert Ω de \mathbb{R}^n , on définit l'espace des symboles $S^m(\Omega\times\mathbb{R}^n\ ;\ F_1\ ,F_2)\ \text{comme l'espace des fonctions }p(x,\xi)\ \text{indéfiniment dérivables}$ sur $\Omega\times\mathbb{R}^n\$ à valeurs dans $\mathscr{L}(F_1\ ,F_2)\ \text{telles}$ que pour tout compact K dans Ω , pour tout couple $(\alpha,\beta)\ \text{de }\mathbb{N}^n\times\mathbb{N}^n$, il existe une constante $C_{\kappa\alpha\beta}>0$ telle que pour tout $x\in K$ et pour tout $\xi\in\mathbb{R}^n$, on ait :

$$\|D_{\mathsf{x}}^{\mathsf{\beta}} D_{\mathsf{\xi}}^{\mathsf{\alpha}} \mathsf{p}(\mathsf{x},\mathsf{\xi})\|_{\mathscr{L}(\mathsf{F}_{1},\mathsf{F}_{2})} \leq C_{\mathsf{K}\mathsf{\alpha}\mathsf{\beta}} (1+|\mathsf{\xi}|)^{\mathsf{m}-|\mathsf{\alpha}|}.$$

On définit alors $L^m(\Omega\;;\;F_1,F_2)$ comme l'espace des opérateurs pseudodifférentiels dont le symbole est dans $S^m(\Omega\;x\;IR^n\;;\;F_1\;,F_2)\;;\;l'opérateur\;P\;$ de symbole $p(x,\xi)$ est défini pour u $\in C_0^\infty(\Omega\;;\;F_1)$ par :

$$Pu(x) = \int_{\mathbb{R}^n} e^{i \langle x, \xi \rangle} p(x, \xi) \hat{u}(\xi)$$

Et on a : Pu $\in C^{\infty}(\Omega ; F_2)$.

On montre qu'un opérateur de L^m(Ω ; F₁,F₂) opère continuement de H^S (Ω ; F₁) dans H^S-m (Ω ; F₂) pour tout s $\in \mathbb{R}$.

Dans [8], on démontre le théorème suivant :

Théorème 2.1.

Soit $p(x,\xi) \in S^m(\Omega \times \mathbb{R}^n; F_1, F_2)$. S'il existe $a \in \mathbb{R}$, A > 0, δ et ρ avec $0 \le \delta < \rho \le 1$ tels que pour tout compact K dans Ω , pour tout couple (α,β) de $\mathbb{N}^n \times \mathbb{N}^n$, il existe une constante $C_{K\alpha\beta} > 0$ et une constante $C_K > 0$ telles que pour tout $x \in K$, pour tout $y \in F_1$; pour tout $\xi \in \mathbb{R}^n$ avec $|\xi| > A$, on ait:

$$\|D_{x}^{\beta} D_{\xi}^{\alpha} p(x,\xi)v\|_{F_{1}} \leq C_{\kappa\alpha\beta} |\xi|^{-\rho|\alpha|+\delta|\beta|} \|p(x,\xi) v\|_{F_{2}}$$

$$\|v\|_{F_{1}} \leq C_{\kappa} |\xi|^{a} \|p(x,\xi) v\|_{F_{2}}$$

Ce théorème constitue une généralisation d'un théorème d'Hörmander.

Dans [10], on a utilisé sur F_1 et F_2 des normes qui dépendent de ξ . Il se trouve en effet que, dans la pratique, comme nous le verrons après sur des exemples, les normes dépendant de ξ s'introduisent très naturellement sur les espaces de Hilbert considérés. On note F_i^ξ l'espace F_i muni de la norme dépendant de ξ pour i=1,2.

On définit alors de manière naturelle les symboles $p(x,\xi)$ dans $S^m(\Omega\times \mathbb{R}^n\,;\, F_1^\xi\,,\, F_2^\xi)$. On peut montrer que les résultats précédents restent vrais si on fait sur les normes $\|\ \|_{F_1^\xi}$, outre des hypothèses raisonnables, l'hypothèse suivante :

. il existe des constantes C_0 et C_1 > o, des nombres réels N_0 et N_1 tels que pour tout v ξ F_i et pour tout ξ ϵ fR^n , on ait :

$$C_0(1+|\xi|)^{N_0} \|v\|_{F_i^0} \le \|v\|_{F_i^\xi} \le C_1 (1+|\xi|)^{N_1} \|v\|_{F_i^0}$$
 pour i=1,2.

