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On Doleans-F8llmer's measure for quasi-martingales

and a Pellaumail's extension theorem

by
Michel Metivier (%)
Laboratoire de Probabilités - ERA 250 C.N.R.S. - Rennes

Let (Q,(Et)t E]R.,,,P) be the usual setting for studying stochastic
processes. The idea of associating with every adapted process (Xt)fﬂfm+
a set function Wy s defined on the algebra of subsets of ]§+X £

generated by the family {]s,t] xF; 0<s<t, F’EJJ , through the formula
oy (18, 8] X ) = B[y - (X - X )]

scems to have been used by C. Doleans in [ 2] Cor the first Lime, Ohe
proved that, if X 1is a supermartingale of local class D, then Ky is
g-additive.

)

(which forbid the usual assumption of completeness on the St's and are

Recently F8llmer [5 ] proved, under particular conditions on (Et
of topological character), that By is always o-additive as soon as X is
a Ll-bounded quasi-martingale, and that the property for X to be of
class D 1is equivalent to: every evanescent predictable subset of :m+x ¢
is of uy measure zero. Moreover, Fvllmer notes that the previous decom-
position theorem of quasi-martingales (F-processes in the work of Orey |10 ])

as got by Orey, Fisk and Rao can be received as mere immediate consequencoe

of known decomposition theorems for measures.

(¥) This seminar was written during the author's stay at University
of Minnesota - Minneapolis during the fall 1973.



In this lecture we intend to take over I'8llmer's treatment withoot,
assuming topological properties for the c-algebras Jt's , and with the
usual assumptions of completeness. The results are slightly different:

the measure is only simply-additive, and the property of g-additivity

My
is in this case equivalent to the property of being of class D Jor %« .
The first paragraphs (1 to &) study the one to one correspondence

X - u, between quasi-martingales and a class of finitely additive-measures

X
with bounded variation, which is an isomorphism of the order structoras
defined by the positive cone of negative sub-martingales and the positive
cone of positive measures respectively.

The ¢4 and §5 study the og-additivity or pure finitely additivity of
g in terms of the process X and states the corresponding decomposition
theorem.

In §6 we have exposed the recent proof of the Doob. Meyers decomposition
theorem for quasi-martingales, due to J. Pellaumail. It is simple and

based upon the g-additivity of the Dolean's measure, and has moreover the

advantage of being immediately applicable to vector valued quasi-martingalcs.

1. Notations and definitjons.
(;}t)t ¢t 1s an Increasing family of sub-g-algebras of a S-algebra
F of subsets of Q .
(Q,%,P) 1is a complete probability space. We set g= V.3 (0-algebra
tcR
generated by U St ) and
t €mt

n={F:F € 3, P(F) =0} .



We make the following:

Assumption: J > for any %, and (Kt)t ¢t 1s right-
continuous.
R

We define the following systems of subsets of x 0, (where

Rt = [0,2])

A predictable rectangle is a subset ]s,t] xF of TR+ x 0 such that

s<t and F € 33 .
Let o € [0, +»] . We call R, the set of predictable rectanglos in  J0,af 41 .

4, is the algebra of subsets of [O,a[ x¢: which are finite union of
predictable rectangles.

;ﬁa is the alpebra of subsets of [0,a] x¢; which are finite union of
predictable rectangles.

u°a : 1s the o-ring generated by vy e

5(1 : is the o-ring generated by ﬁa .

The elements of Py (resp Ea } are called the predictable subsets of

[Oya[ xQ2 (resp [0,a] xQ) .

The subsets of TRT x & included in some [O,a) x& with a7e , will
be said bounded.

For all the processes X= (Xt)t ¢ Rt which will be considered we will

define X =0 (Xm is to be distinguished from X = 1lim X, p.s. if such
& t - e

a limit exlsts).
by
% will be the algebra generatedMd and the sets {{w}xF; F € U g
® t ¢ R
We recall that &a consists of those so-called "stochastic intervals™

Jr);'
’

lo,t] = {(u,w) :0(w) <u<7(w)} where 0 and 71 are two finitely valued

stopping times.



A function f on RT x 2 1is said to be evanescent if
P({w:f(t,w) =0 for all t € R*}) =1 . A subset G of Rt x o is
called evanescent if 1ts indicator function lA is evanescent,

Two processes X and Y are sald indistinguishable if X -Y is

evanescent.

