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Strongly Mixing g - Measurss

by

Michael Keane

SUMMARY

Let T be an n - to - 1 comsering transformation of the compact metric
space X (e.g. (X,T) the n - shift). For suitable functions g on X an " inverse "
‘Pg of T is defined : \Pg is a Markov kernel. If g is strictly positive and
satisfies a Lipschitz condition, then there exists a uniqus \Pg - invariant
meaaure, strongly mixing under T, Conversely, we associate to any T - invariant
probability mesasure a suitable g, and if g is " nice ", then strong mixing is
present. Examples include all Bernoulli and Markov measuraes on the n = shift.
The strong mixing criterion is useful, and applications to harmonic analysis,
ergodic theory, and symbolic dynamics are given., For example : if G is any
infinite subgroup of the group of roots of unity, there exist uncountably
many (explicitly constructible) continuous Morse sequences whose correspon-
ding dynamical systems are pairwise non - isomorphic and all have as eigen-

value group exactly the given group G.

% Laboratoire de Probabilités - Equipe associée du CNRS n® 250 - Rennes -
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§ 1 - PRELIMINARIES. ~

Let X be a compact metric space with metric I...l .
The following notation will be necessary :
€ (X) = the continuous real - valued functions on X.
[f] = sup | £ (x) | for f€ C (X).
x €X
C ¥(X) = the finite signed measures on the Borel sets of X, or,

equivalently, the continuous linear forms on C (X).
4 x
4” (X) = the probability measures in C ¥ (X).

Supposg that T is a homomorphism of the space X, Then T maps each
of C (X), C¥(X), and ?(X) into itself, and because ?(X] is a weakly com-
pact convex subset of C (X), the space

?T[X]={u6§>(X)lTu=u} _
is again a non - empty compact convex subset of c* ). Suppose u € ?T[X)’
Then
i) u is ergodic iff y 1is an extrem point of gb.r (x).

ii) p dis strongly mixing iff for each pair f, g € C (X) we have

b T — u h). ulg).
Our purpose 1s to study ?T(XJ for special peirs (X,T). We call T

a (minimal) covering transformation of X if there exist an integer n > 2 and

p > 1 real such that

i} T is everywhere n - to - 1,

i1) T is a local homeomorphism,

1i1) for sufficiently small 6 > 0, |x,y| = 6§ implies |Tx,Ty| » p &, and

iv) for each x € X, U T " (x) is dense in X.
n>1

Let y be any measure in c¥* (X) , and denote ths msasure in C ¥ (X)
obtaieed by lifting u 1locally via T‘-1 by Q u. The total mass of Q u is n
times that of u . If u & g’T {X) then obviously u is absolutely continucus

with respect to @ u, and we can form the Radon = Nikodym derivative
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g =S
ddu

Moreover, 0 < g < 1 and

Lglz)=1
ze T {(x)

for y - almost every x € X. Thersfore, we are led to the following defini-

tions. Set

z

2e T- (x)
A probability measure y on X is called a g - measure for & given g € G if

6={g:X —> [0,1]|g measurable, g(z) = 1 for each x € X} .

%%u = gmod y » For any g € G and p ¢ C *(X), define the measure \f?gu €CAX)

b d
g ATAI
dQy

Theén, \Pg maps P (x) 1nto iatx) and the following theorem is valid.

Theorem. - A probability measure y is T = invariant if and only if p is a
g - measure for some g € G. For each continucus g € G there exists at least
one g - measurs,
Proof : The first statement in the theorem is obvious from the preceding
explanations. To prove the rest, note that if g € G is continuous, then
%% is a weakly continuous map from g%X] into itself. By a fixed point
theorem, there exists a u eﬂX) with kpg p=yu, l.e. is a g - measure.
An example of a g € G with no corresponding g - measurs will be
given in § 4, Examples for covering transformations T are provided by ta-
king for X the circle end for T an n - fold wrapping, or for (X,T) the
one - sided shift space on n symbols, If X has a differentiable structure,
we sst
e} X) = f: X —> R | f continuously differentiable} .
In general, let
L (X)= {fecC (X} there exists K > O with

| fx) = fly)| <K |x,y| for each x,y € X} .
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We also define the map 12 for real - valudd functions f on X by setting
= z
f% f (x) £y g (8) f (2).