III. APPLICATIONS.

III.1. Etude de l'opérateur
$$L_1 = D_t^2 + t^2 D_x^2 + \lambda D_x$$

Une classe plus générale contenant cet opérateur a été étudiée dans [8], puis dans un cadre plus géométrique dans [5], [6], [10].

On va montrer que L_1 peut être considéré comme un opérateur pseudodifférentiel dont le symbole est l'opérateur différentiel ordinaire :

$$L_1(\xi) = D_t^2 + t^2 |\xi|^2 + \lambda \xi.$$

On considère tout d'abord cet opérateur pour $|\xi|$ = 1, i.e.

$$L_1(\omega) = D_S^2 + s^2 + \lambda \omega$$
 avec $\omega = \pm 1$

C'est un opérateur linéaire continu de l'espace

 $F_1 = \{v \in \mathcal{A}'(\mathbb{R}) \; ; \; s^j \; D_s^k \; v(s) \in L^2(\mathbb{R}), \; j+k \leq 2 \; \} \; \text{(muni de sa norme hilbertienne naturelle) dans} \; F_2 = L^2(\mathbb{R}) \; .$

On montre dans [8] que :

- 1) Ker $L_1(\omega) \cap L^2(\mathbb{R}) = \text{Ker } L_1(\omega) \cap \mathcal{S}(\mathbb{R})$
- 2) $L_1(\omega)$ est un opérateur à indice de F_1 dans F_2 , d'indice nul.
- 3) Si $\lambda \neq 2p+1$ pour p $\in \mathbb{Z}$, alors Ker $L_1(\omega) \cap \mathcal{S}(fR) = \{0\}$.

On en déduit alors que, sauf pour les valeurs de λ exclues ci-dessus, il existe des constantes C et C'>o telles que pour tout v ϵ F $_1$, on ait :

$$\|v\|_{F_1} \le C \|L_1(\omega) v\|_{F_2} \le C' \|v\|_{F_1}$$
.

De plus, $L_1(\omega)$ est un isomorphisme de F_1 sur F_2 .

Pour $\xi \in \mathbb{R}$ et $u(t) \in F_1$, on fait le changement de fonction v(s) = u(t) avec le changement de variable $s = t |\xi|^{1/2}$. L'inégalité précédente montre que pour tout $u \in F_1$ et $\xi \in \mathbb{R}$ avec $|\xi| > 1$, on a :

$$\|u\|_{F_{1}^{\xi}} \leq C \|L_{1}(\xi) u\|_{F_{2}^{\xi}} \leq C' \|u\|_{F_{1}^{\xi}}$$

$$\|u\|^{2}_{F_{1}^{\xi}} = \sum_{j+k \leq 2} (1+|\xi|^{2})^{2+j-k} \|t^{j} D_{t}^{k} u\|_{L^{2}(\mathbb{R})}^{2}$$

$$\|u\|^{2}_{F_{2}^{\xi}} = \|u\|^{2}_{L^{2}(\mathbb{R})}.$$

On peut alors vérifier que L_1 & $L^0(R; F_1^\xi, F_2^\xi)$ et que les hypothèses du théorème 2.1 sont vérifiées (avec ρ = 1, δ = 0, A=1, a=0).

Dans ce cas, on peut être plus explicite en construisant une paramétrix partielle (en x). $L_1(\xi)$ étant un isomorphisme de F_1^ξ sur F_2^ξ pour $|\xi| \ge 1$, il existe un inverse $R(\xi)$ tel que pour $|\xi| \ge 1$

$$R(\xi) \circ L_1(\xi) = I \quad \text{et } L_1(\xi) \circ R(\xi) = I \quad .$$

A l'aide de ces relations, on montre que R(ξ) (convenablement prolongé pour $\left|\xi\right|<1$) appartient à S^O(\mathbb{R} x \mathbb{R} ; F_2^ξ , F_1^ξ) et qu'il existe donc un opérateur pseudo-différentiel R de symbole R(ξ) tel que

$$R_{\circ} \circ L_{1} = I + S$$
 où $S \in L^{-\infty} (R; F_{1}, F_{2}^{\xi}) = L^{-\infty} (R; F_{1}, F_{2}).$

La paramétrix partielle R ainsi construite permet donc de déduire l'hypoellipticité partielle de $\mathsf{L_4}$.