2. Oimply additive measures associatled with quusi-mariingales.

2.1 Definition

An adapted process X 1s said to be an I'-process (Orey's definition)

or a quasi-martingale on a compact interval [O0,a] if

k-2
K = sup SE X, -B(X, |3 )| <tw
T o<t <<t <t 1m0 1 M Yy

where the sup 1s to be taken on all the increasing finite sequences

t; <eoo <ty dn [0,a] .

Remark.

Such a process is clearly bounded in Ll on {0,a] .

2.2. Measures associsted with a general adapted process.

We define the {ollowing functions m; and u; (resp. 5; and J% ) en

1‘1 (reSp‘iiQ , for every adapted real process X such that TVt Xt € Ll(;,at,ﬂ

1
)
]

(2.2.1) mi(ls,t] x ) = 1, -X) € 1t (resp. nd ..

1
23]
l_-l

(2.2.2) p.;(]s,t]xF) g (X -X) €R (resp. E%... ) .

It is quite immediate that this function can be extended into simply

additive measures on the algebra &a (resp. ﬁa) . It is clear that, if X



is a Banach valued process (in Banach space E), we can still define mg

and u; through formula (2.2.1) and (2.2.2). In this case mi takes
its values in Lé(Q,gz,P) and uz takes its values in E

The following proposition follows immediately from the definition

Proposition 1.

ﬁ: is positive (resp. negative, resp. zero) if and only if
X 1is a submartingale (resp. a supermartingale, resp. a martingale) |,

on [O,d] . Same statement for u; and [O,a[

Remark.
From the convention X_ = 0, it follows that ]; is positive.
(resp. negative, resp. zero) if and only if X 1is a negative submartin-

gale on [p,m] » (resp. a positive supermartingale, resp. a null-process).

Proposition 2.

For two finitely valued stopping time ¢ and 1 , o0 < 1

Mo Jo,t] = E(X, = X5 ) m, ]c,f] = x4 oxg
Proof.
If {o = to<...<tn} is a set including the values of ¢ and
T s, ¢ and Tt can be written.
n-1
P )
n-1
T o= (t. - t.) 1 G.eF
izo i+1 i Gi i t. and Gi > Fi
Then



and the formulas ot the proposition tollow immediately Crom Lhe deiinifion
ot’ Myy Hoy and the fact that
n-1
X = 3 (X, -=-X,) 1. .
t
Toi=0 i 4G

2.3. More on the correspondence X - ;§ .

From the assumption X =0, and the relation

p(lt,s] x ) = -R(1, - X,)

it is clear lhat p? <—> X 1s a one-to-oue: correspondance bedweorn [hidiely
additive measures poon vm such that for every t, ! » p(]i,o) xt) o an
absolutely continuous bounded measure on S and processes 7 s.ch

that X, € Lt for all t (defined up to a modification).

2.3 Theorem 1.
;% of bounded variation on ia <==> X 1is an F-process on [0,a]
. ~a Y —
In this case |uX|(]0,a] X)) = Ka .
Proof,

By definition, for cvery predictable ]s,%]y I,

(2.3.1) 68| (1s,t] X F) = sup Z|i(1,, -
1

where (]si,ti} XFE) is any family ol disjoint rectangles included in
Jo,t] x T
By taking a finer partition if necessary, one may asgsume that the partition

on the right-hand side of (2.3.1) is of the following form

(2.3.2) {]tk,tkﬂ]kaL, s<tp<enn <t Kty 4= L m ]
’



Lol us Lhen denote

) -X, >0) .

It is clear, {rom Fk,& € Jt , that
k
(2.3.3) % | (X -X, ) - |F =22 B, B
1 kel %t kg Ko e
AR RREANE
k0 Tkl ko ko
On the other hand it is trivial thal for cach division «- by e Ty !
T a o W . _ ¥ 3o « {7 o
(e, ) xF) 2% r1 (X ool ; ]
£ koM el Y ok Tl e

The two last inequalities imply the theorem,
Theorem 1{

If X 1is Banach valued, the samc conclusions as in Theorem 1 hold

'or the Banach valued finite additivc-measure E% .

I'roof’,

With the same notations as in the prool” of Theorem ]

g Qsy el x ) = sap 2 0(d,  ow(x, =%, |5, ))
Kyt Ky L K+l %k k

where the sup 1is taken over all the partitions of the form (2,3.2).
Tnequality (2.3.3) is proven exactly the same way.
l'or every e , there exists a step function

=51, x , , x ., €E eI <1
P L Fk,{ k, L xk,)L Pl



such that

B(X -X, |3 > (o, E(X =X
80 Ty B 2o B X 3 D

From here it is casily seen that for every e

1
wi(le,t] xP) 2 2 R = | )| -e
k-1 0 L

And then

pi(Js,t] xF) <K

3. Bounded variation of By and regularity of trajectories of X .

Theorem 2, (Orey).