zeT © (x)
Then if f is u - integrable, we have

£;€gfdu=xffd\fg TR

and if g € C (X), then \fg : C¥(X) —> C*(X) is the dual transformation

to *Jg : C (X) —>> C X).
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§ 2 - THE STRONG MIXING CRITERION FOR THE CIRCLE. -

In this paragraph, a proof is given of the basic result for the
circle group X = [R/Z under the transformetion T defined by T x = 2 x (mod 1
Points x X are assumed to lie in the interval [O.l[ . The result can be
stated a5 follows.
Theorem 3 Let g € G N Cl (X} be strictly positive. Thien there exists exactly
ane g =~ neasure ”g' and pg is strongly mixing.

k
Proof : The idez of the prcof is to show that the sequence \Pg f converges

to a constant for any ¥ € C1

(X) , using the Arzela - Ascoli thecrem.
This yields the measure Mg (f) = lim \ng f , and it is easy *o see that
“g is unique end strongly mixing.

K
1, {\Pg £ { k > U} 1is relatively compact in C (X]) if f & C1 (X) :

Let D = =9 . Then
dx
.4 ). 4
D (P, F) ) =5 P, (0F) (x) ¢ 5 ng £ (x).

\eDg being dafinad in the obvicus manner, and

o fl <35 lofl « loel . If]

since \Pg is a contraction of C (X). Therefcre

k 1 k=1
e, “elsglop, e logl . ¢l

1 1 1
<= | oF| v (1 e 5+ Ll +—2—K—_—1) log| . ||

Clof] + 2 fog] . If] .

1A

3ut
K
| P fl < |f] (k = 1,2,...)
g ———
5o that 1. follows from the Arzela - éscgli theorem.,
k
2. Choose { nk} such that h ¢ = lim \Dg f € C (X). Then

k
h = const. = lim \Pg f o

For £ € C (X) sot

a (W;UJ = inf fV(x)
e X
B(f) = sup F (x).

xe X
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Becauss g € G ,
o (f) < a(\'ﬂg[f]f_ see < alh) < glh) < 4ue < B (\%‘F]f_ B(F),

and if wg set

o

a (h) =q (T%h) = ea

n
1

B 8[h]=6[pgh)' ss s

]

then it suffices to show that ¢ g« Now if %UE;C (X) and a (f) = a(¥%§3

? {y), then

; = -x 1 —l- -x —1 1
\fgf (y] g (2 ) f (2] +t g [2 + 2] f (2 + 2]
Y 1., Y
and g strictly positive imply f [2) = f [2 + 2} . Therefore if

A= {xeX]|h(x)=al},
k
and if y satisfies \Fg h (y) = a , then

(L Jocs<2 o

2
A similar argument holds for B (h), and we have h = a = B,

3. For f € C (X]), kpgk ?lconverges unifermly to a constent
l [ %4
Choose € > 0 and f ¢ C° (X) with [f =~ f| < e,
k
Let = lim f. Then
o \Pg k
3
f - £l <
e Pe fl<ce
implies
1im[e[~pkﬂ-a(k€kf)’l <2¢,
g g I

and \ng converges to a constant.

k
4, Define “g (f) = 1lim %9g f (f €C (X)), If u 4is a g - measure, then

u=ug-
For any f € C (X),
k
(f) = f) - — { (f)) = (f)
W u\Pg > H ug M-
by the denominated convergence theorem and p = ug.

5. “g is stoongly mixing :
Let f, h &€ C (X) . Since TFf =7,
e € ¥%
K k
(T 'f.h) = (f. h —D (f) . (h)
Mg f My \(g ) Mg g
as k tends to infinity, and ug is strongly mixing.
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The condition that g be strictly positive can be relaxed. Fcr
such & mgdification only step 2. of the proof needs to be checked, th:a
cther parts being independent of this condition,

Thecrem ; Let g € G N Cl (X) satisfy one cof the following conditions :

a) g has cnly one zero in X.

b) g has finitely many zeroces, nons of which wander into pericdic

orbits under T.

