PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

JEAN PELLAUMAIL

Un lemme élémentaire de théorie de la mesure

Publications des séminaires de mathématiques et informatique de Rennes, 1973, fascicule 3

« Séminaires de probabilité », , p. 47-50

http://www.numdam.org/item?id=PSMIR_1973___3_47_0

© Département de mathématiques et informatique, université de Rennes, 1973, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

UN LEMME ELEMENTAIRE DE THEORIE DE LA MESURE.

Par Jean PELLAUMAIL

I.N.S.A. et Laboratoire de Probabilités - ERA 250 CNRS RENNES RESUME

On prouve un lemme élémentaire de théorie de la mesure : celui-ci permet, entre autres, de montrer simplement qu'une mesure stochastique (cf. [2]) associée à un processus à trajectoires continues peut se prolonger en une mesure définie sur la tribu des bien- mesurables.

PROPOSITION

Soit (Ω, \mathcal{F}) un espace mesurable et m une mesure (réelle ou vectorielle) définie sur (Ω, \mathcal{F}) . Soit \mathcal{H} une famille de parties de Ω héréditaire et stable pour les réunions dénombrables. On suppose que, pour tout élément H de \mathcal{F} , M(H) = 0.

Soit \S la tribu engendrée par \P et \S . Alors, m se prolonge, de façon unique, en une mesure m' définie sur \S telle que m'(H)=0 si $H\in \S$

Preuve:

Rappelons d'abord qu'une famille % de parties est dite héréditaire si H $\mathcal E$ et K C H impliquent K $\mathcal E$ $\mathcal E$.

Soit $\mathcal C$ la classe des parties C de Ω telles que $C = (A \cup H) \setminus K$ avec $A \in \mathcal F$, $H \in \mathcal H$, $K \in \mathcal H$.

Dans la suite, si $C \in \mathcal{C}$, on écrira $C = (A \cup H) \setminus K$: il sera toujours sous-entendu que $A \in \mathcal{F}$, $H \in \mathcal{R}$ et $K \in \mathcal{R}$ et de même pour C' ou C_n .

On se propose d'abord de prouver que $\mathcal{C} = \mathcal{G}$; pour cela, il suffit de prouver que \mathcal{C} est une algèbre et est stable par union dénombrable.

Notons que C \in C si et seulement si il existe A \in C tel que (C \triangle A) \in C : ceci est évidemment nécessaire ; c'est également suffisant car C = [A \cup (C \setminus A)] \setminus (A \setminus C) .

Soient C et C' deux éléments de $\mathcal E$ avec C = (AUH) \ K et C' = (AUH') \ K' ; (C\C')\Delta (A\Delta A') \ C (HUKUH'UK') donc (C\C')\E \ \mathbb{E}. De plus $\Omega \setminus C = [(\Omega \setminus A) \cup K] \setminus H$, donc $\mathcal E$ est une algèbre.

Soit $C_n \nearrow C$ avec, pour tout n, $C_n \in C$.

Soit $C_n = (A_n \cup H_n) \setminus K_n$, $A = \bigcup_{n \ge 0} A_n$, $H = \bigcup_{n \ge 0} H_n$ et $K = \bigcup_{n \ge 0} K_n$ On a :

(C ∆ A) C H ∪ K donc C € 6 ce qui prouve que C = 4

Pour tout élément $C = (A \cup H) \setminus K$ de C, on pose m'(C) = m(A); tout d'abord ceci est possible, c'est-à-dire que la valeur de m' ne dépend pas de la décomposition de C: en effet, si $(A \cup H) \setminus K = (A' \cup H') \setminus K'$ on a: $(A \triangle A') \subset (H \cup K \cup H' \cup K')$ donc $(A \setminus A') \in \mathcal{F} \cap \mathcal{H}$ et $(A' \setminus A) \in \mathcal{F} \cap \mathcal{H}$ d'où m(A) = m(A').