Let X be a separable real quasi-martingale on [0,a] . Almost

surcly the trajectories have left and right limits.

Proof.
The prool” goecs as the traditional prool” for martingales due Lo oot
(ef. [11} p. ). Tet a and b be two real numbers a<b . Lot

-

[ e 1
o = {51\82\... <52n)' c

[0,a] . We define the times of up crossings ani
down crossings over [a,b] , as follows:

inf{s:s €8, s>0 X(s) <al if { J#£4

o - s . 2k-1?
1751 2k . _
o1 U=
inf{s:s €8, s>oy, ¥(s) 2b} if { [#4
Tok+1 T o
oy 1f {48 .



, . - < s a . .
The condition oi” bounded variation on by implics

" n-1
K =lpyel10,a) x6) > 2= |B(X - L
a Il k=1 | Y2k+1 ok
Because ol the positivity of X - X :
2%+l Y2k
n-1
K > = EIX -X |

n-1
Z > je (b—&)P(Féa’-b))
k=1 s J
where
Féa{b)-:{w :j among the Xo —X6 on >0 ;.
> Jd 2k+1 "2k

We may then consider a dense denumerable set 5 in [0O,u) ,  aund an

inereasing scquence (Sn) of finite subsets of S guch that - Sr ,
s
I

and the corresponding sets Féa’?) . From
n’
K
(a,Db) a
P(Fs 7 < 3 -~
(SNJ) =j-(b-a)

we deduce that the set (i~ of trajectories having infinitely many crossings
over [a,b] , on the set S, has probability O .

The property of the theorem is deduced from there, by the nsual argunent.

4. Decompogition theorems,

We recall that an additive functlon |1 on an algebra U of sets is
the difference of two positive additive functions p+ and yu if and only
if p is of bounded variation on any set A of %, 1i,e.: if
Vv Acu [u|(A)::sup{§ p(Ai) :(Ai), any finite partition of A , Ai €l <

one has



Cne pay view tiils as a Fiesz decomposition in the ordercd space {(completrly
reticulateds  sce Bourbaki Integration 1 %1) of relatively bounded Linear

1orm o the apace of step funetions on U . lwvery simply additive lunclion
W, «ith boaaged variation, is isomorphically (linearly and for the order)

associated with a linear form 3 by

(hy 2 A, . s
i R T

We recall too, that the o-additive-functions on % are easily seen to
scastitute a Riesz Band (cf. Bourbaki, Ref. above).

The band of the simply additive functions, which are orthogonal ("&trangeres")
v all o-additive-functions is formed from all the so called "purely finitely

aldditive functions," which may be characterigzed in the following way:

p is purely finitely additive, if (0<v<|u| and v

o-additive)=> y=0 .,

Every finitely additive measures with bounded variation is the sum o tig of
a g-additive measure and a purely finitely additive one. The decomposition
is unique.

These decomposition theorems give us immediately the following

4.1. Theorem 3.

Every quasi-martingale X on [0O,a] is the difference of two positive

+

Ll—bounded supermartingales X+ and X :Xt::X_-—Xt . The decomposition is

+
unique if we assume Xa::O and impose X (a) =X (a) =0 and: for every
¢ >0 there exists a sequence Tl‘<... <Tn of finitely valued stopping
times with values in [0,a] and two subsequences (T;), (T;) whose union

is (Ti) such that

(4.1.2) ZE(X, -X



Proof.

+ -
Decompose p,;:p; —p,; , and take

A - [
X s X ¢ Radon-Nikodym derivatives ol
&

t “\ap t - \apr,
t %t
+ - vs .
the measures V¢ and Vi dc:f'ined on J' by
+ a, + .
v (F) =y (Jt,a) x 1)
and
Ty o Qy- .
ve (F) =uy? (It a) x 1)

The decomposition X, = X; - X: follows from

py(Jtya] X F) =-E(1p « X,)

as to the unicity condition of the theorem, it expresses only that

>t Qy -

. a
1nf(p,X > By ) =0 .

4o, lixtension of 4

A

Let us suppose that X is a F-process on [O,=] (with the conventior
here made that X =0 ). It follows immediately from the decommsition

theorem 3 that V Fe U &

t emt ©

lim J;(]t,m] XxF) =-1im E(1.. X exists.