3 ) or (1 3]

c) the zeroas of g lie in E% — i

Then there exists exactly one g - measure g’ and g is strongly mixing.
Prccf : The rnotation of the preceding proof is used.

k
a) Let g (z) = 0 and x ¢ X with %Dg h (x) = o « Either x < z or

k
h(—"—“z—k-'—ll = q . Since h € C (X), we have a = B .
2
b) tet A = {z[ g (z) = 0} hawve r elements. The convexity argument of 2.
K .
can bz epplicd to %)g h {y) = o unless fecr soms 1 <1 <k and 0 < J < 2t ,
Y1 e a
i
. 2
Now, if !L%—= z (A does nct wander into a pericdic orbit, then i is uri-
2
quely determined by z. Thus
o
h ) = a
2

for all 0 < j < 2K except possibly these of the form 2ip * 4y for at most

r difforent values of i, As k increases, the subset on which h = o still

becomes dense.
K 13

c) If %Z h (y)] = a and y g[}z ' 7 J , then either

-% - (D,—41-) c;r-z1 +-§ c (%:1) and we can apply the technique used in a).
Conditicn c) and the proofs of a) and c) were suggested to me by

L. KAUP, In § 4, we give an example of a g ¢ G f\Cl (X) with teo g - measurss

becausa of zeroes at the points of periocdicity of T. The aboge thecrem can

certainly be sharpened.
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§ 3 - THE STRONG MIXING CRITERION FOR COVERING TRANSFORMATIONS, -

In this paragraph, the results of § 2 are extended to covering
transéormations T of the compact metric space X.
Theorem : Let g € G L (X) be strictly positive. Then thers exists exactly
one g = measure “g' and pg is strongly mixing.
Proof : Only part 1 of the proof of § 2 needs modification to :
l. If £ & C (X), then {\ng f | kK >0} is relatively compact in C (X)
For any f& C (X} and &> 0, 1let

e (f, 8 = sup | f (x) - f (y)]
|xyl < ¢

Let f € C (X) and suppose that K is a Lipschitz constent for g.

Then for sufficiently smell §> 0, [x,yl < 8§ implies

-1 -1 -1 ' .
max | z, Zi'-f p "6 ,where T " x = {zpeasz }, Ty = {zl,....zu
1<i<n
and thus
n
= X 4 -
e (p,f 8 = sup | I (g(z)F(z;) - g (z,)f(z,))]
|x,y| < ¢
n
P -
< sup ;E 08 (z,)] (z;) - f (zi)l
Is.y] <8
n
+  sup g 1F el s 2 - g ()]
ay] <8
- ~1
_gs(f,p161+n.|f|.f<.p 8
By inducticn we conclude that
- - - -K+
e gyt 8 <etho 8 v nKk | F ] 6k P
-1
< constant + n K |f] &5 ,
1-p

and this implies the e.ui - continuity of the set {\pgk f | k >0},
In special cases, the strict positivity of g can be relaxed as in § 2,
8. g. for (X,T) a one - sided shift space.

We note that u g # ug' implies yu gJ' ug' because of the strong mixing

property.
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The idea behind the existence of measures as shown in this and
the preceding paragraph is not new - similar end more general existence

problems have been handled in various settings (e.g. [iJ s [3] , [5] , el .

]
L
What is criginel is tho strong mixing of all these measures with respect

to the same map T and the resulting orthogonality.
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§ 4. EXAMPLES, -

l. Bernoullil schemes.

Let X = @ S —— {0,1,s0e,n=1 } and let T be the shift
transformation on X. Und99 the metric defined by

p | 7!

|won | = | 4nf {4 ] w # n,

X is compact and T is a covering transformation of X.

Ifp- (po.pl.....pn_ll satisfigs P > Oand I p, = 1, then let P denote

k
the product measure on X with distribution p in each component. An easy
calculation shows that u P is a gp - measure with

g? W) =P W &X, W, = k)

k
Since gp is a continuous, locally constant, and pesitive function on X,
we have gpéj GO L (X) and the results of § 3 apply to Bernoulli schomes.