De plus, la fonction m' prolonge m et est simplement additive : en effet, $C \cap C' = \emptyset$, $C = (A \cup H) \setminus K$ et $C' = (A' \cup H') \setminus K'$ impliquent $(A \cap A') \subset K \cup K'$ donc

$$m'(C \cup C') = m(A \cup A') = m(A) + m(A') = m'(C) + m'(C')$$

Enfin m' est σ -additive; en effet, soit $C_n \checkmark \emptyset$ avec $C_n = (A_n \lor H_n) \setminus K_n$. Soit $B_n = \bigcap_{k \leqslant n} A_k$, $B = \bigcap_{n > 0} A_n$, $H_n' = \bigcup_{k \leqslant n} H_k$,

$$K_n' = U K_k$$
 , $H' = U H_k'$ et $K' = U K_k$.

On a $B_n \subset A_n$ et $(A_n \setminus B_n) \subset (H^! \cup K_n)$ donc $m^! (C_n) = m(B_n)$ et

B C K' donc m(B) = 0 . Or $B_n \psi B$ donc

$$0 = m(B) = \lim_{n \to \infty} m(B_n) = \lim_{n \to \infty} m'(C_n)$$

c.q.f.d.

COROLLAIRE | (cf. [2])

Soit $(\Omega$, \mathcal{F} , P, $(\mathcal{F}_t)_{t \in T}$ une base de processus et $(X_t)_{t \in T}$ un processus de répartition en moyenne d'ordre p (cf. [2] ou [3]) à trajectoires continues.

Soit μ la fonction définie sur les intervalles stochastiques $[\sigma, \sigma'[$ (où σ et σ' sont deux temps d'arrêt quelconques) par $\mu([\sigma, \sigma'[) = X_{\sigma}, -X_{\sigma}]$. Alors μ se prolonge, de façon unique, à la tribu des bien-mesurables en une fonction σ -additive pour la topologie de L_{p} .

Preuve :

Soit m la mesure stochastique associée à $(X_t)_{t \in T}$ (définie sur la tribu des prévisibles). On peut appliquer la proposition en prenant pour $\mathcal T$ la tribu des prévisibles et pour $\mathcal T$ la famille des parties contenues dans une réunion dénombrable de graphes de temps d'arrêt (quelconques) ; soit m' le prolongement donné par cette proposition. On vérifie immédiatement que m' prolonge μ . Enfin, c'est le seul prolongement possible puisque la famille des intervalles stochastiques σ c' engendre la tribu des bien-mesurables.

Notons aussi que la démonstration donne immédiatement le théorème IV-T-19 de $\begin{bmatrix} 1 \end{bmatrix}$.

COROLLAIRE 2

Soit m une mesure (réelle ou vectorielle) définie sur la tribu des prévisibles. Alors m se prolonge, d'une façon et d'une seule, en une mesure m' définie sur la tribu des ensembles bien-mesurables et telle que m' ne charge aucun graphe de temps d'arrêt totalement inaccessible.

Preuve:

On applique la proposition en prenant pour \$\mathbb{G}\$ la tribu des prévisibles et pour \$\mathbb{K}\$ la famille des parties contenues dans une réunion dénombrable de graphes de temps d'arrêt totalement inaccessibles. Un ensemble qui appartient à la fois à \$\mathbb{G}\$ et \$\mathbb{K}\$ est évanescent.

On notera que, dans ce corollaire 2 et contrairement au corollaire 1, le prolongement m' est très arbitraire.

-:-:-:-

BIBLIOGRAPHIE

- [1] <u>DELLACHERIE</u>: *Thèse* Université de Strasbourg - 1969.
- [2] M. METIVIER: Mesures vectorielles et intégrale stochastique. Séminaire de Rennes - Juin 1972 - RENNES.
- [3] J. PELLAUMAIL: Une nouvelle construction de l'intégrale stochastique.

 Percolation et supraconductivité.

 Thèse Novembre 1972 Université de Rennes.