)
1 = » t - F t

It is then clear that if we set

By ({=} x F) = tlfmm ny (J,2] X 1)

and

EX(]S,’L] x T) :;;Z(]s,t] x F) whenever s<t€[0, to| ,

we define an additive extension ;X of ;; to the algebra called « above.



It is evident that ;X is the difference of the extentions ;; and
us of &t and 2T As those extensions are such that inf(:+ —“)74)
Hx Hx L G SRR Hys By ’

they are respectively the positive part and negative part of By

From these definitions, follows immediately:

Proposition 3.

is a martingale if and only if EX([O,aJ xQ) =0 . (Z,)

(X4 e mr L T

is a potential (i.e. a positive supermartingale such that 1lim N(Xt) =00)

t—om

if and only if [y <0 eand py{=}x0=0 .

Every quasi-martingale X can be written uniquely as
X:M+V_-V+

where V- and V' are potentials verifying the condition (4.1.2) (X+ and
X~ Dbeing replaced by v’ and V™ in the statement of this condition), and

M is a martingale.



4.3. Theorem 4. (Orey)

Let (3h) be a decreasing sequence of ¢ algebras with F =7

i .
n
n

If the variables Xn verify

s E|E(X

n n_&ﬁﬂ%ﬁﬁl<m’

Then they are uniformly integrable.

Proof.,

We refer to |10] ror the proof, or the preceding theorem may be

applied, and we can then use uniform integrability properties of supermartingales.

5, Characterization of g-additive and purely finitely additive parts.

5.1. 0O-additivity on Pm .

We consider here the case when X being a quasi-martingale on every
bounded interval [0,a] , ;; is of bounded varilation only on the algehra

Y penerated by bounded predictable rectangles. So we take only its

o

restriction by 1O 2> 1into consideration.
[o0]

Definition.
We recall that a process X on [O,o[ 1s said to be of class [ 1if
the set {i;:7T anry linite-stopping time] is uniformly integrable. It

1s sald to be locally of class D if for every a<o , the set

{XT : I any stopping time < a} 1is uniformly integrable.

Proposition 4.

Tt .} 1= o additive on Ea , a Eii§+, and if X 1is a.s. right
continuous, then for every stochastic interval ]T,q]

ug(1T,a]) =E(X) - B(X) .



This proposition is trivially true for finitely valued stopplrys Liwme 7
deigs tor o atopping time T , an upper decreasing approximativng scognence

(i), ot finitely valued stopping time T, we have then, from ihe

il

o-additivity,

wg(r,0]) = 1tm [E(X) -E(%, )] .
n n
But as

1lim XT =X
n n

applying Theorem 4 to the variable XT and ¢-algebras JT we: et the
n

n
convergence of XT towards XT in 1l y and from ther: the propositior 4.
n

Theorem 5.

Let X be a real process, right continuous in L1 , which is a quasi-
nartingale on every bounded interval [0,a] .

Then p; is oc-additive if and only if X 1s locally of class i .
Necessity,

Let a<e and ;% the restriction of u; to ;q;:nm o [0ga)x o TY
;% is o-additive, its positive and negative parts are g-additive too.
Let us consider the positive part associated with the positive supermariirpale

A

X" . From the o-additivity of

+ - P
lim E(X, -X ) =0 . Then there
b
X t Vs t s
exists a right-continuous version of X~ .

We defline the stopping times

R, =1inf{t :X;>n} .



For u<a
P(N [Rn;Nu, ul) = 0.
n

From the o¢-additivity and proposition 4 we deduce

lim E(Xu-X ) = 0.
n

R Au
n

Using the same argument as in Meyer { 9], p. 139, we will prove that this
implies the uniform improbability of {XT : T<u} .

Let us define

H o b
T'(w) =u if XT(w) n
One has
R Au < T'
and then
E(xRn /\u) > XT, dp
> ] X dP-+j' ¥~ dar .
- - T - 1l
[ 2n] [ X <n]
Then
X\ldP+J‘ X_f; ar-r X, dap > T Ko Av
h1<Hn] DAZRn] n '[XT<n] “[x;zn]

as [u<<Rh] c [X;‘<n] then the positivity of X~ dimplies

r g A [ Xp AP

which proves the uniform integrability property. We do the same reasoning

.

for XT



Juiricierncy.