2. Markov measures.

Let (X,T) be as in 1., and let P = ) be a Markov kernzl cr

(piJ
{0,1,...n=1} . Chcose a probability vector n = (ﬂo,.-.,ﬂn_l) with n P = 7
and dencte by m the Markov measure on X generated by the initial distribu-

tion and transition probaebilitiss P,

Ifa_ 2, ... &

o 21 is a sequence of states, let

K

L 8, 8 v 8] = Wex | wy = e ford<i<k}
Now, m & ng {X) beeause P = , 80 that m is a g - measure for scme

g € G. We may calculate g as follows. Fixing the states i and j, the ratic

m ([;Jaz - aé]) _ TPy
T,
m ([ja2 . %J] 3
is independent of Qos ses s s Therefore if
" pwow1
g (w) = we X),
'H'wl

mis a g - measure. If P and n eare strictly positive, then m is the

unique g = méasure and is strongly mixing, since g € L (X].,
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3. ket X = R/Z and Tx = nx mod 1 for scme n > 2. For some o with
Ia‘ < 1, set
g (x) = 1r g Cis 27X (x € X).
Then obvicusly 0 < ¢ (x) < 1 and
) g {z) =1 + & n-)_;lcos 2% %51&;= 1.
2 eT Lix) no3%0 n

Therefore ge G N Cl {X) and § 2 shows that exists a unigque g - measure
u o’ which is stronpgly mixing. In particular, the ergodicity of A (Lebespue
measure) and “g implies X 4 ”g’ and we have a singular measure u . on X.
It is easy to see that u g is continuous iff ¢« # + 1, and u g is cointt

mass at 0 4f o = + 1.

4

4, Lot X = R/Z and Tx = 2 x mod 1. If g €« G with g (0) = ¢ (3] =

g &%) = 1, than point mass ¢ o at zerc and the measure-% [El + 62] are

both g - measures, and cur method does not produce results bgcausg of the

periodicities in the orbits of the zeroes of g.

5. Let X = R/Z and . x = 2 x mod 1. We set

1+ ccs 2 X

1

g (x) = 2 (X?‘U,-E]
1 - 2
5 {(x = 0 or 2)

Then, g € 6 and for f ¢ C {X], 2 f converges tc f (0}, but

is not a g - measurs because of the discontinuity of g at O.
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§ 5. APPLICATIONS TO HARMONIC ANALYSIS, -

let X =R/Z and T x = n x mcd l,lal < 1, n> 3, Products of
the form

P (x]) S S (1+a cos?2 7 nj x)

k jgl

are special casus of Riesz products (sec [8] Jo Lot g be as in § 4, exompla

3. Then if A denotcs Lebesgue measure, we have
k

wgg A< Py A

and the theorems of § 2 show that kpz A converges. to the continucus singu-

lar measure u g of the example. If n = 2 and o # + 1, then the measure py

.
[

remains singular and continucus, but if a = + 1 and n = 2, we get u% = €

In this case, the products Dk (x) ere just the Fejer kernels

2

(x) = —L [ 8in 21 2 5 x )
2k-1 k-1 2 sin 7 x
2

K

and form an approximate identity. Our methods yield in fact for n = 2 an
approximate identity whenever~% is the only zero of g, and it is concedivailec
that appreximate identities with desirable properties could be constructes,

We note also the combinatoriel connections : if ﬁ . denotes the Fourier

transform of the measure p g a simple calculation yields

A . L oy,
u g (k) = - (2) .
Number of ways to write
J J
k= +n ! P aee vt N r R
A s 5 ~2mikx . . o
and ug (k) = 1im ¢ . (e J gives an analytic expression for this

J e
combinatorial guantity.
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§ 6. SPECTRAL CALCULATIONS FOR MORSE SEQUENCES. -

In this paragrach, we calculate the spectral meesures corres.cr-
ding to the continucus spectrum of a generalized Morss scquence. We assumz
familiarity with [}1 , and begin by describing the results in |4] that we
necd,

dencte Ly

the space of biscquences cof zeross and unes, with the left shift ¢ . Lzt
o .1 2 .. N ] ]
gach of b7, b7, b7, ... Be a finite blceck of zeroes and ones of length
at least two and starting with 0, To exclude pericdic cases, assume that
an infinity of the b' are different from 00 ... 0, and an infinity diffcroent
from Q101 ... 0l0. Assume alsc that the sezqguence
X = bo xtﬁ'x b2 X ans

is a continucus Morse scquence (see definitions 7,8 and thecrem 8 cf [4j 1

This implies the fcllowing :
1 - The orbit closure & of x in (9,0) is strictly ergodic.
II - Denote by m, the unique ¢ - invariant probability measure conczie
trated on 57% and sat

- ~

g}x: (fe” (T omed | F=F)

> B 2 S _ ~
EK~{1C&L (& ,m) | f=-F}
Then, L2 (Ei,mx) =j)x® éxand ﬁ)x and ér are ¢ -~ invariant.