Notons que l'on a construit seulement une paramétrix partielle ; la construction d'une vraie paramétrix est faite dans [5], [10].

III.2. Etude de l'opérateur
$$L_2 = (D_t^2 + D_x^2)t + \lambda D_x + \mu D_t$$

Une classe plus générale contenant cet opérateur a été étudié dans [2], et [3]. On va montrer que L_2 peut être considéré comme un opérateur pseudodifférentiel dont le symbole est l'opérateur différentiel ordinaire :

$$L_2(\xi) = (D_t^2 + \xi^2)t + \lambda \xi + \mu D_t$$
.

On considère tout d'abord cet opérateur pour $|\xi|$ = 1, i.e. :

$$L_2(\omega) = (D_s^2 + 1)s + \mu D_s + \lambda \omega$$
 avec $\omega = \pm 1$.

C'est un opérateur linéaire et continu de

$$F_1^p = \{ v \in \mathcal{S}'(\mathbb{R}), D_s^{\ell}(s^{1-h}v(s)) \in L^2(\mathbb{R}); h=0,1, 0 \le \ell \le p+2-\ell \}$$

(muni de sa norme hilbertienne naturelle) dans $F_2^p = \{v \in \mathcal{S}'(\mathbb{R}) ; D_s^{\ell} \ v(s) \in L^2(\mathbb{R}) , o \le \ell \le p \}$ (muni de sa norme hilbertienne naturelle) pour tout $p \in \mathbb{N}$.

On montre dans [1] qu'il existe un entier $p_0 \in \mathbb{N}$ tel que pour tout $p \in \mathbb{N}$ avec $p \ge p_0$, $L_2(\omega)$ soit un isomorphisme de F_1^p sur un sous espace fermé de codimension 1 de F_2^p .

On en déduit alors qu'il existe des constantes C et C' > o telles que pour tout v ${\bf \varepsilon}$ F $_1^p$, on ait :

$$\|v\|_{F_1^p} \le C_p \|L_2(\omega)\|v\|_{F_2^p} \le C_p \|v\|_{F_1^p}$$

Pour $\xi \in \mathbb{R}$ et $u(t) \in \mathbb{F}_1^p$, on fait le changement de fonction $v(s) \neq u(t)$ avec le changement de variable $s=t\left|\xi\right|$. L'inégalité précédente montre que pour tout $u \in \mathbb{F}_1^p$ et $\xi \in \mathbb{R}$, avec $\left|\xi\right| \geq 1$, on a :

$$\|\mathbf{u}\|_{\mathsf{F}_1^p} \leq \mathsf{C}_{\mathsf{p}} \|\mathsf{L}_2(\xi) \|\mathbf{u}\|_{\mathsf{F}_2^p\xi} \leq \mathsf{C}_{\mathsf{p}}' \|\mathbf{v}\|_{\mathsf{F}_1^p\xi}$$

avec

$$\|u\|_{F_{1}^{p\xi}}^{2} = \sum_{h=0}^{1} \sum_{\ell=0}^{p+2-h} (1+|\xi|^{2})^{2+p-h-\ell} \|D_{t}^{\ell}(t^{1-h} u)\|_{L^{2}(\mathbb{R})}^{2}$$

$$\|u\|_{F_{2}^{p\xi}}^{2} = \sum_{k=0}^{p} (1+|\xi|^{2})^{p-k} \|D_{t}^{k} u\|_{L^{2}(\mathbb{R})}^{2}.$$

On peut alors vérifier que L_2 \in $L^0(\mathbb{R}; F_1^{p\xi}, F_2^{p\xi})$ pour tout entier $p \in \mathbb{N}$ avec $p \ge p_0$ et que les hypothèses du théorème 2.1 sont vérifiées (avec p = 1, $\delta = 0$, A = 1, a = 0).