We prove that for every deereasing scquence (1) of scle rom

oaqch Lhat o H, _y
no

(9.1.1) 1im sup ‘E%!(A) o
n- o Eja

Ac(0,a] xH

We start with a finite partition (Ck) of ]O,a} <7 sveh that,

[ZIJ%(QJ‘ "E%'[O,G]stlie s

which implies
(5.1.2) e HIBE(C) | 2 [u|(C) | with 2 e

We will be finished if we can prove that for a suitable n

I :' : N = S
(45,1.3) JI(I 3 Ac Ck\\]o,q] x]]n E— IU‘,X'(/\') 2 ey

f'rom (5.1.2) it follows easily that

- - o - T
(5.1.4) ioAhed , Aco o, €k+lu%(A)! > luxl(f\)

U osn find Jo,7)] where o and T are finitely valued stopping 11

sl that A c]o,T)] C Gk b ]O,a])(Hn . Then, from (5,1.4)

[t () = [ud] 0,7] < e +lug(Qo, )|
< gt |df‘ (XT~xq)<1i }
H,

vrom the unil'orm integrability of the XT it is then possible to i

siuch that (5.1.3) holds. The theorem then follows Irom the lewms .



Lemma (Pellaumail).

Let A be a finitely additive measurc on ﬁq ,  wilh Lhe Vol lowing:
proportics s iL s of finite variation and

(1) v reF o, s<t

lim  |A(]s,t] xF)| =0
t ¢ s I ’ I

(1i) for every decreasing sequence (Fn) extracted (rom 3, siokh

that 1) Fﬁ':¢
n

lim sup_ [A(4)] =0 .
n- o Aﬁ‘ua :

AC] O,a] an

Then A is o-additive.
'root.
We have to prove that for every decreasing sequence

(5.1.5) (An), A €9 and .'n;An:qs , lim )\(An) -0,

Suppose that for some class (¢ of subsets of [0,a] , © boing
stiable with respect to finite unions and intersections, we have Lhe proprriy

¢ Aed , Ve, u CEZ and A €% such that

ArcCccA, P(A-AD|<e.

Then 1{ for every decreasing sequence (Cn) such that Cn € and (JY -
il
wi- have
(5.1.6) lim sup_ |A(A)| =0,
n Acd
1
AccC

n



- 40 -

Woosoo ammedialoty that (5.0.5) G Lieer Lage A S0 DA with
fL r i
’ \ . € .
‘MA‘“A')I N . Then if we set
1 n e 21’1
Cg =N Ck , Bn =0 Ai €U
a
k<n k<u
1 . - N . .
we et a decrrasing sequence (Cn) , extracted from © with void intersacction

arnel such that

Yn |“‘(An—Bn)| Se .

I'rom (5.1.6) it is clear that lrilm )‘(Bn) =0 and then 1imnsup l}.,(/\n) ‘ ‘e
for all ¢ .

We only have to prove (5.1.6) for a suitable class ¢ . We tak~ for
C the class of finite unions of rectangles of the type [e,t]x)V, F €3_
l'rom property (i) it is clear that for every set A= [s, L] y i (and then
for cvery inite union of such sets), it is possible 1o [ind C=Te! 1] x v = A
and A' = [s',t] xF such that (A-AD | = | (Js,s'] xF) | <e ™

Let us take a decreasing family (Cn) of sets in ¢ such thal,
WG ~é . As, for cvery w, the sot Cn(w) =f{u:(n,w) € C.bods coupucl,
W T

Ufw: i C (w) =g, =0
k n<k

As {w: v C (w)=¢}=F €35
ok n n a

i G C[O,CL]XF .
ngk n T

I'roperty (ii) then implies (5.1.6).



5.2. o0O-additivity on Sin .

The following theorems are mere corollaries of Theorem 5.

Theorem 5°',
Let X Dbe a right continuous quasi-martingale on [0,] . Then

phes is g-additive if and only if X is of class D .

Theorem 5",

Let X be a right continuous process which is a quasi-martingale on
cvery [0,a], a<w . Let T be a stopping time such that, {XU 04T,
o stopping time} 1is uniformly integrable. Then J; restricted to

[0,T) N ﬁg is o-additive.

Remark., The thcorcem 5" can be applied, in particular if T=din{{t: Xter}.

5.3. Pure simple additivity of py

Theorem 6,
Let X be a right continuous quasi-martingale on [0,®] . o7 is
purely singly additive if and only if X is a local martingale, such that,

1lim Xt:tO a.s.

t = o
I'roof’.
I . b - v i
Let 1%1_ inf{t .|Xt|i>nf , and Y =X . . As (Y )t et 1S

trivially a quasi-martingale of class D, and as

I“;nl < gl
—a

yn
Y™ is a martingale, and then X is a local martingale.