IIT - ¢ has discrete spectrum on ;Dj_ with eigenvolue group

j* = 3 i J 3 =
/}x { exp (2l ——_ ) | 5.k=0,1,2,...}
s K
i . . L1 . ; D
where n, is the length of o™, There is amapy —> f from (3 te sl
1 Y X

such that o = . T , T = F f R
' Y Y Y y 8 Y $

{fYI Y € 'J'x} is & complete ofchcnormal basis for JDJQ and
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fY !O:

1 &0 yd1, G omee et LD

j nolllnk
with o J AO = Aj for 0 < j < nO r‘nk - 1, the /-\j being open and closcd

1 n gx‘l

IV - ¢ has continuous spegtrum (no eigenvaluss) on f « If we put
X

W
h w) = (=1) °
then {h.f\(l Yy & “/dlr,} spans El{ .
- NI 1.2
V - Let b b, 1"'bn-l and y = b~ xb” x ...

Then y 1s alsc a continucus Morse sequence., If y = exp (2ni % )} then the
sets Ao’ Al, ass 3 An—l in III can bs chosen (choose them as in § 4 of [_r_!
such that the (strictly ergodic) systems [a;,c] and [Aj,on) are isomorphic,
and

b+ b,
Yo 1,
i+ 3

for 0 < j<i+ j< n

. . N
Now, ®e can begin our spectral calculations for o on G.
X

Dencte by uY 5 the measure on R/Z such that

P ) 1
< oM he o nf > = LK) = [ exp (-2mikt) 4 (dt)
Y &l v § 0 Y.,86
for each Kk € Z, < . , .> dencting the scalar product in L2 [?{,ml). Thon
<o N (hf ), he >=y'< 5" (h.1), hf >
Y § 1 sty 71
and f. = 1, so that the measures p and u are related by a
1 Yy § Ly 6
translation of logy = —J  onrez.
N wea N
c K
. o1 2 o _
Now let y b x b” X aea , D bc bl"'bn-l’
]
Y = exp (2111-% ), and let v be the measura u 11 Tor the point vy,
c'est a dire
$ (k)=<ckh,h>

LZ@’,m)
y y

For fixed m ¢ Z, we cobtain, using III and 1V,
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u {mn) = b, hf >
1,Y ' Y
m=1 ; an n=1 .
= < ' = ) i z J
L Y o h, h1 i > v (m) jfo Y
J
N - n-1 .
G 1) =< M e s Iy e M, h
1,7 Y j=0 A
n-2 . N
mr+ . - -
= iy Je s Yhi, Juhl, > +y 1 o[m+l)nh,cr l[hl)ﬂ
J=u AU A Al
3+l J n-1
A n-o b"+bi R ~ L +b _ Y
=0 g en Y Flyds Jen (= @ Mt oind
and in general for 0 < j < n-1.
n-1-j bh.+bh . n~-1 D
A , . i R
u (mn+j) = S E -1 * Y1 + 6\[m+l) . L (=13} -
l’Y 1=U 1=n-]

Dencting by § the cperation defincd in § 1 for the transformaticn

Tt = nt med 1, we see by simple cperations with Fouriar transforms

that u 1,y is absclutely continuous with respeet to Q v o and
n=1
d o o .
.y _ 1 L a (o ,y,k) exp (27ikt)
dQv n k=0
. n=1
v = L g (° vkl exp (Z2mi{k-nlt)
n k=0 ) v ' ’
whers n=1-k o
1 i RE R Y
a (57 ,y,k) = ._; y (-1)
n 1=0
) o bR,
"C, .4 b 1 - 1 1HK-N
£ (L7,y,K) = P (-1)
In particular, fory = 1, we have o (&%, 1,0) = 1 and

’

o (61,6 = 8% LN~k) , k=1, ..., n-l
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Thus, if we set -1 c
1+ 2:;1 2 6% 1,K) cos 2mikt

g 0%) = g % ¢t) = ~ ,
g %) € 6 and
”1,1—“93 (5% Vo

where v is itself the measure corresponding to the sequence y. In

L]

gensral, denote Ly A j the {probability) measure u 1.1 corresponding tc
the prodoct bd x bJ+1 X «sa 5 and set

ry (8] = & I, t)

\Pj ) LFgJ

Lemma.