Dans ce cas, on peut préciser le résultat en construisant une paramétrix

partielle (en x). Alors que dans III.1, le symbole $L_1(\xi)$ est un isomorphisme de F_1^ξ sur F_2^ξ , dans ce cas, le symbole $L_2(\xi)$ n'est pas un isomorphisme de $F_1^{p\xi}$ sur $F_2^{p\xi}$. On peut utiliser deux artifices pour se ramener au cas d'un isomorphisme.

III.2.1 : pour tout ξ , on définit $L_2^*(\xi)$ par :

$$(L_{2}^{*}(\xi) u, v) = (u, L_{2}(\xi) v)$$

pour tout $u \in F_2^p$ et $v \in F_1^p$.

Alors, pour $|\xi| \ge 1$, $L_2^*(\xi) \circ L_2(\xi)$ est un isomorphisme de $F_1^{p\xi}$ sur $F_1^{p\xi}$. Par suite, il existe un inverse $\mathbb{Q}(\xi)$ tel que pour $|\xi| > 1$, on ait :

$$\mathbb{Q}(\xi) \circ (L_2^{\bigstar}(\xi) \circ L_2(\xi)) = \mathbb{I}_{\mathsf{F}_1^{\mathsf{p}\xi}} = (L_2^{\bigstar}(\xi) \circ L_2(\xi)) \circ \mathbb{Q}(\xi) \ .$$

A l'aide de ces relations, on montre que Q(ξ) (convenablement prolongé pour $|\xi|<1$) appartient à S^O($\mathbb{R}\times\mathbb{R}$; $F_1^{p\xi}$, $F_1^{p\xi}$). Comme L*(ξ) appartient à S^O($\mathbb{R}\times\mathbb{R}$; $F_2^{p\xi}$, $F_1^{p\xi}$), il suit que R(ξ) = Q(ξ) o L*(ξ) appartient à S^O($\mathbb{R}\times\mathbb{R}$; $F_2^{p\xi}$, $F_1^{p\xi}$).

Ainsi, pour tout entier $p \geq p_0$, on peut construire un opérateur pseudo-différentiel R de symbole R(\xi) tel que :

$$R \circ L_2 = I + S$$
 où S $\boldsymbol{\epsilon} L^{-\infty}$ ($fR; F_1^{p\xi}, F_2^{p\xi}$).

La paramétrix partielle R ainsi construite (qui dépend probablement de p) permet de déduire l'hypoellipticité de L_2 .

III.2.2 : pour tout entier $p \ge p_0$, il existe $u_\omega(t) \in F_2^p$ tel que l'opérateur P_ω défini par :

$$P_{\omega}(u,c) = L_2(\omega) u + c u_{\omega}$$

soit un isomorphisme de $F_1^p \times \mathbb{C}$ sur F_2^p .

On déduit qu'il existe des constantes C et C'>0 telles que pour tout $(v,c) \in F_1^p \times E \text{ , on ait :}$

$$\|v\|_{\mathsf{F}_{1}^{p}} + |c|_{\mathfrak{C}} \leq C_{p} \|P_{\omega}(v,c)\|_{\mathsf{F}_{2}^{p}} \leq C_{p}'(\|v\|_{\mathsf{F}_{1}^{p}} + |c|_{\mathfrak{C}}).$$

Pour $\xi \in \mathbb{R}$ et $u(t) \in F_1^p$, on fait le changement de fonction v(s) = u(t) avec le changement de variable $s = t |\xi|$. L'inégalité précédente montre que pour tout $u \in F_1^p$, $c \in \mathbb{C}$ et $\xi \in \mathbb{R}$ avec $\omega \xi \geq 1$, on a :

$$\| \mathbf{u} \|_{\mathsf{F}_{1}^{\mathsf{P}\xi}} + \| \mathbf{c} \|_{\mathfrak{C}^{\xi}} \leq C_{\mathsf{p}} \| \mathsf{P}_{\omega}(\xi) \|_{\mathsf{G}^{\xi}} \leq C_{\mathsf{p}}(\| \mathbf{u} \|_{\mathsf{F}_{1}^{\mathsf{P}\xi}} + | \mathbf{c} \|_{\mathfrak{C}^{\xi}})$$