=0 if ;? is purely simply additive, which means in particular that



+ -
Let X=M+V -V be the decomposition of X as the sum ol a
martingale, and the difference of two potentials. It is known (and casy

to check) that the g-additive (and then in this casec P - absolutly

continuous) part of ;M is EMm , where (Mz) £ emt is the uniformnly
integrable martingale
M, = B( lim M |5,) .
t - o
As
1im X, = 1lim M, P, a.s,
‘t‘,—»oo t 't—-)o:) t

we see that if ;X is purely simply additive, then  1ldim XT-fO
t oo 7

Conversely, from what precedes, to prove that, for a local martingalc
X such that 1im Xtr:O a.s., ;X is purely simply additive, ii s Tines

t -
to prove that a potential V , which is a local martingalc, ie such that,

Koy is purely simply additive. But noticing that every process Y siuch

that 0< ;Yg ‘_"v and which is g-additive, has to be a potential which is
a local martingale of class D, then a uniformly integrable mari il

is zero,

. Pellaumail's proof of the Doob-Meyer's Decomposition theorem.

Theorem 7 (cf. [11]).

et a be a positive finite measure on #_ s such that
(A € P_,A evanescent) => a(A) =0 .

Then, there exists an increasing process (c.t.r.), unique up *n
indistinguishability, such that ¥ s<t , V¥ F‘tFt

h . _f I 1 N
({J-l.l) h[lF (V_t""vs)] "J !’{.1‘['7\l~,‘)—)d J
] S,t] X L



denoting by E(1F|Fu_) a left continuous (then predictable) version of
the martingale (E(lFlFu))ugt .

The process V thus defined is natural in the Moyer's sonse (cf. 170
Chap. VIII).

The 1nicity, np to indistinguishability, is quite trivial, VL being

necessarily such that
c . = [y !
(6.1.2) ¥ FEF E(lF vt) j( 1.(1F,§ru_)da.

We consider the following function on Ft

a ¢ F - f E(lFIFd_)da .

(0,¢] xu

Using the martingale inequality and the Borel Cantelli lemma, wo praovse irn

a standard way, that from any decreasing sequence (gn) of F*- meaenrsble

functions, such that

1im g, = 0 p.s.
n

w can extract a subsequence (gn ) such that, if
k

Yk(n) - E<gn

we have

a.s. lim sup 'Yk(u,u)lr:O .
k= Ogu_<_‘b

The o-additivity of a, follows from this, and, denoting by Kt an

de
1.
dp It

t

expression o! the Radon-Nikodym derivative [ one grts casily

rollowing:



v '€ fl(u,gt,P), preR) ! O] ) e
. 0!

|
=21
S’
S
I

E(f - Ixt) - E(E(I‘I&s) . sz)

i

f E(f‘&u_)da .
[s,t] x¢
One then gets easily a modification V of A having #11 the roquirad
propertics.
llsing the relation
t

=E[ Y_-av
i S 5

E(Y, - V)

for a positive martingale Y and an increasing process V (cf. [7],

Chap., VIII), one gets immediately

[

Y -da = B(Y |5 _)da
s L[‘(O 8

(0,t] x ¢ ,tlxa

which proves the "naturality" of the process V in the sense of P.A, Meyor

(cf. [7], Chap. VIII).

Corollary. Doob-Meyer's Decomposition Theorem.
If X is a Ll—bounded precess which is a quasi-martingale on every
finite interval [O,a] € R, and is locally of class D, there is a

unique (up to indistinguishability) decomposition

X=M+V



where M is a martingale, and V a process which is the ditflerone: of
two increasing natural processes, vanishing at 0 .
Proof'.

We take the Dolcans measure o assoclated with X and apply the
preceding theorem to get V . As the Doleans measure associated with

X -V is zero, X-V=M has to be a martingale.

7. [Extension to the case of vector valued processes.

We have already noticed theorem 1' that som: of the previons
rosults could be restated without any change: for Banach valued procoss s,
But in this casc, the notion of decomposing by into a positive and nopaiiy
part is meaningless.

The sufficient part of the proof of Theorem 5 can be applied withoul
change to the vector situation. This 1s not the case for the necessity part
of the proof.

As done in [6] and [11] the decomposition theorem of ¢, extende wilho.t,
change to the case of a quasi-martingale X taking its valucs in the

scparable dual of a Banach space.



By
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