For each j_z 1, A

-1 7Pt g

Moreover, for any f, f' & t%t' the measure y defindd by
1

<o Kf,f’ > = f exp (=2mikt)uldt) {k¢Z)

8}
satisfies p < < A .
Proof.
The first statement is the result of the preceeding calculaticn:.
Since any T € tat can be expressed as an infinite linesr combination of
the f , it suffices tc show that u < <A for each peiry , & efj.
Y Y, ¢ 0 I
This follows frem the facts that g () has only a finite number cf zeroes,
all measures xi are continucus and equivalent to their translations by
J

amognts of the form ——————m
Ry e nK

Restaping the conclusion cf the lemma, the spectral measure corres-

ponding to o con E?, is absolutely continuocus with respect to A o Thus

the class of meesures equivalent tc XO is an iscmorphism invariant feor o

on ;?.

K
Next we show how to calculate the measurs A o and derive some of

its properties.
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Thooram,

lim \Fj \Pj-l s LT T (£}

. C C
] =
uniformly.
Procf
Lwt 1 Lo & trigonometric polynomial of dogree k. Applying LT
h
-
using the special form of ¢ (89) given above, we see that %Dj f 1s again

e trigenometric polynomizl of degros

kK - 1- kK - 12
1+[_r|jl il+[2J<K'
provided that k > 1., Thus deg (f) = k implies

A UK R RPN B :
0 - = @ o2 al o (=2n
\Pj i s f=ol v a3 (2pit) + =} (=27it)
for j > k. Applying \Pj+1’ Wwe cbtain
EUE
|3j+l| - it 1
bl N, , — 2 ’
i
in view of Ja CEARIRI -1 = L .
i+l n,
-~ J*l

Thus, k?. AN \F" f converges uniformly to & constant u (f) for trigeno-

matric pclynomials 2nc hence for each f C (R/Z). Now

Ao FY o= [\ﬁ;"'“r’“) X, (f) = )\i+1 (\pj RN fl —u ()

g OF) = 0 (F).

[

Thaecrem (Strong mixing property)

For f,¢ ¢ L R/Z)

v (LT To...T.8)
J

G o1 ~
o AT R
J == ool J

where 7. t = nj t mod 1 and if th: denominator remains ncon - zerc.
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Proof :
Because > . T, is the identity,
¥ y

i)

AO (f . TO PN Tj b

it
%
=]
.
.
L,
-
[N
—
>
—~
-+
=1
.
.
-t
m
—

= ) o1 (g . %Qj s Py f)

and %)j v kPO f sonverges uniformly to A c {f). Since A j+1 {g) =

AD [TD cne Tj g), the theorem follows.
We can use now oor information atiout X c to shaw that in yenerai,

. , o] 1
Morse sequences are non - isomorphis. Let x = b~ x b™ x ... and

x' = c” x et x ... b2 continuous Morse sequences with length (bi] =
length (cl] = ni for each i, and denote the corresponding basic measures

]
by AD and A o’

Lemma.
Either A L A ' or A ~Xx' ,If A ~ XA , then
G o c 0 O 0
[|xj - A'jll —> 0, where || . || is the variation nomm.
Proof.
Fcr sach n write
A= A% e Lo
n n n n
where
A S L Then & ° = A S for_gegh n, so that
n S n a ".one1 1OTREED N
5 ~ B
A o [‘F] = ?O nu-\()n )\ n+1 (‘F)
5
=X 41 (\On...xpoﬂ —% C . A o (f}.
4 ) s = = ’
Thus, either o 0 or % o If » o fo P A then

)

) ! [}
n+1l (Pn'\Pn—l"'\Pof] ' An+l

>
i
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: !
New, it ¥ is continuocus, #91 o a0 \Po f cunverges unifermly tc 1, so that
i
3 ’ 7

Ly appreximaticn, any 7 ¢ o (A ) with f fd X =1 satisfics
: o
t ' /
|l' \(j PN £ - 1 o o —> 0
’ r ¢ n

1) thers oxlwvs o cnsstant K osuch that

i

I = { i> D0 n, <Koand g (7)) # g [cl] }

{ E [

s infinite, ang

)
Z) X i or A i) converges weakly to a ceontinucus measurs v alon

4

sume subsequsnce along scme subsequence of I « 1 = {i+l! i

)

tren AC A lo .