οù

$$\| \|_{F_1^{p\xi}}$$
 et $\| \|_{F_2^{p\xi}}$ sont définis comme en III.2.1.

$$\left| c \right|_{C^{\xi}}^{2} = \left(1 + \left| \xi \right|^{2} \right) \left| c \right|_{C}$$

$$P_{\omega}(\xi) (u,c) = L_2(\xi) u + c|\xi| u_{\omega}(t|\xi|).$$

Pour $\omega\xi \geq 1$, $P_{\omega}(\xi)$ est un isomorphisme de $F_1^{p\xi} \times \mathfrak{C}^{\xi}$ sur $F_2^{p\xi}$. Par suite, il existe un inverse $Q_{\omega}(\xi)$ tel que pour $\xi \in \mathbb{R}$ avec $\omega\xi \geq 1$, on ait :

$$\mathbb{Q}_{\omega}(\xi) \circ \mathbb{P}_{\omega}(\xi) = \mathbb{I}_{f_1 \times \mathbb{C}^{\xi}} \text{ et } \mathbb{P}_{\omega}(\xi) \circ \mathbb{Q}_{\omega}(\xi) = \mathbb{I}_{p\xi}.$$

En prolongeant convenablement $Q_{\omega}(\xi)$ pour o < $\omega \xi$ < 1, on en déduit par projection sur $F_1^{p\xi}$ l'existence d'un opérateur $R(\xi)$ appartenant à $S^0(\mathbb{R} \times \mathbb{R} ; F_2^{p\xi}, F_1^{p\xi})$ tel que pour $|\xi| \geq 1$:

$$R(\xi) \circ L_2(\xi) = I_{F_1^p\xi}$$

On termine comme en III.2.1.

BIBLIOGRAPHIE

- [1] <u>P. BOLLEY J. CAMUS</u>: "Sur une classe d'opérateurs elliptiques et dégénérés à une variable". J. Math. pures et appl., t. 51, p.429-463 (1972).
- [2] P. BOLLEY J. CAMUS: "Hypoellipticité partielle et hypoanalyticité d'une classe d'opérateurs elliptiques et dégénérés". Astérisque n° 19, p. 49-78, (1974).
- [3] P. BOLLEY J. CAMUS B. HELFFER: "Hypoellipticité partielle d'une classe d'opérateurs elliptiques et dégénérés". C.R. Acad. Sci. Paris, t. 278, p. 775-778, (1974).
- [4] P. BOLLEY J. CAMUS B. HELFFER: "Sur une classe d'opérateurs partiellement hypoelliptique". A paraître au Journal de Math Pures et Appliquées.
- [5] L. BOUTET DE MONTVEL: "Hypoelliptic operators with double characteristics and related pseudo differential operators".
- [6] L. BOUTET DE MONTVEL F. TREVES : "On a class of pseudo differential operators with double characteritics". Inventiones Math. 24, p.1-34, (1974).
- [7] <u>V.V. GRUSIN</u>: "On a class of hypoelliptic operators". Math. Sbornik 83, (125), p. 456-473 (1970) (Math. U.S.S.R. Sbornik 12, p. 458-476 (1970).
- [8] <u>V.V. GRUSIN</u>: "Hypoelliptic differential equations and pseudodifferential operators with operator valued symbols". Mat. Sbornik 88 (130), p. 504-521 (1972). (Math. U.S.S.R. Sbornik 17, p. 497-514 (1972).
- [9] B. HELFFER C. ZUILY : "Non hypoellipticité des opérators du type de Fuchs".

 C.R. Acad. Sci. Paris, t. 277, p. 1061-1064, (1973).
- [10] J. SJOSTRAND: "Parametrix for pseudodifferential operators with multiple characteristics". Arkiv för Mat. 1°, n° 1, p. 85-130, (1974).
- [11] <u>F. TREVES</u>: "A new method of proof of the subelliptic estimates". Comm. Pure Appl. Math. Vol XXIV, p. 71-115, (1973).