Procot

There avs caily a2 fiiite number of Lbleccks 2f length not oxcen o
. ’ »
st that we can chocee a ssguence i + 1 dn I + 1 sush that X"+l —>
i

-, .
and Y = n, ¢ = o owith g (&) # g (c). This implies that

ORI (U1 N F RNV RN S 5 N AR VI
Sut hoeause of che Jorm of g (B8) and ¢ (2), t] gL, o (ot

o 1o continucus. we have a contradiction.

We noto two simple denseousnces of this thecrem. The first is
thot IFf x = 0 %X U X ... 210 x' = © %X € X ... are continucus Mcrse soagu.r s

with ;o () # ¢ (2}, then AL X' and the dynamical systems (&,ir ) anc
‘ o o X

!

S L. 1 . T o - et - - bl - hY
! ,mx,) arz not isomorphic. For o dircct proef note that Ao and A
/
are g (9) rospzctivaly ¢ (c) meesurcs in the sensc of § 1. Since X+ 2

&

[

and since both are ergcdic onder T t = n t med 1, n being thoe common 1onvts
/
of b and ¢, we have A L 2 o The second conseguence 1s the followin
[

thaorem.
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Thecrem :
Let /}be an infinite subgroup of the group of rocts of unity.
There exists an unccuntable number of dynamical systems whose eipgenvaluc
group 1is exactly /J » such that any two of the systaems are non - isomcrghic,
This theorasm generalizes the result in [2] , where the casc

n
Q={>\| nid % =11} 1is dealt with.
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y 7 - Misce! lanecus.

Let G € X = (R/Z e +me subgroup cf all dyadic raticnals, Ir LZJ

an example of a quesi - vriodic measure class different from the Lebespue

measure class with respect tc the group G wes civen, If we define

4

Tx = 2x mod 1 and lot < € G ACT

{X) be strictly positive, then it is casy
tc sec thet the inmasurs )Jg is quasi ~ ipvariant anc quasi - wrypcodic with
respect to GG. fMoresver, we obtoln different classos for different 5, anc
thus uncountealrly many such classes exist.

We note that there is one =~ to - one ccrrespondence botwsen the .
invariant measurcs on the cne - sided n - shift and those on the two - sil:
n - shift, since thzse measures are uniquely determined by théir values cn
cylinder sets. The properties of ergodicity and strong mixing are compatiilo
with this correspondence, so that the examples for the cne - gided shift Lro
als¢ valid for the two - sidec shift,

We remark that the thecrem in § 2 answers negatively a conj-cture
of KARLIN Eﬂ , Since our measures are singular with respect to Lebesguc
measure.

There arc a nuober of questions left answercd :

l. If g G N C (X) is strictly pusitive, is there only one
i - measure ? In ;ﬁ] , KARLIN states a thecorem to this effect, but ths

proof seems tc usc derivatives of g. It would suffice tc show that the

n
Cesaro means of 13 ~ f converge unfformly.

&

2. The entropy of the g - measure p should be - f leg g o ow

Is it ?
3 ~ Which dynamicel systams (X,uu,T] are isomorphic ?
4 - let b =b_ ... D be a 0 - 1 sequence, and call
o} n-1
C = Covee Cn-l similar to b if it 1s obtainsd from b by interchange of O

and 1 and for crcer reversal. If b oand ¢ arc similar, then g (b) = 3 {(c].
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Dees g (b) = g (c) imply that b and c are similar ?
Hopefully, the criteria in § 2 and § 3 will turn cut to be
effective 'in proving the ergodicity of dynamical systems. A ncte announci

the results of this paper has appeared in Comptes Rendus, March 1871,
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